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ABSTRACT 

Hematopoietic Stem Cells (HSC) have capability to self renew and give rise to all blood cell 

types. Hematopoiesis  is a process of generation of all blood cells(red, white and platelets)in 

bone marrow. These blood cells develop from HSC’s released into blood stream along with 

small number of stem cells. Nowadays bone marrow transplantation (BMT) or hematopoietic 

stem cell transplantation is an effective way to treat cancer because chemotherapy and radiation, 

are toxic to the bone marrow. Therefore, it is necessary to increase the number of HSC’s in blood 

prior  reaching the bone marrow.  The objective of the work is to increase the proliferation of 

HSC’s needed during transplantation. HSC’s have two main characteristics of proliferation and 

differentiation which  is regulated by c-Kit, a protein tyrosine kinase family receptor. Binding of  

Stem Cell Factor to c-KIT results in receptor dimerization and activates c-KIT activity. In 

contrary  Src homology region2 (SH-2) domain-containing phosphatase-1 (SHP-1) binds to 

phosphotyrosine residue 570 of c-KIT and negatively regulates proliferation of HSC’s. In order 

to increase proliferation we have designed inhibitors against SHP-1to inactivate enzyme activity. 

Till date only NSC87877 was reported to inhibit SHP-1/2,but we have found some more 

inhibitors which have higher binding energy with SHP-1 than NSC87877.On the basis of our 

screening results we have developed a pharmacophore and QSAR model and generated analog 

ligands. Out of which ligands which  followed Lipinski rule of 5and binding energy  better than 

NSC87877 with SHP-1 were further tested using 3D-QSAR model development.  

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

Stem cells are unspecialized cells in the human body that are capable of becoming specialized 

cells, each with new specialized cell functions.. Stem cells can be classified into four broad types 

based on their origin, viz. stem cells from embryos; stem cells from the foetus; stem cells from 

the umbilical cord; and stem cells from the adult (Bongso et al., 2005).Among the adult stem 

cells comes the hematopoietic stem cells. Hematopoietic stem cells have ability of 

haematopoiesis. Haematopoiesis is the the production and maintenance of blood stem cells and 

their proliferation and differentiation into the cells of peripheral blood. The hematopoietic stem 

cell is derived early in embryogenesis from mesoderm and becomes deposited in very specific 

hematopoietic sites within the embryo (Bongso et al., 2005).Transplantation of stem cells from 

the original transplant recipient into secondary and tertiary irradiated recipients reconstitutes 

hematopoiesis with resultant normal life spans. Transplantation requires two essential properties 

proliferation to replenish the stem cell compartment (self-renewal) and lifelong production of 

blood (Pearce W et al., 2008). During transplantation high number of HSC is needed as the cells 

reaching target eventually decreases. The work here aims at increasing the proliferation of the 

(HSC) cells needed during transplantation Signaling by stem cell factor and Kit, its receptor, 

plays important roles in hematopoiesis Stem cell factor exists as both a soluble and a membrane-

bound glycoprotein while Kit is a receptor protein-tyrosine kinase. C-Kit consists of an 

extracellular domain, a transmembrane segment, a  juxtamembrane segment, and a protein kinase 

domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit 

results in receptor dimerization and activation of protein kinase activity. The activated receptor 

becomes autophosphorylated at tyrosine residues that serve as docking sites for signal 

transduction molecules containing SH2 domains Shp-2 phosphatase and Shp-1 phosphatase  bind 

to the phosphotyrosine at 568 and  570 residue in juxtamembrane region of C-kit. SHP-1 binds to 

the phosphotyrosine residue 570 of C-kit and negatively regulate proliferation of HSC 

(Roskoski, Robert. 2005; Ronnstrand, L. 2004). The Ligand based drug designing approach has 

been used to design inhibitors against (SHP-1) to increase proliferation. HePTP hematopoietic 

tyrosine phosphatase (HePTP) and SHP-1 are the members of nonreceptor tyrosine phosphatase 

family and have similar structure. The rmsd between HePTP and SHP-1 was calculated using 

PYMOL and came out to be .656  Two immunoassay AID_1077 and AID_1059 were found 

where NSC87877 (only inhibitor known of SHP-1) was tested against hematopoietic tyrosine 

phosphatase (HePTP) .So the inhibitors taken from these assays were docked against (SHP-1) 

PDB_ID (2B30).Inhibitors which showed better binding energy ,good activity and similar 

structure were used as a dataset for pharmacophore and QSAR studies using PHASE module of 

Schrodinger-9.The 3D –QSAR obtained from AAADRRR-190 hypothesis was found to be 

statistically good r
2
=.89 and q

2
=.81,Fishcer ratio=60.9,Pearson R=.94.This model was used to 

design 83 substituent’s which were docked against (SHP-1) using autodock 4.2. The 

substituent’s which showed best binding energy were used as test set to validate the QSAR 

model developed. 



