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Preface

The current literature on dynamic entropy has focused mainly on Shannon entropy

[109] and Kullback-Leibler relative information [70], perhaps because of their sim-

plicity. In view of this we explore the motivations and implications of using various

generalized classes of dynamic entropy measures in this thesis. It has been seen

that the use of different dynamic entropy measures based on non-additive entropy,

inaccuracy, and weighted information measures may lead to different models or

statistical results than those obtained by dynamic Shannon and dynamic Kullback-

Leibler information measures. The subject of present study is to introduce the

concept of different dynamic entropy measures, including Havrda-Charvat entropy

[57], Kerridge inaccuracy measure [67], and weighted information measures in the

context of the characterization theorems and characterization of residual and past

lifetime distributions. Also we have focused on the dynamic cumulative residual

measures problem for residual and past lifetime distributions and have also pro-

vided the characterization theorems.

The thesis comprises seven chapters including the first chapter on introduction and

literature survey, and the last chapter on conclusion and further scope of work. The

thesis has been organized as follows;

Chapter 1 is introductory in nature presenting a brief account of the available

literature and the various information measures proposed by the researchers. Some
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basic concepts of reliability, including that of proportional hazard model (PHM),

proportional reversed hazard model (PRHM) and length biased model, have also

been discussed.

In Chapter 2, we have considered Havrda and Charvat [57] measure of entropy

which is a one parameter generalization of the Shannon entropy and is non-additive

in nature. We have proposed a residual measure of entropy based on it and have

proved a characterization theorem that the proposed measure determines the dis-

tribution function uniquely. Also we have characterized some specific probability

distributions based on the proposed measure. The work reported in this chapter has

been published in the papers entitled, Non-additive Entropy Measure Based

Residual Lifetime Distributions in JMI International Journal of Mathemati-

cal Sciences, 2010, 1 (2), 1-9, and, A Generalized Entropy- Based Residual

Lifetime Distribution in International Journal of Biomathematics, 2011, 4 (2),

171-184.

In Chapter 3, we have conceptualized the idea of dynamic measure of inaccuracy,

both residual and past. In case of residual inaccuracy measure we have studied

the characterization result using proportional hazard model; and in case of past

inaccuracy measure we have studied this using proportional reversed hazard model.

Also we have characterized some specific distributions based on these measures.

The work reported in this chapter has been published in the papers entitled, A

Dynamic Measure of Inaccuracy Between Two Residual Lifetime Distri-

butions in International Mathematical Forum, 2009, 4 (25), 1213-1220, and, A

Dynamic Measure of Inaccuracy Between Two Past Lifetime Distribu-

tions in Metrika, 2010, 74 (1), 1-10.

The aforementioned information measures do not take into account the qualitative

aspect of the random variable. They consider only its probability density. Based

on the notion of weighted distribution, Di Crescenzo and Longobardi [31] intro-
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duced the concept of weighted entropy, weighted residual entropy and weighted

past entropy. In Chapter 4, the results of Chapter 3 have been extended to

weighted distributions. Taking weights w(x) = x, we have introduced length biased

measures of residual and past inaccuracies and have studied their respective char-

acterization theorems, and other properties. The results reported in this chapter

have been published in the papers entitled, Length Biased Weighted Residual

Inaccuracy Measure in Metron, 2010, LXVIII (2), 153-160, and, On Length

Biased Dynamic Measure of Past Inaccuracy in Metrika, 2012, 75 (1), 73-84.

Also some results were presented at International Conference in Mathematics and

Applications held in Bangkok on Dec. 19-21, 2009.

Since the cumulative distribution function based information measures are more

stable in comparison to probability density function based measures. Based on

that an alternative notation of entropy called cumulative residual entropy (CRE)

is proposed in Rao et al. [98]. In Chapter 5, we have generalized the concept

of cumulative residual entropy measure to one parameter and two parameters en-

tropies, and have studied their dynamic versions and characterization results. The

exponential, Pareto and finite range distribution, which are commonly used in relia-

bility modeling, have been characterized in terms of generalized cumulative residual

entropy measures. The work reported in this chapter has been published in the pa-

pers entitled, On Dynamic Renyi Cumulative Residual Entropy Measure

in Journal of Statistical Theory and Applications, 2011, 10 (3), 491-500, and, Some

Characterization Results on Generalized Cumulative Residual Entropy

Measure in Statistics and Probability Letters, 2011, 81 (8), 72-77. Also some re-

sults were presented at International Congress of Mathematicians (ICM) held in

Hyderabad on Aug. 19-27, 2010.

In Chapter 6, we have considered dynamic cumulative inaccuracy measures, both

residual and past and have studied the characterization results respectively un-

der proportional hazard model and proportional reversed hazard model. Also we

x



have characterized certain specific probability distributions using relation between

different reliability measure. It is expected that dynamic cumulative inaccuracy

measures introduced will further extend the scope of study. The work reported in

this chapter has been published in the paper entitled, On Dynamic Cumula-

tive Residual Inaccuracy Measure in proceedings of the World Congress on

Engineering (WCE), held in London on July 4-6 2012, and, some results have been

communicated for publication.

In Chapter 7, we have concluded the findings of the work carried out in this thesis

and also have presented further scope of work. During the present investigation,

several ideas have originated which have the potential to extend the study further.

We can consider the proposed dynamic measures further for discrete cases, since

practically discrete cases are suitable from application point of view. Further the

discrete measures of the dynamic versions proposed can possibly find wider applica-

tions in different areas of interest. The work reported in this thesis can be extended

to bivariate and multivariate domains. Also we can employ the concept of order

statistics to the different dynamic measures reported in the thesis.
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Chapter 1

Introduction and Literature

Survey

1.1 An Overview of Information Theory

Information Theory is relatively a new branch of applied mathematics which was

made mathematical rigorous only in 1940s. Broadly speaking, information theory

deals with the study of problems concerning any system. This includes informa-

tion processing, information storage, information retrieval and decision-making. In

a narrow sense, the theory deals with all theoretical problems connected with the

transmission of information over communication channels. This includes the study

of uncertainty measures and practical and economical methods of coding informa-

tion for transmission.

The first studies in this direction were undertaken by Nyquist [88, 89] and Hartley

[56] who introduced the entropy of a distribution of equally probable events. In

1948, Shannon published a paper, The mathematical theory of communica-
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tion in the Bell System Technical Journal which laid the foundation of the

modern day’s information theory. Being an electrical engineer, his goal was to get

maximum line capacity with minimum distortion. He showed little interest in the

semantic meaning of a message or its pragmatic effect on the listener and was only

aimed at solving the technical problems of high-fidelity transfer of sound. Shan-

non introduced a measure of information or entropy for a general finite complete

probability distribution and gave a characterization theorem of the entropy mea-

sure introduced by him. Entropy is randomness. How much information a message

contains is measured by the extent it combats entropy. The less predictable the

message, the more information it carries. Around the same time, Wiener [125] also

considered the communication situation from the statistical aspects and came up

independently with results similar to those of Shannon [109].

The second half of the 20th Century was characterized by the tremendous develop-

ment of systems in which the transmitted information (analog signal) is coded in

a digital form. By this coding the real nature of the information signal becomes

secondary, that is, the same system can transmit simultaneously signals of very

different nature: data, audio, video etc. This development has been made possible

by the use of more and more powerful integrated circuits. Although it is mainly

during the last 30 years that the truly operational digital systems have been devel-

oped, the theoretical foundations for all these developments date back to the work

of Shannon and others in the mid of the 20th Century which led to the development

of information theory as a field of mathematics. Theory is basically concerned with

the mathematical laws governing systems designed to communicate or manipulate

information. It sets up quantitative measures of information and of the capacity of

various systems to transmit, store and process information.

In the past sixty five years, the literature on information theory has grown quite

voluminous and apart from its applications in communication theory, it has found

deep applications in many social, physical and biological sciences, for example, eco-

2



nomics, statistics, psychology, ecology, pattern recognition, fuzzy sets etc. refer to

[62, 107, 111, 121]. Another important area is that of reliability, where informa-

tion theoretic measures have found applications. Many researchers e.g. Ebrahimi

[34], Ebrahimi and Kirmani [38], Asadi and Ebrahimi [36], Belzuence et al. [16],

Nanda and Paul [85] and, Wells [126] have studied the information-theoretic mea-

sures based lifetime distributions of a system. In this thesis, we shall be concerned

mainly with this aspect of the information theory.

1.2 Entropy and Its Generalizations

1.2.1 Shannon’s Entropy

The concept of entropy is of fundamental importance in the field of information

theory. Shannon [109] conceived the statistical nature of the communication signal

with that of a random variable X = {X1, X2, X3, . . . , Xn} having probability distri-

bution function P = {p1, p2, p3, . . . , pn}, where pi = P{X = Xi} is the probability

of the ith outcome with 0 ≤ pi ≤ 1,
∑n

i=1 pi = 1, and introduced a measure of

average information (or, uncertainty) as

H(P ) = −
n∑

i=1

pi log pi , 0 ≤ pi ≤ 1,
n∑

i=1

pi = 1 (1.1)

associated with this experiment. Here it is assumed that 0 log 0 = 0; and normally

the base of the logarithm is taken as 2, and then, the units are ’bits’ a short of

the term ’binary digit’. The measure (1.1) is called the Shannon entropy measure.

A few important properties which are usually considered desirable for a measure

of uncertainty defined in terms of probability distributions to satisfy are given as

follows:

3



I Non-negativity: H(P ) is always non-negative, that is,

H(P ) = −
n∑

i=1

pi log pi ≥ 0 . (1.2)

Since −pi log pi ≥ 0 for all i, the result is obvious. It is zero, if one pi = 1 and rest

are zeros.

II Maxima: H(p1, p2, . . . . . . , pn) ≤ log n, with equality when pi =
1
n
for all i.

III Continuity: H(p1, p2, . . . . . . , pn) is a continuous function of pi’s, that is, a

slight change in the probabilities pi’s results in the slight change in the uncertainty

measure also.

IV Symmetry: H(p1, p2, . . . . . . , pn) is a symmetric function of pi’s, that is, it is

invariant with respect to the order of the outcomes.

V Grouping (or, Branching) Property:

H {p1, p2, p3, · · · , pn} = H{p1 + · · ·+ pr, pr+1 + · · ·+ pn}+ (p1 + · · ·+ pr)×

H

(
p1∑r
i=1 pi

, · · · , pr∑r
i=1 pi

)
+ (pr+1 + · · ·+ pn)H

(
pr+1∑n
i=r+1 pi

, · · · , pn∑n
i=r+1 pi

)
for r = 1, 2, · · ·n− 1.

VI Additivity: If P = (p1, p2, . . . . . . , pn) and Q = (q1, q2, . . . . . . , qn) are two

independent probability distributions, then

H(P •Q) = H(P ) +H(Q),

where P • Q is the joint probability distribution, that is, for two independent dis-

tributions entropy of the joint distribution is the sum of the entropies of the two

marginal distributions.

The continuous analogue of Shannon’s entropy takes the form

H(X) = −E[log f(X)] = −
∫ ∞

0

f(x) log f(x)dx . (1.3)
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This form is often referred to as the differential entropy of a random variable

X with a known probability density function f(x), refer to McEliece [76]. The

differential entropy defined above is not always non-negative as in the case of a

discrete random variable. For detailed properties of the entropy measure (1.1) one

can refer to Aczel and Darocazy [3].

1.2.2 Characterizations and Generalizations

We have seen that Shannon entropy satisfies a number of useful properties like non-

negativity, continuity, symmetry, additivity, grouping, etc. Some of these properties

have been used as axioms by number of researchers to characterize the Shannon

entropy. The most intuitive and compact axioms for characterizing the Shannon

entropy function has been given by Khinchin [69], which are known as the Shannon-

Khinchin axioms. Many other researchers have also characterized Shannon entropy

using different set of axioms. For some further results on characterization and the

algebraic properties of Shannon entropy refer to Aczel and Darocozy [3].

Generalized entropies have also been studied from the mathematical point of view.

These entropies are functions of some parameters and tends to Shannon entropy

when these parameters approach their limiting values. It started with the work of

Renyi [101] who characterized a scalar parametric entropy as entropy of order α,

which includes Shannon entropy as a limiting case.

An additive generalization of type α of the entropy (1.1) is the Renyi’s entropy [101]

given by

Hα(P ) =
1

1− α
log

{
n∑

i=1

pi
α

}
; α ̸= 1, α > 0. (1.4)

It contains additional parameter α which can be used to make it more or less

sensitive to the shape of probability distributions. The generalized information

5



measures, after Renyi work, continued to be of interest to many mathematicians.

The measure (1.4) is additive in nature. A non-additive generalization of Shannon

entropy given by Havrda and Charvat [57] is

Hα(X) =
1

1− α

[
n∑

i=1

pαi − 1

]
, α ̸= 1, α > 0. (1.5)

Khinchin [69] generalized (1.1) by choosing a convex function ϕ(x) such that ϕ(1) =

0 and defined the measure

Hϕ(X) =

∫
f(x)ϕ(f(x))dx. (1.6)

For one particular choices of ϕ(x), (1.6) becomes, for some fixed α > 0 and α ̸= 1,

Hα(X) =
1

1− α

{∫
fα(x)dx− 1

}
,

which is continuous analogous to (1.5).

A two parameter generalization of different entropy is given by

Hβ
α(X) =

1

β − α
log

[∫ ∞

0

fα+β−1(x)dx

]
; β − 1 < α < β, β ≥ 1 . (1.7)

When β = 1, this reduces to the continuous analogous to the Renyi entropy [101]

of order α; and in case of β = 1 and α → 1 then Hβ
α(X) reduces to Shannon

differential entropy [109]. For some other notable work in this direction, one may

refer to Verma [123], Arimoto [5], Ferreri [43], Sharma and Taneja [110], Cover and

Thomas [23] etc.

1.3 Kullback’s Measure of Relative Information

and Kerridge Inaccuracy

Kullback and Leibler [70] studied a measure of information from the statistical

aspects involving two probability distributions associated with the same random

6



experiment, and called it the discrimination function. Later different authors named

it as cross entropy, relative information, etc.

If P = {p1, p2, . . . , pn} is the actual probability distribution associated with the

outcomes X = {X1, X2, . . . , Xn} and Q = {q1, q2, . . . , qn} is the predicted (or,

reference) distribution associated the same experiment such that pi ≥ 0, qi ≥ 0

and
∑n

i=1 pi =
∑n

i=1 qi = 1, then Kullback’s measure of relative information [70] is

given by

H(P/Q) =
n∑

i=1

pi log
pi
qi

. (1.8)

The measure (1.8) aims to quantitize discrimination between two populations. It

is assumed that whenever qi = 0, the corresponding pi is also zero and 0 log 0
0
= 0.

Kannappan and Rathie [63] have obtained some characterization results based on

the directed divergence. The concept of generalized directed divergence has also

been discussed by Kapur [64, 65], Taneja [115, 116] and Rathie [100].

Another important aspect is the notation of inaccuracy as introduced by Kerridge

[67]. This can also be viewed as a generalization of the Shannon’s entropy. In mak-

ing statement about probability happening of various events in an experiment, two

kinds of errors are possible, namely, one resulting from the lack of enough informa-

tion or vagueness in experimental results (e.g. missing observation or insufficient

data) and the other from incorrect information (e.g. miss-specifying the model).

Kerridge [67] proposed an inaccuracy measure that can take accounts for these two

types of errors. This is defined as

H(P ;Q) = −
n∑

i=1

pi log qi , (1.9)

where qi is the predicted probability and pi is the actual probability of an outcome.

Obviously when qi = pi for all i
′s, then (1.9) reduces to (1.1), the Shannon entropy

measure. The measure of information, discrimination and inaccuracy are associated

7



as

H(P ;Q) = H(P ) +H(P/Q) , (1.10)

that is, inaccuracy is the sum of entropy and discrimination.

Nath [79] extended Kerridges inaccuracy to the case of continuous situation and

discussed some properties. If f(x) is the actual probability density function and

g(x) is the function assigned by the experimenter, then the Kerridge inaccuracy

measure [67] is defined as

H(f ; g) = −
∫ ∞

0

f(x) log g(x)dx , (1.11)

and the corresponding measure for relative information [70] is given by

H(f/g) =

∫ ∞

0

f(x) log
f(x)

g(x)
dx . (1.12)

The Shannon’s entropy, Kullback-Leibler’s relative information and Kerridge’s in-

accuracy are the three classical measures of information associated with one and

two probability distributions. These three measures have found deep applications

in the areas of information theory and statistics. In the next section we discuss

another class of information measures, the weighted information measures.

1.4 Weighted Information Measures

Let P = {p1, p2, . . . , pn}, 0 ≤ pi ≤ 1,
∑n

i=1 pi = 1 be the probability distribution

associated with a finite system of events X = {X1, X2, . . . , Xn} representing the

realization of some experiment. The importance of the different events Xi depend

upon the experimenter’s goal, or upon some qualitative characteristics of the phys-

ical system taken into consideration, that is, they have different weights or utilities.

Thus we attach to each event Xi, a number ui > 0 directly proportional to its
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importance and call ui the utility of the event Xi. Thus in addition to the prob-

ability distribution P = {p1, p2, . . . , pn} associated with an experiment, we have

U = {u1, u2, . . . , un} a utility distribution which accounts for the qualitative aspect

of the experiment depending upon the experiment goal.

Taking this into consideration, Belis and Guiasu [15] extended the concept of Shan-

non entropy to the systems being accounted for both aspects, quantitative as well

as qualitative and gave a weighted information measure

H(P ;U) = −
n∑

i=1

uipi log pi ui ≥ 0, (1.13)

where ui is the utility or the cost factor assigned with the outcome Xi . Obviously

when all the ui’s are equal then H(P ;U) becomes H(P ), the entropy measure.

The measure (1.13) is called the quantitative-qualitative measure of information or

’useful’ information measure. For some further results on characterization, general-

ization and applications of this measure one may refer to Aggarwal and Picard [4],

Bhatia and Taneja [17], Gurdial and Pessoa [53], Jain and Srivastava [59], Parkash

et al. [93], Taneja [120] and many others.

A quantitative-qualitative measure of relative information as suggested by Taneja

and Tuteja [118] is given by

H(P/Q;U) =
n∑

i=1

uipi log
pi
qi

. (1.14)

The utility ui of the outcome Xi is independent of probability pi or qi and depends

only on the qualitative characteristics of the physical system into account. In sequel

to these measures, by considering the aspect, analogous to (1.10), we have

H(P ;U) +H(P/Q;U) = −
n∑

i=1

uipi log pi +
n∑

i=1

uipi log
pi
qi

,

= −
n∑

i=1

uipi log qi = H(P,Q;U). (1.15)
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Taneja and Tuteja [119] defined (1.15) as the quantitative qualitative measure of

inaccuracy. They have also characterized this measure using a set of axioms. This

extends the concept of Kerridge inaccuracy [67] given by (1.9) to a system with

qualitative concept. When the utilities are ignored, that is ui = 1 for each i, then

(1.13), (1.14) and (1.15) reduces respectively to measures of Shannon entropy [109],

Kullback relative information [70], and Kerridge inaccuracy [67] .

Generalizations of these ’useful’ information measures and their applications to

coding theory have been studied extensively, refer to Aggarwal and Picard [4],

Gurdial and Pessoa [53], Taneja and Tuteja [118] and Kapur [65] and many other

researchers.

Since we shall be dealing with the aspect information theoretic measures in lifetime

distributions, next we consider some basic concepts in reliability used in the work

reported.

1.5 Basic Concepts in Reliability

Let X be a continuous non-negative random variable with distribution function

F (x), which represents the lifetime of a unit or system. There are several functions

which completely specify the distribution of the random variableX, for example, the

reliability (or, survival) function, the hazard rate function, and the mean residual

life function. Each of these functions completely describe the distribution function

of lifetime of a unit. In fact for a random variable X, each determines the other two

uniquely. The nature and scope of information provided by these functions differ

and so does their relevance in specific situations. We give a few definitions and

some basic properties associated with these concepts.
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1.5.1 Reliability (or, Survival Function) of a Component

Reliability is defined as the probability that a given component or a system will

perform its required function without failure for a given period of time, when used

under stated operating conditions. Mathematically, if X represents the lifetime of

a component, then reliability (or, survival function) is defined by

F (x) = Pr(X > x) =

∫ ∞

x

f(x)dx ,

where f(x) is the probability density function (p.d.f.) of X. We note that F̄ (x) =

1− F (x), where F (x) is the distribution function of X. It is decreasing function of

x satisfying F (0) = 1 and limx→∞ F̄ (x) = 0. The probability density function f(x)

of X is obtained from its survival function F (x) by the relationship

f(x) = − d

dx
F (x).

1.5.2 Hazard Rate Function

The hazard rate function, also known as the conditional failure rate in reliability, is

a non-negative function defined as

λ(x) = lim
∆x→0

P (x < X < x+∆x|X ≥ x)

∆x
.

This is the conditional probability of an item failing in the interval x to (x + ∆x)

given that it has not failed by time x.

In case of a continuous random variable X it is given by

λ(x) =
f(x)

F (x)
= − d

dx
logF (x). (1.16)

Obviously

λ(x) ≥ 0 ∀ x, and

∫ ∞

0

λ(x)dx = ∞ .
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In the discrete set up, Xekalaki [129] defines the failure rate for a random variable

X, with non-negative integral support, as

λ(x) =
P (X = x)

P (X ≥ x)
. (1.17)

In the discrete case the hazard rate can be interpreted as a probability which is not

the case in the continuous case.

