Department Of Electrical Engineering

Delhi Technological University

CERTIFICATE

This is to certify that the thesis entitled, "Voltage Differencing Buffered Amplifier & its applications in Signal Processing" is a bonafide work submitted by JITENDRA KUMAR (2K11/C&I/03) in partial fulfillment of the requirements for award of the degree of Master of Technology in Control & Instrumentation under my supervision.

This work has not been submitted earlier in any university or institute for the award of any degree/diploma to the best of my knowledge.

Prof. PRAGATI KUMAR Department of Electrical Engineering Delhi Technological University

ACKNOWLEDGEMENT

I am thankful to the Almighty who gave me this opportunity to work under my supervisor in this reputed university. It gives me a great pleasure to express my profound gratitude to my project guide Prof. Pragati Kumar, Department of Electrical Engineering, Delhi Technological University (formerly Delhi College of Engineering), for his invaluable guidance, encouragement and patient reviews throughout the progress of this work.

I would also like to extend my heart full thanks to Prof. Madhusudan Singh, Head of the department, Prof. Narendra Kumar Ex-HOD, Dr. Narendra Kumar Associate Professor, and all faculty members of Department of Electrical Engineering, Delhi Technological University and Dr. Pawan Kumar Tyagi Assistant Professor, Department of Physics for keeping the spirits high and clearing the visions to work on the project.

Finally I am also thankful to my family and friends for their constant support and motivation during this work.

JITENDRA KUMAR 2K11/C&I/03 CONTROL & INSTRUMENTATION

ABSTRACT

Contrary to the perception of signal processing community that Digital Signal Processing technique will dominate the need of Analog Signal Processing techniques; the later have remained firmly entrenched in signal processing applications. During the last two decades with rapid developments in semiconductor fabrication technologies, many active building blocks have been proposed by different research groups which can be used in typical Analog Signal Processing applications. Some of these building blocks are suitable for voltage- mode signal processing while others are suitable for current-mode/mixed mode applications. In the present work a brief survey of some of these active building blocks has been presented. One of these active building blocks namely Voltage Differencing Buffered Amplifier and its various applications have been studied in detail. A CMOS implementation of this block which uses an Operational Trans-conductance Amplifier at its input port has been used to realize amplifiers, integrators, first and second order filters and a KHN type biquad. PSpice simulations of these circuits have also been presented.

CONTENTS

LIST OF FIGURES

Figure No.	Title
1	Voltage Controlled Voltage Source
2	Voltage Controlled Current Source
3	Current Controlled Current Source
4	Current Controlled Voltage Source
5	The current conveyor general block(CCI,CCII,CCIII)
6	Differential Voltage Current Conveyor (DVCC) block
7	Multiple Output Current Conveyor(MOCC) block
8	Fully Differential Current Conveyor (FDCCII) block
9	Differential Difference Current Conveyor(DDCC)
10	Operational Trans-conductance Amplifier(OTA) block
11	Current Feedback Amplifier(CFA) block
12	CC-CFA
13	Current Differencing Buffered Amplifier(CDBA) block
14	CDBA using CFAs
15	CC-CDBA
16	DC-CDBA
17	Behavioral model of CDTA
18	CDTA
19	ZC-CDTA

20	Current Conveyor Trans-conductance Amplifier(CCTA)
21	DV-CCTA
22	Voltage Differential Trans-conductance Amplifier(VDTA)
23	Current Follower Trans-conductance Amplifier(CFTA)
24	Block diagram of VDBA
25	CMOS implementation of VDBA
26	Power Supply Connection in Simulation
27	Variation of I_Z with V_P in OTA stage
28	OTA using bias current
29	Variation of I_Z with V_P in VDBA
30	V_W versus V_Z in VDBA
31	Basic inverting amplifier using VDBA
32	Plot of I_Z versus V_P in inverting amplifier
33	Plot of V_W versus V_Z in inverting amplifier
34	Transient response of inverting amplifier
35	Basic non inverting amplifier using VDBA
36	Plot of I_Z versus V_P in Non- inverting amplifier
37	Plot of V_W versus V_Z in Non-inverting amplifier
38	Transient response of Non-inverting amplifier
39	Voltage Summer circuit using VDBA
40	Integrator using VDBA
41	Simulation of Integrator circuit

42	Transient response of Integrator circuit
43	AC response of Integrator circuit
44	First order LPF using VDBA
45	AC response of first order LPF
46	Transient response of first order LPF
47	First order HPF using VDBA
48	AC response of first order HPF
49	Transient response of first order HPF
50	First biquad structure
51	LPF using first proposed biquad
52	AC response of fig51
53	Transient response of fig51 for frequency below the cut off
54	Transient response of fig51 for frequency more than cut off
55	BPF using first proposed biquad
56	AC response of BPF using first proposed biquad
57	BSF using first proposed biquad
58	AC response of first proposed biquad
59	HPF using first proposed biquad
60	AC response fig59
61	Transient response of Fig59
62	Second biquad structure
63	LPF using second proposed biquad

64	AC response of fig63
65	Transient response of fig63
66	BPF using second proposed biquad
67	AC response of fig66
68	HPF using second proposed biquad
69	AC response of fig68
70	Transient response of fig68
71	General KHN Biquad block diagram
72	KHN Biquad using VDBAs
73	AC response of KHN Biquad
74	AC response of Low pass section of KHN
75	Transient response of Low pass section of KHN