2. REVIEW OF LITERATURE 

2.1 Hematopoietic Stem Cells (HSC) and Transplantation 

Stem cells are undeveloped cells capable of proliferation, self renewal, conversion to 

differentiated cells, and regenerating tissues. Stem cells are unspecialized cells in the human 

body that are capable of becoming specialized cells, each with new specialized cell functions. 

The best example of a stem cell is the bone marrow stemcell that is unspecialized and able to 

specialize into blood cells, such as white blood cells and red blood cells, and these new cell types 

have special functions, such as being able to produce antibodies, act as scavengers to combat 

infection and transport gases (Bongso et al., 2005). They serve as a repair system by being able 

to divide without limit to replenish other cells. When a   stem cells divides, each new cell has the 

potential to either remain as a stem cell or become another cell type with new special functions, 

such as blood cells, brain cells, etc There are two main types of stem cells, embryonic and 

nonembryonic. Embryonic stem cells (ESC) are pluripotent because they can differentiate into 

all cell types; nonembryonic stem cells (non-ESC) are multipotent because their potential to 

differentiate into cell types is more limited (Tuch, Bernard.2006). Embryonic stem cells generate 

every specialized cell in the human body. Adult stem cells are located in tissues throughout the 

body and function as a reservoir to replace damaged or aging cells. Under physiologic 

conditions, adult stem cells are traditionally thought to be restricted in their differentiation to cell 

lineages of the organ system in which they are located.. Embryonic stem cells have great promise 

and versatility but, compared with adult stem cells, are currently difficult to control due to their 

tendency to form tumors containing all types of tissue, ie, teratomas (Pearce W et al., 2008) 

 

Stem cells can be classified into four broad types based on their origin, viz. stem cells from 

embryos; stem cells from the fetus; stem cells from the umbilical cord; and stem cells from the 

adult (Forbes S et al., 2002).Among the adult stem cells comes the hematopoietic stem cells. 

Bone marrow possesses stem cells that are hematopoietic and mesenchymal in origin. The 

hematopoietic stem cell is derived early in embryogenesis from mesodermal and becomes 

deposited in very specific hematopoietic sites within the embryo. These sites include the bone 

marrow, liver, and yolk sac. Hematopoietic stem cells have ability of haematopoiesis. 

Haematopoiesis is the the production and maintenance of blood stem cells and their proliferation 

and differentiation into the cells of peripheral blood. All of the mature blood cells in the body are 

generated from a relatively small number of hematopoietic stem cells (HSCs) and progenitors 

(Smith,Clayton.2002). HSCs are able to generate every lineage found in the hematopoietic 

system including red blood cells, platelets, and a variety of lymphoid and myeloid cells. Some of 

the most important lymphoid cells include natural killer (NK) cells,T cells, and B cells, while 

important myeloid cells include granulocytes, monocytes, macrophages, microglial cells, and 

dendritic cells. Each of these cell types can be generated from a single HSC, and each HSC has 

an enormous capacity to generate large numbers of these cells over many years and perhaps even 

decades (Smith, C. 2002). 



 

Transplantation of stem cells from the original transplant recipient into secondary and tertiary 

irradiated recipients reconstitutes hematopoiesis with resultant normal life spans. Transplantation 

requires two essential properties proliferation to replenish the stem cell compartment (self-

renewal) and lifelong production of blood(Pearce W et al., 2008). Hematopoietic stem cells 

(HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and 

immune response. HSCs transplantation has been applied for the treatment of several diseases. 

However, HSCs persist in the small quantity within the body, mostly in the quiescent state. HSC 

maintenance, balance between self-renewal and proliferation are essential requirement for 

advancement of HSC expansion and transplantation in the future. Hematopoiesis and HSC 

development are the key role to improve efficient HSC expansion for the transplantations 

(Chotinantakul et al.,2012). 

2.2 c-KIT and its role in hematopoiesis. 

Stem Cell Factor (also known as SCF, kit-ligand, KL, or steel factor) is acytokine that binds to 

the c-Kit receptor (CD117). SCF can exist both as a transmembrane protein and a soluble 

protein. This cytokine plays an important role in hematopoiesis. SCF plays an important role in 

the hematopoiesis during embryonic development. Sites where hematopoiesis takes place, such 

as the fetal liver and bone marrow, all express SCF(Gali et al.,1994).SCF has been shown to 

increase the survival of HSCs in vitro and contributes to the self renewal and maintenance of 

HSCs in-vivo. HSCs at all stages of development express the same levels of the receptor for SCF 

(c-Kit) (Kent et al.,2008). 

