

Major Project –II Report

On

 “Implementing home gateway using the CoAP protocol”

 Submitted in Partial Fulfilment of the Requirement

 For the award of Degree of

 MASTER OF TECHNOLOGY

 SUBMITTED BY :

 Ravish Malhotra

 University Roll No. 2K12/CSE/16

(Computer Science & Engineering)

 Delhi Technological University, Delhi

 UNDER THE GUIDANCE OF:

 Dr. S.K Saxena

 Department of Computer Engineering

 Delhi Technological University

DEPARTMENT OF COMPUTER ENGINEERING

 DELHI TECHNOLOGICAL UNIVERSITY

 BAWANA ROAD , DELHI -110042

2012-2014

ABSTRACT

This project aims at creating a home gateway / resource directory using the Constrained

Application Protocol (CoAP) that would list as well provide various services to interact

with the various sensors and actuators available in the household.

CoAP is an alternative to Hypertext Transfer Protocol (HTTP) for interconnected objects,

exploiting a binary data representation and a subset of HTTP methods (GET, PUT, POST,

DELETE). It follows the Representational State Transfer (REST) paradigm for making

data and resources accessible. CoAP uses User Datagram Protocol (UDP) for transport, as

Transmission Control Protocol (TCP) is considered too resource-consuming.

It is not feasible to interact with such constrained devices, since at a particular time these

nodes may be in a sleeping state, be a part of disperse networks or networks with

inefficient multicasting capability. Therefore in order to interact and observe multiple

devices at a time it is required that a gateway be created which acts as a single point

destination to which a client needs to connect and be able to communicate with the various

smart devices in the household. The Resource Directory supports various services like

register, maintain, lookup and remove resource description. Here we focus on

implementing these interfaces using Java that could be used in Android platform.

Also, to provide useful information from the data captured from the sensors using CoAP

protocol we have enhanced the gateway with a SPARQL endpoint which offers a uniform

interface to access resources and its observation data in the domestic network, as well as

retrieve data using SPARQL queries. Additional services have been created which provide

observation data based on the time and location criteria.

In addition we have added the support of group management by which resources having a

similar feature can create and join a group, as well as enable the client to interact with the

group member resources by a single command. This has been achieved by creating a

proxy resource on which the external client sends a request.

 ACKNOWLEDGEMENT

Achieving a milestone for any person alone is extremely difficult. However, there are

motivators, which come across the curvaceous path like twinkling star in the sky and make

our work easier. I am fortunate enough to get immense help from my teachers, colleagues,

family and friends by their valuable suggestions and constructive criticism. It becomes my

humble and foremost duty to acknowledge all of them.

Words can hardly express my deep sense of gratitude and indebtness that I owe to my

esteemed project supervisor, Dr S.K Saxena for providing me the opportunity of carrying

out this project under his guidance. I express my sincere and deepest regards to him for the

support, advice and encouragement he provided, without which the project would not have

proceeded smoothly. The regular meetings and discussions were invaluable in the

realization of this work.

Special thanks to Dr. Rajiv Kapoor (HOD), Department of Computer Engineering for

providing me with an independent and conducive atmosphere to carry out the necessary

research work.

This study would not have been possible without the constant support and efforts of the

faculty and staff of Department of Computer Engineering.

Finally, I would like to thank my family and friends, for their undying love and faith in

me, which motivated me to strive hard at every step of my life.

Ravish Malhotra

University Roll no: 2K12/CSE/16

M.Tech (CSE)

Department of Computer Engineering

Delhi Technological University

 DELHI TECHNOLOGICAL UNIVERSITY

 DELHI - 110042

Ravish Malhotra

University Roll no: 2K12/CSE/16

M.Tech (CSE)

Department of Computer Engineering

Delhi Technological University

Date: _____________

 DECLARATION

I hereby declare that the Major Project-II work entitled “Implementing home gateway
using the CoAP protocol” which is being submitted to the Delhi Technological

University, in partial fulfilment of requirements for the award of Master of Technology

(Computer Science and Engineering) in the Department of Computer Engineering, is a

bonafide report of the Major Project –II carried out by me. The material contained in this

report has not been submitted to any University or Institution for the award of any Degree.

i

This is to certify that the Major Project –II Report entitled “Implementing home gateway
using the CoAP protocol” is the work of Ravish Malhotra (Roll No: 2K12/CSE/16). This

project was completed under my supervision and forms a part of Master of Technology

(Computer Science and Engineering) course curriculum in the Department of Computer

Engineering, Delhi Technological University, Delhi.