If X represents the lifetime of a component, then λ(x) is the probability that the

component will fail at time X = x given that it has survived up to the time before

x. The units of λ(x) are probability of failure per unit of time, distance or cycle. In

reliability analysis, a life distribution can be classified according to the shape of its

hazard rate function λ(x). Taking the bathtub curve, the early failure period has

a decreasing hazard function as time goes by; the useful life period has a constant

hazard function, and the wear-out period has an increasing hazard function. The

hazard rate function uniquely determines the survival function F (.) of the random

variable X through the relationship

F (x) = exp{−
∫ x

0

λ(t)dt} . (1.18)

1.5.3 Reversed Hazard Rate Function

The concept of reversed hazard rate introduced by Keilson and Sumita [68] has

attracted considerable interest of researchers in survival analysis and reliability,

especially in study on parallel systems. For a non-negative random variable X, the

reversed hazard rate is defined as

µ(x) = lim
∆x→0

P (x−∆x < X < x|X ≤ x)

∆x
. (1.19)

Here µ(x)∆x provides the probability of failing in the interval (x−∆x, x), when a

unit has been found failed at time x.
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The reversed hazard rate of a continuous random variable X with distribution

function F (x), denoting the lifetime of a component, is given by

µ(x) =
f(x)

F (x)
=

d

dx
logF (x) ,

where f(x) is the probability density function (p.d.f.) of the random variable X.

The reversed hazard rate function for a discrete random variable X with non-

negative integral support is defined by

µ(x) =
P (X = x)

P (X < x)
. (1.20)

The reversed hazard rate uniquely determines the distribution function F (x) through

the relation

F (x) = exp

(
−
∫ ∞

x

µ(t)dt

)
.

We note that the hazard rate and reversed hazard rate are functionally related

through the relationship

µ(x) =
λ(x)F (x)

F (x)
. (1.21)

Finkelstein [44] has shown that

µ(x) =
λ(x)

exp
(
−
∫ x

0
λ(t)dt

)
− 1

. (1.22)

The reversed hazard rate function is quite useful in forensic sciences, where exact

time of failure of a unit is of importance. For more properties and applications of

reversed hazard rate function, refer to Block et al. [18], Di Crescenzo [28], Gupta

and Nanda [51], Gupta and Wu [52], Nair et al. [81] and Sengupta et al. [108].

1.5.4 Mean Residual Life Function

The mean residual life (MRL) of a system or a component is another important

aspect in reliability studies. It provides an idea of how long a device of any particular
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age can be expected to survive. Indeed, if the goal is to improve the average system

lifetime, then the mean residual life is the relevant measure.

For a continuous random variableX withE(X) < ∞, themean residual life function

is defined as

δ(t) = E[X − t|X > t] =

∫∞
t

F (x)dx

F (t)
. (1.23)

The expected remaining life of the component gives an indication whether to replace

or to re-schedule and this can be more useful than the failure rate to formulate

maintenance policies. For the various properties and application of mean residual

life function one can refer to Swartz [114], Tennakoon [127], Asadi and Bayramoglu

[7], Barlow and Proschan [13] and Muth [78].

The reliability function can be represented as a function of the mean residual life,

as

F (t) =
δF (0)

δF (t)
exp

[
−
∫ t

0

dx

δF (x)

]
. (1.24)

Further the relationship between the failure rate and the mean residual life function

is given by

λF (t) =
δ′F (t) + 1

δF (t)
. (1.25)

Several characterizations of probability models have been obtained based on the

mean residual life (MRL) function, refer to Mukharjee and Roy [77], Sullo and

Rutherford [111] and Sunoj et al. [113].

1.6 Hazard Models

In this section we discuss two types of dependence structures between two probabil-

ity distributions; one the proportional hazard model, and second, the proportional

reversed hazard model which have been extensively used in survival analysis.
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1.6.1 Proportional Hazard Model

Cox [26] introduced and studied a dependence structure among two distributions,

which is referred to as the proportional hazard model (PHM). In literature, this

model has been used to model failure time data. The PHM, commonly known as

Cox PH Model, was basically introduced by Lehmann [74]. In survival analysis, the

PHM has been applied to continuous as well as to discrete random variables. It has

been used for estimating the risk of failure associated with a vector of covariates.

If X and Y are two non-negative continuous random variables with the same

support representing the time to failure of two systems with λF (x) = f(x)

F (x)
and

λG(x) =
g(x)

G(x)
as their hazard rates respectively, and if

λG(x) = βλF (x), (1.26)

where β is a positive constant, then the model is called proportional hazard model

(PHM).

We can easily see that the PHM model (1.26) is equivalent to the model

Ḡ(x) = [F̄ (x)]β, β > 0. (1.27)

This model finds application in variety of fields such as reliability, survival analysis,

medicine, economics etc. Ebrahimi and Kirmani [38] and Nair and Gupta [80]

looked into the problem of characterization of specific probability distributions using

information theoretic measures under the proportional hazards model assumption.

Sometimes the hazard rates need not be proportional uniformly over the whole

time interval, but may be proportional differently in different intervals. In order

to take care of this kind of problems, Nanda and Das [82] introduced the dynamic

proportional hazard model (DPHM), and studied their properties for different aging

classes. If we replace β in the above model by some non-negative function of some

parameter t, then the corresponding model becomes

λG(x) = β(t) λF (x), ∀ t > 0, (1.28)
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called the dynamic proportional hazard model (DPHM), which accounts for different

proportionality in different time intervals.

1.6.2 Proportional Reversed Hazard Model

Gupta et al. [50] proposed another model called the proportional reversed hazard

model (PRHM) to analyze the failure time data. Sengupta et al. [108] illustrated

that proportional reversed hazard model leads to a better fit for some data set

rather than proportional hazard model (PHM).

If X and Y are two non-negative continuous random variables with the same support

and with reversed hazard rates µX(x) =
f(x)
F (x)

and µY (x) =
g(x)
G(x)

respectively, and if

µY (x) = β µX(x) , β > 0 (1.29)

then the model is called proportional reversed hazard model (PRHM).

The PRHM is equivalent to the model

G(x) = [F (x)]β , (1.30)

where F (x) is the baseline distribution function and G(x) can be considered as some

reference distribution function.

Proportional reversed hazard model is useful in the analysis of left censored or

right truncated data. The structure and the properties of the PRHM in contrast

to the PHM have been studied by Gupta and Gupta [46] and Gupta and Wu [52].

Di Crescenzo [28] has obtained some results on proportional reversed hazard model

concerning aging characteristics and stochastic orders. Recently Nanda and Das [82]

have proposed the dynamic proportional reversed hazard model (DPRHM), defined

as

µY (x) = β(t) µX(x) , (1.31)

which accounts for different proportionality in different time intervals.
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1.7 Length Biased Model

The concept of weighted distribution introduced by Rao [96] is widely used in statis-

tics and other applications. Jain et al. [61], Gupta and Kirmani [48] and Nanda

and Jain [83] have used the weighted distributions in many practical problems to

model unequal sampling probabilities. Such distributions arise when the observa-

tions generated from a stochastic process are recorded with some weight function.

Let X be a non-negative continuous random variable with probability density func-

tion (p.d.f.) f(x), and let Xw be a weighted random variable corresponding to

X with weight function w(x), which is positive for all value of x ≥ 0. Then the

probability density function fw(x) of the weighted random variable Xw is given by

fw(x) =
w(x)f(x)

E[w(X)]
, 0 ≤ x < ∞, (1.32)

with 0 < E[w(X)] < ∞. Obviously fw(x) ≥ 0 and
∫∞
0

fw(x)dx = 1.

When w(x) = x, Xw is said to be a length biased (or, a size biased) random variable

and the p.d.f. (1.32) in this case becomes

fL(x) =
xf(x)

E[X]
. (1.33)

Length-biased sampling situations may occur in clinical trials, reliability, queuing

models, survival analysis and population studies where a proper sampling frame is

absent. In such situations, items are sampled at rate proportional to their length so

that larger values of the quantity being measured are sampled with higher probabil-

ities. The statistical interpretation of the length biased distribution was originally

identified by Cox [25] in the context of renewal theory. But the same idea has

originally been conceived much before as evident from Daniels [27] who discussed

length biased sampling in the analysis of the distribution of fiber lengths in wool.

Gupta and Kirmani [48] have shown how length biased sampling affects the origi-

nal distribution and how the corresponding reliability characteristics change under
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such a scheme of sampling. While comparing the distribution under length bi-

ased sampling with the parent model, it will be of some definite advantage if the

original distribution keeps the same form under length biased sampling also, ex-

cept possibly for a change in the parameters. Substantial work on various aspects

of length-biased sampling has been contributed by Patil and Rao [94], Oluyede

[90, 91, 92] and Sankaran and Nair [106]. Gupta and Keating [47] have proposed

some standard relationships between original and length biased random variables

using reliability concepts. We shall apply the concept of length biased random

variable to inaccuracy measures in Chapter 4.

1.8 Dynamic Information-Theoretic Measures

Study of the duration of a system is a subject of interest common to reliability, sur-

vival analysis, actuary, economics, business, and many other fields. In this section

we discuss two dynamic information theoretic measures; one the residual, and the

second, the past. The residual information theoretic measures arise when the data

is left truncated, and the past information measures arise when the data is right

truncated.

1.8.1 Residual Information-Theoretic Measures

In life testing situations, the additional lifetime given that the component has sur-

vived up to time t is called the residual lifetime of the component. More specif-

ically, if X is the lifetime distribution of a component, then the random variable

[X − t|X > t] is called the residual lifetime of the component.

Since Shannon’s differential entropy (1.3) is not appropriate to measure the remain-

ing uncertainty for the lifetime of a system which has survived for some unit of time
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t, the concept of residual entropy has been developed in the literature. In such a

situation, Ebrahimi [34] proposed a dynamic measure of entropy based on Shannon

entropy known as residual entropy, given by

H(f ; t) = −E[log ft(Xt)] =

∫ ∞

t

−ft(x) log ft(x)dx, (1.34)

where ft(x) denotes the probability density function of the random variable Xt =

[X − t|X > t], the remaining lifetime of a unit of age t, given as

ft(x) =


f(x)

F (t)
; if x > t

0 ; otherwise

H(f ; t) basically measures the expected uncertainty contained in the conditional

density of X − t given X > t about the predictability of remaining lifetime of the

unit.

The Shannon residual entropy (1.34) for the residual lifetime can be expressed as

H(f ; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx (1.35)

= log F̄ (t)−
∫ ∞

t

f(x)

F̄ (t)
log f(x)dx

= 1−
∫ ∞

t

f(x)

F̄ (t)
log λF (x) , (1.36)

where λF (x) =
f(x)

F (x)
is the hazard rate function.

Various results concerning the Shannon residual entropy have been obtained by

many researchers. Ebrahimi [34] showed that the dynamic measure (1.35) deter-

mines the underlying distribution function uniquely. Rajesh and Nair [99] gave a

similar result for the discrete case. By considering a relationship between dynamic

entropy and mean residual life of a component, Asadi and Ebrahimi [8] have char-

acterized three specific lifetime distributions namely exponential, Pareto and finite
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range. Similar results in case of a generalized residual entropy have been derived

by Belzunce et al. [16].

Further results concerning residual entropies have been obtained in recent years by

Ebrahimi and Pellerey [40], Ebrahimi [35], Sankaran and Gupta [105] and Ebrahimi

[36]. Nanda and Paul [85] have obtained some characterization results for distribu-

tions based on a generalized residual entropy function. Some other result in this

reference in context with the Renyi entropy and Verma entropy have been given by

Asadi et al. [9], Abraham and Sankaran [2], Baig and Dar [12] and Abbasnejada et

al. [1].

Next, if X and Y are two absolutely continuous, non-negative random variables

with the same supports that describe the lifetimes of two systems, then measure of

discrepancy between two residual-life distributions has been proposed by Ebrahimi

and Kirmani [37], analogous to the Kullback-Leibler relative information measure

(1.12) . It is defined as

H(f/g; t) =

∫ ∞

t

f(x)

F̄ (t)
log

f(x)/F̄ (t)

g(x)/Ḡ(t)
dx (1.37)

= logG(t)−H(f ; t)−
∫ ∞

t

f(x)

F̄ (t)
log g(x)dx .

This is obtained by replacing F (.) and G(.) by distributions of the correspond-

ing residual lifetimes. If we have a system with true survival function F (.) then

H(f/g; t) can also be interpreted as a measure of distance between Gt(x) and the

true distribution Ft(x). This measure has been used for the classification and order-

ing of survival function. Ebrahimi and Kirmani [38] and Asadi et al. [9] have studied

the aspects of residual Kullback-Leibler information. We note that for each fixed

t > 0, H(f/g; t), has all the properties of the Kullback-Leibler discrimination infor-

mation measure H(f/g). Recently, Navarro et al. [87] have extended the measure

H(f/g; t) proposed by Ebrahimi and Kirmani [37] to conditionally specified models.
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This extension has been used to characterize some bivariate distributions. These

distributions are also characterized in terms of proportional hazard rate models and

weighted distributions.

1.8.2 Past Information-Theoretic Measures

In many realistic situations, uncertainty is not necessarily related to the future but

can also refer to the past. For instance if at time t a system which is observed only

at certain preassigned inspection times, is found to be down, then the uncertainty

of the system’s life relies on the past, that is, at which instant in (0, t) the system

has failed. To be more specific, in a periodic replacement policy where the system

is observed at times T, 2T, 3T, . . . for some preassigned time T , it is possible that

at time (n−1)T the system is functioning, but at time nT the system is found to be

down, where n is a positive integer. Then, if X is the failure time of the system, the

variable of interest is [nT −X|X ≤ nT ]. By writing nT = t, we have the random

variable tX = [t−X|X ≤ t], known as the inactivity time or the past lifetime . For

various results on the past lifetime random variable, one may refer to Chandra and

Roy [20, 21] and Kayid and Ahmad [66].

Based on this idea, Di Crescenzo and Longobardi [29] have considered measure of

past entropy over (0, t) given by

H∗(f ; t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx (1.38)

= 1−
∫ t

0

f(x)

F (t)
log µF (x)dx, (1.39)

where µF (x) is the reversed hazard rate function of X and, f(x)
F (t)

= f∗
t (x) for X ≤ t is

the probability density function of the past lifetime random variable tX, analogous

to ft(x) in case of residual lifetime Xt.
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Given that at time t a component is found to be down, H∗(f ; t) measures the un-

certainty about its past lifetime. In forensic sciences where the knowledge of exact

time of failure is important, this type of measures are of added value. Nanda and

Paul [84], have proposed some ordering properties based on this measure. Recently,

Kundu et al. [73] have characterized some specific continuous and discrete distribu-

tions based on certain relationships among past entropy, reversed hazard rate and

mean inactivity time.

Di Crescenzo and Longobardi [30] have studied a measure of divergence which con-

stitutes a distance between past lifetimes distributions. The discrimination measure

between past lifetimes is

H∗(f/g; t) =

∫ t

0

f(x)

F (t)
log

f(x)/F (t)

g(x)/G(t)
dx. (1.40)

If we have a system with true distribution function F (.) and reference distribution

G(.), then H∗(f/g; t) can also be interpreted as a measure of distance between

G∗
t (x) and the true distribution F ∗

t (x). Di Crescenzo and Longobardi [30] further

proved that H∗(f/g; t) is constant if and only if X and Y satisfy the proportional

reversed hazard model (PRHM). Recently, Hooda and Saxena [58] have defined a

generalized measure of discrimination between two past lifetime distributions of a

system and have studied some of its important properties.

1.9 Distribution Function Based Information

-Theoretic Measures

Shannon entropy plays an important role in various fields. However, Shannon dif-

ferential entropy (1.3) raises the following concerns:

1) It is based on the density of the random variable, which in general may or may
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not exist. That is, for the case when the cumulative distribution function (CDF) is

not differentiable, it would not be possible to define the differential entropy.

2) Shannon entropy of a discrete distribution is always non-negative, while the

differential entropy of a continuous variable may take any value on the extended

real line.

3) Shannon entropy computed from samples of a random variable lacks the property

of convergence to the differential entropy, that is, even when the sample size goes

to infinity, the Shannon entropy estimated from these samples will not converge to

differential entropy. For further details refer to Rao [97].

Taking note of these limitations, Rao et al. [98] developed another measure of

randomness called Cumulative Residual Entropy (CRE), which is based on distri-

bution rather than the density function of a random variable X. The CRE of a

non-negative random variable X with distribution F (x) is defined as

ξ(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx . (1.41)

This measure parallels the well-known Shannon entropy but has the following ad-

vantages over the differential entropy measure:

1. Cumulative residual entropy has consistent definitions in both the continuous

and discrete domains.

2. Cumulative residual entropy is always non-negative.

3. Cumulative residual entropy can be easily computed from sample data and these

computations asymptotically converge to the true values.

The basic idea is to replace the density function with the cumulative distribution

in Shannon’s definition . The distribution function is more regular than the density

function, because the density is computed as the derivative of the distribution.
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Moreover, in practice what is of interest and/or measurable is the distribution

function. For example, if the random variable is the life span of a machine, then

the event of interest is not whether the life span equals a specific instant, but

rather whether the life span exceeds that instant. This definition also preserves the

well-established principle that the logarithm of the probability of an event should

represent the information content in the event. Further Rao et al. [98] have obtained

several properties of this measure and have provided some applications of it in

reliability engineering and computer vision. Rao [97] have developed some more

mathematical properties of cumulative residual entropy (CRE) and have been an

alternate formula for this measure.

Asadi and Zohrevand [11] have proposed a dynamic cumulative residual entropy

and have obtained some of its properties. The cumulative residual entropy (CRE)

for the residual lifetime distribution of a system with survival function Ft(x) =

P (X − t > x|X > t) = F (x+t)

F (t)
, is given as

ξ(X; t) = −
∫ ∞

0

F̄t(x) log F̄t(x)dx, (1.42)

which can be rewritten as

ξ(X; t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx . (1.43)

Zografos and Nadarajah [132] have proposed two new broad classes of measures of

uncertainty based on the survival function, called the survival exponential entropy

and the generalized survival exponential entropy and studied it. The cumulative

residual entropy is a particular case of these class of measures. Recently, a dynamic

form of the survival entropy of order α has been proposed by Abbasnejada et al.

[1].
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1.10 Motivation and Plan of Work

In view of the above discussion and literature review, we were motivated to consider

the dynamic entropy measures based on non-additive entropy, since non-additivity

rather than additivity is more prevalent in many physical situations. Also, we found

considerable interest in studying dynamic (residual and past both) and weighted

(length biased) dynamic inaccuracy measures, since this aspect was not explored

much. Considering the importance of entropy measures based on distribution func-

tion over density function, we considered it worthwhile to study cumulative entropy

measures based on generalized information measure, inaccuracy measure, and their

dynamic versions. Thesis comprises seven chapters including the current chapter

on introduction and literature survey and a bibliography. The work reported is

organized as follows;

In Chapter 2, we have considered Havrda and Charvat [57] measure of entropy

which is a one parameter generalization of the Shannon entropy and is non-additive

in nature. We have proposed a residual measure of entropy based on it and have

proved a characterization theorem that the proposed measure under some condi-

tions determines the distribution function uniquely. Also, we have characterized

some specific probability distributions based on the residual measure proposed.

The work reported in this chapter has been published in the papers entitled, Non-

additive Entropy Measure Based Residual Lifetime Distributions in JMI

International Journal of Mathematical Sciences, 2010, 1 (2), 1-9, and; A General-

ized Entropy- Based Residual Lifetime Distribution in International Journal

of Biomathematics, 2011, 4 (2), 171-184.

In Chapter 3, we have conceptualized the idea of dynamic measure of inaccuracy

both residual and past. In case of residual inaccuracy measure we have studied

the characterization result using proportional hazard model; and in case of past

inaccuracy measure we have studied this result using proportional reversed hazard
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model. Also we have characterized some specific distributions based on these mea-

sures. The work reported in this chapter has been published in the papers entitled,

A Dynamic Measure of Inaccuracy Between Two Residual Lifetime Dis-

tributions in International Mathematical Forum, 2009, 4 (25), 1213-1220, and; A

Dynamic Measure of Inaccuracy Between Two Past Lifetime Distribu-

tions in Metrika, 2010, 74 (1), 1-10.

In Chapter 4, the results of Chapter 3 have been extended to weighted distribu-

tions, a concept of considerable importance as reviewed already. Taking weights

w(x) = x, we have introduced length biased measures of residual and past in-

accuracies and have studied their respective characterization theorems and other

properties. The results reported in this chapter have been published in the papers

entitled, Length Biased Weighted Residual Inaccuracy Measure in Metron,

2010, LXVIII (2), 153-160, and; On Length Biased Dynamic Measure of Past

Inaccuracy in Metrika, 2012, 75 (1), 73-84. Also some results were presented at

International Conference in Mathematics and Applications held in Bangkok on

Dec. 19-21, 2009.

In Chapter 5, we have generalized the concept of cumulative residual entropy

measure to one parameter and two parameters entropies, studied their dynamic

versions and characterization results. The exponential, the Pareto and the finite

range distribution which are commonly used in the reliability modeling have been

characterized in terms of the proposed generalized dynamic cumulative entropy

measures. The work reported in this chapter has appeared in the papers entitled,

On Dynamic Renyi Cumulative Residual Entropy Measure in Journal of

Statistical Theory and Applications, 2011, 10 (3), 491-500, and; Some Character-

ization Results on Generalized Cumulative Residual Entropy Measure in

Statistics and Probability Letters, 2011, 81 (8), 72-77. Also some results were pre-

sented at International Congress of Mathematicians (ICM) 2010 held in Hyderabad

on Aug. 19-27, 2010.
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In Chapter 6, we have considered dynamic cumulative inaccuracy measures, both

residual and past and have studied the characterization results respectively under

proportional hazard model and proportional reversed hazard model. The work re-

ported in this chapter has been published in the paper entitled, On Dynamic Cu-

mulative Residual Inaccuracy Measure in proceeding of the World Congress

on Engineering (WCE), held in London on July 4-6 2012, and, some results have

been communicated for publication.