 

SCF binds to the c-Kit receptor (CD 117), a receptor tyrosine kinase. c-Kit is expressed in HSCs, 

mast cells, melanocytes, and germ cells. It is also expressed in hematopoietic progenitor cells 

including erythroblasts, myeloblasts, and megakaryocytes. However, with the exception of mast 

cells, expression decreases as these hematopoietic cells mature and c-Kit is not present when 

these cells are fully differentiated.Fig1 shows the expression of C-kit in hematopoietic 

cells.Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, 

hematopoiesis, mast cell development and function, and melanogenesis (Roskoski, R. 2005; 

Ronnstrand, L. 2004) Stem cell factor exists as both a soluble and a membrane-bound 

glycoprotein while Kit is a receptor protein-tyrosine kinase. Kit consists of an extracellular 

domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that 

contains an insert of about 80 amino acid residues.Binding of stem cell factor to Kit results in 

receptor dimerization and activation of protein kinase activity. The activated receptor becomes 

autophosphorylatedat tyrosine residues that serve as docking sites for signal transduction 

molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 

tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor 

protein Shc bind to phosphotyrosine 570. These residues occur in the juxtamembrane segment of 

Kit(Ronnstrand, L. 2000) 

http://en.wikipedia.org/wiki/Hematopoiesis


                     Figure1 c-Kit expression in hematopoietic cells(Ronnstrand, L. 2004) 

 

2.2.1 Signal transduction through c-Kit  

Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a 

receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. 

Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, 

and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms 

including acute myelogenous leukemia, gastrointestinalstromal tumors, and mastocytomas. 

 Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, 

and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of 

stem cellfactor to Kit results in receptor dimerization and activation of protein kinase activity. 

The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking 

sites for signal transduction molecules containing SH2 domains. The adaptorprotein APS, Src 

family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl 

phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase 

homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These 

residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain 

are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase 

(Tyr721),  and phospholipase C(Tyr730). Phosphotyrosine 900 in the distal kinase domain binds 

phosphatidylinositol 3-kinase which in turn binds the adaptor proteinCrk. Phosphotyrosine 936, 



also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the 

potential to participate in multiple signal transduction pathways as a result of interaction with 

several enzymes and adaptor proteins (Roskoski, Robert. 2005).  

Various proteins interact with c-Kit phosphotyrosine residues.Table1 (Roskoski, Robert. 2005) 

shows the binding site of these proteins on c-Kit ,  their function and their biological effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

                      

 

 

 

Figure2 Signal transduction molecules binding to the activated c-Kit receptor. Upon ligand binding, c-Kit dimerizes, 

and its intrinsic tyrosine kinase activity is activated, leading to phosphorylation of key residues. These residues 

constitute high-affinity binding sites for signal transduction molecules. The numbers refer to tyrosine residues 

phosphorylated in c-Kit, and the corresponding signal transduction molecule is depicted. (Roskoski, Robert. 2005) 

 

 

As seen from Figure2 various proteins interact with c-Kit phosphotyrosine residues.Table1 

(Roskoski, Robert. 2005) shows the binding site of these proteins on c-Kit ,  their function and 

their biological effect.    



                     Table1 Protein interacting with Kit phosphotyrosine residue 

Human residue Protein Function Biological effect 

568 APS Adaptor containing PH andSH2domain Kit degradation 

568 SHP-2 SH2 domain containing phosphatase2  Inhibits Proliferation 

568 Src Kinase Non receptor protein tyrosine kinase family Proliferation 

568,570 Chk Csk homology kinase Not reported 

568,570 Shc SH2containing transformingproteinC1;bindsGrb2 Not reported 

570 SHP-1` SH2 domain containing phosphatase1 Inhibits Proliferation 

703 Grb2 Growth factor receptor-bound protein2 Not reported 

721 P85 Regulatory subunit of PI-3 kinase Survival,proliferation 

730 Plcγ Phospholipase Cγ Survival,proliferation 

823  Kit activation loop tyrosine phosphorylation site Proliferation 

900 P85 Regulatory subunit of PI-3 Kinase Proliferation 

900 Crk Adaptor protein that contains one SH2,two SH3 

domain 

Proliferation 

936 APS Adaptor containing PH and SH2domains Kit degradation 

936 Grb2 Growth factor receptor bound protein2 Not reported 

936 Grb7 Growth factor receptor bound protein7 Not reported 

                         