 DELHI TECHNOLOGICAL UNIVERSITY

 DELHI - 110042

Date: _____________ Dr S.K Saxena

Project Guide

Department of Computer Engineering

Delhi Technological University

 CERTIFICATE

ii

CONTENTS

LIST OF FIGURES .. i

LIST OF ABBREVIATIONS ...ii

OVERVIEW .. 1

CHAPTER 1: UNDERSTANDING CoAP PROTOCOL 4

1.1 INTRODUCTION .. 5

1.2 CoAP MESSAGE FORMAT .. 5

1.2.1 CoAP Message Types ... 6

1.2.2 CoAP Methods ... 7

1.2.3 CoAP Options ... 8

1.2.4 CoAP Observe Option .. 9

1.3 CORE LINK FORMAT .. 9

1.4 CoAP UDP BINDING ... 10

1.5 CoAP IMPLEMENTATIONS ... 11

CHAPTER 2 : COAP RESOURCE DIRECTORY 12

2.1 INTRODUCTION ... 13

2.2 SUPPORTED OPERATIONS ... 13

2.2.1 Discovery .. 13

2.2.2 Registration ... 13

2.2.3 Update .. 14

2.2.4 Validation .. 15

2.2.5 Removal .. 15

iii

2.2.6 Lookup .. 15

CHAPTER 3 : CoAP MULTICAST SUPPORT 16

3.1 INTRODUCTION ... 17

3.2 GROUP MANAGEMENT ... 17

3.3 CoAP APPLICATION LAYER GROUP MANAGEMENT 18

3.3.1 Join And Leave Group ... 18

3.3.2 Reading all group memberships (GET) ... 20

3.3.3 Updating a group membership (PUT) ... 20

3.3.4 Deleting a single group membership (DELETE) .. 20

CHAPTER 4 : RESOURCE DESCRIPTION FORMAT....................... 21

4.1 INTRODUCTION ... 22

4.2 JENA FRAMEWORK ... 23

4.3 SPARQL: A GRAPH-BASED QUERY LANGUAGE ... 24

4.4 SENSOR ONTOLOGY .. 25

CHAPTER 5 : ANDROID SENSORS ... 28

5.1 INTRODUCTION ... 29

5.2 SENSING & SENSOR MANAGER APIs IN ANDROID 29

CHAPTER 6 : SYSTEM ARCHITECTURE AND DEVELOPMENT 32

6.1 INTRODUCTION ... 33

6.2 SOCKET HANDLING USING JAVA.NIO .. 34

6.3 IMPLEMENTATION OF SERVICES ... 35

6.3.1 Registration ... 35

6.3.2 Send Updates .. 37

iv

6.3.3 Get All resources registered ... 38

6.3.4 Delete a resource .. 39

6.4 GROUP MANAGEMENT SERVICES ... 39

6.4.1 Create a Group ... 40

6.4.2 Join a group .. 41

6.4.3 Leave a group ... 42

6.5 SPARQL IMPLEMENTATION ... 43

CHAPTER 7 : RESULTS AND CONCLUSION 44

7.1 RESULTS .. 45

7.2 CONCLUSION AND FUTURE WORK .. 49

BIBLIOGRAPHY: .. 51

i

 LIST OF FIGURES

Figure 1 : CoAP Message Format ... 6

Figure 2 : The Observe Option ... 9

Figure 3 : Resource Discovery Architecture ...13

Figure 4 : Resource Registration Flow ...14

Figure 5 : Resource Update Flow ...14

Figure 6 : Resource Deletion Flow ..15

Figure 7 : Resource Lookup Flow ..15

Figure 8 : CoAP Message for Group Management ..18

Figure 9 : CoAP Multicast Support ..19

Figure 10: RDF schema of a proximity sensor. ...23

Figure 11: SPARQL Query Syntax ...25

Figure 12: RDF Of Sensor based On SSN Schema ..26

Figure 13: RDF of Observation based on SSN Schema ..27

Figure 14: RDF of Sensor Location based on SSN Ontology27

Figure 15: List of Android Sensors ..30

Figure 16: Android Sensor Events ...31

Figure 17: Connect to Resource Directory ..46

Figure 18: Initial Page that allows Sensor Registration ...46

Figure 19: After Registration with the RD ..46

Figure 20: Send Updates on event change as well as on receive updates46

Figure 21: Sensor is provided with an option to create, join , leave group47

Figure 22: Sensor can create a group for ex:proximitysensor.group47

Figure 23: Sensor can join the groups that are created in the RD47

Figure 24: Sensor can leave the groups that it has joined earlier47

Figure 25: Copper(Cu) Interface showing the registered resources48

Figure 26: Copper(Cu) Interface showing a resource description49

ii

LIST OF ABBREVIATIONS

API Application Programming Interface

Cf Californium

CoAP Constrained Application Protocol

CON Confirmable Message

CoRE Constrained RESTful Environments

Cu Copper

DTLS Datagram Transport Layer Security

Er Erbium

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

NON Non Confirmable Message

MLP Multicast Listener Discovery Protocol

MTU Maximum Transmission Unit

POS Predicate-Object-Subject

RD Resource Directory

RDF Resource Description Framework

REST Representational state transfer

RST Reset

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

XML Extensible Markup Language

1

 OVERVIEW

The concept of Internet of Things (IoT) is in huge popularity and is a mean to make

things smarter by allowing multiple devices to connect to the internet via wired/wireless

network and share their data. These devices would essentially be comprised of sensors

that can register various changes in environment like temperature, light, pressure, sound

and motion . However, these devices have many limitations such as limited capabilities in

terms of computation and memory and operate in constrained environments, such as low

power and lossy networks. The existing protocols (HTTP over TCP/IP) do not comply

with such constrained devices. Hypertext Transfer Protocol (HTTP) turns out to be heavy

for such constrained devices. HTTP requires minimum of 9 packets, and has a big header

that can get too verbose. Also HTTP does not guarantee message delivery and is

dependent on lower layer protocols to manage this. It also suffers from packet loss and

does not serve the purpose of bandwidth conservation, which becomes important due to

current costs of connectivity.

As such new alternatives have been developed for communication among IoT devices.

Internet Engineering Task Force (IETF) is currently working to develop a new protocol

Constrained Application Protocol (CoAP) to be used as a generic protocol for constrained

environments and can be seen in some ways as a compressed version of the HTTP,

reducing the complexity of implementation as well as the size of packets exchanged.

CoAP as compared to HTTP uses UDP instead of TCP, as a lightweight protocol.

CoAP provides a restful mechanism for allowing communication and making data and

resource accessible. A resource state is referred by its namespace named as uri. The

communication between the client and resource uses restful methods like GET, POST,

PUSH, DELETE, OBSERVE. Client which is interested in knowing the state of a

resource sends a request to the server which then responds with the current representation

of the resource.

CoAP includes various features like request/response interaction model between

application endpoints, discovery of resources, key concepts of the web such as Uniform

Resource Identifiers (URI) and internet media types. Also it supports additional features

like publish subscribe mechanism in order to get notifications. Caching has also been

used to support fast transmission of data.

http://www.ietf.org/

2

However, it is not feasible to interact with such constrained devices since at a particular

time these nodes may be in a sleeping state. Also, in order to interact and observe

multiple devices at a time it is required that a gateway be created which acts as a single

point destination to which a client can connect and communicate with the various smart

devices in the household.

As mentioned, the problem of direct discovery is resolved by using a gateway also known

as a resource directory to which the smart devices register and keep on updating the data

at different time intervals to the gateway. Also, it provides restful services to the client

on the other side, to look up these resources. In a nutshell, the resource directory allows

services to discover, register, maintain, lookup and remove resources.

In this work we implement a gateway that acts as a resource directory for the household

smart devices, the gateway has been built by using the java implementation of CoAP

namely jCoAP. jCoAP has been used as it is suitable for android devices which have

various sensors installed on them that have been used in this project. jCoAP is still in its

developing stage, and has limited features. We have augmented this implementation to

support multicast support and allow group communication to take place through CoAP

protocol. This is achieved by creating a proxy resource on which the external client sends

a request.

Also, to store the various dataset collected from the devices, we have used semantic web

paradigm that allows data from disparate sources having different conventions being

managed by using Resource Description Format (RDF) scheme that are stored in the

predicate –object – subject (pos) form in the triple data base.

An Android application has been created that allows the sensors (namely proximity

sensor used in the project) inside the android device to interact with the gateway. The

application initially connects to the gateway and on success, is provided the option to

send its sensor data to the gateway. Along with this, the option to join and leave a group

is also provided.

As a client, a separate host has been used that interacts with the gateway using Copper

(Cu) implementation and can interact with the gateway using the restful services.

In the subsequent sections to follow, we go into a greater depth. The initial section

introduces the CoAP protocol and understanding the various features provided by it as

well as discusses the various implementation of CoAP inplace, in particular jCoAP,

which has been used in the project. This is followed by an insight into the working of a

Resource Directory (RD) that uses CoAP protocol, and discusses the various restful

3

services it provides. Next we introduce the concept of multicast and how the same can be

achieved in the CoAP resource directory system. The next section provides an

introduction to Semantic Web that has been used over relation database in the project to

manage the sensor information. This is followed by a brief description of the Android

Sensor APIs and sensor events. Next section covers the system architecture and

implementation of the project. The last section discusses the results achieved and draws

the conclusion.

4

 CHAPTER 1

 UNDERSTANDING CoAP PROTOCOL

5

1.1 INTRODUCTION

The Constrained Application Protocol (CoAP) is a specialised web transfer protocol for

use with constrained nodes (e.g., low-power sensors, switches, or valves) and constrained

(e.g., low-power, lossy) networks.

The Constrained RESTful Environments (CoRE) working group aims at realising the

Representational state transfer (REST) architecture in constrained nodes and networks,

keeping the message overhead small, thus limiting the use of fragmentation for expensive

fragmentation of IPv6 packets.

CoAP is an application layer protocol that easily translates to HTTP for integration with

the existing web while providing additional features as multicast support, very low

overhead and simplicity for constrained environments, and machine-to-machine

applications.

CoAP uses two message types, requests and responses, using a binary fixed-size header

format followed by options in Type-Length-Value (TLV) format and a payload. The

payload length is determined by the datagram length, which must fit inside a single UDP

datagram. Message exchange is based on requests made to resource values accessed

through Unique Resource Identifier.

CoAP provides the following options:

 Constrained Web protocol fulfilling machine-to-machine requirements.

 UDP binding with optional reliability supporting unicast and multicast requests.

 Low header overhead and parsing complexity.

 Push notifications through a publish/subscribe mechanism.

 Simple proxy and caching capabilities.

 Security binding to Datagram Transport Layer Security (DTLS).

1.2 CoAP MESSAGE FORMAT

The CoAP message format comprises of a fixed-length 4-byte header, followed by a

series of options.

The header is constructed by:

 First two bits indicate the version of the protocol.

 Second two bits indicate the message type: Confirmable (CON), Non

Confirmable (NON), Reset (RST) and Acknowledgement (ACK).

6

 4 bits are kept to indicate the token length. So far, only a length between 0 and 8

bytes is allowed. Other values must be processed as message errors.

 8-bit unsigned integer. This field indicates the Method or Response Code of a

message. The value 0 indicates no code. The values 1-10 are used for Method

Codes.

