
SYNOPSIS

The development in the field of Information Theory started rigorously as a
branch of mathematics in 1948, when C. E. Shannon published a landmark
paper ’The Mathematical Theory of Communication’ in the ’Bell System
Technical Journal’. Broadly speaking, the theory deals with the study of
problems concerning any system. This includes information processing, in-
formation storage, information retrieval and decision making. In a narrow
sense, theory deals with all theoretical problems connected with the transmis-
sion of information over communication channels. This includes the study
of uncertainty measures and practical and economical methods of coding
information for transmission.

A key feature of Shannon information theory is the term ’information’. Infor-
mation occurs only if there exists some a prior uncertainty and the amount
of information obtained from an experiment/observation is the amount by
which the uncertainty has been reduced. Shannon [36] conceived the statisti-
cal nature of the communication signal with that of the random variable X =
(X1, X2, X3, ..., Xn) having probability distribution P = (p1, p2, p3, ..., pn),
and introduced a measure of information (or, uncertainty) as

H(P ) = −
n∑

i=1

pi log pi , 0 ≤ pi ≤ 1,
i=n∑
i=1

pi = 1, (1)

associated with this experiment. This is also called the Shannon entropy
measure. Shannon entropy satisfies a number of useful properties like non-
negativity, continuity, symmetry, grouping, and additivity etc.

In case X is a continuous random variable say, denoting the lifetime of a
device with p.d.f. f(x), then the measure of uncertainty associated with X
is given by

H(f) = −
∫ ∞

0

f(x) log f(x)dx . (2)

The measure H(f) is called the differential entropy, refer to McEliece [29]. A
huge literature devoted to the characterizations, generalizations and appli-
cations of the Shannon information measure is available, refer to Cover and
Thomson [11], Aczel and Daroczy [2], Taneja [37] and Wells [44].

An additive generalization of the Shannon information measure was given by
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Renyi’s [35] as

Hα(P ) =
1

1− α
log

{
n∑

i=1

pαi

}
, α ̸= 1, α > 0 . (3)

The continuous analogous to the measure (3) is

Hα(f) =
1

1− α
log

{∫ ∞

0

fα(x)dx

}
, α ̸= 1, α > 0 . (4)

A generalization of order α and type β of the Shannon entropy (2) is the
Verma’s entropy [42] defined as

Hα
β (f) =

1

β − α
log

[∫ ∞

0

fα+β−1(x)dx

]
, β − 1 < α < β, β ≥ 1. (5)

With ever increasing applications, sub-additivity rather than additive is be-
coming an acceptable basis; in social and physical systems the additivity does
not quite prevail. An important non-additive entropy measure by Havrda and
Charvat [22] is

Hα(f) =
1

21−α − 1

{∫ ∞

0

fα(x)dx− 1

}
, α ̸= 1, α > 0 (6)

which finds applications in various disciplines, refer to Boghosian [10], Tsallis
and Brigatti [41]. When α → 1, both measures (4) and (6) reduce to (2).

Kullback and Leibler [28] studied a measure of information from statisti-
cal aspects, involving two probability distributions associated with the same
experiment. Thus, if P = {p1, p2, . . . , pn} is probability distribution associ-
ated with the experiment X = {X1, X2, . . . , Xn} and Q = {q1, q2, . . . , qn} is
predicted (or, reference) distribution associated the same experiment, then
Kullback’s measure of relative information [28] is

H(P/Q) =
n∑

i=1

pi log
pi
qi

, (7)

and Kerridge measure of inaccuracy [26] is given by

H(P ;Q) = −
n∑

i=1

pi log qi . (8)
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The corresponding information measures for relative information and inac-
curacy in case of continuous random variable are given by

H(f/g) =

∫ ∞

0

f(x) log
f(x)

g(x)
dx , (9)

and

H(f ; g) = −
∫ ∞

0

f(x) log g(x)dx . (10)

Shannon’s entropy, Kullback-Leibler’s relative information and Kerridge’s
inaccuracy are the three classical measures of information associated with
one and two probability distributions. We observe that the measures of
information, discrimination and inaccuracy are associated as

H(f) +H(f/g) = H(f ; g),

that is, inaccuracy is the sum of entropy and discrimination. These three
measures have found deep applications in the areas of information theory
and statistics.