LIST OF SYMBOLS

S.No.	Symbols	Descriptions
1.	g _m	Transconductance
2.	Zi	Input Impedance
3.	Zo	Output Impedance
4.	V _{SS}	Source Supply Voltage
5.	V _{DD}	Drain Supply Voltage
6.	V _B	Bias Voltage
7.	I _b	Bias Current
8.	w.r.t.	With respect to

9.	ΟΤΑ	Operational Transconductance Amplifier
10.	CC	Current Conveyor
11.	CFA	Current Feedback Amplifier
12.	CFA	Current Feedback Amplifier
13.	CDBA	Current Differencing Bufferd Amplifier
14.	FTFN	Four Terminal Floating Nullors
15.	CMOS	Complementary Metal Oxide Semiconductor
16.	OA	Operational Amplifier
17.	Op amp	Operational Amplifier
18.	VLSI	Very Large Scale Integration
19.	CDTA	Current Differencing Transconductance Amplifier
20.	VDBA	Voltage Differencing Buffered Amplifier
21.	VCVS	Voltage Controlled Voltage Source
22.	VCCS	Voltage Controlled Current Source
23.	CCVS	Current Controlled Voltage Source
24.	CCCS	Current Controlled Current Source
25.	CCI	First Generation Current Conveyor
26.	CCII	Second Generation Current Conveyor
27.	CCIII	Third Generation Current Conveyor
28.	DVCC	Differential Voltage Current Conveyor
29.	MOCC	Multiple Output Current Conveyor
30.	FDCC	Fully Differential Current Conveyor
31.	DDCC	Differential Difference Current Conveyor
32.	FB-VDBA	Fully Balanced Voltage Differencing Buffered Amplifier

33.	ССТА	Current Conveyor Trans-conductance Amplifier	
34.	DV-CCTA	Differential Voltage Current Conveyor Trans-conductance Amplifier	
35.	VDTA	Voltage Differential Trans-conductance Amplifier	
36.	CFTA	Current Follower Trans-conductance Amplifier	

CHAPTER-1 INTRODUCTION

Title	Page No.
Introduction	2
Signal Processing	2
Active & Passive Devices Used in Signal Processing	3
Current-Mode Versus Voltage-Mode Circuits	6
Trends in the development of Active Devices	8
Organization of the Dissertation	10
References	12
	Introduction Signal Processing Active & Passive Devices Used in Signal Processing Current-Mode Versus Voltage-Mode Circuits Trends in the development of Active Devices Organization of the Dissertation

CHAPTER-2 ACTIVE BUILDING BLOCKS AT A GLANCE

S.N	Title	Page No.
2.	Introduction	15
2.1	Current Conveyors	15
2.2	Differential Voltage Current Conveyor	17
2.3	Multiple Output Current Conveyor	19
2.4	Fully Differential Second Generation Current Conveyor	19
2.5	Differential Difference Current Conveyor	20

2.6	Operational Trans-conductance Amplifier	21
2.7	Operational Trans-resistance Amplifier	22
2.8	Current Feedback Amplifier	22
2.9	Current Differencing Buffered Amplifier	25
2.10	Current Differencing Trans-conductance Amplifier	29
2.11	Z-Copy CDTA	31
2.12	Current Conveyor Trans-conductance Amplifier	32
2.13	Differential Voltage-CCTA	33
2.14	Voltage Differential Trans conductance Amplifier	34
2.15	Current Follower Trans-conductance Amplifier	35
2.16	Conclusion	36
	References	37

CHAPTER-3 VDBA & ITS CMOS REALIZATION

S.N	Title	Page No.
3.1	Introduction	41
3.2	The VDBA Model	41
3.3	CMOS implementation of VDBA	43
3.4	Simulation Using PSpice	44
3.4.1	Simulation of OTA stage only	45
3.4.2	Simulation of complete VDBA Block	47
3.4.3	Simulation of Buffer stage	48
3.5	Conclusion	50
	References	51

S.No.	Title	Page No.
4.1	Introduction	53
4.2	Basic Inverting Amplifier	54
4.3	Basic Non Inverting Amplifier	56
4.4	Voltage Summer Circuit using VDBA	58
4.5	Implementing Integrator using VDBA	59
4.6	First order Low Pass Filter	61
4.7	First order High Pass Filter	62
4.8	Second order Biquad Structure	65
4.8.1	First Biquad Structure	65
4.8.1.1	Second order Low Pass Filter using first Biquad	66
4.8.1.2	Second order Band Pass Filter using first Biquad	69
4.8.1.3	Second order Band Stop Filter using first Biquad	70
4.8.1.4	Second order High Pass Filter using first Biquad	72
4.8.2	Second Biquad Structure	74
4.8.2.1	Second order Low Pass Filter using second Biquad	75
4.8.2.2	Second order Band Pass Filter using second Biquad	77
4.8.2.3	Second order Band Stop Filter using second Biquad	78

CHAPTER-4 APPLICATIONS OF VDBA

4.8.2.4	Second order High Pass Filter using second Biquad	79
4.9	Conclusion	81

CHAPTER-5 KHN BIQUAD USING VDBA

S.No.	Title	Page No.
5	Introduction	84
5.1	Biquads using two integrator loop	84
5.2	General KHN Biquad Block	85
5.3	KHN Biquad using VDBA Blocks	86
5.4	Simulation of KHN Biquad	89
5.5	Conclusion	90

CHAPTER-6 CONCLUSION & FUTURE SCOPE 93

Appendix