 16 bits of the header contain the message id, to identify message duplication.

 Rest of the message can contain optional options and values. Options must appear

in order of option type. A delta encoding is used between each option header, with

the Type identifier for each Option calculated as the sum of its Option Delta field

and the Type identifier of the preceding Option

 The rest of the packet is composed of the payload.

Figure 1 : CoAP Message Format

1.2.1 CoAP MESSAGE TYPES

As mentioned in the previous section, CoAP provides four types of messages:

Confirmable (CON): A confirmable message ensures that the sender will receive a

acknowledgment from the receiver. In case the sender does not receive an

acknowledgment within the stipulated time, retransmission will take place by using an

exponential algorithm in which case the timeout period gets doubled. Thus confirmable

message ensures reliability to unreliable UDP protocol.

Non-Confirmable (NON): A non-confirmable message is not acknowledged by a server.

In this case, the sender may send many requests until he receives back an

acknowledgement.

Reset (RST): A reset message indicates that a specific confirmable message was

received, but some context is missing to properly process it. It tells the client that

7

something has gone wrong during the communication and its reasons are explained by

the message code contained in the message.

Acknowledge (ACK): Acknowledgement have to be sent as a response of a CON

message. The ACK can be piggybacked with the response and uses the same message id

as that of the request to which the ACK corresponds. The client receiving the response

has to acknowledge it using the new message id.

1.2.2 CoAP METHODS

CoAP supports the basic RESTful methods of GET, POST, PUT, DELETE, which are

similar to HTTP. The GET, PUT and DELETE methods must be performed in such a

way that they are idempotent.

GET

• The GET method retrieves the information of the resource identified by the

request URI. Upon success a 200 (OK) response should be sent.

• The response to a GET method is cacheable if the resource whose information is

gathered is less than as specified as the max age of the resource in its option tag.

Cache refresh and versioning is handled using Etag option.

POST

• The POST method is used to request the server to create a new resource under the

requested URI and get the resource registered on the server.

PUT

• The PUT method requests that the resource identified by the request URI be

updated with the enclosed message body.

DELETE

• The DELETE method requests that the resource identified by the request URI be

deleted. The response 200 (OK) should be sent on success.

8

1.2.3 CoAP OPTIONS

CoAP provides additional information to message exchange. It is composed of a numeric

code, a format and a length. Options can be either critical (odd code value) and elective

(even code value). The difference is in the way these are recognized by the server.

An unrecognized critical option makes the server to reset the connection by means of a

RST message while an elective option gets ignored when it is not recognized properly.

Some of the CoAP options are:

Uri-Host, Uri-Port, Uri-Path, Uri-Query

Uri-Host, Uri-Port, Uri-Path and Uri-Query identify the targetted resource.

 Uri-Host option either represents the hostname or the ip address of the resource.

 Uri-Port represents the port of the resource.

 Uri-Path is a repeatable option containing in order all the components of the path

identifying the resource in the device.

 Uri-Query specifies additional parameters to the resource query.

Content-Format

It indicates the content format of the message payload. So far, the acceptable values are a

subset of the internet media types (also known as MIME).

Accept

It is a repeatable option used to specify which content format is acceptable in the

response payload.

Max-Age

Max-Age indicates how long the resource can be cached before it is considered not fresh

by the server.

ETag

The ETag identifies a particular representation of a resource. If the server supports it, it

is able to mark every returned value. When the client uses it, the server is able to confirm

if the retained resource is still valid without sending its value again.

9

Location-Path, Location-Query

These options contain the relative URI and a query string. It is used to indicate where the

resource has been created in response to a POST request. While Location-Path is non-

repeatable, Location-Query can be set multiple times to indicate all the queries

parameterizing the resource.

1.2.4 CoAP OBSERVE OPTION

The Observe Option, when present, modifies the GET method. So it does not only

retrieve a representation of the current state of the resource identified by the request URI,

but also requests the server to add the client to the list of observers of the resource. The

value of the option in a request must be zero on transmission and must be ignored on

reception. In a response, the Observe Option identifies the message as a notification,

which implies that the client has been added to the list of observers and that the server

will notify the client of further changes to the resource state.

Figure 2: The Observe Option

1.3 CORE LINK FORMAT

A key feature for machine-to-machine interaction is resource discovery. Core Link

Format has been defined to allow this feature in Constrained RESTful environments.

10

Resource discovery in Core Link Format makes the description of the resources available

on the well-known interface ./well-known/core of each server. By this way, every server

is provided with a default entry point meant to provide a description of its resources.

Every resource is described by means of its Unique Resource Identifier, a set of attributes

and the relations with the other resources.

Some of the parameters provided along with each resource:

 Title: This provides a human readable description of the resource.

 Type: This contains the media type of the returned resource.

 Resource Type (rt): This attribute contains a string used to assign an application

specific semantic type to the resource.

 Interface Description (if): This indicates opaquely a specific interface definition.

 MTU: This attribute can be used to indicate approximately the expected size of the

response.

1.4 CoAP UDP BINDING

CoAP over UDP has the following features:

 Simple stop-and-wait retransmission reliability with exponential back-off for

Confirmable messages.

 Transaction ID for response matching

 Multicast support CoAP supports the use of multicast destination addresses.

Multicast messages should be Non-Confirmable. If a Confirmable multicast

message is sent, then retransmission must not be performed.

 Retransmission

CoAP end-point keeps track of open confirmable messages it sent and are waiting

for a response. Each entry includes at least

 Destination IP address and port of the original message.

 A retransmission counter.

 A timeout.

When a confirmable message is sent, an entry is made for that message with a

default initial timeout of RESPONSE_TIMEOUT and the retransmission counter

set to 0. When a matching acknowledgment is received for an entry, the entry is

invalidated.

11

When a timeout is triggered for an entry and the retransmission counter is less than

MAX_RETRANSMIT, the original message is retransmitted to the destination

without modification, the retransmission counter is incremented, and the timeout is

doubled.

1.5 CoAP IMPLEMENTATIONS

Californium

Cf is a CoAP framework written in Java and developed for the use in unconstrained

environments. This allows an isolated implementation of different aspects such as

message retransmission, transactions and block-wise transfer.

Erbium

Er is a low-power REST Engine for the Contiki operating system, which allows low-

power systems to communicate with the Internet. This implementation is specialised for

constrained environments as it is designed to run on small amounts of memory and low-

power Central Processing Units or Microcontroller Units .

Copper

Cu is a CoAP user-agent for Firefox implemented in JavaScript, which can be added to

firefox as an addon and enables the users to browse IoT devices in the same fashion in

which they are used to explore the Web. It can render different types of response in the

form of XML, JSON.

jCoAP

jCoAP is a java implementation of CoAP and it is still in its early-stages developed by

University of Rostock. It is compatible with Java SE and Android. It currently supports

limited functionality of CoAP but it is the most complete implementation in comparison

to the other java implementations.

12

CHAPTER 2

 COAP RESOURCE DIRECTORY

13

2.1 INTRODUCTION

This section defines the REST interfaces between a Resource Directory (Gateway) and

devices, and a lookup interface between the Gateway and the client.

The Gateway supports the discovery, registration, update, removal and lookup interfaces.

Figure 3: Resource Discovery Architecture

2.2 SUPPORTED OPERATIONS

2.2.1 DISCOVERY

A device can discover/know its gateway by several mechanisms such as a default

location (as used by our application), by assigning an anycast address to the gateway,

using DHCP, or by discovering the gateway using the CoRE Link Format.

2.2.2 REGISTRATION

After discovering the location of the gateway, the device can register its resources to the

gateways registration interface. This is performed by using a POST method call along

14

with the list of resources in a core link format specifying the additional information like

name of the end-point, an optional node identifier and the lifetime of the registration.

The gateway then creates a new resource and returns its location. The resources remain

active for the period-specified using max age and can be updated with new information

using PUT services until its age exceeds the max age.