2.2.1.1 Negative regulation of c-Kit signaling by SHP-1 phosphatase and SHP-2 

phosphatase 

Shp1 is a cytosolic phosphotyrosyl phosphatase containing two tandem SH2 domains, a 

phosphatase  domain and a C-terminal tail. Shp1 occurs primarily in hematopoietic and epithelial 

cells, and it is a negative regulator of growth factor signaling. Besides inhibiting Kit signaling, 

Shp1 diminishes the growth-promoting properties of the colony-stimulating factor 1, 

erythropoietin, and interleukin 3 receptors, an effect mediated either directly by receptor 

dephosphorylation or indirectly dephosphorylation of receptor-associated protein-tyrosine 

kinases. Shp1 plays a role in the control of signaling cascades that couple growth factor receptors 

to hemopoietic cell differentiation. The N-terminal-SH2 domain of Shp1 blocks its catalytic 

domain and keeps the enzyme in an inactive conformation (Kozlowski et al.,1998). Oneplausible 

notion for enzyme regulation involves the recruitment and binding of this Shp1 SH2 domain to 

target phosphotyrosine residues with concomitant phosphatase activation 

 

Shp2, like Shp1, is a cytosolic phosphotyrosyl phosphatase containing two tandem SH2 domains, 

a phosphatase domain, and a C-terminal tail. Shp2, in contrast to Shp1, occurs in many types of 

cells. The SH2 domains of Shp2 target this enzyme to phosphotyrosines in a variety of growth 

factor receptors and other signaling molecules. Thus, Shp1 and Shp2 can negatively modulate 

Kit signaling by interacting with these specific phosphotyrosine residues(Kozlowski et al.,1998). 

 

 

 

 

 



2.3 SHP-1 and its Structure 

 

SHP-1 belongs to the family of non-receptor protein tyrosine phosphatases (PTPs) and generally 

acts as a negative regulator in a variety of cellular signaling pathways. SHP-1 is predominantly 

expressed in hematopoietic and epithelial cells and behaves mainly as a negative regulator 

of signaling pathways in lymphocytes(Yang et al., 2002). 

 

The crystal structure of SHP-1 shows that it consist of three domains. The residues 1–108 and 

116–208 fold as two Src homology 2 domains, the N-SH2 and C-SH2 domains, respectively. 

Residues 270–532 fold as the typical PTP domain, a highly twisted ten-stranded β sheet flanked 

by four helices on the convex side and two helices and a β hairpin from the concave side. The 

architecture of the three domains is compact. The two SH2 domains look like two antennas of 

the global PTP domain in the overall view. Crystal structure revealed that both SH2 domains of 

SHP-1 have the typical SH2 domain fold, which consists of a central four-stranded β-sheet with 

an  α helix on either side. The phosphopeptide-binding sites of both SH2 domains face away 

from the PTP domain and are fully exposed on the surface of the molecule Nevertheless, the 

spatial arrangement of the two SH2 domains on PTP domain significantly differs. In contrast to 

the N-SH2 domain that strongly interacts with the PTP domain the C-SH2 domain is tethered 

around and extends to the surface of the catalytic domain and has no significant direct 

interactions with the PTP domain(Yang et al., 2003;Wang et al.,1999). 

 

2.3.1 Structure of SHP-1 

                         
Figure3 Structure of SHP-1. A schematic drawing of structure with color ramping from blue (N terminal) to red (C 

terminal) 
 

 

 

 



2.3.2 Auto-inhibited Structure of SHP-1 

In the absence of ligands for the tandem SH2 domain of these PTPs the more N-terminal SH2 

domain folds onto the catalytic domain to block substrate access by the insertion of   a loop on 

the backside of the SH2 domain into the catalytic pocket of the PTP. When the  SH2 domains of 

this inhibited form of SHP1 encounter a tyrosine phosphorylated ligand, the closed conformation 

opens and the enzyme is activated some 100-fold. Under physiological conditions, SH2 domain 

ligand binding also juxtaposes the PTP domain to its substrates, which contain, or associate with, 

the phosphorylated SH2 domain ligand(Yang et al., 2003). 