The Chapter 7, presents the conclusion of the work reported in the thesis and

further scope of work. In the end, we have given bibliography and the complete list

of publications from this thesis.
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Chapter 2

Generalized Dynamic Entropy

Measure

2.1 Introduction

The description of the behavior of biological and engineering systems normally

requires the use of concepts of information theory, and in particular of entropy.

Shannon’s entropy [109] is probably the most widely used index of alpha diver-

sity in ecology, also the Kullback’s relative information measure [71] has received

scant attention from ecologists as dissimilarity measure between two communities.

Shannon’s theory has been used to study genomic sequences by calculating the

amount of information contributed by individual nucleotides during these encoding

and decoding processes, refer to [107]. Novel applications of Shannon [109] and

Kullback-Leibler [71] information measures are promoting increased understanding

of the mechanisms by which genetic information is converted to work and order.

More recently it has been used in the context of theoretical neurobiology, refer to

Johnson and Glantz [62].
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Let X be a non-negative continuous random variable which denote the lifetime of

a device or a system with probability density function f(x) and survival function

F̄ (x) = 1 − F (x), where F (.) is the failure distribution function of X. Then the

average amount of uncertainty associated with the random variable X is given by

the differential entropy [76]

H(f) = −
∫ ∞

0

f(x) log f(x)dx , (2.1)

which is the continuous analogous of the Shannon entropy measure for the discrete

probability distribution P = (p1, p2, · · · , pn) given by

H(P ) = −
n∑

i=1

pi log pi , 0 ≤ pi ≤ 1,
n∑

i=1

pi = 1. (2.2)

In life testing experiments, normally the experimenter has information about the

current age of the system under consideration. Obviously the measure like (2.1)

is not suitable in such situations and needs to be modified to take into account

the current age also. Accordingly Ebrahimi [34] proposed a dynamic measure of

uncertainty known as residual entropy for the residual lifetime distribution and

defined the residual entropy H(f ; t) based on the measure (2.1) as

H(f ; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx , (2.3)

where F̄ (x) is the survival function of X. We note that the measure (2.3) is the

Shannon entropy of the random variable Xt = (X− t|X > t), and also, when t = 0,

(2.3) becomes (2.1).

Ebrahimi [34] has showed that the dynamic (residual) measure (2.3) uniquely deter-

mines the survival function F (.). Sankaran and Gupta [105] have characterized some

specific residual lifetime distributions using (2.3) in terms of hazard rate function

and mean residual life function.
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The measure (2.2) is additive in nature in the sense that if X and Y are two

independent random variables, then

H(X • Y ) = H(X) +H(Y ) . (2.4)

With ever increasing applications of information theoretic measures, sub-additivity

rather than additivity has become an acceptable basis. In many social and physical

systems the additivity does not quite prevail. For instance, in biological systems

the interactions between the various drugs call for non-additivity of the individual

effects rather than additivity. Thus non-additive entropy measures are of vital

importance from applications point of view. An important non-additive entropy

measure given by Havrda and Charvat [57] is

Hα(P ) =
1

(21−α − 1)

[
n∑

i=1

pαi − 1

]
, α ̸= 1, α > 0. (2.5)

It satisfies the non-additivity

H(X • Y ) = H(X) +H(Y ) + (21−α − 1)H(X)H(Y ). (2.6)

The continuous analogous to the measure (2.5) is

Hα(f) =
1

(21−α − 1)

[∫ ∞

0

fα(x)dx− 1

]
, α ̸= 1, α > 0 . (2.7)

When α → 1, the measure (2.7) tends to the differential entropy (2.1).

Among the existing Shannon-Like entropies, the Havrda and Charvat entropy is

perhaps the best known and most widely used entropy. This is mainly because

Havrda and Charvat entropy has a number of desirable properties which are crucial

in many applications. It is more general than the Shannon entropy and simpler

than the Renyi entropy [101]. Further the importance of this measure arises from

the fact that it is frequently employed in other fields with slight variations. One

such variations is q-entropy

Hq(f) =
1

(1− q)

[∫ ∞

0

f q(x)dx− 1

]
, (2.8)
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where q can be seen as measuring the degree of nonextensivity. This is also the well

known Tsallis entropy [121, 122]. In recent years, authors have shown more interest

in studying the properties and applications of Tsallis entropy, refer to Boghosian

[19], Compte and Jou [22], Hamity and Barraco [55] and, Ion and Ion [60].

In this chapter we propose a dynamic (residual) measure of entropy, based on the

non-additive entropy (2.7) and study it. The chapter is organized as follows. In

Section 2.2, the generalized dynamic measure of entropy is proposed and a charac-

terization result that Hα(f ; t) uniquely determines the survival function F (.) has

been studied. By considering a relation between dynamic entropy measure and

hazard rate function, some specific residual lifetime distributions have been char-

acterized in Section 2.3. Section 2.4 deals with some properties, like upper bound,

monotonicity etc. of the measure prescribed. The chapter ends with the concluding

remarks.

2.2 Generalized Dynamic Entropy Measure

Let X be a non-negative random variable representing the lifetime of a system with

the average uncertainty given by the non-additive entropy (2.7). Suppose that the

system has survived up to time t, then the measure of uncertainty of the remaining

lifetime denoted by the random variable Xt = [X − t | X > t], based on the gener-

alized entropy (2.7) is proposed as

Hα(f ; t) =
1

(21−α − 1)

[∫ ∞

0

fα
t (x)dx− 1

]
, α ̸= 1, α > 0, (2.9)

where ft(x) is the p.d.f. of the random variable Xt = (X − t|X > t) given by
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ft(x) =


f(x)

F (t)
, if x > t

0 , otherwise.

The measure (2.9) may be considered as the residual measure of entropy. This can

be rewritten as

Hα(f ; t) =
1

(21−α − 1)

[∫∞
t

fα(x)dx

F̄α(t)
− 1

]
, α > 0, α ̸= 1. (2.10)

Obviously Hα(f ; 0) = Hα(f) is the Havrda and Charvat information measure (2.7),

and when α → 1, then (2.10) reduces to (2.3), the residual entropy H(f ; t).

2.2.1 Characterization Result

A natural question arises that whether the proposed generalized residual measure of

entropy Hα(f ; t) determines the lifetime distribution F (.) uniquely . In this context

we prove the following Theorem.

Theorem 2.1 Let X be a non-negative continious random variable with probability

density function f(x). If Hα(f ; t) < ∞,∀ α > 0, α ̸= 1 and is increasing in t, then

Hα(f ; t) determines the distribution function F (.) uniquely.

Proof Rewriting the residual entropy (2.10) as

(21−α − 1)Hα(f ; t) + 1 =

∫∞
t

fα(x)dx

F̄α(t)
. (2.11)

Differentiating (2.11) with respect to t, we obtain

(21−α − 1)H ′ α(f ; t) = −[λF (t)]
α + αλF (t)

∫∞
t

fα(x)dx

F̄α(t)
, (2.12)
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where λF (t) =
f(t)

F (t)
is the hazard rate of the random variable X.

Using (2.11), it can be rewritten as

(21−α − 1)H ′ α(f ; t) = −[λF (t)]
α + αλF (t) + αλF (t)(2

1−α − 1)Hα(f ; t). (2.13)

This gives

[λF (t)]
α = αλF (t) + αλF (t)(2

1−α − 1)Hα(f ; t).− (21−α − 1)H ′ α(f ; t) (2.14)

Hence for fixed t > 0, λF (t) is a solution of the equation

g(x) = xα − αx− αx(21−α − 1)Hα(f ; t) + (21−α − 1)H ′ α(f ; t). (2.15)

Differentiating it both sides with respect to x, we have

g′(x) = αxα−1 − α− α(21−α − 1)Hα(f ; t). (2.16)

For extreme value of g(x), we must have g′(x) = 0, which gives

xt =
[
1 + (21−α − 1)Hα(f ; t)

] 1
α−1 .

Further

g′′(x) = α(α− 1)xα−2.

Case I: Let α > 1, then g′′(xt) > 0. Thus g(x) attains minimum at xt. Also,

g(0) < 0 and g(∞) = ∞. Further g(x) decreases for 0 < x < xt and increases for

x > xt, so x = λF (t) is the unique solution to g(x) = 0.

Case II: Let α < 1, then g′′(xt) < 0. Thus g(x) attains maximum value at xt. Also,

g(0) > 0 and g(∞) = −∞. Further it can be easily seen that g(x) decreases for

x > xt, and increases for 0 < x < xt, so x = λF (t) is the unique solution to g(x) = 0.

Thus the generalized dynamic entropy measure (2.10) determines the hazard rate

function, and hence, the distribution function uniquely. This completes the proof.
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2.3 Characterizing Some Specific Lifetime

Distribution Functions

In this section, by considering a relationship between the non-additive residual

entropy Hα(f ; t) and the hazard rate function λF (t), we characterize some specific

lifetime distributions based on the generalized dynamic entropy measure (2.10). We

prove the following theorem:

Theorem 2.2 Let X be a non-negative continuous random variable with survival

function F̄ (.), hazard rate λF (t) =
f(t)

F̄ (t)
and non-additive residual entropy Hα(f ; t),

then

Hα(f ; t) =
c

α
+

λα−1
F (t)− α

α(21−α − 1)
, (2.17)

if, and only if for

(i) c = 0, X has exponential distribution for α ̸= 1, α > 0,

(ii) c > 0, X has distribution with p.d.f.

f(t) = ApqeA(1 + pt)q−1 exp[−A(1 + pt)q], t ≥ 0, 0 < α < 1, (2.18)

(iii) c < 0, X has distribution with p.d.f.

f(t) = Apqe−A(1− pt)q−1 exp[A(1− pt)q], t ≥ 0, 0 < α < 1, (2.19)

where

p =
kcα

d
, q =

α− 1

α− 2
, A =

[
d

q

]q
1

kcα
, k = (21−α − 1) and d > 0

are constants.

Proof (i) Let X be an exponential random variable with parameter θ > 0, then

its p.d.f. is given by

f(x) = θe−θx (2.20)
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and the failure rate function is λF (t) = θ. The residual entropy Hα(f ; t) in this

case becomes

Hα(f ; t) =
1

(21−α − 1)

[∫∞
t

fα(x)dx

F̄α(t)
− 1

]

=
1

(21−α − 1)

[∫∞
t
(θe−θx)αdx

e−θαt
− 1

]

=
1

(21−α − 1)

[
θα−1 − α

α

]

=

[
λα−1
F (t)− α

α(21−α − 1)

]
, (2.21)

which is (2.17) for c = 0.

Conversely, consider

1

(21−α − 1)

[∫∞
t

fα(x)dx

F̄α(t)
− 1

]
=

1

(21−α − 1)

[
λα−1
F (t)− α

α

]
,

Substituting for λF (t) =
f(t)

F (t)
and simplifying, we obtain

α

∫ ∞

t

fα(x)dx = F (t)fα−1(t) . (2.22)

Differentiating (2.22) w.r.t. t both sides, we obtain

f ′(t)F (t) + f 2(t) = 0 ,

which further gives

λ′
F (t) = 0 ⇒ λF (t) = a, a constant.

Since exponential distribution is the only distribution with failure rate as a constant,

thus X follows the exponential distribution.
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(ii) Let X be a random variable with p.d.f. as given in (2.18), then

(21−α − 1)Hα(f ; t) = [

∫∞
t

fα(x)dx

F̄α(t)
− 1], α > 0, α ̸= 1,

becomes

(21−α − 1)Hα(f ; t) =
(Apq)α−1

α
(1 + pt)q +

(Apq)α−1

Aα2
− 1 ,

or,

Hα(f ; t) =
[(Apq)(1 + pt)q−1]

α−1 − α

α(21−α − 1)
+

[
(Apq)α−1

Aα2(21−α − 1)

]
. (2.23)

Further since the hazard rate function of the p.d.f. (2.18) is

λF (t) = (Apq)(1 + pt)q−1,

thus (2.23) can be rewritten as

Hα(f ; t) =
[λα−1

F (t)− α]

α(21−α − 1)
+

c

α
, 0 < α < 1, (2.24)

where c =
[

(Apq)α−1

Aα(21−α−1)

]
> 0, and this proves the if part.

To prove the ’only if’ part consider (2.17) to be valid. This is equivalent to

∫∞
t

fα(x)dx

F̄α(t)
=

kc

α
+

λα−1
F (t)

α
,

or,

α

∫ ∞

t

fα(x)dx = kcF̄α(t) + fα−1(t)F (t) . (2.25)

Differentiating both sides of this equation with respect to t, we get

α− 1

α
λα−3
F (t)

[
λ2
F (t) +

f ′(x)

F̄ (t)

]
= kc . (2.26)

Using the fact that

λ
′

F (t) =
f ′(t)

F̄ (t)
+ λ2

F (t) ,
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Eq.(2.26) becomes
λ

′
F (t)

λ3−α
F (t)

=
kcα

α− 1
. (2.27)

Solving this for λF (t), we obtain

λF (t) =

[(
2− α

1− α

)
(kcαt+ d)

] 1
α−2

(2.28)

=

[(
d

q

)
(1 + pt)

](q−1)

; p , q , t > 0,

which is the hazard rate function of the probability density function (2.18), and this

concludes the proof for part (ii).

(iii) The proof for the case c < 0 is similar to that of (ii) except that the signs of p

and A become negative.

2.3.1 Behavior of Hazard Rate Function Versus Time

We know that a lifetime distribution F (.) is classified according to the shape of

its hazard rate function λF (t) as follows. Distribution F (.) is increasing failure

rate(IFR)(or, decreasing failure rate(DFR)), if its hazard rate function λF (t) is

non-decreasing (or, non-increasing) in t; bathtub (BT) (or, upside bath tub (UBT))

curve, if λF (t) has a bath tub (or, upside-down bath tub) shape.

The patterns of failures over time are normally classified as infant mortality, useful

life, and wear-out recognized respectively by decreasing, constant, and increasing

hazard rate functions. The three patterns combine to produce the well known bath

tub curve. The bath tub shaped failure rate functions play an important role in

reliability applications, such as human life and electronic devices.

The graph of the hazard rate function (2.28) for some specific values of the param-

eters have been shown in Figs. 2.1-2.4.
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Fig. 2.1: Plot of λF (t) versus t
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Fig. 2.2: Plot of λF (t) versus t
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Fig. 2.3: Plot of λF (t) versus t
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Figs. 2.1 and 2.2 has increasing hazard rate function a case of wear out. In Fig.

2.3, the period is characterized by a relatively constant failure rate. The length

of this period is referred to as useful life of a unit. In Fig. 2.4, the life of a unit

can be divided into three distinct periods. The first period is of infant mortality

period, the next period is of useful life and the third period, which begins at the

point where the slope begins to increase and extends to the end of the graph, is

wear out period.

2.4 Properties of Generalized Dynamic Entropy

Measure

In this section we study some properties of the non-additive residual entropy mea-

sure (2.10) . We recall, refer to Section 1.5.4, that if X is a random variable with

distribution function F (.), then the mean residual life of X is given by

δF (t) = E[X − t|X > t] =

∫ ∞

t

x
f(x)

F (t)
dx,

= t+
1

F (t)

∫ ∞

t

F (x)dx .

This represents the expected time a system will work further provided that it has

survived to a certain point of time t, refer to [75].

1. Upper Bound to Hα(f ; t): We have the following result:

Theorem 2.3 If X is the lifetime of a system with probability density function

f(x), survival function F (x), then

Hα(f ; t) ≤
[
δ1−α
F (t)− α

]
α(21−α − 1)

, ∀ t ≥ 0, α > 0, α ̸= 1 , (2.29)

where δF (t) is the mean residual life function of the exponential distribution.
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Proof For a given t, let the random variable Yt be defined as [Yt = Y |Y > t] and

gt(y) be its probability density function. Then

gt(y) =
d

dy
P (Yt ≤ y) =

d

dy
[P (Y ≤ y|Y > t)]

=


f(y)

F (t)
; if y > t

0 ; if y ≤ t

It is easy to see that
∫∞
t

ygt(y)dy = δF (t) + t. If we define Zt = Yt − t, then the

probability density function of Zt is ht(η), where ht(η) = gt(η+t) and E[Zt] = δF (t).

Thus the Havrda and Charvat entropy of Zt is

Hα(Zt) =
1

(21−α − 1)

[∫ ∞

0

hα
t (η)dη − 1

]

=
1

(21−α − 1)

[∫ ∞

0

gαt (η + t)dη − 1

]

=
1

(21−α − 1)

[∫ ∞

t

gαt (η)dη − 1

]

= Hα(g; t).

Under the assumption that δF (t) < ∞, and if the support of a random variable

is [0, ∞), then the exponential distribution with mean residual life δF (t) has the

maximum entropy, refer to [10]. Now the dynamic Havrda and Charvat entropy is

Hα(f ; t) =
1

(21−α − 1)

[∫ ∞

0

fα
t (x)dx− 1

]
,

and for exponential distribution δF (t) =
1

λF (t)
= 1

θ
, thus from (2.21) we have

Hα(f ; t) ≤
(
δ1−α
F (t)− α

)
α(21−α − 1)

. (2.30)
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This completes the proof.

Remark 2.1 Further if δF (t) is a decreasing function of t, then

Hα(f ; t) ≤ (µ1−α − α)

α(21−α − 1)
,

where δF (0) = E[X] = µ is the mean lifetime of the unit.

2. Monotonicity of Hα(f ; t) : In reliability and life testing situations, a number

of non-parametric classes of lifetime distributions are considered to model the life

times of individuals as well as of mechanical systems or components. Most of these

classes characterize the aging properties of the underlying phenomenon. Some of the

most commonly used classes are the ones defined in terms of failure rate and mean

residual life functions. Here we identify the conditions under which the residual

entropy measure Hα(f ; t) given by (2.10) is monotone. First we give the following

definitions.

Definition 2.1 A distribution function F (.) has increasing (or, decreasing) resid-

ual entropy of order α (IREO(α)) (or, DREO(α)), if H ′α(f ; t) is increasing (or,

decreasing) in t, t > 0, where H ′α(f ; t) is the derivative of Hα(f ; t) w.r.t. t.

This implies that F (.) has IREO(α) ( DREO(α)) if

H ′α(f ; t) ≥ (≤) 0.

When F (.) is both IREO(α) and DREO(α), then H ′α(f ; t) = 0 and consequently

the distribution is exponential . This means that the exponential distribution is the

only distribution which is both IREO(α) and DREO(α).

Definition 2.2 A distribution function F (.) is said to be decreasing (or, in-

creasing) mean residual life DMRL (or, IMRL) if its mean residual life function is

decreasing (or, increasing) in t ≥ 0.

Next we prove the following results in context with the monotonicity of Hα(f ; t).
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Theorem 2.4 (a) If F (.) is DMRL, then it is DREO(α).

(b) If F (.) is IREO(α), then it is IMRL.

Proof From Eq. (2.13), we have

H ′ α(f ; t) = − [λF (t)]
α

(21−α − 1)
+

αλF (t)

(21−α − 1)
+ αλF (t)H

α(f ; t).

Using Theorem 2.3, we get

H ′ α(f ; t) ≤ − [λF (t)]
α

(21−α − 1)
+

αλF (t)

(21−α − 1)
+

λF (t)[δ
1−α
F (t)− α]

(21−α − 1)

=
λF (t)

(21−α − 1)

{
δ1−α
F (t)− λα−1

F (t)
}

=
[λF (t)]

α

(21−α − 1)

{
[λF (t)δF (t)]

1−α − 1
}
. (2.31)

Using the relationship λF (t)δF (t) = 1 + δ′F (t), we obtain

H ′ α(f ; t) ≤ [λF (t)]
α

(21−α − 1)

{
−1 + [1 + δ′F (t)]

(1−α)
}
. (2.32)

We consider the following two cases.

Case I: Let 0 < α < 1, then (21−α − 1) > 0 and thus H ′ α(f ; t) ≤ 0.

Case II: Let α > 1, then (21−α − 1) < 0 and thus H ′ α(f ; t) ≤ 0.

This completes the proof.

(b) The proof is similar to that of part (a), and hence omitted.

Remark 2.2 When α → 1, then (2.32) reduces to

H ′(f ; t) ≤ λF (t) [log(1 + δ′F (t))] ,

a result given by Ebrahimi and Kirmani [39].
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Theorem 2.5 (a) If X is IREO(α) and if ϕ is non-negative, increasing and convex,

then ϕ(X) is DREO(α).

(b) If X is DREO(α) and if ϕ is non-negative, increasing and convex, then ϕ(X)

is IREO(α).

Proof (a) The probability density function of Y = ϕ(X) is g(y) = f(ϕ−1(y))
ϕ ′(ϕ−1(y))

. Thus

Hα(g; t) =
1

(21−α − 1)

[∫∞
t

gα(y)dy

Ḡα(t)
− 1

]
.

This gives

Hα(g; t) =
1

(21−α − 1)

(
1

F
α
(ϕ−1(t))

∫∞
t

fα(ϕ−1(y))dy

ϕ ′ α(ϕ−1(y))
− 1

)
. (2.33)

By taking x = ϕ−1(t)), we have

Hα(g; t) =
1

(21−α − 1)

(
1

F
α
(ϕ−1(t))

∫ ∞

ϕ−1(t)

fα(x)ϕ′ 1−α(x)dx− 1

)
. (2.34)

Differentiating w.r.t. t under the integral sign, we obtain

(21−α − 1)
d

dt
Hα(g; t) = −fα(ϕ−1(t))ϕ ′1−α(ϕ−1(t))

ϕ ′(t)F
α
(ϕ−1(t))

+

∫ ∞

ϕ−1(t)

fα(x)ϕ′ 1−α(x)dx

[
αf(ϕ−1(t))

ϕ′(t)F
α+1

(ϕ−1(t))

]
. (2.35)

This gives

(21−α − 1)
d

dt
Hα(g; t) = −λα

F (ϕ
−1(t))ϕ ′1−α(ϕ−1(t))

ϕ′(t)

+
αλF (ϕ

−1(t))

ϕ′(t)

(
1

F
α
(ϕ−1(t))

∫ ∞

ϕ−1(t)

fα(x)ϕ′ 1−α(x)dx− 1

)
.