Figure 4: Resource Registration Flow

2.2.3 UPDATE

Update is performed by using the PUT service. Through this, the device can update its

information in the gateway.

Figure 5: Resource Update Flow

15

2.2.4 VALIDATION

This is used to validate if the gateway has the latest version of the resource by issuing a

GET method with the latest Etag.

2.2.5 REMOVAL

To remove a resource explicitly from a gateway a DELETE method request is used along

with the of the resource to be removed. The removal interface is specified as follows:

 Figure 6: Resource Deletion Flow

2.2.6 LOOKUP

The client can look up the resource directory using the GET method on the core interface

using the core format query to look up the resource.

Figure 7: Resource Lookup Flow

16

 CHAPTER 3

CoAP MULTICAST SUPPORT

17

3.1 INTRODUCTION

As a part of Internet of Things, it is required to support group management to better

manage the devices.

For example : To close all the smart bulbs in a floor we can create groups for the various

smart bulbs on different floors and give a single command (Close the bulb) which would

be multicasted to members of the group.

All those group members which receive the notification , on receiving the message would

take necessary action.

3.2 GROUP MANAGEMENT

IETF suggests two alternative approaches possible for CoAP group communications each

with associated pros/cons:

 IP Multicast in which routers must support multicast protocols.

 CoAP Application level Group Management where application layer must support

multicast functionality.

IP Multicast

In this, the CoAP sub-networks are directly connected to IP multicast enabled routers.

Sending CoAP node can directly transmit group messages by setting IP address to

selected multicast IP group address.

Receiver CoAP nodes use Multicast Listener Discovery Protocol (MLP) to subscribe and

listen to any messages sent to selected IP multicast group.

Although it is the most efficient solution, since it is done at IP layer, however it cannot be

deployed outside of corporate LANs and hence is practically unfeasible.

18

3.3 CoAP APPLICATION LAYER GROUP

MANAGEMENT

CoAP can support group management features by either using IP layer multicasting or

application layer support which does not require any underlying IP multicast support.

CoAP allows the use of following group management features such as

 Create groups

 Discover groups

 Query group properties

 Remove from a group

 Add group members

 Remove a group member

 Provide security and access control primitives.

 Multicast support can be handled by using a CoAP Proxy node which is responsible for

group membership management. A constrained node joins (or leaves) a group by sending

a CoAP request to the appropriate CoAP Group Proxy resource created. To join, the

group name is included in the header field and sent using a PUT request to the Group

Proxy Resource. Group names may be defined as arbitrary strings with a predefined

maximum length or as URIs.

3.3.1 JOIN AND LEAVE GROUP

CoAP supports two elective Header Options for group management "Join" and "Leave"

and hence assigned an even number. Packet for a node that can join or leave a group is

represented using the given header format.

Ver T OC Code Message Id

delta Length Join Group A (URI)

0 Length Join Group B (URI)

Figure 8: CoAP Message for Group Management

19

The join and leave group are provided as repeatable options in the header. Within the

constrained network, CoAP runs over UDP for which IP multicast is supported. In a non-

constrained network, HTTP over TCP is used for which IP multicast is not supported. A

proxy node that supports group communication needs to have functionalities to support

interworking of unicast and multicast.

Possible way of operation of the Proxy is presented:

Figure 9: CoAP Multicast Support

The incoming request will carry a URI that resolves in the general internet to the proxy

node. At the proxy node, the URI will then possibly be mapped and again resolved to an

IP multicast destination. The proxy node will then multicast the CoAP Request to the

appropriate nodes.

The resource includes zero or more group membership JSON objects. A group

membership JSON object contains one or more key/value pairs. The key represents the

index of the group. The OPTIONAL "n" key/value pair stands for "name" and identifies

the group with a hostname, for example a FQDN. The OPTIONAL "a" key/ value pair

specifies the IP multicast address

Examples of different group membership objects are: { "n": "sensors.proximity.group1" }

Following group management interfaces are supported:

20

3.3.2 READING ALL GROUP MEMBERSHIPS (GET)

A (unicast) GET on the CoAP-group resource returns a JSON object containing multiple

keys and values, the keys being group indices and the values the corresponding group

objects that indicates one multicast group membership.

 Example:

 Req: GET /CoAP-group

 Res: 2.05 Content

 Content-Format: application/CoAP-group+json

 { "1" :{ “n” : sensors.proximity.group1},

 "2":{ “n” : sensors.proximity.group2}

 }

3.3.3 UPDATING A GROUP MEMBERSHIP (PUT)

A (unicast) PUT with a group configuration media type as payload will replace all current

group memberships in the endpoint with the new ones defined in the PUT request.

3.3.4 DELETING A SINGLE GROUP MEMBERSHIP (DELETE)

A DELETE message is used to remove a group

Example:

 Req: DELETE /CoAP-group /sensors.proximity.group1

 Res: 2.02 Deleted

21

CHAPTER 4

 RESOURCE DESCRIPTION FORMAT

22

4.1 INTRODUCTION

The home directory can be extended to form a network of such gateways which can then

be part a part of middleware, from where such multiple home directory nodes can be

accesssed. However to integrate such sensor data from disparate resource directory

nodes, it is imperative that a common ontology is followed such that the sensor data is

represented in a similar schema.

RDF is used as a data modelling tool for semantic web. It is used to represent graph like

structure which are in the form of interconnected represented nodes representing linked

data. The rdf scheme of graph representation is based on the SPO model. The Subject-

Predicate-Object (SPO) model of rdf breaks up each edge connecting 2 nodes into 3

entities namely subject, predicate, object .

Each subject is represented as:

 blank node or

 URI, like http://samsung.core.sensor/proximity

Each predicate represents a relation/property between subject and object and is

represented as:

 a URI, like http://samsung.core.sensor/proximity #maximumrange

Each object of a triple is represented as:

 a blank node, or

 a literal value

For example – 1.0 (maximum range)

Each SPO statement is termed as a triple.

23

Figure 10: RDF schema of a proximity sensor.

4.2 JENA FRAMEWORK

RDF Graphs can be manipulated using Java based Jena framework that allows users to

manipulate and query RDF graphs. Jena can be used to retrieve and parse a RDF file that

contains a graph or a collection of graphs (graphset), store it in memory, examine each

triple in turn using SPARQL queries or Jena APIs, write a serialized version of a graph to

a file or STDOUT.

For example, to retrieve a resource uri having maximum range of 1.0 or retrieve list of all

proximity sensors jena can be used.

An RDF graph in Jena is stored as a “model”, which is obtained from its factory method:

Model m = ModelFactory.createDefaultModel();

Once a model has been defined, Jena can populate it by reading data from files specified

in the rdf format, backend data bases, etc. in various formats, and once it has been

populated, Jena can perform set operations on pairs of populated models and/or search

models for specific values or combinations (patterns) of values.

One can access specific components using the Jena APIs

24

model.listSubjects(); // list subjects in the dataset of the model

model.listObjects();// list objects in the dataset of the model

Jena also provides APIs to compare a given component with a specified value:

model.listSubjectsWithProperty(Prop p, RDFNode object); //collection of subjects

having property/predicate p .

Using selector to compare all components against specific values by defining a “selector”

possessing specific values s, p and o, and then build the statement list.

Selector selector = new SimpleSelector(subject, predicate, object)

model.listStatements(selector);

4.3 SPARQL: GRAPH BASED QUERY LANGUAGE

Sparql is a language that is used to retrieve data from rdf graphs by specifying

“templates” against which to compare graph components. Data that matches a template is

returned from the query.

A triple template will contain variables that represent triplet

components (e.g., a subject, predicate, or object within a triplet).

For example the template:

 ?psensor <j:maximumrange> “1.0”^^xsd:float .

identifies a list of triplet subjects that have a maximum range of “1.0”, and is analogous

to asking “Which proximity sensor has a value 1.0?”