Previous studies have revealed that both SH2 domains of SHP-1 could bind to tyrosine  

phosphorylated  immunoreceptor tyrosine-based inhibitory motif peptides. However, the crystal 

structure of the ligand-free SHP-1 supports that the N-SH2 domain, instead of C-SH2 or both 

domains, acts the auto-inhibition role. The interaction between N-SH2 domain and PTP domain 

is extensive, whereas the C-SH2 domain does not show significant interface with either of the 

other two domains. Cys455, the catalytic nucleophile, is located at the base of the active-site 

cleft. In the auto-inhibited conformation of SHP-1, it appears that the Nβ4-Nβ5 loop of the N-

SH2 domain is protruding to the catalytic PTP domain to directly block the entrance to the active 

site, which prevents the cysteine residue from exposing to the substrate  This inactive 

conformation is stabilized by various interactions including the salt bridge between Asp61 and 

Lys362,  and the hydrogen bonds in the residue pairs of Ser59/His422, Gly60/ Gln506, and 

Asn58/Gln502. In addition, the extensive interactions around the protruding Nβ4-Nβ5 loop are 

present at the interface between the N-SH2 domain and the PTP domain(Yang et al.,1998;2013). 

 

 2.3.3 Activation Mechanism of SHP-1 

 

The highly mobile C-SH2 domain functions as an antenna to search for phosphopeptides. 

Binding   of   phosphopeptide to   the C-SH2 domain results in large conformational changes that 

restore the distorted conformation of the neighboring N-SH2 domain and subsequently opens up 

its phosphopeptide-binding pocket to harbor a second phosphopeptide molecule. These events 

can weaken the auto-inhibiting interaction on the interface between the N-SH2 and PTP domains 

and permit the subsequent synergistic opening up of the active site of the PTP domain.This 

mechanism is consistent with the notion that a truncated SHP-1 lacking the C-SH2 domain 

would be activated to a much lesser extent than full-length SHP-1(Yang et al., 2003). . It also is 

envisioned that a much larger change in the relative positions of the two SH2 domains will occur 

due to the mobility of the C-SH2 domain when they are simultaneously bound by 

biphosphorylated peptides, which can lead to greater movement of the N-SH2 domain. This 

movement should optimize the opening up of the active site of the PTP domain and can 

qualitatively explain why biphosphorylated peptides can activate SHPs at a10-fold higher level 

than monophosphorylated peptides(Yang et al., 2003;Wang et al.,1999). 



2.4 Protein Tyrosine Phosphatases 

 

A cornerstone of many cell-signalling events rests on reversible phosphorylation of tyrosine 

residues on proteins. The reversibility relies on the co-ordinated actions of protein tyrosine 

`kinases and protein tyrosine phosphatases (PTPs), both of which exist as large protein families 

(Stoker et al., 2005).  PTPs   regulate a wide range of signalling pathways.PTPs work 

antagonistically with Protein Tyrosine Kinases (PTKs) and inhibit cell proliferation. PTPs are a 

group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on 

proteins. s. Phosphorylation of proteins is one of the posttranslational modifications, which is 

reversible and plays a critical role in the regulation of many cellular functions.As a consequence, 

maintaining an appropriate level of protein tyrosine phosphorylation is essential for many 

cellular functions (Anderson et al., 2001). Tyrosine-specific protein phosphatases  catalyse the 

removal of a phosphate group attached to a tyrosine residue. These enzymes are key regulatory 

components in signal transduction pathways   cell cycle control, and are important in the control 

of  cell growth,  proliferation, differentiation  and transformation. PTPs have been implicated in 

regulation of many cellular processes, such as cell growth, cellular differentiation, Mitotic 

cycles, Oncogenic transformation (Anderson et al., 2001). 

 

All PTPases carry the highly conserved active site motif C(X)5R (PTP signature motif), employ 

a common catalytic mechanism, and possess a similar core structure made of a central parallel 

beta-sheet with flanking  alpha-helices containing a beta-loop-alpha-loop that encompasses the 

PTP signature motif(Dixon et al.,1998) 

Individual PTPs may be expressed by all cell types, or their expression may be strictly tissue-

specifc. Most cells express 30% to 60% of all the PTPs, however hematopoietic and neuronal 

cells express a higher number of PTPs in comparison to other cell types. T cells and B cells of 

hematopoietic origin express around 60 to 70 different PTPs. The expression of several PTPS is 

restricted to hematopoietic cells, for example, LYP, SHP1, CD45, and HePTP(Alonso  et 

al.,2004). 

Of the 107 PTP genes, 11 are catalytically inactive 2 dephosphorylate mRNA and 13 

dephosphorylate inositol phospholipids. Thus, 81 PTPs are active protein phosphatases with the 

ability to dephosphorylate phosphotyrosine (Alonso et al.,2004). 