(2.36)
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Let α > 1. ϕ′(x) is increasing function because ϕ(x) is a convex function and so,

ϕ′ 1−α(x) is a decreasing function , that is,

ϕ′ 1−α(x) ≤ ϕ′ 1−α(ϕ−1(t)), ∀ x > ϕ−1(t).

Hence, (2.36) becomes

(21−α − 1)
d

dt
Hα(g; t) ≤ −λα

F (ϕ
−1(t))ϕ ′1−α(ϕ−1(t))

ϕ′(t)

+ α
λF (ϕ

−1(t))ϕ ′1−α(ϕ−1(t))

ϕ′(t)

(∫∞
ϕ−1(t)

fα(x)dx

F
α
(ϕ−1(t))

− 1

)
.

(2.37)

Using (2.11), we obtain

(21−α − 1)
d

dt
Hα(g; t) = −λα

F (ϕ
−1(t))ϕ ′1−α(ϕ−1(t))

ϕ′(t)

+ α
λF (ϕ

−1(t))ϕ ′1−α(ϕ−1(t))

ϕ′(t)

{
((21−α − 1)Hα(f ;ϕ−1(t)) + 1

}
=

ϕ ′1−α(ϕ−1(t))

ϕ′(t)

[
−λα

F (ϕ
−1(t)) + αλF (ϕ

−1(t)
{
(21−α − 1)Hα(f ;ϕ−1(t)) + 1

}]
.

Using (2.13), we get

d

dt
Hα(g; t) =

ϕ ′1−α(ϕ−1(t))

ϕ′(t)

[
H ′ α(f ;ϕ−1(t))

]
≤ 0.

A similar result follows for 0 < α < 1.

(b) The proof is similar to that of part (a), and hence omitted.

The next theorem gives upper (lower) bound to the hazard rate function λF (t) in

terms of increasing (decreasing) Hα(f ; t) .

Theorem 2.6 Let F (.) be a IREO(α), ( DREO(α)), then

λF (t) ≤ (≥){α+ [(21−α − 1)αHα(f ; t)]}
1

α−1 . (2.38)
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This bound can be obtained using (2.13). The proof is simple and hence omitted.

Remark 2.3 Since the distribution function and the hazard rate function are

equivalent in the sense that one can be obtained from the other uniquely, thus

using the relationship

F̄ (t) = exp

[
−
∫ t

0

λF (x)dx

]
,

Theorem 2.6 can give a bound to the distribution function also. The result is stated

as follows.

Corollary 2.1 Let F (.) be an IREO(α), ( DREO(α)), then

F̄ (t) ≥ (≤) exp

[
−
∫ t

0

{
α+ (2(1−α) − 1)αHα(f ;u)du

} 1
α−1

]
∀t ≥ 0 .

2.5 Conclusion

The concept of entropy H(f) introduced by Shannon [109] in the literature mea-

sures the average uncertainty associated with a random variable X with probability

density function f(.). For a component, which has survived up to time t, H(f ; t)

measures the uncertainty about the remaining lifetime [X|X ≥ t]. Considering the

importance of non-additive entropy measure we have proposed one parameter gen-

eralized residual entropy measure Hα(f ; t) and have observed that the proposed

measure determines the distribution uniquely. Further we have seen that it char-

acterizes three specific lifetime distributions. Some properties like upper bound to

the measure proposed, and monotonicity etc. have been studied. In the subse-

quent chapters we extend the scope of dynamic entropy measures to the concept of

inaccuracy given by Kerridge [67].
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Chapter 3

Dynamic Inaccuracy Measures

3.1 Introduction

Most of the work on characterization of lifetime distribution function of a system

in the reliability context centers around the hazard rate or the mean residual life

function. In a variant approach, Ebrahimi [34] proposed the residual entropy func-

tion as a useful tool to analyze the stability of a component or a system . In the

preceding chapter we have considered a one parameter non-additive residual infor-

mation measure and based on that we have characterized a few specific lifetime

distributions.

Several researchers, refer to [8, 9, 12], have employed information measures like

time dependent Kullback-Leibler directed divergence [71] and its generalizations in

characterizing lifetime distributions. The Kerridge inaccuracy measure [67] can be

viewed as a generalization of Shannon’s entropy [109] in the sense that when the

predicted probability distribution of a random variable X coincides with the ac-

tual probability distribution, then the Kerridge inaccuracy measure reduces to the
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Shannon entropy measure . Therefore, there is a scope for extending the results

based on Shannon’s entropy and its generalizations to the inaccuracy measures.

Motivated by this, in the present chapter we extend the definition of the inaccu-

racy to the truncated situation and propose dynamic measures of inaccuracy, both

residual and past. The chapter is organized as follows. In Section 3.2, we introduce

a residual inaccuracy measure by considering the measures of residual entropy and

residual discrimination. In Section 3.3, we prove a characterization result that if

the proposed and actual probability distributions satisfy the proportional hazard

model then the residual inaccuracy measure determines the underlying probability

distribution uniquely. Section 3.4 introduces the concept of past inaccuracy and

in the subsequent Section 3.5 we prove a characterization result. Also we have de-

rived some specific properties of the measures introduced. The chapter ends with

conclusion.

3.2 Residual Inaccuracy Measure

Let X and Y be two non-negative random variables representing time to failure of

two systems with p.d.f. respectively f(x) and g(x). Let F (x) = P (X ≤ x) and

G(y) = P (Y ≤ y) be failure distributions, λF (x) =
f(x)

F (x)
and λG(x) =

g(x)

G(x)
be hazard

rates, and F̄ (x) = 1 − F (x) and Ḡ(x) = 1 − G(x) be survival functions of X and

Y respectively. Shannon’s measure of uncertainty [109] associated with the random

variable X and Kullback’s measure of discrimination [71] of X about Y are given

respectively by

H(f) = −
∫ ∞

0

f(x) log f(x)dx , (3.1)

and

H(f/g) =

∫ ∞

0

f(x) log
f(x)

g(x)
dx . (3.2)

In survival analysis and in life testing, since the current age of the system under

48



consideration is also taken into account, thus for calculating the uncertainty of a

system or the discrimination between two systems, the measures (3.1) and (3.2) are

not suitable. Given that the system has survived up to time t, the corresponding

dynamic measure of uncertainty [34], and of discrimination [37, 38] are given by

H(f ; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx , (3.3)

and

H(f/g; t) =

∫ ∞

t

f(x)

F̄ (t)
log

f(x)/F̄ (t)

g(x)/Ḡ(t)
dx (3.4)

respectively.

When t = 0, then (3.3) reduces to (3.1), and (3.4) reduces to (3.2).

Adding (3.3) and (3.4) , we obtain

H(f ; t) +H(f/g; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx+

∫ ∞

t

f(x)

F̄ (t)
log

f(x)/F̄ (t)

g(x)/Ḡ(t)
dx

= −
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx,

= H(f, g; t), say. (3.5)

In case we have a system with true survival function F̄ (.) and the reference survival

function G(.), then the measure H(f, g; t) can be interpreted as a measure of inac-

curacy associated with the density functions ft and gt, where ft =
f(x)

F (t)
and gt =

g(x)

G(t)
.

We define the measure

H(f, g; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx , (3.6)

as a dynamic measure of inaccuracy associated with two residual lifetime distribu-

tions F (.) and G(.) analogous to the Kerridge inaccuracy [67] given by

H(f, g) = −
∫ ∞

0

f(x) log g(x)dx . (3.7)
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Obviously, at t = 0, (3.6) reduces to (3.7).

When g(x) = f(x) , then (3.6) becomes (3.3), the dynamic measure of uncertainty

given by Ebrahimi [34].

3.3 Characterization Problem For Residual

Inaccuracy Measure

The general characterization problem is to determine when the dynamic inaccuracy

measure determines the distribution functions uniquely. We study characterization

problem for the dynamic inaccuracy measure under the assumption that the distri-

bution functions of the random variables X and Y satisfy the proportional hazard

model. Under this model, refer to [24] and [42], their survival functions F̄ (.) and

Ḡ(.) are related by

Ḡ(x) = [F̄ (x)]β, β > 0 . (3.8)

We note that based on the proportional hazard model (3.8), the hazard rate func-

tions λF (.) and λG(.) satisfy the relation

λG(x) = βλF (x). (3.9)

Next, we prove the following characterization result.

Theorem 3.1 Let X and Y be two non-negative random variables satisfying the

proportional hazard model (3.8), and let H(f, g; t) < ∞, ∀ t ≥ 0, then H(f, g; t)

determines the survival function F̄ (.) uniquely.

Proof Let f1, g1 and f2, g2 be two sets of the probability density functions satisfying

the proportional hazard model, that is, λG1(x) = βλF1(x), and λG2(x) = βλF2(x),

and let

H(f1, g1; t) = H(f2, g2; t) , ∀ t ≥ 0. (3.10)
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Consider

H(f, g; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx , (3.11)

= log Ḡ(t)−
∫ ∞

t

f(x)

F̄ (t)
log g(x)dx . (3.12)

Differentiating (3.12) w.r.t. t and using (3.9), we obtain

H
′
(f, g; t) = −λG(t) + λF (t) log g(t)− λF (t)

∫ ∞

t

f(x)

F̄ (t)
log g(x)dx (3.13)

= λF (t)[−β + log g(t)−
∫ ∞

t

f(x)

F̄ (t)
log g(x)dx]

= λF (t)[−β + log g(t)− log Ḡ(t)−
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx]

= λF (t)[−β + log g(t)− log Ḡ(t) +H(f, g; t)] .

This gives

H ′(f, g; t) = λF (t)[−β + log β + log λF (t) +H(f, g; t)] . (3.14)

Using (3.14), from (3.10) we obtain

λF1(t)[−β + log β + log λF1(t) +H(f1, g1; t)]

= λF2(t)[−β + log β + log λF2(t) +H(f2, g2; t)] (3.15)

To prove that (3.10), under the assumption of proportional hazard model (3.8),

implies F 1(t) = F 2(t), it is sufficient to prove that

λF1(t) = λF2(t), ∀ t ≥ 0. (3.16)

Define a set

A = {t : t ≥ 0, and λF1(t) ̸= λF2(t)} (3.17)
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and assume the set A to be non empty. Thus for some t0 ∈ A, λF1(t0) ̸= λF2(t0).

Without loss of generality suppose that λF1(t0) > λF2(t0) and since (3.15) holds,

then either

−β+log β+log λF1(t0)+H(f1, g1; t0) < −β+log β+log λF2(t0)+H(f2, g2; t0) (3.18)

or

−β + log β + log λF1(t0) +H(f1, g1; t0) =

− β + log β + log λF2(t0) +H(f2, g2; t0) = 0. (3.19)

Suppose (3.18) holds, then using (3.10) the inequality (3.18) reduces to λF1(t0) <

λF2(t0). If (3.19) holds, then using (3.10), it reduces to λF1(t0) = λF2(t0) . Combin-

ing these two we get λF1(t0) ≤ λF2(t0). This contradicts the assumption λF1(t0) >

λF2(t0) and, therefore, the set A is empty and this concludes the proof.

3.3.1 Properties of the Residual Inaccuracy Measure

Before working for the properties of the residual measure of inaccuracy we give

following definitions.

Definition 3.1 A distribution function F (.) is said to be decreasing (increasing)

mean residual life DMRL (IMRL), if its mean residual life function δF (t) is decreas-

ing (increasing) in t ≥ 0.

Definition 3.2 A survival function F (.) has decreasing (increasing) inaccuracy in

residual life DIRL (IIRL), if H ′(f, g; t) is decreasing (increasing) in t, t ≥ 0.

Definition 3.3 Let ϕ(x) be a monotone function. If Y (ϕ(X)) = Y (X) for all

continuous random variable X, then ϕ(x) is affine transformation.

We know that Shannon entropy is not invariant under affine transformation because

it is shift invariant but not scale invariant, that is H(aX + b) = H(X) + log a.
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The dynamic measure of inaccuracyH(f, g; t) satisfies the following important prop-

erties:

I For a common increasing transformation ϕ of X and Y

H(X, Y ;ϕ−1(t)) = H(ϕ(X), ϕ(Y ); t).

Proof Consider

H(ϕ(X), ϕ(Y ), t) = −
∫ ∞

t

f(ϕ−1(x))

ϕ′(ϕ−1(x))F̄ (ϕ−1(t))
log

g(ϕ−1(x))

Ḡ(ϕ−1(t))
dx (3.20)

= −
∫ ∞

ϕ−1(t)

f(y)

F̄ (ϕ−1(t))
log

g(y)

Ḡ(ϕ−1(t))
dy

= H(X,Y, ϕ−1(t)).

II If F̄ (.) and Ḡ(.) satisfy the proportional hazard model (3.8), and δF (t) is finite,

then

H(f, g, t) ≤ β − log β + log δF (t) , (3.21)

where δF (t) is the mean residual lifetime function.

Proof The dynamic measure of inaccuracy is

H(f, g; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx .

Under proportional hazard model (3.9), we can express it as

H(f, g; t) = β − log β −
∫ ∞

t

f(x)

F̄ (t)
log λF (x)dx

= (β − log β − 1) + 1−
∫ ∞

t

f(x)

F̄ (t)
log λF (x)dx. (3.22)

Also, the dynamic measure of entropy is

H(f ; t) = 1−
∫ ∞

t

f(x)

F (t)
log λF (x)dx ≤ 1 + log δF (t) ,
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refer to [34]. Using this in (3.22), we get (3.21).

III The maxima of dynamic inaccuracy measure under proportional hazard model

exists when F is exponential .

Proof From (3.22), under proportional hazard model, we have

H(f, g; t) = (β − log β − 1) +H(f ; t) . (3.23)

Since the maxima ofH(f ; t) exists, when f(x) = θexp(−θx), θ > 0 and maxH(f ; t) =

1− log θ, refer to [36], thus from (3.23) the maxima of H(f, g; t) under proportional

hazard model also exists only when f(x) = θexp(−θx), and it is given by

max.H(f, g; t) = (β − log β − 1) + (1− log θ)

= β − log β − log θ .

IV If F̄ (.) and Ḡ(.) satisfy the proportional hazard model with proportionality con-

stant β and F̄ (.) is decreasing mean residual life (DMRL), then it is decreasing

inaccuracy in residual life (DIRL).

Proof From (3.14), we have

H ′(f, g; t) = λF (t)[−β + log β + log λF (t) +H(f, g; t)] .

Using (3.21), this gives

H ′(f, g; t) ≤ λF (t)[log λF (t) + log δF (t)]

≤ λF (t) log[λF (t)δF (t)]

≤ λF (t) log[1 + δ′F (t)]

≤ 0,

for all t ≥ 0. The last inequality comes from the assumption that δF (t) is decreasing.

This proves the result.
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3.4 Past Inaccuracy Measure

In many realistic situations, uncertainty is not necessarily related to the future but

can also refer to the past. For instance if at time t , a system which is observed only

at certain preassigned inspection times, is found to be down, then the uncertainty

of the system’s life relies on the past, that is, at which instant in (0, t) the system

has failed. Based on this idea, Di Crescenzo and Longobardi [29, 30] have studied

measures of entropy and discrimination based on the past entropy over (0, t) given

respectively as

H∗(f ; t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx , (3.24)

and

H∗(f/g; t) =

∫ t

0

f(x)

F (t)
log

f(x)/F (t)

g(x)/G(t)
dx . (3.25)

In sequel to these measures of entropy and discrimination based on the past entropy

over (0, t) , we propose

H∗(f, g; t) = −
∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx , (3.26)

as a dynamic measure of past inaccuracy over the interval (0, t).

Here we observe that

H∗(f ; t) +H∗(f/g; t) = H∗(f, g; t) (3.27)

in confirmation with the result

H(f) +H(f/g) = H(f, g) ,

in the literature, refer to Kerridge [67]. Here H(f), H(f/g) and H(f, g) are given

respectively by (3.1), (3.2) and (3.7).

In case we have a system with the baseline distribution function F (.) and the

reference distribution function G(.), then the measure H∗(f, g; t) can be interpreted
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as a measure of inaccuracy associated with the probability density functions ft and

gt, where ft =
f(x)
F (t)

and gt =
g(x)
G(t)

.

We observe that the measure of past inaccuracy defined by (3.26) can be considered

analogous to the measure of residual inaccuracy defined by (3.6). When t → ∞,

then (3.26) reduces to (3.7), the Kerridge measure of inaccuracy [67], and further,

when g(x) = f(x), then (3.26) becomes (3.24), the dynamic measure of past entropy

given by Di Crescenzo and Longobardi [29].

Next, consider the past dynamic inaccuracy measure (3.26) when the random vari-

ables satisfy the assumption of proportional reversed hazard model (PRHM). We

recall that if X is a non- negative random variable with distribution function F (.),

denoting the lifetime of a component, then the reversed hazard rate of X, denoted

by µX(x), is given by

µX(x) =
d

dx
logF (x) =

f(x)

F (x)
,

where f is the probability density function (p.d.f.) of X.

Here µX(x)dx provides the probability of failing a component in the interval (x −

dx, x), when it has been found in failed state at time x. For example, if lifetime

X of a component is uniformly distributed in the interval [a, b], then the reversed

hazard rate is, µX(x) =
f(x)
F (x)

= 1
x−a

.

Next, the two random variables X and Y satisfy the proportional reversed hazard

model (PRHM) with proportionality constant β (> 0), if

µY (x) = β µX(x) , β > 0, (3.28)

which is equivalent to

G(x) = [F (x)]β , β > 0 , (3.29)

where F (x) is the baseline distribution function and G(x) can be considered as some

reference distribution function. This model was proposed by Gupta et al. [50] in

contrast to the proportional hazard model (PHM) given by Cox [24] and Efron [42].
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As an example, for some positive integral value of β, if X1, X2, ....Xβ are indepen-

dent and identically distributed (i.i.d.) random variables each with distribution

function F (x) representing the lifetimes of components in a β-components parallel

system, then the lifetime of the system is given by Y = max(X1, X2, .......Xβ) with

distribution function G(x) given by (3.29).

Consider

H∗(f, g; t) = −
∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx

= logG(t)−
∫ t

0

f(x)

F (t)
log g(x)dx (3.30)

= logG(t)−
∫ t

0

f(x)

F (t)
log µG(x)dx− 1

F (t)

∫ t

0

f(x) logG(x)dx. (3.31)

Using (3.28) and (3.29) in (3.31) we obtain

H∗(f, g; t) = β − log β −
∫ t

0

f(x)

F (t)
log µF (x)dx . (3.32)

When β =1, that is, G(x) = F (x), then (3.32) becomes the past entropy given by

Di Crescenzo and Longobardi [29].

Remark 3.1We observe that the three inaccuracy measures viz. H(f ; g), H(f, g; t)

and H∗(f, g; t) considered above, satisfy the relation

H(f ; g) = F (t)H(f, g; t) + F (t)H∗(f, g; t) +H [F (t), G(t)] , (3.33)

where

H [F (t), G(t)] = −F (t) logG(t)− [1− F (t)] log[1−G(t)],

corresponds to the Kerridge inaccuracy [67].

When g = f , then (3.33) reduces to

H(f) = H
[
F (t), F (t)

]
+ F (t)H∗(t) + F (t)H(t),

57



a result obtained by Di Crescenzo and Longobardi [29], where H(p, 1 − p) =

−p log p− (1− p) log(1− p) is the entropy of a Bernoulli random variable.

3.5 Characterization Based on Past Inaccuracy

Measure

The characterization of specific distributions using relations between reliability mea-

sures has become of increasing interest. Several characterizations of probability

models have been obtained based on the failure rate or mean residual life(MRL)

functions. Asadi and Ebrahimi [8] have studied the characterization based on Shan-

non residual entropy. Characterizations based on aging measures and dynamic in-

formation measures have also been given by Belzunce et al. [16], Ruiz and Navarro

[103] and Nanda et al. [84, 85]. In the preceding chapter in Section 2.3 we have

characterized some specific lifetime distributions based on the non-additive dynamic

entropy measure (2.10). In this section we characterize uniform distribution in term

of the past inaccuracy measure (3.26) under the assumption that the two random

variables X and Y satisfy the proportional reversed hazard model (3.28). We give

the following theorem.

Theorem 3.2 If two random variables X and Y satisfy the proportional reversed

hazard model (PRHM) with proportionality constant β (> 0), then random variable

X over (a, b), a < b, has uniform distribution if, and only if

H∗(f, g; t) = β − log β − 1 + log(t− a), a < t < b. (3.34)

Proof The ’only if’; part of the theorem is straight forward since in case of uniform

distribution of X over (a, b)

F (x) =
x− a

b− a
and f(x) =

1

b− a
.
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Hence, under PRHM, G(x) =
[
x−a
b−a

]β
. This gives g(x) = β(x−a)β−1

(b−a)β
. Substituting

these in (3.30) and simplifying, we obtain

H∗(f, g; t) = β − log β − 1 + log(t− a) .

To prove the ’if part’ let (3.34) be valid. Differentiating (3.30) w.r.t. t and using

µG(x) = βµF (x), we obtain

d

dt
H∗(f, g, t) = µG(t)− µF (t) log g(t) + µF (t)

∫ t

0

f(x)

F (t)
log g(x)dx (3.35)

= µF (t)[β − log g(t)−
∫ t

0

f(x)

F (t)
log g(x)dx]

= µF (t)[β − log g(t) + logG(t) +

∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx]

= µF (t)[β − log µG(t)−H∗(f, g; t)]

= µF (t)[β − log β − log µF (t)−H∗(f, g; t)] . (3.36)

This gives

d

dt
H∗(f, g; t)− µF (t)[β − log β − log µF (t)−H∗(f, g; t)] = 0.