The basic syntax of a SPARQL query is of the form

BASE < some URI from which relative FROM and PREFIX entries will be offset >

25

PREFIX prefix_abbreviation: < some_URI >

SELECT

 some_variable_list

FROM

< some_RDF_source_URL >

WHERE

{

 { some_triple_pattern .

 another_triple_pattern . }.

}

Figure 11: SPARQL Query Syntax

Also there may be multiple FROM clauses, whose targets will be combined and treated

as a single store. A “.” separating multiple triple patterns is similar to “and” operator and

is similar to the join operator between 2 triples.

The rdf data is essentially stored in dbms systems, sometimes called “triplestores,” that

have been customized to handle RDF. Two examples are Sesame and OpenLink’s

Virtuoso system.

4.4 SENSOR ONTOLOGY

Semantic technologies can assist in managing, querying, and combining sensors and

observation data, allowing users to operate at an abstract level. The SSN-WSN group

designed an OWL Ontology to describe properties and capabilities of sensors, act of

sensing and resulting observation.

The SSN ontology is based on the Ontology Design Pattern (ODP) that describes the

relationships between sensors, stimulus, and observations, the Stimulus-Sensor-

Observation(SSO) pattern. The ontology can be seen from four main perspectives:

• A sensor perspective, with a focus on what senses, how it senses, and what is sensed.

26

For Example:

A sensor device having following attributes

 Name : proximitysensor_30

 SourceType :coapproject

 SensorType :proximity sensor

 Infor : Proximity sensor reading

 Source : "http://www.coap.rd/sensor/proximitysensor_30”

 Property : DISTANCE

can be represented in an ssn ontology in the given form:

<sensoruri><#type><#Sensor>.

<sensoruri><#PerformedAt>"201422T16:13:01.549+05:30"^<2001/XMLSchema#dateTime>

<sensoruri><#PerformedBy><http://www.coap.rd/sensor/proximitysensor_30>.

<sensoruri><hasSourceType> "coapproject ".

<sensoruri><#label> "proximitysensor_30".

<sensoruri><#hasLocation><locationuri>.

<sensoruri><#hasSensorType><sensorTypeuri>.

<sensoruri><#observes><observation1Uri>.

<sensoruri><#observes><observation2Uri>.

Figure 12: RDF Of Sensor based On SSN Schema

• An observation perspective, with a focus on observation data and related metadata. An

Observation can have multiple observed properties.

Observation

 Time

 List of ObservedProperty

 Sensor which observes it

ObservedProperty

 ObservationId

 Type: DISTANCE

 Value :5

 Unit :"cm"

<ObservationUri><#type><http://purl.oclc.org/NET/ssnx/ssn#Observation>.

<ObservationUri><#observedBy><resourceUri>.

27

<ObservationUri><#featureOfInterest><resourceUri>.

<ObservationUri><#observationResultTime> "2014-05-22T17:11:02"^<#dateTime>.

<ObservationValueUri><#type><#ObservationValue>.

<ObservationValueUri><#isObservedPropertyOf><ObservationUri>.

<ObservationValueUri><#value> "5"^^<#double>.

<ObservationValueUri><#unit> "cm".

<ObservationValueUri><#label> "Distance".

<ObservationValueUri><#observedProperty><null>.

<ObservationValueUri><#observationResultTime>"2014-22T17:11:02"^^<#dateTime>.

Figure 13: RDF of Observation based on SSN Schema

• A system perspective, with a focus on systems of sensors and deployments.

 lat

 lng

 zipcode

 street

 city

 province

 country

 Linked Sensor

<sensoruri><#hasLocation><locationuri>.

<locationuri><#type><#Place>.

<locationuri><#type><#SpatialThing>.

<locationuri><pos#lat> "37.943267"^^<#decimal>.

<locationuri><pos#long> "23.870287"^^<#decimal>.

<locationuri><#label> ",".

<locationuri><#is_in_city><cityurl>.

<cityurl><#type><City>.

<cityurl><#label> ""..

Figure 14: RDF of Sensor Location based on SSN Ontology

• A feature and property perspective, focusing on what senses a particular property or

what observations have been made about a property.

28

CHAPTER 5

 ANDROID SENSORS

29

5.1 INTRODUCTION

A sensor measures a physical quantity and converts it into a signal, which can be read by

an observer or by an instrument.

In Android a sensor is represented by a Sensor class which generates a Sensor Event

when an event is generated. All sensors in a device are accessed using the Sensor

Manager.

Some of Sensors provided in Android:

 Sensor.TYPE_AMBIENT_TEMPERATURE

This sensor measures room temperature in degrees Celsius.

 Sensor.TYPE_GRAVITY

This sensor measures gravity, in case the phone is at rest same as

TYPE_ACCELEROMETER.

  Sensor.TYPE_GYROSCOPE

This measure device's rate of rotation in radians / second around three axes.

 Sensor.TYPE_LIGHT

This sensor measures light level in lux, lux is SI measure illuminance in luminous

flux per unit area.

 Sensor.TYPE_LINEAR_ACCELERATION

This measures acceleration force applied to device in three axes excluding the

force of gravity.

  Sensor.TYPE_MAGNETC_FIELD

This sensor measures ambient geomagnetic field in all three axes.

30

  Sensor.TYPE_PRESSURE

This sensor measures ambient air pressure in hPa or mbar

 Sensor.TYPE_PROXIMITY

This measures proximity of an object in cm relative to the view screen of a device.

It is typically used to determine if handset is being held to person's ear during a

call.

 Sensor.TYPE_RELATIVE_HUMIDITY

It measures  ambient humidity in percent (0 to 100).

 Sensor.TYPE_TEMPERATURE

It measures temperature of the device in degrees Celsius.

Available Android Sensors

Figure 15: List of Android Sensors

31

Figure 16: Android Sensor Events

5.2 SENSING & SENSOR MANAGER APIs IN

ANDROID

ServiceManager provides access to the following services

 String service_name = Context.SENSOR_SERVICE;

 SensorManager sensorManager=(SensorManager)getSystemService(service_name)

 public int getMinDelay () //returns the minimum delay allowed between two events

in microsecond .

 public float getMaximumRange () //returns the maximum range of the sensor in the

sensor's unit

 public String getName () //returns the Sensor Name.

 public float getResolution () // returns the resolution of the sensor in the sensor's unit.

 public float getPower () //returns the power in mA consumed by sensor while in use.

32

CHAPTER 6

SYSTEM ARCHITECTURE AND DEVELOPMENT

33

6.1 INTRODUCTION

A java version of CoAP implementation namely jCoAP has been used to develop a CoAP

Client as well as a CoAP resource server which can register, update, discover, validate or

delete the resources published via the CoAP client using CoAP methods namely POST,

PUT, GET. jCoAP also provides the feature of HTTP proxy that can be used where the

underlying protocol used is HTTP. A corresponding mapping from CoAP to HTTP and

HTTP to CoAP via proxy is thus provided.

Currently the stable version of jCoAP supports limited features and thus had to be

customized accordingly for different methods GET, POST, PUT, DELETE.

Also, we have used a rdf scheme to represent each resource and store the resources into a

dataset used by Fuseki (a Sparql endpoint). Each resource having a unique url is

represented as a rdf and each property of the resource is associated with a timestamp .On

further updates by the client the resource rdf is updated along with the timestamp. These

rdf are presented to the fuseki which is a sparql endpoint and can be used to query and

retrieve data from rdf dataset.

In our project, the CoAP client has been implemented on an Android Device which has

various sensors namely Proximity Sensor, Orientation Sensor, Accelerometer,

Temperature Sensor, Magnetic field Sensors.

The CoAP client is installed as an App on the Device which allows the user to provide

the gateway Socket Details (IP Address, Port). Once connected, the various attributes of

the sensor are posted to the gateway which registers the resource with /.well-known/core

port, stores them in the form of RDF file and also a cache (implemented in the form of

HashMap having the resource uri as the key).

Further updates due to events on sensors are provided to the server using PUT method.

This data is also added to the resource rdf file along with the timestamp.