2.4.1 Classification of PTPs  

The class I PTPs, are the largest group of PTPs with 99 members, which can be further 

subdivided into 38 classical PTPs and 61 VH-1-like or dual-specific phosphatases (DSPs) 

Classical PTPs  can be further divided into 21 receptor tyrosine phosphatase  and 17 

nonreceptor-type PTPs. Dual-specific phosphatases (DSPs) can be further divided into  11 

MAPK phosphatases (MPKs), 3 Slingshots,3 PRLs, 4 CDC14s,19 atypical DSPs,5 Phosphatase 

and tensin homologs (PTENs),16 Myotubularins 



Dual-specificity phosphatases (dTyr and dSer/dThr) dual-specificity protein-tyrosine 

phosphatases. Ser/Thr and Tyr dual-specificity phosphatases are a group of enzymes with both 

Ser/Thr and tyrosine-specific protein phosphatase activity able to remove the serine/threonine or 

the tyrosine-bound phosphate group from a wide range of phosphoproteins, including a number 

of enzymes that have been phosphorylated under the action of a kinase. Dual-specificity protein 

phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle,Class II 

LMW (low-molecular-weight) phosphatases, or acidphosphatases, act on tyrosine 

phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates.The 

class II PTPs contain only one member, low-molecular-weight phosphotyrosine phosphatase 

(LMPTP). The Class III Cdc25 phosphatases (dTyr and/or dThr) PTPs contains three members, 

CDC25 A, B, and C .The Class IV pTyr-specific phosphatases contains four members, Eya1-4 

 

 

Figure 4  Classification and Substrate Specificity of PTPs .The PTP families are color coded: class I Cysbased PTPs 

(green), class II Cys-based PTPs(pale yellow), class III Cys-based PTPs (pale blue), and Asp-based PTPs (pink). 

The substrate specificity of each group or class of PTPs is listed (Alonso et al.,2004). 

 



 

 

2.4.2 Mechanism of  Dephosphorlation of protein tyrosine phosphatases 

 

The capacity of PTPs to dephosphorylate phosphotyrosine residues selectively on their substrates 

plays a pivotal role in initiating, sustaining and terminating cellular signaling. As seen from 

figure 3 PTPs can be grouped into two types. The first group is the tyrosine-specific PTPs that 

dephosphorylate protein substrates on tyrosine. Tyrosine-specific PTPs comprise receptor-like 

PTPs and non-transmembrane PTPs .The second group is the DSPs (dual-specificity 

phosphatases) that dephosphorylate protein substrates on tyrosine, serine and threonine residues, 

as well as lipid substrates (Anderson et al., 2001).  

PTPs consist of  non catalytic N- and C-terminal segments and the catalytic domain. The 

catalytic domains of classical PTPs contain approx. 280 residues and comprise 22 invariant and 

42 highly conserved residues that fall within ten consensus motifs. It has been shown that both 

the catalytic domain and noncatalytic segments of the PTPs contribute to the substrate specificity 

in vivo (Tigani et al.,2007). Whereas noncatalytic domains may target the PTPs to specific 

intracellular compartments in which the effective local concentration of substrate is   high   the 

PTP catalytic domains themselves confer site-selective protein dephosphorylation by recognizing 

both the phosphotyrosine residue to be dephosphorylated and its flanking amino acids in the 

substrate (Tigani et al.,2007). 

A structural feature that is highly conserved among PTPs is the catalytic, or PTP loop (also 

known as the signature motif). This PTP loop comprises of the sequence HC(X5)R 

or(I/V)HCXAGXXR(S/T)G which defines the PTP family and this sequence is referred to as the 

‘PTP signature motif’.  Another conserved loop, the recognition loop, plays an important role in 

substrate recognition. The residues Val  and Tyr assist the substrate's insertion into catalytic site   

Ser  of the PTP loop forms a hydrogen bond with the the recognition loop,stabilizing the active 

site cleft. A third conserved loop is theWPD loop. The cysteine and arginine residues in the PTP 

signature motif are essential for catalytic activity. The cysteine residue acts in the first step of 

catalysis wherein the sulfur atom of the thiolate group serves as a nucleophile and attacks the 

substrate phosphate (Jia et a.,1995).The arginine residue contributes to substrate binding and 

stabilizes the cysteine-phosphate intermediate. Another important motif integral to PTP catalysis 

is the WPD (Trp-Pro-Asp) loop, which becomes displaced by several angstroms [8–12 Å (1 

Å=0.1 nm)] upon substrate binding and closes around the side chain of the phosphotyrosine 

residue. This conformational change positions the invariant aspartate residue (Asp181 in PTP1B) 

in the WPD loop in a position that allows it to act as a general acid for the first step of catalysis. 