Hence for a fixed t > 0 , µF (t) is a solution of g1(x) = 0, where

g1(x) =
d

dt
H∗(f, g; t)− x[β − log β − log x−H∗(f, g; t)]. (3.37)

Differentiating (3.37) with respect to x , we obtain

g
′

1(x) = [1− β + log β + log x+H∗(f, g; t)] ,

and g
′
1(x) = 0 gives

x = exp[β − 1− log β −H∗(f, g; t)] = x0, (say).
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Then from (3.37), we have

g1(0) =
d

dt
H∗(f, g; t) > 0.

Also we can show that g1(x) is a convex function with minima at x = x0. So

g1(x) = 0 has a unique solution and if g1(x0) = 0, then we have

x0 = exp[β − 1− log β −H∗(f, g; t)] .

Using (3.34), we get x0 =
1

t−a
, t > a and

g1(x0) =
d

dt
H∗(f, g; t)− x0[β − log β − log x0 −H∗(f, g; t)] = 0 .

Thus g1(x) = 0 has a unique solution given by x = x0 . But µF (t) is a solution to

(3.37). Hence µF (t) = x0 = (t − a)−1, t > a is the unique solution to g1(x) = 0.

Thus the distribution is uniform, and this proves the result.

Example 3.1 Consider an n−components parallel system with components having

independent and identically distributed (i.i.d) lifetimes X ′
is , i = 1, 2, ...n, where

X ′
is are exponentially distributed random variables with the same parameter θ, and

let Y = max{X1, X2, .....Xn} be the lifetime of the system. Further, let f(x) and

F (x) be respectively the p.d.f. and c.d.f. of Xi. If G is the distribution function

for Y , then under PRHM, the c.d.f. of Y is G(x) = [F (x)]n and its p.d.f. is

g(x) = n[F (x)]n−1f(x).

Here

f(x) = θ e−θx,

F (x) = 1− e(−θx),

G(x) =
(
1− e(−θx)

)n
,

and, g(x) = nθ e−θx[1− e(−θx)]n−1.

Also,

H∗(f, g; t) = logG(t)−
∫ t

0

f(x)

F (t)
log g(x)dx .
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Substituting for G, F , f and g , this gives

H∗(f, g; t) = n− log nθ + log(1− e−θt)− θte−θt

1− e−θt
. (3.38)

Taking limit as t → ∞ , we obtain

lim
t→∞

H∗(f, g; t) = n− log nθ , (3.39)

a result in confirmation with the inaccuracy measure H(f, g) under PRHM for

f(x) = θe−θx .

The graph of H∗(f, g; t) versus t for t ∈ [0 , 2] is shown below in Fig. 3.1. It suggests

that when n, the number of components increases in a parallel system then the past

inaccuracy measure H∗(f, g; t) also increases. Otherwise, for fix n, H∗(f, g; t) is an

increasing function of t.
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Fig. 3.1: Plot of H∗(f, g; t) versus t for different values of n.
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Next, we consider another example where F (x) and G(x) does not satisfy propor-

tional reversed hazard model.

Example 3.2 Let X and Y be two nonnegative random variables having distribu-

tion functions respectively

F (x) =


x2

2
, for 0 ≤ x < 1

x2+2
6

, for 1 ≤ x < 2

1 for x ≥ 2

and

G(x) =


x2+x

4
, for 0 ≤ x < 1

x
2
, for 1 ≤ x < 2

1 for x ≥ 2.

The past inaccuracy measure (3.26) is given by

H∗(f, g; t) =


1
2
− 1

2t
+ 1

4t2
log(2t+ 1) + log t2+t

2t+1
, for 0 < t < 1

log t
2
+
(

t2−1
t2+2

)
log 2 + 6

t2+2
log 2− 9

4(t2+2)
log 3, for 1 ≤ t < 2

3
2
log 2− 3

8
log 3, for t ≥ 2.

The graph of the past inaccuracy measure for t ∈ [0, 1), is shown in Fig. 3.2 on

the next page.
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Fig. 3.2: Plot of H∗(f, g; t) against t ∈ [0 , 1] .

3.5.1 An Upper Bound to H∗(f, g; t)

To find an upper bound to H∗(f, g; t), we prove the following result.

Theorem 3.3 If F̄ (.) and Ḡ(.) satisfying the proportional reversed hazard model

(3.28) and µF (t) is decreasing in t, then

H∗(f, g, t) ≤ β − log β − log µF (t) , (3.40)

where µF (t) is the reversed failure rate function.

Proof The measure of past inaccuracy is

H∗(f, g; t) = −
∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx .

Using the proportional reversed hazard model (3.28), this gives

H∗(f, g; t) = β − log β −
∫ t

0

f(x)

F (t)
log µF (x)dx

= (β − log β − 1) + 1−
∫ t

0

f(x)

F̄ (t)
log µF (x)dx. (3.41)
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Also, in case of measure of past entropy

H∗(f ; t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx ≤ 1− log µF (t), (3.42)

refer to Di Crescenzo and Longobardi [29]. Using this in (3.41), we get (3.40).

3.6 Conclusion

The concept of inaccuracy given by Kerridge [67], measures the inaccuracy in the

statement when the true distribution is not the same as the actual one. For a system

which has survived up to time t, for the residual time [X | X ≥ t], the residual

inaccuracy measure is H(f, g; t). It characterizes the base line distribution F (.)

uniquely when F (.) and G(.) satisfy the proportional hazard model. For the past

time [X | X ≤ t] distribution, the past inaccuracy measure is given by H∗(f, g; t). It

characterizes a specific distribution (uniform) under proportional reversed hazard

model. So far we have carried over the study when the process is observed by

assigning equal weights to all the observations. In the next chapter we will study

this concept for the weighted distributions.
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Chapter 4

Length Biased Dynamic

Inaccuracy Measures

4.1 Introduction

The concept of weighted distribution introduced by Rao [96] is widely used in statis-

tics and other applications. Jain et al. [61], Gupta and Kirmani [48] and Nanda and

Jain [83] have used the weighted distribution in many practical problems to model

unequal sampling probabilities. Such distributions arise when the observations gen-

erated from a stochastic process are recorded with some weight function . Let X be

a non-negative continuous random variable with probability density function f(x),

and let Xw be a weighted random variable corresponding to X with weight function

w(x) which is positive for all value of x ≥ 0. Then the corresponding p.d.f. fw(x)

of the random variable Xw is given by

fw(x) =
w(x)f(x)

E[w(X)]
, 0 ≤ x < ∞ (4.1)

with 0 < E[w(X)] < ∞.
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When w(x) = x, Xw is said to be a length biased (or a size biased) random variable

and the p.d.f. (4.1) in this case becomes

fL(x) =
xf(x)

E[X]
. (4.2)

The length biased distribution function and the length biased survival function are

defined respectively as

FL(t) =
1

E[X]

∫ t

0

xf(x)dx, and F̄L(t) =
1

E[X]

∫ ∞

t

xf(x)dx (4.3)

respectively. These functions characterize weighted distributions that arise in sam-

pling procedures where the sampling probabilities are proportional to the sample

values, refer to Patil et al. [95], Furman and Zitikis [45].

In literature Belis and Guiasu [15] raised the important issue of integrating the quan-

titative concept of information with the qualitative concept, called utility and char-

acterized weighted information measure, called the quantitative-qualitative measure

of information, refer to (1.13). Information theoretic measures of weighted relative

information and of weighted inaccuracy have been given by Taneja and Tuteja [118]

and Taneja [120] respectively. However in these studies the weights attached to the

outcomes of a random variables were independent of their probabilities of occur-

rence.

In the preceding chapter we have proposed the dynamic (both, residual and past)

inaccuracy measures. In the present chapter we extend the concept of dynamic

inaccuracy measure to the length biased dynamic inaccuracy measures and study

the characterization results pertaining to the measures proposed. The chapter is

organized as follows. In Section 4.2, we propose a measure of length biased residual

inaccuracy and express it in terms of residual inaccuracy measure studied in Chapter

3. Section 4.3 considers a characterization result that under proportional hazard

model the measure proposed characterizes the distribution function uniquely; and
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also we have derived an upper bound to it. In Section 4.4 we consider a length

biased measure of past inaccuracy and in Section 4.5 we prove a characterization

result for this measure under proportional reversed hazard model. Some further

results concerning the length biased past inaccuracy measure have been considered

in Section 4.6. The chapter ends with the conclusion.

4.2 Length Biased Residual Inaccuracy Measure

We have observed in Chapter 3 that if a system has survived up to time t, the

corresponding dynamic measures of uncertainty, refer to Ebrahimi [34], of discrim-

ination, refer to Ebrahimi and Kirmani [38], and of inaccuracy, refer to Taneja et

al. [117], are given as

H(f ; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx , (4.4)

H(f/g; t) =

∫ ∞

t

f(x)

F̄ (t)
log

f(x)/F̄ (t)

g(x)/Ḡ(t)
dx , (4.5)

and

H(f, g; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx, (4.6)

respectively.

When t = 0, then (4.4), (4.5) and (4.6) reduce to measures of Shannon entropy

[109], Kullback discrimination [70] and Kerridge inaccuracy [67] respectively. These

information measures do not take into account the weightage of the random variable

but only its probability density function.

Di Crescenzo and Longobardi [31] considered a length-biased shift dependent in-

formation measure related to the differential entropy in which higher weights are
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assigned to the larger values of the observed random variables. The residual measure

of entropy (4.4) has been extended to the length biased weighted residual entropy

given as

HL(f, t) = −
∫ ∞

t

x
f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx . (4.7)

The factor x in the integral on right-hand-side yields a ”length-biased” shift depen-

dent information measure assigning greater importance to the larger values of the

random variable X.

In agreement with Taneja and Tuteja [118], we refer to the measure

HL(f, g) = −
∫ ∞

0

xf(x) log g(x)dx , (4.8)

as the length biased weighted inaccuracy, and propose the measure

HL(f, g; t) = −
∫ ∞

t

x
f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx , (4.9)

as the length biased residual inaccuracy measure.

When g(x) = f(x), the measure (4.9) reduces to (4.7), the length biased weighted

residual entropy given by Di Crescenzo and Longobardi [31]. In case the weights are

independent of x then (4.9) reduces to (4.4), the dynamic measure of uncertainty

proposed by Ebrahimi [34], and also when t = 0, the measure (4.9) reduces to the

measure (4.8), the length biased weighted inaccuracy.

4.2.1 Weighted Residual Inaccuracy in Terms of Residual

Inaccuracy

Rewriting HL(f, g; t) as

HL(f, g; t) = −
∫ ∞

t

dx

∫ x

0

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dy
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= −
∫ t

0

dy

∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx−

∫ ∞

t

dy

∫ ∞

y

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx. (4.10)

Using (4.6) in (4.10), we obtain

HL(f, g; t) = tH(f, g; t)−
(∫ ∞

t

dy

)(∫ ∞

y

α(x; t)dx

)
,

where α(x; t) = f(x)

F (t)
log g(x)

G(t)
.

Writing
∫∞
y

α(x; t)dx as β(y; t) , this can be written as

HL(f, g; t) = tH(f, g; t)−
(∫ ∞

t

β(y; t)dy

)
. (4.11)

Differentiating (4.11) w.r.t. t both sides using Leibnitz rule for differentiation

under integration, we obtain

d

dt
HL(f, g; t) = t

d

dt
H(f, g; t) +H(f, g; t) + β(t; t)

= t
d

dt
H(f, g; t) +H(f, g; t) +

∫ ∞

t

α(x; t)dx.

Thus
d

dt
HL(f, g; t) = t

d

dt
H(f, g; t) , (4.12)

a relation giving the rate of change of weighted residual inaccuracy (4.9) in terms

of rate of change of residual inaccuracy (4.6) . This relation is used in the charac-

terization problem considered in the next section.

4.3 Characterization Problem

The general characterization problem is to determine whether the residual measure

characterizes the distribution function uniquely. In this section, we study charac-

terization problem for the weighted residual inaccuracy measure (4.9) under the
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proportional hazard model (PHM) as already introduced in Chapter 3. Under this

model, refer to Cox [24] and Efron [42], the survival functions of two random lifetime

variables are related by

Ḡ(x) = [F̄ (x)]β, β > 0 , (4.13)

where β is the proportionality constant. We note that based on the proportional

hazard model (4.13), the hazard rate functions λF (.) and λG(.) satisfy the relation

λG(x) = βλF (x). We consider the following characterization theorem.

Theorem 4.1 If the two random variables X and Y satisfy the proportional hazard

model (4.13) with proportionality constant β (> 0), and if HL(f, g; t) is increasing

in t with HL(f, g; t) < ∞, then HL(f, g; t) uniquely determines F̄ (.), the survival

function of X.

Proof Consider the weighted residual inaccuracy

HL(f, g; t) = −
∫ ∞

t

x
f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx .

Rewriting this as∫ ∞

t

xf(x) log g(x)dx = log Ḡ(t)

[∫ ∞

t

xf(x)dx

]
− F̄ (t)HL(f, g; t) ,

or, ∫ ∞

t

xf(x) log g(x)dx = log Ḡ(t)

[
tF̄ (t) +

∫ ∞

t

F̄ (y)dy

]
− F̄ (t)HL(f, g; t) .

Differentiating this both sides w.r.t. t, and then using (4.12) and substituting

λF (t) =
f(t)

F (t)
, and λG(t) =

g(t)

G(t)
, we obtain

−tλF (t) log λG(t) + tλG(t) = −λG(t)

[∫∞
t

F̄ (y)dy

F̄ (t)

]
+ λF (t)H

L(f, g; t)− t
d

dt
H(f, g; t). (4.14)
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Now under proportional hazard model λG(t) = βλF (t). Using this, Eq. (4.14)

becomes

−tλF (t) log βλF (t)+βtλF (t) = −βλF (t)

∫∞
t

F̄ (y)dy

F̄ (t)
+λF (t)H

L(f, g; t)−t
d

dt
H(f, g; t).

Thus for any fixed t, λF (t) is a positive solution of the equation h(x) = 0, where

h(x) = x

{
βt− t log βx+

β
∫∞
t

F̄ (y)dy

F̄ (t)
−HL(f, g; t)

}
+ t

d

dt
H(f, g; t). (4.15)

Here h(0) = t d
dt
H(f, g; t) ≥ 0, since we have assumed that H(f, g; t) is increasing

in t, and also as x → ∞, h(x) → −∞. Further differentiating (4.15) with respect

to x, we get

d

dx
h(x) = βt− t log βx+

β
∫∞
t

F̄ (y)dy

F̄ (t)
−HL(f, g; t)− t.

Now, d
dx
h(x) = 0 if, and only if,

x =
1

β
exp

[
−1

t

{
t− βt−

β
∫∞
t

F̄ (y)dy

F̄ (t)
+HL(f, g; t)

}]
= x0, say.

In view of the above, h(x) = 0 has a unique positive solution. Thus λF (t), and

hence F̄ (t) is uniquely determined by the weighted residual inaccuracy measure

HL(f, g; t) under the assumption that d
dt
H(f, g; t) ≥ 0. This concludes the proof.

4.3.1 A Lower Bound to HL(f, g; t)

To derive a lower bound for the weighted residual inaccuracy measure (4.9), we

consider the following conditional mean value of a random variable X as

δt = E(X | X > t) =
1

F̄ (t)

∫ ∞

t

xf(x)dx , (4.16)
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a result which finds applications in insurance and economics, refer to Furman and

Zitikis [45]. We have the following result:

Theorem 4.2 If the hazard rate function λG(t) is decreasing in t, then

HL(f, g; t) ≥ −δt log λG(t) . (4.17)

Proof From (4.9), we have

HL(f, g; t) = − 1

F̄ (t)

∫ ∞

t

xf(x) log λG(x)dx− 1

F̄ (t)

∫ ∞

t

xf(x) log
Ḡ(x)

Ḡ(t)
dx.

Since log G(x)

G(t)
≤ 0, for x ≥ t, and by assumption that hazard rate is decreasing in

t, we have log λG(x) ≤ log λG(t), thus

HL(f, g; t) ≥ − 1

F̄ (t)

∫ ∞

t

xf(x) log λG(x)dx

≥ − log λG(t)

F̄ (t)

∫ ∞

t

xf(x)dx,

which gives

HL(f, g; t) ≥ −δt log λG(t).

Example 4.1 If the true distribution function F (x) and the reference distribution

function G(x) are exponentially distributed with parameters λ1 > 0 and λ2 > 0

respectively, then

f(x) = λ1 e
−λ1x, g(x) = λ2 e

−λ2x,

F (x) = 1− F (x) = e−λ1x,

and, G(x) = 1−G(x) = e−λ2x.

Substituting for G, F , f, and g in (4.9) , we obtain the length biased weighted
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residual inaccuracy measure as

HL(f, g; t) = −
∫ ∞

t

x
λ1 e

−λ1x

e−λ1t
log

λ2 e
−λ2x

e−λ2t
dx

=
λ2

λ1

(
t+

2

λ1

)
−
(
t+

1

λ1

)
log λ2.

Further, we note that hazard rate is constant for an exponential distribution, that

is, λ(t) = λ, and the conditional mean value is δt = t+ 1
λ
. Thus (4.17) holds .

4.4 Length Biased Past Inaccuracy Measure

In many realistic situations, uncertainty is not necessarily related to the future but

can also refer to the past. For instance if at time t, a system which is observed only

at certain preassigned inspection times is found to be down, then the uncertainty

of the system’s life relies on the past, that is, at which instant in the interval (0, t)

the system has failed.

Based on this idea, measures of past entropy [29], discrimination [30] and of inac-

curacy [72] over (0, t) are given respectively as

H∗(f ; t) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx , (4.18)

H∗(f/g; t) =

∫ t

0

f(x)

F (t)
log

f(x)/F (t)

g(x)/G(t)
dx , (4.19)

and

H∗(f, g; t) = −
∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx . (4.20)

Further, the concept of past entropy given by (4.18) has been extended to the length
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biased past entropy given as

H∗L(f, t) = −
∫ t

0

x
f(x)

F (t)
log

f(x)

F (t)
dx, (4.21)

refer to Di Crescenzo and Longobardi [31].

In sequel to this, we extend the past inaccuracy measure (4.20) to the length biased

past inaccuracy given by

H∗L(f, g; t) = −
∫ t

0

x
f(x)

F (t)
log

g(x)

G(t)
dx . (4.22)

This may be considered as the differential weighted inaccuracy of the random vari-

able [X | X ≤ t]. When g(x) = f(x), then (4.22) is the weighted past entropy

(4.21), and when the weights are independent of x, then (4.22) reduces to the past

inaccuracy measure studied in Chapter 3.

4.4.1 Weighted Past Inaccuracy Measure in Term of Past

Inaccuracy

Rewriting H∗L(f, g; t) as

H∗L(f, g; t) = −
∫ t

0

dx

∫ x

0

f(x)

F (t)
log

g(x)

G(t)
dy

= t

∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx−

∫ t

0

dy

∫ y

0

f(x)

F (t)
log

g(x)

G(t)
dx. (4.23)

Using (4.20) in (4.23) , we obtain

H∗L(f, g; t) = tH∗(f, g; t)−
∫ t

0

H∗(f, g; y)dy . (4.24)

Differentiating (4.24) w.r.t. t both sides, we obtain

d

dt
H∗L(f, g; t) = t

d

dt
H∗(f, g; t) , (4.25)
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a result analogous to the result (4.12) studied in context with weighted residual

inaccuracy. We shall use this result in the characterization problem studied next in

Section 4.5.

When g(x) = f(x), then (4.25) reduces to

d

dt
H∗L(f ; t) = t

d

dt
H∗(f ; t), (4.26)

a result given by Di Crescenzo and Longobardi [31].

4.5 Characterization Problem

The general characterization problem is to determine when the dynamic information-

theoretic measure determines the distribution function uniquely. In this section, we

study the characterization problem for the weighted past inaccuracy measure (4.22)

under the proportional reversed hazard model as already stated in Chapter 3 and

restated as follows.

Two random variables X and Y satisfy the proportional reversed hazard model

(PRHM) with proportionality constant β (> 0), if

µG(x) = β µF (x) , β > 0, (4.27)

where µF (x) =
f(x)
F (x)

.

We know that the PRHM is equivalent to the model

G(x) = [F (x)]β , (4.28)

where F (x) can be considered as the baseline distribution function and G(x) as

some reference distribution function, refer to Gupta et al. [50].

Next, we consider the following characterization theorem.
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Theorem 4.3 If two random variables X and Y satisfy the proportional reversed

hazard model (4.27) with proportionality constant β (> 0) and H∗L(f, g; t) is de-

creasing for all t > 0, then H∗L(f, g; t) uniquely determines F̄ (.), the survival func-

tion of X.

Proof Consider the weighted past inaccuracy measure (4.22) given by

H∗L(f, g; t) = −
∫ t

0

x
f(x)

F (t)
log

g(x)

G(t)
dx .

Rewriting this as∫ t

0

xf(x) log g(x)dx = logG(t)

[∫ t

0

xf(x)dx

]
− F (t)H∗L(f, g; t) (4.29)

or, ∫ t

0

xf(x) log g(x)dx = logG(t)

[
tF (t)−

∫ t

0

F (y)dy

]
− F (t)H∗L(f, g; t) .

Differentiating both sides w.r.t. t, and using µF (t) =
f(t)
F (t)

and µG(t) =
g(t)
G(t)

, we

obtain

tµF (t) log µG(t)−tµG(t) = −µG(t)

[∫ t

0
F (y)dy

F (t)

]
+µF (t)H

∗L(f, g; t)− d

dt
H∗L(f, g; t) .