Also, we have used a firefox addon named Copper (Cu) Agent which provides a CoAP

based Web Browser and provides various CoAP methods like GET, POST, PUT,

DELETE ,OBSERVE. The Copper Agent can be used to discover the resources on the

server/resource directory and further get information using restful calls built upon the

GET method.

34

An observe option is also provided in which we can register for a resource and we would

be notified whenever a change from the sensor is published. Copper also provides

renderer for data of different type eg XML, JSON. The data is thus provided as a JSON

to the Copper.

We have also provided group management support by allowing resources to form a

group. For achieving the same instead of using multicast sockets which depend on the

hardware of the lower layer network elements, we have supported the group management

by handling the same at application layer. This has been achieved by creating a proxy

resource for group management. This resource receives all the services related to group

management and is responsible for handling all the group related concerns essentially

creation of group, allowing joining or leaving from a group, sending message to group

members.

We would now look into a greater depth of how the same has been achieved.

6.2 SOCKET HANDLING USING JAVA.NIO

The system compromises of three entities 1. The Endpoint 2.Resource Directory 3.Client.

The endpoint is a device that has sensors inside it which are to be registered to the

resource directory.The endpoint sends its information via restful webservices to the

resource directory.

The endpoint consists of a DatagramChannel (used for UDP message transfer) which

initially binds to a local port once it is in open state and then performs a connect

operation to the resource directory. The Datagram Channel is then configured to receive

and send datagrams to a host (i.e RD) using the connect method. We then send the CoAP

message initially added to a buffer by using the send method on the datagram channel

and keep the message in a queue in case it is a CON message . The receive method of

datagram channel waits for an acknowledgment for the corresponding message. In case

no acknowledgment is received till timeout, the CoAP message is retransmitted and the

retransmission counter incremented. The endpoint also creates a ClientChannel while

sending the message which is kept as a map with the server IP address and port as key.

Similarly in the resource directory a channel is created that is bind to a port on which the

server listens. On receiving a CoAP Message on the datagram channel, server checks

35

whether the message is either a CoAP request or response. In case the message is of a

Request type, the Server creates a Map which holds the clients IP address and port as key

and a new ServerChannel is created in case it does not exist. The server channel holds

info regarding the socket, endpoint devices ip and port. This ServerChannel Object is

attached to the CoAP message so that the response can be sent back to the endpoint using

its information (ip and port) stored in the ServerChannel. Next this message is parsed

according to CoAP format and depending upon the method (GET,PUT,POST,DELETE)

and other CoAP Header options and payload, necessary APIs as detailed below (Section

6.3) are called. After parsing the message, an appropriate response is generated and sent

to the endpoint using the serverchannel associated with the CoAP message. When the

endpoint receives back the response, it checks the map and retrieves an existing

clientChannel created. On receiving the response, necessary operation may be performed

The client uses the Copper Cu interface to view the resources registered on the resource

directory as well as use post,get method to submit other queries on a resource.

6.3 IMPLEMENTATION OF SERVICES

6.3.1 REGISTRATION

The sensor device has been associated with a sensor context that contains basic

information about the sensor for example sensor type, sensor name, version,

manufacturer etc which are initially registered to the server using post restful service.

This type of request is essentially a CON confirmable request i.e this type of request

expects a acknowledgment from the server. In case a request is not received and the

retransmission timeout expires the request packet is sent again and the client tries in total

for four times.

If the server receives the register request, it creates a resource at a given path having a

unique uri which is returned back to the server along with the ACK at the location path

option.The response code is 201.

Now the client initially keeps all open request in a hashmap with the message id as key

and on receiving a response with the same message id endpoint stores the resource path

provided in the Location-path option.

36

This location path is used for sending further request for the same sensor .

API at endpoint to register sensor as resource:

public void sendRegisterResourceRequest(String data,String name){

this.resourcename=name;

CoapRequest coapRequest=clientChannel.createRequest(true,CoapRequestCode.POST);

coapRequest.setContentType(CoapMediaType.text_plain);

coapRequest.setPayload(data);

coapRequest.setMessageID(counter++);

System.out.println("Sent Request");

clientChannel.sendMessage(coapRequest);

messageID2Resource.put(String.valueOf(coapRequest.getMessageID()),resourcename;

}

API at ResourceDirectory to register the sensor as resource:

public void onRequest(CoapServerChannel channel, CoapRequest request) {

CoapMessage response = null;

CoapRequestCode requestCode = request.getRequestCode();

String targetPath = request.getUriPath();

CoapResource resource=null;

if(targetPath!=null){

resource = (CoapResource) readResource(targetPath);

}

switch (requestCode) {

case POST:

//create resource

if(resource == null) {

/* if the resource does not exist, a new resource will be created */

resource=createResourceObject(request,channel.getRemoteAddress(),channel.getRemote

Port());

createResource(resource);

response = channel.createResponse(request, CoapResponseCode.Created_201);

response.setPath(resource.getPath());

resource.setResourceIp(request.getChannel().getRemoteAddress());

resource.setPort(request.getChannel().getRemotePort());

}

}

channel.sendMessage(response);

}

37

6.3.2 SEND UPDATES

In case an event occurs on a particular sensor, for example in case of proximity sensor an

event is generated when the phone is placed near to the body. Such events along with

associated data need to be continualy sent to the server where they are stored in rdf

format.

The client sends these data as a CON message with the uri path set as the location path

received at the time of registration.

API at endpoint to update sensor observation:

public void handleSensorChanged(SensorEvent event ,TextView ProximityReading,

String name) {

if(event.sensor.getType()==Sensor.TYPE_PROXIMITY)

{

CoapRequest coapRequest=clientChannel.createRequest(true,CoapRequestCode.PUT);

coapRequest.setUriPath(resource2Path.get(name));

coapRequest.setContentType(CoapMediaType.text_plain);

ProximityReading.append("ProximitySensorReading:"+String.valueOf(event.values[0]));

coapRequest.setPayload("v=" +event.values[0]);

clientChannel.sendMessage(coapRequest);

System.out.println("Sent Proximity Update");

}

}

API at resource directory to update sensor observation:

public void onRequest(CoapServerChannel channel, CoapRequest request) {

CoapMessage response = null;

CoapResource resource=null;

CoapRequestCode requestCode = request.getRequestCode();

String targetPath = request.getUriPath();

if(targetPath!=null){

resource = (CoapResource) readResource(targetPath);

}

switch (requestCode) {

case PUT:

//update the resource

if (resource != null){

parser.parsePayload(request,(BasicCoapResource)resource);

updateResource(resource);

38

response = channel.createResponse(request, CoapResponseCode.Changed_204);

resource.changed();

}

break;

channel.sendMessage(response);

}

6.3.3 GET ALL RESOURCES REGISTERED

On receiving a get request at the well known interface the resource directory provides

information of all the resources registered on the well known interface.

API at resource directory to get sensor data:

public void onRequest(CoapServerChannel channel, CoapRequest request) {

CoapMessage response = null;

CoapRequestCode requestCode = request.getRequestCode();

String targetPath = request.getUriPath();

CoapResource resource=null;

if(targetPath!=null){

resource = (CoapResource) readResource(targetPath);

}

switch (requestCode) {

case GET:

// URI queries

Vector<String> uriQueries = request.getUriQuery();

finalbyte[] responseValue;

if (uriQueries != null) {

responseValue = resource.getValue(uriQueries);

} else {

responseValue = resource.getValue();

}

response = channel.createResponse(request, CoapResponseCode.Content_205,

resource.getCoapMediaType());

response.setPayload(responseValue);

if (request.getObserveOption() != null){

//client wants to observe this resource

if (resource.addObserver(request)){

// successfully added observer

response.setObserveOption(resource.getObserveSequenceNumber());

}

39

}

channel.sendMessage(response);

}

6.3.4 DELETE A RESOURCE

When a resource is to be deleted it must be removed from the resource directory from

the well known interface as well as it should be removed from groups of which it was a

member.