There is another class of information measures called the weighted informa-
tion measures. We consider a system in which the importance of the different
outcomes Xi’s depend upon the experimenter’s goal, or upon some qualita-
tive characteristic of the physical system taken into consideration. Thus in
addition to the probability distribution P = {p1, p2, . . . , pn} associated with
an experiment, we have U = {u1, u2, . . . , un} a utility distribution which
accounts for the qualitative aspects of the experiment depending upon the
experimenter’s goal.

Taking this into consideration, Belis and Guiasu [7] extended the concept of
Shannon entropy to the systems with quantitative and qualitative character-
istics and gave the ’useful’ information measure

H(P ;U) = −
n∑

i=1

uipi log pi; ui ≥ 0, (11)

where ui is the utility assigned with the outcome X = Xi. A quantitative-
qualitative measure of relative information as suggested by Taneja and Tuteja
[38] is given by

H(P/Q;U) =
n∑

i=1

uipi log
pi
qi

. (12)

3



The utility ui of the outcome xi is independent of probability pi or qi and
depends only on the qualitative characteristics of the physical system into
account. In sequel to these measures, by considering the aspect analogous to
(8), we have

H(P ;U) +H(P/Q;U) = −
i=n∑
i=1

uipi log pi +
n∑

i=1

uipi log
pi
qi

= −
n∑

i=1

uipi log qi = H(P,Q;U). (13)

Taneja and Tuteja [39] defined (13) as the quantitative qualitative measure of
inaccuracy. They have also characterized this measure using a set of axioms.
This extends the concept of Kerridge inaccuracy [26] given by (8) to a system
with qualitative concept. When the utilities are ignored, that is ui = 1 for
each i, then (11), (12) and (13) reduce respectively to measures of Shannon
entropy [36], Kullback relative information [27], and Kerridge inaccuracy [26].

Generalizations of these ’useful’ information measures and their applications
to coding theory have been studied extensively, refer to Gurdial and Pessoa
[21], Taneja [40], Taneja and Tuteja [38], Bhatia and Taneja [9], Jain and
Srivastava [23], Kumar et al. [25] and Parkash et al. [31] .

If X is the lifetime of a new unit, then Shannon entropy H(f) can be applied
to measure the associated uncertainty. However if the unit has already sur-
vived till age t, then H(f) is no longer useful for measuring the uncertainty
about the remaining lifetime of the unit. In such a situation, Ebrahimi [17]
proposed another dynamic measure based on Shannon entropy, known as
residual entropy, given by

H(f ; t) = −
∫ ∞

0

ft(x) log ft(x)dx (14)

= −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx, (15)

where ft(x) is the probability density function of the random variable Xt =
[X−t|X > t], the remaining lifetime of a unit of age t. Ebrahimi [17] showed
that H(f ; t) uniquely determines the distribution function, and Rajesh and
Nair [34] gave a similar result in the discrete case. Various results concerning
H(f ; t) have been obtained by Asadi and Ebrahimi [3], Belzuence et al. [8],
Asadi et al. [4], Nanda and Paul [30] and, Baig and Dar [6].
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Ebrahimi and Kirmani [18, 19] considered the Kullback-Leibler discrimina-
tion information measure between two residual lifetime distributions, which
is defined as

H(f/g; t) =

∫ ∞

t

f(x)

F̄ (t)
log

(
f(x)/F (t)

g(x)/G(t)

)
dx. (16)

For each t, t ≥ 0, H(f/g; t) possesses all properties of the Kullback-Leibler
information measure (9). Further Ebrahimi and Kirmani [18] have shown
that the dynamic measure H(f/g; t) is independent of t, if and only if the
hazard rate functions are proportional, that is, λG(x) = βλF (x), β > 0.