(4.30)

Under proportional reversed hazard model (4.27), this gives

tµF (t) log βµF (t)−βtµF (t) = −βµF (t)

∫ t

0
F (y)dy

F (t)
−µF (t)H

∗L(f, g; t)− d

dt
H∗L(f, g; t) .

Thus for any fixed t, µF (t) is a positive solution of the equation h1(x) = 0, where

h1(x) =
d

dt
H∗L(f, g; t) + x

{
−βt+ t log βx+

β
∫ t

0
F (y)dy

F (t)
+H∗L(f, g; t)

}
(4.31)

Here h1(0) =
d
dt
H∗L(f, g; t) ≤ 0; since we have assumed that H∗L(f, g; t) is decreas-

ing in t, and also, when x → ∞, h1(x) → ∞.
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Differentiating (4.31) with respect to x, we get

d

dx
h1(x) = −βt+ t log βx+

β
∫ t

0
F (y)dy

F (t)
+H

w
(f, g; t) + t .

So that d
dx
h1(x) = 0 if, and only if

x =
1

β
exp

[
−1

t

{
t− βt+

β
∫ t

0
F (y)dy

F (t)
+H∗L(f, g; t)

}]
= x0, say. (4.32)

Therefore h1(x) = 0 has a unique positive solution. Thus µF (t), and hence F̄ (t),

is uniquely determined by the weighted past inaccuracy measure H∗L(f, g; t). This

concludes the proof.

Example 4.2 If a random variable X is uniformly distributed over (a , b), a < b,

then its density and distribution functions are given respectively by

f(x) =
1

b− a
and F (x) =

x− a

b− a
, a < x < b.

Further if X and Y satisfy the PRHM with proportionality constant β > 0, then

distribution function of the variable Y is

G(x) =

[
x− a

b− a

]β
, which gives g(x) =

β(x− a)β−1

(b− a)β
, a < x < b.

Substituting these in (4.22) and simplifying, we obtain the weighted past inaccuracy

measure as

H∗L(f, g; t) =

(
t+ a

2

)
log

(
t− a

β

)
+ (β − 1)

(
t+ 3a

4

)
. a < t < b. (4.33)

For β = 1, this reduces to

H∗L(f ; t) =

(
t+ a

2

)
log(t− a),
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a result obtained in case of weighted past entropy, refer to Di Crescenzo and Lon-

gobardi [31].

Example 4.3 If true distribution function F (x) and reference distribution function

G(x) are exponentially distributed with parameters λ1 > 0 and λ2 > 0 respectively,

then

f(x) = λ1 e
−λ1x, F (x) = 1− F (x) = e−λ1x, x > 0

and,

g(x) = λ2 e
−λ2x, G(x) = 1−G(x) = e−λ2x, x > 0.

(4.34)

Substituting for G, F , f and g in (4.22) , we obtain the weighted past inaccuracy

measure as

H∗L(f, g; t) =
1

[1− e−λ1t]

{
log

1− e−λ2t

λ2

[
1

λ1

− e−λ1t

λ1

− te−λ1t

]}

+
1

[1− e−λ1t]

{
2λ2

λ2
1

− 2λ2e
−λ1t

λ2
1

− 2λ2te
−λ1t

λ1

− λ2t
2e−λ1t

}
. (4.35)

In addition to the general case as given by (4.35), the following two particular cases

are of specific interest. The case I is of PRHM and case II is of PHM. But we must

note that H∗L(f, g; t) characterizes the distribution uniquely only under PRHM.

Case I: λ1 = λ2, that is, G(x) = F (x). In this case the weighted past inaccuracy

H∗L(f, g; t) reduces to the weighted past entropy H∗L(f ; t), given by

H∗L(f ; t) =
1

[1− e−λ1t]

{
log

1− e−λ1t

λ1

[
1

λ1

− e−λ1t

λ1

− te−λ1t

]}

+
1

[1− e−λ1t]

{
2

λ1

− 2e−λ1t

λ1

− 2te−λ1t − λ1t
2e−λ1t

}
. (4.36)
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Fig.4.1: Plot of H∗L(f, g; t) when λ1 ̸= λ2 for t ∈ [0 , 4] .

Case II: λ2 = nλ1, that is, G(x) = [F (x)]n. This corresponds to n-components se-

ries system where each component is having independent and identically distributed

lifetime Xi, i = 1, 2, ...n, with distribution function F (x), and here G(x) is the dis-

tribution function of the lifetime Y = min{X1, X2, .....Xn} of the system. The

weighted past inaccuracy (4.35) in this case becomes

H∗L(f, g; t) =
1

[1− e−λ1t]

{
log

1− e−nλ1t

nλ1

[
1

λ1

− e−λ1t

λ1

− te−λ1t

]}

+
1

[1− e−λ1t]

{
2n

λ1

− 2ne−λ1t

λ1

− 2nte−λ1t − nλ1t
2e−λ1t

}
. (4.37)

The plots in case of the measures (4.35), (4.36) and (4.37) for various values of λ1

and λ2 are given respectively in Figs. 4.1, 4.2 and 4.3 .
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4.6 Some Further Results on Past Inaccuracy

4.6.1 An Upper Bound to H∗L(f, g; t)

To obtain an upper bound to the weighted past inaccuracy measure (4.22), we define

the mean past lifetime of the system as

τ(t) = E(X | X ≤ t) =

∫ t

0

x
f(x)

F (t)
dx = t− 1

F (t)

∫ t

0

F (y)dy . (4.38)

Next, we consider the following result.

Theorem 4.4 If µG(t) =
g(t)
G(t)

, the reversed hazard rate is decreasing in t, then

H∗L(f, g; t) ≤ −τF (t) [log µG(t) + 1] +
G(t)

F (t)

∫ t

0

xf(x)

G(x)
dx . (4.39)

Proof From (4.22), we have

H∗L(f, g; t) = − 1

F (t)

∫ t

0

xf(x) log µG(x)dx+
1

F (t)

∫ t

0

xf(x) log
G(t)

G(x)
dx .

Since µG(t) =
g(t)
G(t)

is decreasing in t, we have log µG(x) ≥ log µG(t) for 0 < x < t.

Moreover, log x ≤ x− 1 for x > 0. We obtain

H∗L(f, g; t) ≤ − log µG(t)

F (t)

∫ t

0

xf(x)dx+
1

F (t)

∫ t

0

xf(x)[
G(t)

G(x)
− 1]dx

and, after simplification, we get (4.39).

Example 4.4 Let X be a non-negative random variable with p.d.f.

fX(x) =

 2x ; if 0 ≤ x < 1

0 ; otherwise
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and let random variable Y be uniformly distributed over (0, a) with density and

distribution functions given respectively by

gY (x) =
1

a
and GY (x) =

x

a
, 0 < x < a.

Substituting these values in (4.22), we obtain the length biased past inaccuracy

measure as

H∗L(f, g; t) =
2t log t

3
, 0 < t < 1. (4.40)

Also the right hand side of (4.39) gives

− τF (t) [log µG(t) + 1] +
G(t)

F (t)

∫ t

0

xf(x)

G(x)
dx =

2t log t

3
+

t

3
.

Comparing this with (4.40), it is easily seen that (4.39) is fullfilled.

4.6.2 Weighted Inaccuracy in Terms of Residual and Past

Inaccuracy

We express weighted inaccuracy measure (4.8) in terms of length biased past in-

accuracy measure (4.22) and length biased residual inaccuracy measure (4.9). We

prove the following result.

Theorem 4.5 For a random variable X having finite mean E(X) for all t > 0, the

weighted inaccuracy measure HL(f, g) as given by (4.8) can be expressed as

HL(f, g) = F (t)H∗L(f, g; t) + F̄ (t)HL(f, g; t)

− E(X)
{
FL(t) logG(t) + F̄L(t) log Ḡ(t)

}
. (4.41)

Proof We have

HL(f, g) = −
∫ ∞

0

xf(x) log g(x)dx.
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This can be rewritten as

HL(f, g) = −F (t)

∫ t

0

x
f(x)

F (t)
log g(x)dx− F̄ (t)

∫ ∞

t

x
f(x)

F̄ (t)
log g(x)dx .

Using (4.22) and (4.9) , we obtain

HL(f, g) = F (t)H∗L(f, g; t) + F̄ (t)HL(f, g; t)

− logG(t)

{∫ t

0

xf(x)dx

}
− log Ḡ(t)

{∫ ∞

t

xf(x)dx

}
.

Using (4.3), we obtain (4.41), the desired result.

4.7 Conclusion

The concept of weighted distributions and hence that of weighted information mea-

sures is of wide interest when a stochastic process is recorded with some weight

function. We have seen here that the dynamic inaccuracy measures (both resid-

ual and past) studied in Chapter 3 find a natural extension to the corresponding

length biased (weighted) residual and past inaccuracy measures. These measures

also characterize the underlying distribution uniquely. So far we have concentrated

only on p.d.f. based information-theoretic measures which have their own inher-

ent limitations. In the subsequent chapters we consider distribution function based

information theoretic measures which overcome the limitations of density based

measures.
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Chapter 5

Generalized Cumulative Entropy

Measures

5.1 Introduction

The measure of differential entropy [109] given by

H(f) = −
∫ ∞

0

f(x) log f(x)dx , (5.1)

where f(.) is the p.d.f. of a continuous random variable X, was considered to be

the straight forward extension of the entropy measure H(P ) given by

H(P ) = −
n∑

i=1

pi log pi , 0 ≤ pi ≤ 1,
n∑

i=1

pi = 1 , (5.2)

studied in the discrete case, where P = (p1, p2, · · · , pn) is the probability distri-

bution of the discrete random variable X = (X1, X2, · · · , Xn). We have already

observed that the measure (5.1) and its extension to residual and past entropies,

and further to inaccuracy measures have been studied widely.
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Rao et al. [98] have pointed out some basic shortcomings of the differential entropy

measure, like that it is defined only for distributions with densities; it is inconsistent

in the sense that it may also take negative values over the range of some specific

random variables and a few more, for details refer to Rao [97].

Considering the fact that the main objective was to extend the Shannon entropy

(5.1) to random variables with continuous distribution. Rao et al. [98] proposed an

alternative measure of entropy of a random variable X with distribution function

F , given by

ξ(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx , (5.3)

where F (x) = 1 − F (x) is the survival function. The measure (5.3) is called the

cumulative residual entropy (CRE).

The CRE measure defined by (5.3) has consistent definition in both the continu-

ous and discrete domains; it is always non-negative and can be easily computed

from the sample data. The measure (5.3) is more consistent since it is based on

distribution function rather than the density function which is a derivative of the

distribution function. The detailed properties of the CRE measures and its rela-

tion with Shannon entropy along with its applications in reliability engineering and

computer vision have been studied by Rao et al. [98]. Some general results regard-

ing this measure have been studied by Drissi et al. [33] and Navarro et al. [86].

Applications of CRE related measures to image alignment and to measurement of

similarity between images can be found in Wang and Vemuri [124].

The CRE measure (5.3) is not applicable to a system which has survived for some

unit of time, say t. Asadi and Zohrevand [11] have considered the corresponding

dynamic measure, the dynamic cumulative residual entropy (DCRE), defined as the

cumulative residual entropy of the random variable Xt = [X − t|X > t]. It is given
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by

ξ(X; t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx . (5.4)

Considering the importance of the CRE measures, in this chapter we extend the

concept of cumulative residual entropy to one parameter and two parameters en-

tropies and also their dynamic versions. The chapter is organized as follows. In

Section 5.2 we consider cumulative residual entropy of order α based on Renyi’s

entropy [101] and propose a dynamic version of it. Some specific lifetime distribu-

tions based on the dynamic cumulative entropy measure have been characterized in

Section 5.3. In Section 5.4 we consider a generalized cumulative entropy and also

generalized dynamic cumulative residual entropy of type α and order β. Section 5.5

deals with the characterization results based on the generalized dynamic cumulative

entropy of type α and order β. Section 5.6 includes the conclusion.

5.2 Cumulative Residual Entropy of Order α

Analogous to the definition of cumulative residual entropy (5.3) by Rao et al. [98],

we propose the cumulative residual entropy of order α of the random variable X as

ξα(X) =
1

1− α
log

[∫ ∞

0

F̄α(x)dx

]
, α ̸= 1, α > 0. (5.5)

When α → 1, then (5.5) reduces to (5.3, under the assumption that E(X) = 1.

For some specific univariate continuous distributions, the measure (5.5) is evaluated

as given below.

(i) If X is uniformly distributed on the interval [a, b] , then

ξα(X) =
1

1− α
log

(
b− a

α+ 1

)
. (5.6)
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(ii) If X is exponentially distributed with parameter θ, then

ξα(X) =
1

1− α
log

(
1

α

)
+

1

1− α
log

(
1

θ

)
.

(iii) If X has Pareto distribution with parameters a and b so that

F̄ (x) = 1− F (x) =
(
1 +

x

b

)−a

=
ba

(x+ b)a
,

then

ξα(X) =
1

1− α
log

(
b

aα− 1

)
.

(iv) If X has folded Cramer distribution with parameter θ, so that the probability

density function is

f(x) =
θ

(1 + θx)2
, θ > 0

then its survival function is given by

F̄ (x) =
1

1 + θx
,

and thus

ξα(X) =
1

1− α
log

1

θ(α− 1)
. (5.7)

In life-testing situations, the remaining lifetime given that the component has sur-

vived up to time t called the residual lifetime of the component, is of specific interest.

For computing the uncertainty of the component, it is easy to see that the survival

function of the residual lifetime distribution is given by the function

F̄t(x) =


F̄ (x)

F (t)
; if x > t,

1 ; otherwise.

Thus dynamic cumulative residual entropy of order α of the random variable Xt =

[X|X > t] is defined as

ξα(X; t) =
1

1− α
log

[∫ ∞

t

F̄t
α
(x)dx

]
, α ̸= 1, α > 0. (5.8)
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This can be rewritten as

ξα(X; t) =
1

1− α
log

[∫∞
t

F̄α(x)dx

F̄α(t)

]
, α ̸= 1, α > 0. (5.9)

Obviously at t = 0, the dynamic version (5.9) reduces to (5.5), the cumulative

residual entropy of order α.

Recently, Sunoj and Linu [112] have proposed the uniqueness property of the dy-

namic cumulative residual entropy of order α defined in equation (5.9) and have

studied its properties. Also they have extended this measure to the bivariate set-up

and have proved certain characterizing relationships to identify different bivariate

lifetime models.

5.3 Specific Lifetime Distributions Based on

Entropy of Order α

In the previous chapters we have characterized some specific probability distribu-

tions using relations between different reliability measures. In this section we char-

acterize some well known distributions in term of ξα(X; t) using the mean residual

life (MRL) function δF (t) of the random variable X, which is defined as follows

δF (t) = E[X − t|X > t] =

∫∞
t

F (x)dx

F (t)
,

where F (x) is the distribution function of the random variable X. This represents

the expected value of the residual lifetime of a system which has survived up to

a certain point of time t. It is well known that δF (t) uniquely determines the

distribution function F (x) and the relation between this and the hazard rate λF (t) =

f(t)

F (t)
is given as

λF (t) =
δ′F (t) + 1

δF (t)
. (5.10)
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Next, we prove the following theorem.

Theorem 5.1 Let X be a non-negative continuous random variable with survival

function F̄ (t), mean residual life δF (t) and cumulative residual entropy of order α

given by

ξα(X; t) =
1

1− α
log k +

1

1− α
log δF (t) , α ̸= 1, α > 0. (5.11)

Then X has

(i) an exponential distribution iff k = 1
α
,

(ii) a Pareto distribution iff k < 1
α
, and

(iii) a finite range distribution iff k > 1
α
.

Proof (i) Let X be an exponential random variable with parameter θ > 0, then its

p.d.f. is given by

f(x) = θe−θx . (5.12)

This gives the survival function as F̄ (x) = e−θx, and the mean residual life as

δF (t) =
1
θ
. The generalized cumulative residual entropy ξα(X; t) is

ξα(X; t) =
1

1− α
log

[∫∞
t

F̄α(x)dx

F̄α(t)

]

=
1

1− α
log

[∫∞
t
(e−θx)αdx

e−θαt

]

=
1

1− α
log(

1

α
) +

1

1− α
log

1

θ

=
1

1− α
log k +

1

1− α
log δF (t),
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where k = 1
α
, and δF (t) =

1
θ
. Thus (5.11) holds.

(ii) The p.d.f. of the Pareto distribution with parameters a and b is given by

f(x) =
aba

(x+ b)a+1
, a > 1, b > 0.

The survival function is

F̄ (x) = 1− F (x) =
(
1 +

x

b

)−a

=
ba

(x+ b)a

and the mean residual life is

δF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

t+ b

a− 1
. (5.13)

Substituting these values in (5.9) and simplifying, we obtain

ξα(X; t) =
1

1− α
log k +

1

1− α
log δF (t) ,

where k = a−1
aα−1

< 1
α
, for α > 1 and δF (t) =

t+b
a−1

. Thus (5.11) holds.

(iii) The p.d.f. of the finite range distribution is given by

f(x) = a(1− x)a−1, a > 1, 0 ≤ x ≤ 1.

The survival function is

F̄ (x) = 1− F (x) = (1− x)a ,

and the mean residual life is

δF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

1− t

1 + a
.

Substituting these values in (5.9), after simplification we obtain

ξα(X; t) =
1

1− α
log k +

1

1− α
log δF (t) ,
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where k = a+1
aα+1

> 1
α
, for α > 1 and δF (t) =

1−t
1+a

. Thus (5.11) holds.

To prove the converse part, from (5.9), we have

(1− α)ξα(X; t) = log

∫ ∞

t

F̄α(x)dx− α log F̄ (t) . (5.14)

Differentiating this with respect to t, we obtain

(1− α)ξ′α(X; t) = α
f(t)

F̄ (t)
− F̄α(t)∫∞

t
F̄α(x)dx

,

or,

(1− α)ξ′α(X; t) = αλF (t)− exp[−(1− α)ξα(X; t)]. (5.15)

Using (5.10), we obtain

δF (t)(1− α)ξ′α(X; t) = αδ′F (t) + α− δF (t) exp [−(1− α)ξα(X; t)] . (5.16)

From (5.11), we have

ξ′α(X; t) =
δ′F (t)

(1− α)δF (t)
.

Thus (5.16) becomes

δ′F (t) = αδ′F (t) + α− 1

k
,

or

δ′F (t) =
1− kα

k(α− 1)
. (5.17)

This gives

δF (t) =

(
1− kα

k(α− 1)

)
t+ δF (0) . (5.18)

The equation (5.18) represents the mean residual life (MRL) function δF (t) of the

continuous random variable X as a linear function in t. Thus the underlying dis-

tribution is exponential if k = 1
α
, Pareto distribution if k < 1

α
, and finite range

distribution if k > 1
α
, refer to Hall and Waller [54]. This proves the converse part.
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We note that the expression (5.11) can be viewed as

ξα(X; t) = c+
1

1− α
log δF (t) ,

where c = 1
1−α

log k is a constant. Next, we extend the result to a more general case

taking c as a function of t. We state the following theorem.

Theorem 5.2 Let X be a non-negative continuous random variable such that

ξα(X; t) = c(t) +
1

1− α
log δF (t) , for t ≥ 0, (5.19)

then

δF (t) =

(
µec(0) +

∫ t

0

[
α− e−(1−α)c(x)

1− α

]
ec(x)dx

)
e−c(t) , (5.20)

where µ = E(X).

Proof From (5.9), we have

(1− α)ξα(X; t) = log

∫ ∞

t

F̄α(x)dx− α log F̄ (t) .

Substituting for ξα(X; t) from (5.19) , we get

(1− α)c(t) + log δF (t) = log

∫ ∞

t

F̄α(x)dx− α log F̄ (t) . (5.21)

Differentiating w.r.t. t, we obtain

(1− α)c′(t) +
δ′F (t)

δF (t)
= αλF (t)− exp[−(1− α)ξα(X; t)] . (5.22)

Substituting from (5.19) and simplifying, it gives

δ′F (t) + c′(t)δF (t) =
α− exp[−(1− α)c(t)]

1− α
, (5.23)
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a linear differential equation in δF (t). Solving this for δF (t), we obtain

δF (t) =

(
µec(0) +

∫ t

0

[
α− e−(1−α)c(x)

1− α

]
ec(x)dx

)
e−c(t) .

This proves the result.

In particular if c(t) = at+ b, and a > 0, then (5.20) gives

δF (t) = d e−at−b +
1

1− α

[
α(1− e−at)

a
+

e−(at+b)+bα − e(at+b)(α−1)

aα

]
. (5.24)

Further we note that the expression (5.24) for a = 0, gives the characterization

result given by Theorem 5.1.

Next, we characterize the lifetime models when dynamic cumulative residual entropy

of order α is expressed in terms of hazard rate function. we give the following

theorem.

Theorem 5.3 Let X be a non-negative continuous random variable with survival

function F̄ (t), hazard rate function λF (t) and cumulative residual entropy of order

α given by

ξα(X; t) =
1

1− α
log k − 1

1− α
log λF (t). (5.25)

Then X has

(i) an exponential distribution iff k = 1
α
,

(ii) a Pareto distribution iff k > 1
α
, and

(iii) a finite range distribution iff k < 1
α
.
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Proof Let (5.25) be valid, then

1

1− α
log

[∫∞
t

F̄α(x)dx

F̄α(t)

]
=

1

1− α
log k − 1

1− α
log λF (t) .

This gives

f(t)

∫ ∞

t

F̄α(x)dx = kF̄α+1(t) .

Differentiating it with respect to t both sides, we get

λF (t) =

[
kα− 1

k
t+

1

λF (0)

]−1

= (at+ b)−1 , (5.26)

where a = kα−1
k

, and b = 1
λF (0)

. We observe the following.

(i) If k = 1
α
, then hazard rate function is constant, that is, X follows the exponential

distribution.

(ii) If kα > 1, then a > 0 and (5.26) is the hazard rate function of the Pareto

distribution.