API at resource directory to delete sensor data:

public void onRequest(CoapServerChannel channel, CoapRequest request) {

CoapMessage response = null;

CoapRequestCode requestCode = request.getRequestCode();

String targetPath = request.getUriPath();

CoapResource resource=null;

if(targetPath!=null){

resource = (CoapResource) readResource(targetPath);

}

switch (requestCode) {

case DELETE:

List<MulticastGroup> groups=((BasicCoapResource)resource).getGroups();

for(MulticastGroup group: groups){

group.getMembers().remove((BasicCoapResource)resource);

}

deleteResource(targetPath);

response = channel.createResponse(request, CoapResponseCode.Deleted_202);

break;

}

channel.sendMessage(response);

}

6.4 GROUP MANAGEMENT SERVICES

As mentioned earlier, all the group related requests are handled by a proxy resource

GroupProxy Resource.

40

6.4.1 CREATE A GROUP

To create a group a request is sent to the resource directory with the uri set to coap-grp so

that the request is handled by groupproxy resource on the server. This is a post request

with the payload of the form “c=groupname”, here c indicates that a group that needs to

be created. Once the client receives the ACK back , it can then join the group.

API at endpoint to create a group:

public void sendCreateGroupMessageToServer(String payload){

CoapRequestcoapRequest=clientChannel.createRequest(true,CoapRequestCode.POST);

coapRequest.setContentType(CoapMediaType.text_plain);

coapRequest.setPayload(payload);

coapRequest.setUriPath("coap-grp");

clientChannel.sendMessage(coapRequest);

messageID2Resource.put(String.valueOf(coapRequest.getMessageID()),resourcename);

}

On receiving a request to create a group, the Group Proxy resource parses the payload to

check if it contains, payload of the form c=groupname. On finding such pattern the

GroupProxy Resource creates a new multicast group and sends a response of 201 for

group creation.

API at resource directory to create a group:

public void onRequest(CoapServerChannel channel, CoapRequest request) {

CoapMessage response = null;

CoapRequestCode requestCode = request.getRequestCode();

String targetPath = request.getUriPath();

CoapResource resource=null;

if(targetPath!=null){

resource = (CoapResource) readResource(targetPath);

}

switch (requestCode) {

case POST:

if (resource != null){

if(resource instanceof GroupProxyResource){

String path=parser.parsePayload(request,(GroupProxyResource) resource);

response = channel.createResponse(request, CoapResponseCode.Created_201);

response.setPath(path);

}

41

channel.sendMessage(response);

}

6.4.2 JOIN A GROUP

When a client receives ACK from Group Proxy Resource of group creation, the client

can then join the group. On selecting a particular group to join the, client sends a PUT

request to the server to update itself as a member of the group of which it intends to join.

The join group is provided as an Option in the CoAP Header. The option specifies the

group uri which it intends to join.

API at endpoint to join a group:

public void joingroup(String rname,String guri,String gname) {
CoapRequest coapRequest=clientChannel.createRequest(true,CoapRequestCode.PUT);

coapRequest.setUriPath(resource2Path.get(rname));

coapRequest.setJoinGroup(guri);

coapRequest.setContentType(CoapMediaType.text_plain);

coapRequest.setMessageID(counter++);

clientChannel.sendMessage(coapRequest);

messageID2Resource.put(String.valueOf(coapRequest.getMessageID()),resourcename);

joinQueue.put(String.valueOf(coapRequest.getMessageID()), gname);

}

On receiving the request with Option set as join the reaource is updated as a member of

the group (indicated by the group uri) already registered on the Group Proxy.

API at resource directory to create a group:

public void onRequest(CoapServerChannel channel, CoapRequest request) {

CoapMessage response = null;

CoapRequestCode requestCode = request.getRequestCode();

String targetPath = request.getUriPath();

CoapResource resource=null;

if(targetPath!=null){

resource = (CoapResource) readResource(targetPath);

}

switch (requestCode) {

case PUT:

//update the resource

42

//also join and leave group

if (resource != null){

if(request.getJoinGroup()!=null){

MulticastGroup multicastGroup=getGroup(request.getJoinGroup());

if(multicastGroup!=null){

resource.getGroups().add(multicastGroup);

multicastGroup.getMembers().add(resource);

}

}

updateResource(resource);

response = channel.createResponse(request, CoapResponseCode.Changed_204);

resource.changed();

}

break;

channel.sendMessage(response);

}

6.4.3 LEAVE A GROUP

A client can leave a group which it had joined earlier. On selecting a particular group to

leave, the client sends a PUT request to the server to remove itself as a member of the

group of which it intends to leave. The leave group is provided as an Option in the CoAP

Header. The option specifies the group uri which it intends to leave.

API at endoint to leave a group:

public void leavegroup(String rname,String guri,String gname) {

CoapRequest coapRequest=clientChannel.createRequest(true,CoapRequestCode.PUT);

coapRequest.setUriPath(resource2Path.get(rname));

coapRequest.setLeaveGroup(guri);

coapRequest.setContentType(CoapMediaType.text_plain);

coapRequest.setMessageID(counter++);

clientChannel.sendMessage(coapRequest);

messageID2Resource.put(String.valueOf(coapRequest.getMessageID()),resourcename;

leaveQueue.put(String.valueOf(coapRequest.getMessageID()), gname);

}

On receiving the request with Option set as join, the resource is updated as a member of

the group (indicated by the group uri) already registered on the Group Proxy.

43

6.5 SPARQL IMPLEMENTATION

In order to provide a quick response back to the endpoint, instead of inserting the

resource info into the virtuoso server using sparql queries, we have implemented a job

which intself is a separate thread that runs and checks from a queue for pending resource

creation/update methods which need to be inserted into the virtuose server. The resource

info is converted to the SSN Sensor ontology schema which is then inseted into the

dataspace inside virtuoso server.

Each Sensor record also includes the place related info of the sensor. The place of the

sensor is retrieved using the latitude and longitude provided in the CoAP request and next

Google’s ReverseGeoCoding API has been used to get the location details in terms of

street, countryand place.

The SPARQL has been used to perform the following operation

 Store the sensor details on resource registration using SSN ontology.

 Update the sensor triples in case an updation occurs on the resource.

 In case of a Sensor event, register the Observation linked with the referenced

sensor.

 Retrieve sensor data/observation based on time/location criteria.

Provide API’such as

 getSpecifiedSensorWithPlaceId,getSpecifiedSensorWithLatLng: which return

the Sensors belonging to a particular place

 getNewestObservationForOneSensor: returns the newest observation for a

sensor

 getObservationsWithTimeCriteria: returns the observation between a given

todate and fromdate

 getSensorHistoricalData: gives all previous Observations for a sensor

Also , a SPARQL endpoint has been provided to which other queries can be made on the

virtuoso server which stores the resources information.

44

 CHAPTER 7

RESULTS AND CONCLUSION

45

7.1 RESULTS

The CoAP represents the protocol of choice for the constrained networks. CoAP reduces

the complexity of transferring messages and as compared to HTTP, reduces time needed

to transfer a CoAP message. This is achieved by using a smaller message, a HTTP

message being 1.2 times bigger than the CoAP message. Also using UDP instead of TCP

hugely reduces time as well as memory complexity since TCP involves handshaking and

other flow control techniques which does not fit into a constrained device having limited

capabilities.

As such an implementation of CoAP in java has been implemented that enhances the

existing jCoAP implementation with multiple features such as implementation of various

restful services, allowing multicast communication among various sensors, use of

semantic web to provide mining and persistence capability to the system.

Also, an android application has been created that allows the updates on sensor events to

be passed to the resource directory which keeps all the observation taking into

perspective, the location and time of the sensor device.

Also, services have been provided using SPARQL which can help us read the sensor

observations collected over a period of time as well getting sensor information based on

the location of sensor.

Some Snapshots of the system thus developed are presented.