Abraham and Sankran [1] introduced and studied the concept of Renyi’s
entropy for the residual lifetime distribution, which is defined as

Hα(f ; t) =
1

1− α
log

{∫∞
t

fα(x)dx

F̄α(t)

}
, α ̸= 1, α > 0. (17)

Asadi et al. [4] and Nanda and Paul [30] have obtained some characterization
results for distributions based on the generalized residual entropy function.

In many realistic situation uncertainty is not necessarily related to the future
but can also refer to the past. Suppose a system is found to be down at time
t, then the uncertainty of the system’s life relies on the past, that is, at which
instant in (0, t) the system has failed. The variable of interest in this case is
Xt=[t−X|X < t], known as the inactivity time.

Based on this idea, Di Crescenzo and Longobardi [13, 14] have studied mea-
sures of entropy and discrimination based on past entropy over (0, t) given
respectively as

H∗(f ; t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx (18)

and

H∗(f/g; t) =

∫ t

0

f(x)

F (t)
log

(
f(x)/F (t)

g(x)/G(t)

)
dx. (19)

We not that H∗(f/g; t) is constant if and only if X and Y satisfy the pro-
portional reversed hazard model (PRHM).

The concept of weighted distribution introduced by Rao [32] is widely used
in statistics and other applications. Let X be a non-negative continuous
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random variable with probability density function (p.d.f.) f(x), and let Xw

be a weighted random variable corresponding to X with weight function
w(x), which is positive for all value of x ≥ 0. Then the probability density
function fw(x) of the weighted random variable Xw is given by

fw(x) =
w(x)f(x)

E[w(X)]
, 0 ≤ x < ∞ (20)

with 0 < E[w(X)] < ∞. Obviously fw(x) ≥ 0 and
∫∞
0

fw(x)dx = 1.

When w(x) = x, Xw is said to be a length biased (or, a size biased) random
variable and the p.d.f. (20) in this case becomes

fL(x) =
xf(x)

E[X]
. (21)

The Shannon dynamic measures of entropy have been extended to the length
biased weighted residual entropy and length biased weighted past entropy, de-
fined respectively as

HL(f, t) = −
∫ ∞

t

x
f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx (22)

and

H∗L(f, t) = −
∫ t

0

x
f(x)

F (t)
log

f(x)

F (t)
dx, (23)

refer to Di Crescenzo and Longobardi [15].

Rao et al. [33] have pointed out some basic shortcomings in the Shannon
differential entropy measure, like that : (1) It is based on the density of
the random variable, which in general may or may not exists, (2) Shannon
entropy of a discrete distribution is always non-negative, while the differential
entropy of a continuous variable may take any value on the extended real line.

They proposed another measure of randomness called Cumulative Residual
Entropy (CRE), which is defined using distribution rather than density. The
CRE of a positive random variable X with distribution function F (x) is

ξ(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx . (24)
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This measure parallels the well-known Shannon entropy but has the follow-
ing advantages: (1) cumulative residual entropy has consistent definitions in
both the continuous and discrete domains, (2) cumulative residual entropy
is always non-negative, (3) cumulative residual entropy can be easily com-
puted from sample data and these computations asymptotically converge to
the true values. Wang and Vemuri [43] have obtained several properties of
the measure (24) and have provided some applications of it in reliability
engineering and computer vision.

Asadi and Zohrevand [5] have proposed a dynamic cumulative residual en-
tropy and have obtained some of its properties. The cumulative residual
entropy (CRE) for the residual lifetime distribution of a system with sur-

vival function Ft(x) = P (X − t > x|X > t) = F (x+t)

F (t)
, is given as

ξ(X; t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx . (25)

Analogous to the cumulative residual entropy (CRE) measure, Di Crescenzo
and Longobardi [16] introduced and studied the cumulative entropy, defined
as

ξ∗(X) = −
∫ ∞

0

F (x) logF (x)dx. (26)

A dynamic version of the cumulative entropy (26) given as

ξ∗(X; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx , (27)

was also studied by Di Crescenzo and Longobardi [16].