(iii) If kα < 1, then a < 0 and (5.26) is the hazard rate function of the finite range

distribution.

The only if part of the theorem is easy to prove.

5.4 Cumulative Residual Entropy of Order α and

Type β

In Section 5.2 we have considered one parameter cumulative residual entropy. A

two parameters generalization of order α and type β of the entropy (5.1) is the
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Verma entropy [123] defined as

Hβ
α(X) =

1

β − α
log

[∫ ∞

0

fα+β−1(x)dx

]
; β − 1 < α < β, β ≥ 1 . (5.27)

When β = 1, (5.27) reduces to the Renyi entropy [101] of order α; and in case of

β = 1 and α → 1 this reduces to Shannon differential entropy [109]. As already

mentioned in Chapter 2, Verma entropy plays a vital role as a measure of complexity

and uncertainty in different areas such as physics and electronics to describe many

chaotic systems.

Analogous to the generalized entropy (5.27), the cumulative residual entropy of or-

der α and type β of the random variable X is proposed as

ξβα(X) =
1

β − α
log

[∫ ∞

0

F̄α+β−1(x)dx

]
; β − 1 < α < β, β ≥ 1. (5.28)

When β=1, α → 1 then under the assumption that E(X) = 1, (5.28) reduces to

lim
β=1,α→1

ξβα(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx,

the cumulative residual entropy (5.3) as suggested by Rao et al. [98].

For some specific probability distributions the generalized cumulative residual en-

tropy (5.28) is given as below.

(i) If X is uniformly distributed on (a, b) with a < b, then

ξβα(X) =
1

β − α
log

(
b− a

α+ β

)
.

(ii) If X is folded Cramer distribution with probability density function f(x) =

θ
(1+θx)2

, θ > 0, and survival function F̄ (x) = 1
1+θx

, then cumulative residual

95



entropy of order α and type β is

ξβα(X) =
1

β − α
log

1

θ(α− β)
. (5.29)

In case the system has already survived up to time t, then using the survival function

F t(x) of the residual lifetime distribution the dynamic cumulative residual entropy

of order α and type β of the random variable X is defined as

ξβα(X; t) =
1

β − α
log

[∫ ∞

0

F̄t
α+β−1

(x)dx

]
, (5.30)

which, as noted in Section 5.2, can be rewritten as

ξβα(X; t) =
1

β − α
log

[∫∞
t

F̄α+β−1(x)dx

F̄α+β−1(t)

]
. (5.31)

When β = 1, then (5.31) reduce to the dynamic cumulative entropy of order α,

given by (5.9).

Next, we prove that ξβα(X; t) characterizes the lifetime distribution uniquely. In this

context we prove the following result.

Theorem 5.4 Let X be a non-negative random variable having continuous density

function f(.) and survival function F (.), and if, ξβα(X; t) < ∞, t ≥ 0, ∀ β − 1 <

α < β, β ≥ 1, then ξβα(X; t) determines the survival function F̄ (.) uniquely.

Proof Rewriting (5.31) as

(β − α)ξβα(X; t) = log

(∫ ∞

t

F̄α+β−1(x)dx

)
− (α+ β − 1) log F̄ (t) . (5.32)

Differentiating (5.32) with respect to t, we obtain

(β − α)ξ′βα (X; t) = (α+ β − 1)[λF (t)]−
F̄α+β−1(t)∫∞

t
F̄α+β−1(x)dx

, (5.33)
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where λF (t) =
f(t)

F (t)
is the failure rate of X. Using (5.31), we can rewrite (5.33) as

(β − α)ξ′βα (X; t) = (α+ β − 1)[λF (t)]− exp[−(β − α)ξβα(X; t)]. (5.34)

Let F̄1(t) and F̄2(t) be two survival functions with dynamic entropies as ξβα(X1; t)

and ξβα(X2; t) and hazard rates λF1(t) and λF2(t) respectively. Now ξβα(X1; t) =

ξβα(X2; t) implies that

ξ′βα (X1; t) = ξ′βα (X2; t) ,

which is equivalent to

(β − α)ξ′βα (X1; t) = (β − α)ξ′βα (X2; t) . (5.35)

Using (5.34), this becomes

(α+ β − 1)[λF1(t)]− exp[−(β − α)ξβα(X1; t)] = (α+ β − 1)[λF2(t)]

− exp[−(β − α)ξβα(X2; t)]. (5.36)

Since ξβα(X1; t) = ξβα(X2; t), (5.36) reduces to

(α+ β − 1)[λF1(t)] = (α+ β − 1)[λF2(t)] (5.37)

which implies that λF1(t) = λF2(t), or equivalently F1 = F2. This completes the

proof for the characterization theorem.

5.5 Lifetime Distributions Based on Entropy of

Order α and Type β

In this section we characterize some specific lifetime distribution functions based

on ξβα(X; t), the generalized cumulative entropy of order α and type β. We will
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achieve this by considering a relation between ξβα(X; t) and δF (t), the mean residual

life function. We give the following result.

Theorem 5.5 Let X be a non-negative continuous random variable with survival

function F̄ (t), mean residual life δF (t) and generalized cumulative residual entropy

ξβα(X; t) given by

(β − α)ξβα(X; t) = log k + log δF (t). (5.38)

Then X has

(i) an exponential distribution iff k = 1
α+β−1

,

(ii) a Pareto distribution iff k < 1
α+β−1

, and

(iii) a finite range distribution iff k > 1
α+β−1

.

Proof (i) The p.d.f. and survival function of an exponential variable X with

parameter θ > 0, are given respectively by

f(x) = θe−θx

and F̄ (x) = e−θx.

The mean residual life is

δF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

1

θ
. (5.39)

The generalized residual entropy ξβα(X; t) is given by

ξβα(X; t) =
1

β − α
log

[∫∞
t

F̄α+β−1(x)dx

F̄α+β−1(t)

]

=
1

β − α
log

[∫∞
t
(e−θx)α+β−1dx

e−(α+β−1)θt

]

(5.40)
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=
1

β − α
log

(
1

α+ β − 1

)
+

1

β − α
log

(
1

θ

)
,

=
1

β − α
log k +

1

β − α
log δF (t),

where k = 1
α+β−1

, and δF (t) =
1
θ
, from (5.39). Thus (5.38) holds.

(ii) The p.d.f. of the pareto distribution is given by

f(x) =
aba

(x+ b)a+1
, a > 1, b > 0,

and the survival function is

F̄ (x) = 1− F (x) =
(
1 +

x

b

)−a

=
ba

(x+ b)a
.

The mean residual life is

δF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

t+ b

a− 1
. (5.41)

Substituting in (5.31) and simplifying, we obtain

ξβα(X; t) =
1

β − α
log k +

1

β − α
log δF (t) ,

where k = a−1
a(α+β−1)−1

< 1
α+β−1

, for α > 1 and δF (t) =
t+b
a−1

from (5.40). Thus (5.38)

holds.

(iii) The p.d.f. and survival function of the finite range distribution are given

respectively by

f(x) = a(1− x)a−1, a > 1, 0 ≤ x ≤ 1,

and

F̄ (x) = 1− F (x) = (1− x)a.
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The mean residual life is

δF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

1− t

1 + a
.

Substituting in (5.31) and simplifying, we get

ξβα(X; t) =
1

β − α
log k +

1

β − α
log δF (t) ,

where k = a+1
a(α+β−1)+1

> 1
α+β−1

, for α > 1 and δF (t) =
1−t
1+a

. Thus (5.38) holds.

Conversely, assume that (5.38) is valid. Differentiating it w.r.t. t, we have

(β − α)ξ′βα (X; t) =
δ′F (t)

δF (t)
. (5.42)

From (5.34) we have

(β − α)ξ′βα (X; t) = (α+ β − 1)[λF (t)]− exp[−(β − α)ξβα(X; t)]. (5.43)

Using (5.38) and (5.41), Eq. (5.42) gives

δ′F (t)

δF (t)
= (α+ β − 1)[λF (t)]−

1

kδF (t)
. (5.44)

Using λF (t) =
δ′F (t)+1

δF (t)
, as given by (5.10), we obtain

δ′F (t) = (α+ β − 1)δ′F (t) + (α+ β − 1)− 1

k
,

or

δ′F (t) =
1− k(α+ β − 1)

k(α+ β − 2)
. (5.45)

This gives

δF (t) =

(
1− k(α+ β − 1)

k{(α+ β − 1)− 1}

)
t+ δF (0) . (5.46)
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The Eq. (5.45) represents the mean residual life (MRL) function δF (t), of the contin-

uous random variable X, as a linear function in t, thus the underlying distribution

is exponential if k = 1
α+β−1

, Pareto distribution for k < 1
α+β−1

, and finite range

distribution for k > 1
α+β−1

, refer to Hall and Waller [54]. This proves the theorem.

Next, we extend the result (5.38) given by Theorem 5.5 to a more general case.

Theorem 5.6 If X is a non-negative continuous random variable with generalized

entropy measure ξβα(X; t) given by

ξβα(X; t) = c(t) +
1

β − α
log δF (t) , for t ≥ 0, (5.47)

then

δF (t) =

(
d+

∫ t

0

[
(α+ β − 1)− e−(β−α)c(x)

(2− α− β)

]
e

(β−α)c(x)
(2−α−β) dx

)
e−( β−α

2−α−β
)c(t) , (5.48)

where d = µe−( β−α
2−α−β

)c(0) and µ = E(X).

Proof From (5.31), we have

(β − α)ξβα(X; t) = log

∫ ∞

t

F̄α+β−1(x)dx− (α+ β − 1) log F̄ (t).

Substituting for ξβα(X; t), we get

(β − α)c(t) + log δF (t) = log

∫ ∞

t

F̄α+β−1(x)dx− (α+ β − 1) log F̄ (t). (5.49)

Differentiating (5.48) w.r.t. t,

(β − α)c′(t) +
δ′F (t)

δF (t)
= (α+ β − 1)[λF (t)]− exp[−(β − α)ξβα(X; t)] . (5.50)

Substituting from (5.10) and (5.46) and simplifying, this gives
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(2− α− β)δ′F (t) + (β − α)c′(t)δF (t) = (α+ β − 1)− exp[−(β − α)c(t)] , (5.51)

or

δ′F (t) +

(
β − α

2− α− β

)
c′(t)δF (t) =

(α+ β − 1)− exp[−(β − α)c(t)]

2− α− β
, (5.52)

which is a linear differential equation in δF (t) . Solving this we obtain

δF (t) =

(
d+

∫ t

0

[
(α+ β − 1)− e−(β−α)c(x)

(2− α− β)

]
e

(β−α)c(x)
(2−α−β) dx

)
e−( β−α

2−α−β
)c(t) .

This proves the result.

In particular if c(t) = at+ b for t > 0 and a > 0, (5.47) gives

δF (t) = d e−Ac(t)

+
1

2− α− β

[
(α+ β − 1)(1− e−at)

Aa
+

e−Ac(t)+(A−β+α)b − ec(t)(α−β)

a(A− β + α)

]
, (5.53)

where A =
(

β−α
2−α−β

)
. Further for if a = 0, (5.52) gives the characterization results

given by Theorem 5.5 .

Remark 5.1 For β = 1, (5.52) reduces to

δF (t) = d e−at−b +
1

1− α

[
α(1− e−at)

a
+

e−(at+b)+bα − e(at+b)(α−1)

aα

]
, (5.54)

a result given by (5.24).

Remark 5.2 For β = 1, α → 1, (5.52) reduces to

δF (t) = d e−at−b +
b− 2 + at

a
− (b− 2)e−at

a
, (5.55)

a result given by Navarro et al. [86].
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Similarly lifetime models may be characterized when the dynamic cumulative resid-

ual entropy of order α and type β is expressed in terms of hazard rate function. We

give the following result.

Theorem 5.7 Let X be a non-negative continuous random variable with survival

function F̄ (t), hazard rate function λF (t) and dynamic cumulative residual entropy

ξβα(X; t), and let

ξβα(X; t) =
1

β − α
log k − 1

β − α
log λF (t). (5.56)

Then X has

(i) an exponential distribution iff k = 1
α+β−1

,

(ii) a Pareto distribution iff k > 1
α+β−1

and

(iii) a finite range distribution iff k < 1
α+β−1

.

The proof is similar to that of Theorem 5.5 and hence omitted.

In sequel to Theorem 5.6 and Theorem 5.7, another result of interest is given as

follows.

Theorem 5.8 The relationship

(β − α)ξ′βα (X; t) = cλF (t) (5.57)

characterizes

(i) exponential distribution with survival function

F (t) = e−θt , λ > 0 (5.58)

for c = 0,

(ii) Pareto II distribution with survival function

F (t) =

(
1 +

t

a

)−a

, a > 0, t > 0 (5.59)
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for c > 0, and

(iii) beta distribution with survival function

F (t) = (1− t)a, a > 0, 0 < t < 1 , (5.60)

for c < 0.

Proof Assume that (5.56) holds. Using (5.34), (5.56) becomes

(α+ β − 1)[λF (t)]− exp[−(β − α)ξβα(X; t)] = cλF (t) . (5.61)

From (5.31) and (5.60), we get

(α+ β − c− 1)f(t)

∫ ∞

t

F̄α+β−1(x)dx = F̄α+β(t). (5.62)

Differentiating (5.61) with respect to t, we obtain

(α+ β − c− 1)

{
f ′(t)

∫ ∞

t

F̄α+β−1(x)dx

}
−
{
(α+ β − c− 1)f(t)F̄α+β−1(t)

}
= −(α+ β)F̄α+β−1(t)f(t).

Substituting (5.61), this gives

f ′(t)F̄α+β(t)

f(t)
−
{
(α+ β − c− 1)f(t)F̄α+β−1(t)

}
= −(α+ β)F̄α+β−1(t)f(t).

After some simplifications the above expression reduces to

f ′(t)

f(t)
= −(c+ 1)f(t)

F̄ (t)
. (5.63)

The solution of the differential equation (5.62) is obtained as

log λF (t) = c log F̄ (t) + c1 , (5.64)

where c1 is a constant of integration.
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Differentiating (5.63) with respect to t, we have

d

dt

{
1

λF (t)

}
= c ,

which leads to

λF (t) =
1

ct+ d
, (5.65)

where d > 0 is a constant.

Since the hazard rate uniquely determines the survival function using the relation-

ship F̄ (t) = exp
{
−
∫ t

0
λF (x)dx

}
, the results (5.57) to (5.59) follows according as

c = 0, c > 0 and c < 0.

5.6 Conclusion

The cumulative distribution function based measures of entropy ξ(X) are in general

more stable in comparison to probability density function based measure H(f)

given by Shannon [109]. The concept of cumulative residual entropy(CRE) given

by Rao [98] has been extended to one parameter and two parameters cumulative

residual entropies and further to their dynamic versions viz. ξα(X; t) and ξβα(X; t) .

The exponential, the Pareto and the finite range distributions which are commonly

used in the reliability modeling have been characterized in terms of the proposed

generalized dynamic cumulative entropy measures. The proposed dynamic entropy

functions uniquely determine the survival functions. The results obtained are the

generalized one in conformity with the result already existing in the literature. In

the subsequent chapter we extend the concept of cumulative distribution function

based entropy measures to the inaccuracy measures.

105



Chapter 6

Dynamic Cumulative Inaccuracy

Measures

6.1 Introduction

The average amount of uncertainty associated with the random variable X with

p.d.f. f(x), as given by Shannon differential entropy [109], is

H(f) = −
∫ ∞

0

f(x) log f(x)dx . (6.1)

The concept of entropy has been generalized in a number of different ways. An ex-

tension of Shannon’s idea has been given by Kerridge [67], as Kerridge’s inaccuracy.

If f(x) is the actual probability density function (p.d.f.) and g(x) is the reference

p.d.f. of a random variable X associated with a system, then Kerridge’s measure

of inaccuracy [67] is

H(f ; g) = −
∫ ∞

0

f(x) log g(x)dx . (6.2)
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The measure of inaccuracy suggested by Kerridge has many useful applications in

statistics and has been studied by many researchers from various aspects. We have

also studied the dynamic and length biased dynamic measures of inaccuracy in

Chapter 3 and Chapter 4 respectively. In the preceding chapter we have considered

the concept of cumulative residual entropy (CRE)

ξ(X) = ξ(F ) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx , (6.3)

as given by Rao et al. [98] and have studied its one parameter and two parameters

generalizations and also their dynamic versions.

Taking into considerations the advantage of distribution function based information

theoretic measures over probability density function based measure as discussed in

Chapter 5, in this chapter we study the distribution functions based inaccuracy

measures analogous to the Kerridge inaccuracy measure (6.2). The distribution

function based inaccuracy measure can also be viewed as a natural extension of

the cumulative residual entropy measure suggested by [98]. The chapter has been

organized as follows. In Section 6.2 we propose a measure of cumulative residual

inaccuracy (CRI) and derive an upper bound to it. Section 6.3 considers dynamic

cumulative residual inaccuracy (DCRI) measure in context with residual lifetime

distribution [X|X ≥ t]. A characterization theorem for the dynamic cumulative

residual inaccuracy under proportional hazard rate model has been proved in Section

6.4 and some specific lifetime distributions have been characterized. Section 6.5

introduces the dynamic cumulative past inaccuracy (DCPI) in context with past

lifetime distribution [X|X ≤ t], and characterization result for this has been studied

in Section 6.6 which also includes a few other results on this measure. Section 6.7

concludes the chapter.
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6.2 Cumulative Residual Inaccuracy

LetX and Y be two random variables with the same support, and let F̄ (x) and Ḡ(x)

be their survival functions then the cumulative residual inaccuracy (CRI) analogous

to the inaccuracy measure (6.2) is defined as

ξ(F ;G) = −
∫ ∞

0

F̄ (x) log Ḡ(x)dx . (6.4)

When these two distributions coincide the measure (6.4) reduces to the cumulative

residual entropy (6.3).

If the two random variables X and Y satisfy the proportional hazard model (PHM),

refer to Cox [24] and Efron [42], that is, if λG(x) = βλF (x), or equivalently

Ḡ(x) = [F̄ (x)]β, (6.5)

for some constant β > 0, then obviously the cumulative residual inaccuracy (6.4)

reduces to a constant multiple of the cumulative residual entropy (6.3).

Example 6.1 Let a non-negative random variable X be uniformly distributed over

(a, b), a < b, with density and distribution functions respectively given by

f(x) =
1

b− a
and F (x) =

x− a

b− a
, a < x < b.

If the random variables X and Y satisfy the proportional hazard model (PHM),

then the distribution function of the random variable Y is

Ḡ(x) = [F̄ (x)]β =

[
b− x

b− a

]β
a < x < b, β > 0.

Substituting these in (6.4) and simplifying we obtain the cumulative inaccuracy

measure as

ξ(F ;G) =
β(b− a)

4
.
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6.2.1 A Lower Bound to ξ(F ;G)

Before deriving the lower bound to ξ(F ;G), we state the log-sum inequality given

as follows;

Let m be a sigma finite measure. If f and g are positive and m-integrable then

∫
log

(
f

g

)
dm ≥

[∫
fdm

]
log

∫
fdm∫
gdm

. (6.6)

Also another result of interest which we will use is the inequality given by

x log
x

y
≥ x− y, (6.7)

for all non-negative x and y. We prove the following result.

Theorem 6.1 If X and Y are two non-negative random variables with finite

means E(X) and E(Y ) respectively and if CRE measure ξ(X) given by (6.3) is

finite, then

ξ(F ;G) ≥
∫ ∞

0

F (x)F̄ (x)dx+ E(X)− E(Y ). (6.8)

Proof We have

ξ(F ;G) = −
∫ ∞

0

F̄ (x) log Ḡ(x)dx

= −
∫ ∞

0

F̄ (x) log F̄ (x)dx+

∫ ∞

0

F̄ (x) log
F̄ (x)

Ḡ(x)
dx .

Using the log-sum inequality (6.6 ), we have

ξ(F ;G) ≥ ξ(X) +

∫ ∞

0

F̄ (x)dx log

∫∞
0

F̄ (x)dx∫∞
0

Ḡ(x)dx

≥ ξ(X) + E(X) log
E(X)

E(Y )

≥
∫ ∞

0

F̄ (x)F (x)dx+ E(X)− E(Y ) .
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The last inequality has been obtained using (6.7).This proves the result.

In the next section we extend the concept of cumulative residual inaccuracy to

dynamic cumulative residual inaccuracy.

6.3 Dynamic Cumulative Residual Inaccuracy

In life-testing experiments normally the experimenter has information about the

current age of the system under consideration. Obviously the CRI (6.4) is not

suitable in such a situation and needs to be modified to take into account the

current age also. Further, if X is the lifetime of a component which has already

survived up to time t, then the random variable Xt = [X − t|X > t], called the

residual lifetime random variable, has the survival function

F̄t(x) =


F̄ (x)

F (t)
; if x > t

1 ; otherwise

and similarly for Ḡt(x).

The cumulative inaccuracy measure (6.4), for the residual lifetime random variable

Xt, is

ξ(F,G; t) = −
∫ ∞

t

F̄t(x) log Ḡt(x)dx (6.9)

= −
∫ ∞

t

F̄ (x)

F (t)
log

Ḡ(x)

G(t)
dx . (6.10)

The measure (6.10) is defined as the dynamic cumulative residual inaccuracy mea-

sure (DCRI). Obviously when t = 0, then (6.10) becomes (6.4).

We observe that (6.10) is analogous to the residual inaccuracy measure

H(f, g; t) = −
∫ ∞

t

f(x)

F (t)
log

g(x)

G(t)
dx (6.11)

110



as discussed in Chapter 3.

Example 6.2 Let X be a non-negative random variable with p.d.f.

fX(x) =

 2x ; if 0 ≤ x < 1

0 ; otherwise

and suvival function F̄ (x) = 1 − F (x) = (1 − x2), and let the random variable

Y be uniformly distributed over (0, 1) with density and survival functions given

respectively by gY (x) = 1 and ḠY (x) = 1− x , 0 < x < 1.