ENDPOINT:

Android App serves as End Point and registers the proximity sensor. Once registered the

sensor can send its update from the Updates Tab as well as perfrom group activities using

Group Management Tab.

46

Figure 17: Connect to Resource Directory

Figure 18: Initial Page that allows sensor
Registration

Figure 19: After Registration with the RD

Figure 20: Send Updates on Event change as
well as receive updates

47

Figure 21: Sensor is provided with an option
to create,join ,leave group

Figure 22: Sensor can create a group for ex:
proximitysensor.group

Figure 23: Sensor can join the groups that
are created in the RD

Figure 24: Sensor can leave the groups that it
has joined earlier

48

RESOURCE DIRECTORY CLIENT:

Using Copper Agent, resources can be discovered on the resource directory and further

get information about them using RESTful calls built upon the GET method.

Figure 25: Copper (Cu) Interface showing the registered resources

49

Figure 26: Copper (Cu) Interface showing a resource description

7.2 CONCLUSION AND FUTURE WORK

An Android App is created, through which the endpoint (android device) connects to the

resource directory and registers the sensors to the resource directory. Also on further

events, the updates are submitted to the resource directory. These events are posted to the

clients which have issued a observe request on these resources. The feature of multicast

support has been added which is used to manage the resources. Resources belonging to

the group can also leave, join new group and update group details.

The resources description is stored into the triple database using semantic web framework

Jena over fuseki .Queries can be issued over the fuseki sparql endpoint to retrieve data.

Copper Cu interface is used to query the resource directory and can be seen on the Cu

interface. Further updates can also be observed on the Cu interface if the observe option

is set.

50

This application can be used to monitor sensors running on android devices and provides

interface to mine information from the dataset of information published by the sensors.

Also, based upon the commands posted from the client to the resource directory which

are then passed to the endpoint android device, the actuators in these android devices

perform the specified operation.

FUTURE WORK

• Currently, we have created the application managing few sensor devices. We aim

to extend this on more smart devices especially in smart metering. This would also

involve creating ontologies for different type of sensors and actuators.

• Improving scalability of the system when connected to numerous devices by using

various load balancing techniques needs to be taken care.

• Using a modified version of Datagram Transport Layer Security (DTLS) that is

suited for constrained devices.

51

BIBLIOGRAPHY:

[1] Z. Shelby, B. Frank, D. Sturek, “Constrained Application Protocol (CoAP), Internet-

Draft , draft-ietf-core-coap-07”, available online: http://tools.ietf.org/html/draft-ietf-core-

coap-07, Jul. 2011.

[2] Z. Shelby, K. Hartke, C. Bormann, B. Frank, “Constrained Application Protocol

(CoAP), draft-ietf-core-coap-13”, available online: http://tools.ietf.org/html/draft-ietf-

core-coap-13, Jun 2013.

[3] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific American,

May 2001.

[4] S. McIlraith, T. Son, H. Zeng, “Semantic Web Services”, IEEE Intelligent Systems,

vol. 16, 2001.

[5] A. Bormann, A. Castellani, Z. Shelby, “CoAP: An application protocol for billions of

tiny internet nodes”, Internet Computing, IEEE, vol. 16, 2012.

[6] M. Ruta, F. Scioscia, G. Loseto, F. Gramegna, A. Pinto, S. Ieva, “A logic-based

CoAP extension for resource discovery in semantic sensor networks”, In: Fifth

International Workshop on Semantic Sensor Networks, 2012.

[7] B.C Villaverde, D. Pesch, R. Alberola, S. Fedor, M. Boubekeur, "Constrained

Application Protocol for Low Power Embedded Networks: A Survey", In: Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), Sixth International

Conference, 2012.

[8] F. Gramegna, S. Ieva, G. Loseto, A.D Pinto, “Semantic-enhanced resource discovery

for CoAP-based sensor networks”, In: Fifth International Workshop on Semantic Sensor

Networks, 2012.

[9] M. Kovatsch, “Human-CoAP Interaction with Copper”, In: Pro-ceedings of the 7th

IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS),

2011.

[10] P. Barnaghi, S. Meissner, M. Presser, K. Moessner, “Sense and Sensability:

Semantic Data Modelling for Sensor Networks”, Centre for Communication Systems

Research (CCSR).

http://tools.ietf.org/html/draft-ietf-core-coap-13,%20Jun
http://tools.ietf.org/html/draft-ietf-core-coap-13,%20Jun

52

[11] M. Laine, “RESTful Web Services for the Internet of Things”, Aalto University

School of Science, 2011.

[12] H.A Khattak, M. Ruta, E. DiSciascio, “CoAP-based healthcare sensor networks: A

survey”, In: 11th International Bhurban Conference, 2014.

[13] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, M. Zorzi, “The

Deployment of a Smart Monitoring System Using Wireless Sensor and Actuator

Networks”, In: IEEE Smart Grid Communication, Gaithersburg, WA, USA, Oct. 2010.

[14] K. Konstantinos, K. Artem, “Semantic Interoperability on the Web of Things: The

Semantic Smart Gateway”, In: Sixth International Conference on Complex, Intelligent,

and Software Intensive Systems, CISIS 2012..

[15] W. Wang, P. Barnaghi, G. Cassar, F. Ganz, P. Navaratnam, “Semantic sensor

service networks”, Centre for Communication Systems Research, University of Surrey

UK, 2012.

[16] R. Fielding, "Representational State Transfer (REST), Architectural Styles and the

Design of Network-based Software Architectures”, University of California, Irvine,

2000.

[17] K. Kuladinithi , O. Bergmann, T. Potsch, M. Becker, C. Gorg, “Implementation of

CoAP and its Application in Transport Logistics”, In :Proceedings of the Workshop on

Extending the Internet to Low power and Lossy Networks, 2011.

[18] M. D'Aquin, A. Nikolov, E. Motta, “Building SPARQL-Enabled Applications with

Android Devices”, In: 10th International Semantic Web Conference , ISWC 2011.

[19] Jena: A Semantic Web Framework for Java, http://jena.sourceforge.net/.

[20] D. Russomanno, C. Kothari, O. Thomas, “Sensor ontologies: from shallow to deep

models”, In: Proceedings of the Thirty-Seventh Southeastern Symposium on, pp. 107,

March 2005.

[21] M. Kovatsch, S. Duquennoy, A. Dunkels, “A Low-Power CoAP for Contiki”, In:

Proceedings of the 8th IEEE International Conference on Mobile Ad-hoc and Sensor

Systems, MASS 2011.

[22] L. Christian, L. Nico, G. Frank, T. Dirk , “Connecting the Web with the Web of

Things:Lessons Learned From Implementing a CoAP-HTTP Proxy”, University of

Rostock, 2013.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Khattak,%20H.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ruta,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Di%20Sciascio,%20E..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6766338
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pinto,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pinto,%20A..QT.&newsearch=true

53

[23] K. Taylor K, A. Ayyagari, D. Roure, “Demonstration: A RESTful SOS Proxy for

Linked Sensor Data”, In : Proceedings of the 4th International Workshop on Semantic

Sensor Networks, IWSSN 2011.

[24] G. Golatowski, D. Timmermann, “A Lightweight SOAP over CoAP Transport

Binding for Resource Constraint Networks”, In: Eighth IEEE International Conference

on Mobile Ad-Hoc and Sensor Systems, 2011.

[25] R. Chander, S. Elias, S. Shivashankar, “A REST Based Design for Web of Things In

Smart Environments”, In : 2nd IEEE International Conference on Parallel, Distributed

and Grid Computing, 2012.

[26] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, V. Terziyan, “Smart semantic

middleware for the Internet of Things”, In: Fifth International Conference on Informatics

in Control, Automation and Robotics, 2008.

[27] M. Iqbal, H. Lim, W. Wang, Y. Yao, “A Service-Oriented Model for Semantics-

based Data Management in Wireless Sensor Networks”, In: International Conference on

Advanced Information Networking and Applications Workshops, 2009.