This step involves protonating the phenolic oxygen of the tyrosyl leaving group, thus cleaving 

the phosphate off tyrosine, to form the cysteine-phosphate intermediate. This same aspartate 

residue also acts as a general base in the second step of catalysis, which, together with a highly 

conserved glutamine residue (Gln262 in PTP1B), co-ordinates an essential water molecule to 

promote the hydrolysis of the cysteine-phosphate intermediate (Tigani et al.,2007; Pannifer et 

al.,1998). 



 

The nonreceptor transmembrane protein tyrosine phoaphatases (NRPTPs) includes various 

members like PTPN6/SHP-1, PTPN7/HePTP, PTPN11/SHP-2(Alonso et al., 2004) 

Hematopoietic tyrosine phosphatase (HePTP) a 38 kDa phosphatase  another member of non 

receptor transmembrane protein tyrosine phosphatases (NRPTPs) as is SHP-1 . it is strongly 

expressed in T cells. It is composed of a C-terminal classical PTP domain (residues 44–339) and 

a short N-terminal extension (residues 1–43) that functions to direct HePTP to its physiological 

substrates (Mustelin et al., 2005). HePTP shares shares similar structure with SHP-1. The rmsd 

value calculated between HePTP and SHP-1 using pymol came out to be 0 .656.  It can be seen 

that the residues and the stuctures which is rebonsible for the inhibitor binding is conserved in 

both Heptp and shp-1.so inhibitors (including NSC87877 only inhibitor in PUBCHEM for SHP-

1) against HePTP were used for pharmacophore and QSAR studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. MATERIALS AND METHODS 

3.1 Sequence and Structure analysis 

Various members of nonreceptor tyrosine phosphatases were superimposed using Pymol.PTPN1, 

PTPN2, PTPN9, PTPN5,PTPN7/HePTP were superimposed to SHP1/PTPN6 and SHP-

2/PTPN11.This superimposition was done to calculate structure deviation between various 

members of non receptor tyrosine phosphatase on the basis of RMSD calculated using Pymol. 

3.2 Search for SHP1/2 inhibitors from PUBCHEM 

SHP-1inhibitors were searched from PUBCHEM. Only NSC87877 (CID 16654632) have been 

reported as potential inhibitor of SHP-1in PUBCHEM(http://pubchem.ncbi.nlm.nih.gov) .Two  

assays from PUBCHEM i.e. AID_1077 and AID_1059, have been identified wherein NSC87877 

was tested against HePTP. However  the  IC50 values of  NSC87877 was repeated for HePTP  in 

two different assays ids (AID 1077 and  AID 1059).In AID _1077, 147compounds and in AID 

_1059 ,57 compounds have been reported .These 57 were also common in AID_1077.So(147 

compounds) found were used for the preperation of Dataset. 

 

3.3 Dataset preparation 

The Protein SHP-1 (PDB_ID: 2B30) was downloaded from the RCSB PDB site. The inhibitors 

were collected from PUBCHEM in SDF format. Pyrx )was used to screen the ligands which 

showed comparable and better binding energy than NSC87877(cid 16654632) against SHP-1 

(PDB_ID: 2B30).The inhibitors which showed better binding energy were further selected on the 

basis of similar structure and activity to build the dataset .so the inhibitors which showed better 

binding energy then NSC8787, belonged to congeneric series (similar in structure) and had good 

activity were selected to be the members of the dataset that was used for pharmacophore and 

QSAR studies. The clustering feature of pubchem was used for building this congeneric series. 

Finally a dataset of 24 compounds was built which was further used for QSAR studies. 

 

3.4 Pharmacophore modeling and building of 3D-QSAR model 

A successful 3D-QSAR study was performed to establish relationship between the spatial         

three-dimensional pharmacophoric features and inhibition activity of a class of inhibitors in the 

dataset. Present 3D-QSAR study was performed with the dataset of  24 compounds( including  

NSC87877) with well defined inhibitory activity given as IC50 values in µM concentration. For 

the correlation purpose IC50 values then  converted to their molar values and subsequently 

calculated to free energy-related terms, i.e., -log (1/IC50). This dataset was then chosen for 

generating common pharmacophore hypotheses and then performing QSAR analysis. 

 

PHASE-3.1 module of Maestro-9 (Phase 3.1, Schrödinger,LLC,2009) molecular modeling 

software was used to generate 3D pharmacophore models for selected series of inhibitors. A 

pharmacophore conveys characteristics of the three-dimensional arrangement of the 



pharmacophoric elements which are important to be critical for binding. A given hypothesis may 

be combined with known activity data to create a 3D-QSAR model that identifies overall aspects 

of molecular structure that govern activity. 