Substituting these values in (6.10), the dynamic cumulative residual inaccuracy

measure is

ξ(F,G; t) =


9(1−t)−2(1−t)2

18(1+t)
; if 0 ≤ t < 1

0 ; otherwise

The plot of the dynamic cumulative residual inaccuracy measure ξ(F,G; t) for t ∈

[0, 1] is shown in Fig. 6.1

Fig. 6.1: Plot of ξ(F,G; t) against t ∈ [0 , 1] .
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6.4 Characterization Result of Dynamic

Cumulative Inaccuracy

The general characterization problem is to determine when the proposed dynamic

inaccuracy measure (6.10) characterizes the distribution function uniquely. We

study the characterization problem under the proportional hazard model (6.5).

Also we know that the hazard rate function λF (t) = f(t)

F̄ (t)
and the mean residual

life function δF (t) =
∫∞
t F (x)dx

F (t)
, characterize the distribution function of a random

variable X and the relation between the two is given by

λF (t) =
1 + δ′F (t)

δF (t)
. (6.12)

We shall use (6.12) in establishing the characterization result stated next.

Theorem 6.2 Let X and Y be two non-negative random variables with survival

functions F̄ (.) and Ḡ(.) satisfying the proportional hazard model (6.5), and let

ξ(F,G; t) < ∞,∀ t ≥ 0 be an increasing function of t, then ξ(F,G; t) determines

the survival function F̄ (.) of the variable X uniquely.

Proof The dynamic cumulative residual inaccuracy measure (6.10) can be ex-

pressed is

ξ(F,G; t) = − 1

F (t)

∫ ∞

t

F̄ (x) log Ḡ(x)dx+ δF (t) log Ḡ(t) , (6.13)

where δF (t) is the mean residual life function. Substituting (6.5) into (6.13) gives

ξ(F,G; t) = − β

F (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx+ βδF (t) log F̄ (t) .

Differentiating this w.r.t. t both sides, we obtain
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ξ′(F,G; t) = β log F̄ (t)[1 + δ′F (t)]

− βλF (t)

∫ ∞

t

F̄ (x)

F (t)
log F̄ (x)dx− βλF (t)δF (t) , (6.14)

where λF (t) is hazard rate function. Substituting (6.12) and (6.13) in (6.14), we

obtain

ξ′(F,G; t) = λF (t){ξ(F,G; t)− βδF (t)} . (6.15)

Let F1, G1 and F2, G2 be two sets of the probability distribution functions satisfying

the proportional hazard model, that is, λG1(x) = βλF1(x), and λG2(x) = βλF2(x),

and let

ξ(F1, G1; t) = ξ(F2, G2; t) ,∀ t ≥ 0 . (6.16)

Differentiating it both sides w.r.t. t and using (6.15), we obtain

λF1(t){ξ(F1, G1; t)− βδF1(t)} = λF2(t){ξ(F2, G2; t)− βδF2(t)}. (6.17)

If for all t ≥ 0, λF1(t) = λF2(t), then F̄1(t) = F̄2(t) and the proof is over, otherwise,

let

A = {t : t ≥ 0, and λF1(t) ̸= λF2(t)} (6.18)

and assume the set A to be non empty . Thus for at least one t0 ∈ A, λF1(t0) ̸=

λF2(t0).

Without loss of generality suppose that λF2(t0) > λF1(t0). Using this, (6.17) for

t = t0 gives

ξ(F1, G1; t0)− βδF1(t0) > ξ(F2, G2; t0)− βδF2(t0),

which implies that

δF1(t0) < δF2(t0),
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a contradiction. Thus the set A is empty set and this concludes the proof.

Next, we characterize some specific lifetime distributions using the dynamic cumu-

lative inaccuracy measure (6.10). We give the following theorem.

Theorem 6.3 Let X and Y be two non-negative continuous random variables sat-

isfying the proportional hazard model (6.5). If X is with mean residual life δF (t),

then the dynamic cumulative residual inaccuracy measure

ξ(F,G; t) = c δF (t), c > 0 (6.19)

if, and only if X follows the

(i) exponential distribution for c = β ,

(ii) Pareto distribution for c > β ,

(iii) finite range distribution for 0 < c < β .

Proof First we prove the ’if’ part.

(i) IfX has an exponential distribution with survival function F̄ (x) = exp(−θx), θ >

0, then the mean residual life function δF (t) =
1
θ
. The dynamic cumulative residual

inaccuracy measure (6.10) under PHM is given as

ξ(F,G; t) =
β

θ
= cδF (t),

for c = β.

(ii) If X follows Pareto distribution with p.d.f.

f(x) =
aba

(x+ b)a+1
, a > 1, b > 0,
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then the survival function is

F̄ (x) = 1− F (x) =
(
1 +

x

b

)−a

=
ba

(x+ b)a
,

and the mean residual life is

δF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

t+ b

a− 1
. (6.20)

The dynamic cumulative inaccuracy measure (6.10), under PHM is given by

ξ(F,G; t) =
βa(t+ b)

(a− 1)2
= cδF (t) ,

for c = βa
a−1

> β.

(iii) In case X follows finite range distribution with p.d.f.

f(x) = a(1− x)a−1, a > 1, 0 ≤ x ≤ 1,

then the survival function is

F̄ (x) = 1− F (x) = (1− x)a,

and the mean residual life is

δF (t) =
1− t

a+ 1
.

The inaccuracy measure (6.10) under PHM is given by

ξ(F,G; t) =
βa(1− t)

(a+ 1)2
= cδF (t) ,

for c = βa
a+1

< β.

This proves the ’if’ part.

To prove the ’only if’ part, consider (6.19) to be valid.

Eq. (6.13) under PHM, using (6.19) gives

− β

F (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx+ βδF (t) log F̄ (t) = cδF (t) .
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Differentiating both sides w.r.t. t, we obtain

c

β
δ′F (t) = δ′F (t) log F̄ (t)− λF (t)δF (t) + log F̄ (t)

− λF (t)
1

F̄ (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx,

= δ′F (t) log F̄ (t)− λF (t)δF (t) + log F̄ (t) + λF (t)[
c

β
δF (t)− δF (t) log F̄ (t)] .

From (6.12), put δ′F (t) = λF (t)δF (t)− 1 and simplify, we obtain

λF (t)δF (t) =
c

β
,

which implies

δ′F (t) =
c

β
− 1 .

Integrating both sides of this w.r.t. t over (0, x) yields

δF (x) = (
c

β
− 1)x+ δF (0). (6.21)

The mean residual life function δF (x) of a continuous non-negative random variable

X is linear of the form (6.21) if, and only if the underlying distribution is exponential

for c = β, Pareto for c > β, or finite range for 0 < c < β, refer to Hall and Wellner

[54]. This completes the theorem.

Next, we extend the result (6.19) to a more general case taking c as a function of t.

We state the following result:
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Theorem 6.4 Let X and Y be two non-negative continuous random variables and

satisfying the proportional hazard model (PHM) (6.5) and if

ξ(F,G; t) = c(t)δF (t) , for t ≥ 0, (6.22)

then

δF (t) =

[
k +

(∫ t

0

{
c(x)− β

β

}
e

c(x)
β dx

)]
e−

c(t)
β , (6.23)

where k = δF (0)e
c(0)
β .

Proof Substituting (6.22) in (6.15), we obtain

ξ′(F,G; t) = λF (t)δF (t){c(t)− β} . (6.24)

Differentiating (6.22) w.r.t. t and substituting for ξ′(F,G; t), from (6.24) we obtain

c′(t)δF (t) + c(t)δ′F (t) = λF (t)δF (t){c(t)− β} .

Substituting λF (t)δF (t) = 1 + δ′F (t) in above expression and simplifying, we obtain

δ′F (t) +
c′(t)

β
δF (t) =

c(t)− β

β
, (6.25)

a linear differential equation in δF (t). Solving this we obtain (6.23).

Example 6.3 Let c(t) = at + b, t > 0 and a > 0. From (6.23), we obtain the

general model with mean residual life function

δF (t) = ke
−(at+b)

β +
at− 2β + b

a
− (b− 2β)e

−at
β

a
. (6.26)

If a = 0, we obtain the characterization results given by Theorem 6.3 .

Remark 6.1 For β = 1, (6.26) reduces to

δF (t) = k e−at−b +
b− 2 + at

a
− (b− 2)e−at

a
,

a result given by Navarro et al. [86] in context with the cumulative residual entropy

(6.3).
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6.5 Dynamic Cumulative Past Inaccuracy

Measure

Measures of uncertainty in context with past lifetime distributions have been studied

extensively in the literature, refer to, Di Crescenzo and Longobardi [29, 30] Nanda

and Paul [85]. We have also studied such measures in the proceeding chapters.

For instance if at time t a system, which is observed only at certain preassigned

inspection times, is found to be down, then the uncertainty of the system’s life

relies on the past, that is, at which instant in (0, t) the system has failed. In this

situation, the random variable tX = [X|X ≤ t] is suitable to describe the time

elapsed between the failure of a system and the time when it is found to be ’down’.

The past lifetime random variable tX is related with two relevant aging functions,

the reversed hazard rate defined by µF (x) =
f(x)
F (x)

, and the mean past lifetime (MPT)

defined by δ∗F (t) = E(t −X|X < t) = 1
F (t)

∫ t

0
F (x)dx, which are further related as

follows

µF (t) =
1− δ′∗F (t)

δ∗F (t)
, (6.27)

where δ′∗F (t) =
d
dt
δ∗F (t). For further results on reversed hazard rate function refer to

Gupta and Nanda [51].

In analogy with the cumulative residual entropy (CRE) measure (6.3), based on the

survival function F̄ (x), Di Crescenzo and Longobardi [32] introduced and studied

the cumulative entropy, defined as

ξ∗(F ) = −
∫ ∞

0

F (x) logF (x)dx, (6.28)

based on the failure function F (x).

A dynamic version of the cumulative entropy (6.28) given as

ξ∗(F ; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx , (6.29)

was also studied by Di Crescenzo and Longobardi [32].
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Analogous to the Kerridge measure of inaccuracy (6.2), we propose a cumulative

inaccuracy measure as

ξ∗(F ;G) = −
∫ ∞

0

F (x) logG(x)dx , (6.30)

where F (x) is the baseline distribution function and G(x) can be considered as some

reference distribution function. When these two distributions coincide, the measure

(6.30) reduces to the measure (6.28) the cumulative entropy.

In case the two random variables X and Y satisfy the proportional reversed haz-

ard model (PRHM), refer to Gupta et al. [50] , that is, if µG(x) = β µF (x), or

equivalently

G(x) = [F (x)]β , β > 0 , (6.31)

then obviously the cumulative inaccuracy measure (6.30) reduces to a constant

multiple of the cumulative information measure (6.28).

The distribution function of the past lifetime random variable [X|X ≤ t] is given

by

FtX(x) =


F (x)
F (t)

; if x < t

1 ; otherwise

and similarly for Ḡt(x). Thus the cumulative inaccuracy measure analogous to the

inaccuracy measure (6.30), for the past lifetime distribution is given by

ξ∗(F,G; t) = −
∫ t

0

FtX(x) logGtX(x)dx,

= −
∫ t

0

F (x)

F (t)
log

G(x)

G(t)
dx . (6.32)

We define the measure (6.32) as the dynamic cumulative past inaccuracy measure.

When t → ∞, the measure (6.32) reduces to (6.30).
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Example 6.4 Let X be a non-negative random variable with distribution function

FX(x) = x2, 0 < x < 1, and let the random variable Y be uniformly distributed

over (0, 1) with distribution function given by GY (x) = x . Substituting these

values in (6.32), we obtain the cumulative past inaccuracy measure as

ξ∗(F,G; t) =
t

9
.

Example 6.5 Let X and Y be two non-negative random variables having distri-

bution functions respectively

F (x) =


x2

2
, for 0 ≤ x < 1

x2+2
6

, for 1 ≤ x < 2

1 for x ≥ 2

and

G(x) =


x2+x

4
, for 0 ≤ x < 1

x
2
, for 1 ≤ x < 2

1 for x ≥ 2.

The cumulative past inaccuracy measure is given by

ξ∗(F,G; t) =


2t
9
− (t−2)

6t
− 1

3t2
log(t+ 1), for 0 < t < 1

t
9
+ 16t

9(t2+2)
− 17

18(t2+2)
− 18 log 2+24 log t

18(t2+2)
, for 1 ≤ t < 2

log 2 + 1
6
log 5− 41

54
− 8

3
tan−1(1

2
) for t ≥ 2.

Next, we study the characterization problem in case of the dynamic measure (6.32)

under the proportional reversed hazard rate model (6.31). This is analogous to

Theorem 6.2 proved in case of dynamic cumulative residual inaccuracy.
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6.6 Characterization Results of Dynamic

Cumulative Past Inaccuracy

We consider the characterization problem for the dynamic cumulative past inaccu-

racy measure under the proportional reversed hazard model (6.31). We state the

following theorem.

Theorem 6.5 Let X and Y be two non-negative random variables with distribu-

tion functions F (.) and G(.) satisfying the proportional reversed hazard rate model

(6.31), and let, ξ∗(F,G; t) < ∞, ∀ t ≥ 0 be an decreasing function of t, then

ξ∗(F,G; t) determines the distribution function F (.) uniquely.

The proof is similar to that of Theorem 6.2, hence omitted.

Next, we characterize a specific distribution by using the dynamic cumulative past

inaccuracy measure (6.32). The result is stated as follows.

Theorem 6.6 Let F (.) and G(.) be two distribution functions satisfying the pro-

portional reversed hazard model (6.31). The dynamic cumulative past inaccuracy

measure

ξ∗(F,G; t) = cδ∗F (t) , 0 < c < β , (6.33)

if, and only if F (x) =
(
x
b

) c
β−c , b > 0 .

Proof Rewriting (6.32) as

ξ∗(F,G; t) = − 1

F (t)

∫ t

0

F (x) logG(x)dx+ δ∗F (t) logG(t). (6.34)

Substituting (6.31), this gives
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ξ∗(F,G; t) = − β

F (t)

∫ t

0

F (x) logF (x)dx+ βδ∗F (t) logF (t) . (6.35)

Differentiating this w.r.t. t both sides, we obtain

ξ′∗(F,G; t) = β logF (t)[δ′∗F (t)− 1]

+ βµF (t)

∫ t

0

F (x)

F (t)
logF (x)dx+ βµF (t)δ

∗
F (t). (6.36)

Substituting (6.27) and (6.35) in Eq. (6.36), we obtain

ξ′∗(F,G; t) = µF (t){βδ∗F (t)− ξ∗(F,G; t)} . (6.37)

Let (6.33) be valid. Differentiating both sides w.r.t. t, we get

ξ′∗(F,G; t) = cδ′∗F (t) . (6.38)

Substituting this in (6.37) , we get

cδ′∗F (t) = (β − c)µF (t)δ
∗
F (t) . (6.39)

Using (6.27) and simplifying, we obtain

δ′∗F (t) =

(
β − c

β

)
= 1− c

β
. (6.40)

This gives

δ∗F (t) =

(
β − c

β

)
t . (6.41)

Dividing (6.40) by (6.41), we obtain

1− δ′∗F (t)

δ∗F (t)
= µF (t) =

(
c

β − c

)
1

t
. (6.42)

Using the relationship between reversed hazard rate and distribution function is

given by

F (x) = exp

[∫ x

0

µF (t)dt

]
,
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we obtain

F (x) =
(x
b

) c
β−c

, b > 0. (6.43)

Conversely, when the distribution of X is specified by (6.43), using (6.35), we get

ξ∗(F,G; t) = − β

F (t)

∫ t

0

F (x) logF (x)dx+ βδ∗F (t) logF (t)

= − β

F (t)

∫ t

0

(x
b

)k
log
(x
b

)k
dx+

(
βkt

k + 1

)
log

(
t

b

)
.

After simplification, we obtain

ξ∗(F,G; t) =
βkt

(k + 1)2

=
βk δ∗F (t)

k + 1
= c δ∗F (t),

where δ∗F (t) =
1

F (t)

∫ t

0
F (x)dx = t

k+1
. This prove the result.

Example 6.6 Let X and Y be two non-negative random variables satisfying the

proportional reversed hazard model (PRHM) and let

fX(x) =

 axa−1 ; if 0 ≤ x < 1, a > 0

0 ; otherwise

The distribution function F (x) = xa, and G(x) = [F (x)]β, β > 0.

Substituting these values in (6.32), after simplification we get

ξ∗(F,G; t) =
t

(a+ 1)2
= cδ∗F (t) ,

where c = 1
a+1

and mean past lifetime is δ∗F (t) =
t

a+1
.

Next, we extend the result (6.33) to a more general case taking c as a function of t.

We state the following result:
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Theorem 6.7 If X and Y satisfy the PRHM (6.31), and

ξ∗(F,G; t) = c(t)δ∗F (t), for t ≥ 0, (6.44)

then

δ∗F (t) =

(∫ t

0

{
β − c(x)

β

}
e

c(x)
β dx

)
e−

c(t)
β . (6.45)

The proof is similar to that of Theorem 6.4, hence omitted.

Example 6.7 Let c(t) = at + b, t > 0 and a > 0. From (6.45), we obtain the

general model with mean inactivity time function

δ∗F (t) =
2β − at− b

a
+

(b− 2β)e
−at
β

a
. (6.46)

For β = 1, (6.46) reduces to

δ∗F (t) =
2− at− b

a
− (b− 2)e−at

a
,

a result in context with the cumulative entropy, refer to Di Crescenzo and Longob-

ardi [32].

6.7 Conclusion

The distribution functions based measure of cumulative residual inaccuracy and

cumulative past inaccuracy have been considered as natural extension of the dis-

tribution functions based dynamic entropy measures. The proposed cumulative

inaccuracy measures determine the underlying distribution uniquely under PHM

(for residual) and PRHM (for past) models; and also characterize certain specific

probability distributions using relation between different reliability measure. It is

expected that dynamic cumulative inaccuracy measures introduced in this chapter

will further, extend the scope of study of information theoretic measures.
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Chapter 7

Conclusion and Further Scope of

Work

In this chapter we conclude the investigations carried through out this thesis and

also give scope for further study which may be undertaken on the basis of the results

reported.

7.1 Conclusion of the Work Reported

The concept of entropy H(f) introduced by Shannon (1948) in the literature mea-

sures the average uncertainty associated with a random variable X with probability

density function f(.). For a component, which has survived up to time t, H(f ; t)

measures the uncertainty about the remaining lifetime [X|X ≥ t]. Observing that

highly uncertain components are inherently not reliable, Ebrahimi and Pellery [40]

have used the Shannon’s residual entropy, as a measure of the stability of a com-

ponent or a system. This approach seemed more realistic and has opened the

applications of information- theoretic measures in the area of reliability.
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Considering the importance of non-additive entropy measure we have proposed one

parameter generalized residual entropy measure Hα(f ; t) and have observed that

the proposed measure determines the distribution function uniquely. Further we

have seen that it characterizes three specific lifetime distributions.

Next, we have extended the scope of dynamic entropy measures to the concept of

inaccuracy measure given by Kerridge (1961). The dynamic inaccuracy measures,

both residual and past, can be employed respectively under proportional hazard

model (PHM) and proportional reversed hazard model (PRHM) to characterize

specific lifetime distributions.

The concept of weighted distributions and hence that of weighted information mea-

sures is of wide interest when a stochastic process is recorded with some weight

function. The dynamic inaccuracy measures, both residual and past, find a natural

extension to the corresponding length biased residual and past inaccuracy measures.

These measures also characterize the underlying distribution uniquely.

The cumulative distribution function based measures of entropy ξ(X) are in general

more stable in comparison to probability density function based measureH(f) given

by Shannon in (1948). The concept of cumulative residual entropy(CRE) given by

Rao et al. in (2004) has been extended to cumulative residual entropies with one

parameter and two parameters and further to their dynamic versions viz. ξα(X; t)

and ξβα(X; t). The dynamic cumulative entropy functions determine the distribution

function uniquely. The exponential, the Pareto and the finite range distributions

which are commonly used in the reliability modeling have been characterized in

terms of the proposed generalized dynamic cumulative entropy measures.

The distribution function based dynamic measures of cumulative residual inaccu-

racy and cumulative past inaccuracy have been considered as natural extension of

distribution function based dynamic entropy measures. The proposed cumulative
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inaccuracy measures determine the underlying distribution uniquely under PHM

(for residual) and PRHM (for past) models; and also characterize certain specific

probability distributions using relation between different reliability measure.

7.2 Scope For Future Study

During the present investigation several ideas have originated which have the poten-

tial to extend the study further. The work reported in this thesis can be extended

to bivariate and multivariate domains. The problem of extending the concept of the

cumulative residual entropy (CRE) function to higher dimensions is yet to be exam-

ined. Characterizations of some bivariate distributions based on the functional form

of the bivariate cumulative residual entropy function can be obtained analogous to

that of bivariate failure rate.

In comparison to the quantum of work done on cumulative residual entropy in the

continuous case, a little work seems to have been done in discrete domain. We can

consider the dynamic measure proposed further for discrete cases, since practically

discrete cases are suitable from applications point of view. Further the discrete

measures of the dynamic version proposed can possibly find applications in image

processing and information retrieval etc.

Another domain which can be explored in this context is that of order statistics. A

number of researchers like Wong and Chen [128], Ebrahimi et al. [41], Baratpour et

al. [14], Agrahimi et al. [6] and Zarezadeh and Asadi [131] are working in the area

of information theoretic measures in order statistics. We can study the dynamic

information measures and dynamic inaccuracy measures in the context of order

statistics; also we can study the scope of measures of cumulative residual entropy

in order statistics.
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