While studying the characterization results in case of dynamic measures of
inaccuracy two specific models, one proportional hazard model (PHM), refer
to Cox [12], and secondly proportional reversed hazard model (PRHM), refer
to Gupta et al. [20] are used.

In view of the above discussion, we were motivated to consider the dynamic
entropy measures based on non-additive entropy, since non-additivity rather
than additivity is more prevalent in many physical situations. Also, we found
considerable interest in studying dynamic and weighted (length biased) dy-
namic inaccuracy measures, since this aspect was not explored much. Consid-
ering the importance of entropy measures based on distribution function over
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density function, we considered it worthwhile to study cumulative entropy
measures based on generalized information measure, inaccuracy measure, and
their dynamic versions.

The thesis comprises seven chapters including the last chapter on conclusion
and further scope of work. The thesis has been organized as follows;

Chapter 1 is introductory in nature presenting a brief account of the avail-
able literature and the various information measures proposed by the re-
searchers. Some basic concepts of reliability, including that of proportional
hazard model (PHM), proportional reversed hazard model (PRHM) and
length biased model, have also been discussed.

In Chapter 2, we have considered Havrat and Charvat [22] measure of
entropy which is a one parameter generalization of the Shannon entropy
and is non-additive in nature. We have proposed a residual measure of
entropy based on it and have proved a characterization theorem that the
proposed measure determines the distribution function uniquely. Also we
have characterized some specific probability distributions based on the pro-
posed measure. The work reported in this chapter has been published in
the papers entitled, Non-additive Entropy Measure Based Residual
Lifetime Distributions in JMI International Journal of Mathematical Sci-
ences, 2010, 1 (2), 1-9, and, A Generalized Entropy- Based Residual
Lifetime Distribution in International Journal of Biomathematics, 2011,
4 (2), 171-184.

In Chapter 3, we have conceptualized the idea of dynamic measure of in-
accuracy, both residual and past. In case of residual inaccuracy measure
we have studied the characterization result using proportional hazard model;
and in case of past inaccuracy measure we have studied this using propor-
tional reversed hazard model. Also we have characterized some specific dis-
tributions based on these measures. The work reported in this chapter has
been published in the papers entitled, A Dynamic Measure of Inaccu-
racy Between Two Residual Lifetime Distributions in International
Mathematical Forum, 2009, 4 (25), 1213-1220, and, A Dynamic Measure
of Inaccuracy Between Two Past Lifetime Distributions in Metrika,
2010, 74 (1), 1-10.

In Chapter 4, the results of Chapter 3 have been extended to weighted
distributions, a concept of considerable importance as mentioned already.
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Taking weights w(x) = x, we have introduced length biased measures of
residual and past inaccuracies and have studied their respective characteri-
zation theorems, and other properties. The results reported in this chapter
have been published in the papers entitled, Length Biased Weighted
Residual Inaccuracy Measure inMetron, 2010, LXVIII (2), 153-160, and,
On Length Biased Dynamic Measure of Past Inaccuracy in Metrika,
2012, 75 (1), 73-84. Also some results were presented at International Con-
ference in Mathematics and Applications held in Bangkok on Dec. 19-21,
2009.

In Chapter 5, we have generalized the concept of cumulative residual en-
tropy measure to one parameter and two parameters entropies, and have
studied their dynamic versions and characterization results. The exponen-
tial, Pareto and finite range distribution, which are commonly used in relia-
bility modeling, have been characterized in terms of generalized cumulative
residual entropy measures. The work reported in this chapter has been pub-
lished in the papers entitled, On Dynamic Renyi Cumulative Residual
Entropy Measure in Journal of Statistical Theory and Applications, 2011,
10 (3), 491-500, and, Some Characterization Results on Generalized
Cumulative Residual Entropy Measure in Statistics and Probability Let-
ters, 2011, 81 (8), 72-77. Also some results were presented at International
Congress of Mathematicians (ICM) held in Hyderabad on Aug. 19-27, 2010.

In Chapter 6, we have considered dynamic cumulative inaccuracy measures,
both residual and past and have studied the characterization results respec-
tively under proportional hazard model and proportional reversed hazard
model. Also we have characterized certain specific probability distributions
using relation between different reliability measure. It is expected that dy-
namic cumulative inaccuracy measures introduced will further extend the
scope of study. The work reported in this chapter has been published in the
paper entitled, On Dynamic Cumulative Residual Inaccuracy Mea-
sure in proceeding of the World Congress on Engineering (WCE), held in
London on July 4-6 2012, and, some results have been communicated for
publication.

In Chapter 7, we have concluded the findings of the work carried out in
this thesis and also have presented further scope of work. During the present
investigation, several ideas have originated which have the potential to extend
the study further. We can consider the proposed dynamic measures further
for discrete cases, since practically discrete cases are suitable from application
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point of view. Further the discrete measure of the dynamic version proposed
can possibly find wider applications in different area of interest. The work
reported in this thesis can be extended to bivariate and multivariate domains.
Also we can employ the concept of order statistics to the different dynamic
measures reported in the thesis.

Following is the list of publications out of this thesis.

Publications in Journals

1. HC Taneja, Vikas Kumar and R. Srivastava, A Dynamic Measure of Inac-
curacy Between Two Residual Lifetime Distribution, International Math-
ematical Forum, 2009, 4 (25), 1213-1220.

2. Vikas Kumar, HC Taneja and R. Srivastava, Non-additive Entropy Mea-
sure Based Residual Lifetime Distributions, JMI International Journal
of Mathematical Sciences, 2010, 1 (2), 1 - 9.

3. Vikas Kumar, HC Taneja and R. Srivastava, A Dynamic Measure of Inac-
curacy Between Two Past Lifetime Distribution, Metrika, 2010, 74 (1), 1-10.

4. Vikas Kumar, HC Taneja and R.Srivastava, Length Biased Weighted
Residual Inaccuracy Measure, Metron, 2010, LXIII (2), 153-160.

5. Vikas Kumar and HC Taneja, Some Characterization Results on Gener-
alized Cumulative Residual Entropy Measure, Statistics Probability Let-
ters, 2011, 81 (8), 72-77.

6. Vikas Kumar, HC Taneja and R. Srivastava, On Dynamic Renyi Cu-
mulative Residual Entropy Measure, Journal of Statistical Theory and
Applications, 2011, 10 (3), 491-500.

7. Vikas Kumar and HC Taneja, A Generalized Entropy Based Residual Life-
time Distributions, International Journal of Biomathematics, 2011, 4
(2), 1-14.

8. Vikas Kumar and HC Taneja, On Length Biased Dynamic Measure of
Past Inaccuracy, Metrika, 2012, 75 (1), 73-84.
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Papers in International Conferences

1. Vikas Kumar and HC Taneja, On weighted past inaccuracy measure. Pre-
sented at International Conference in Mathematics and Applications (ICMA-
MU) held at Bangkok, Dec. 17-21, 2009.

2. HC Taneja and Vikas Kumar, Length biased weighted residual inaccuracy
measure. Presented at International Congress of Mathematicians (ICM) held
at Hyderabad, August 19-27, 2010.

3. Vikas Kumar, HC Taneja and R. Srivastava, On dynamic Renyi cu-
mulative residual entropy measure. Presented at International Congress of
Mathematicians (ICM) held at Hyderabad, August 19-27, 2010.

4. HC Taneja and Vikas Kumar, On dynamic cumulative residual inac-
curacy measure. Presented at World Congress of Engineering (WCE) held
at London, U.K., July 06-08, 2011.

5. Vikas Kumar and HC Taneja, Generalized dynamic cumulative residual
entropy. Presented at International Conference on Statistics, Probability and
Related Areas held at Cochin University of Science and Technology, Kerla,
Dec. 19-22, 2011 .
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