3.4.1 Ligand preparation 

The structures were sketched using maestro builder toolbar and were imported to develop 

pharmacophore model panel of the PHASE with their respective activity values. The ligands 

were assigned as actives and inactives by giving an appropriate activity threshold value 5.6 .The 

activity threshold value was selected in the basis of dataset activity distribution and active 

ligands are chosen to derive a set of suitable pharmacophores. Sketched structures were energy 

minimized/cleaned up by Ligprep module using OPLS_2005 force field(LigPrep, Schrödinger, 

LLC, 2009) and proper protonation states were assigned with the ionizer subprogram at pH 7.2 ± 

0.2.Conformation generation is an important step in PHASE . The conformations were generated 

with the help of  ConfGen method taking GB/SA solvent model using OPLS_2005 

(MacroModel, Schrödinger,LLC,2009) force field .About 1000 conformers were generated per 

structure ensuring 50 step minimization. The minimized conformers were filtered using a relative 

energy parameter limitation of 10kcal/mol and a minimum atom deviation of 1A. Thus lowest 

energy non-redundant conformers of a ligand were used for pharmacophore model development. 

A couple of conformer was defined as identical if the relative distance between them is below 

1A. 

 

3.4.2 Creating Pharmacophore Sites and Common Pharmacophore Hypothesis   Generation 

According to the bioactivity, the molecules were divided into actives and inactives,     setting the 

maximum and minimum values in the activity threshold window of PHASE. Pharmacophore 

sites of a ligand are represented in the 3D space by a set of points. These points coincide with 

various chemical characteristics with type, location, and directionality, which facilitate non-

covalent bonding with the receptor sites. The pharmacophore features like hydrogen bond 

acceptor (A), hydrogen bond donor (D), hydrophobic/Non-polar group (H), negatively ionizable 

(N), positively ionizable (P), and aromatic ring (R) were used to create the pharmacophore sites 

for the energy-calculated ligands. Tree-based partition algorithm is used by PHASE for detection 

of common pharmacophore from a set of variants taking maximum tree depth 3. To find 

common pharmacophore, PHASE algorithm use an exhaustive analysis of k-point 

pharmacophore match picked from the conformations of a set of active ligands on the basis of 

inter site distances,  and then find all spatial arrangements of pharmacophore features those are 

common to at least 8 of 10 active ligands. The generated pharmacophores match different set of 

actives eliminating the chance of its exclusiveness toward a small subset of ligands. The different 

pharmacophore hypotheses were further examined by using a scoring function, so that it 

produced the best alignment of the ligands. 

 

 



3.4.3 Scoring Pharmacophore Hypothesis 

The scoring of the pharmacophore hypotheses was done in relation to the information from the 

active ligands considering various geometric and heuristic factors. The alignment to a reference 

pharmacophore is considered according to RMSD of the site points and the average cosine of the 

vectors keeping their tolerance 1.2 Å and 0.5, respectively. To get the reference ligand from the 

most active set, upper 10% was considered for score calculation. For further refinement, volume 

scoring was performed in order to measure quantitatively of how each non-reference ligand is 

superimposing with the reference ligand. Here, the cutoff for volume scoring was kept at 1.00 for 

the non-reference pharmacophores. 

The resulting pharmacophore was then scored and ranked. The scoring was done to identify the 

best candidate hypothesis, and which provided an overall ranking of all the hypotheses. The 

scoring algorithm included the contributions from the alignment of site points and vectors, 

volume overlap, selectivity, number of ligands matched, relative conformational energy, and 

activity. Among which best hypothesis AAADRRR.190 was selected on the basis of score and 

discrimination of active and nonactive molecules i.e if active molecules score well, the 

hypothesis could be invalid as it does not discriminate between active and inactive. 

 

 3.4.4 Building of QSAR model 

To produce a statistically significant 3D-QSAR model, the first and the foremost    requirement 

is the alignment of ligands; therefore, to execute the QSAR study, a pharmacophore-based 

alignment was considered. The PHASE algorithm uses a very flexible approach for the 

development of 3D QSAR model. It considers a rectangular grid of 1 Å grid distance in a 3D 

space. Thus, it creates cubes of said dimension in the 3D space. The atoms of the molecules 

which are considered as overlapping Vander Waal spheres fall inside these cubes depending on 

the volume of the atomic spheres. These occupied cube spaces are termed as volume bits. A 

volume bit is allocated for each different class of atom that occupies a cube. There are six atom 

classes, viz. two hydrogen bond acceptor (A), one positively ionizable (P), and two aromatic ring 

(R) used for classifying the atom characteristics. The total number of volume bits consigned to a 

specified cube is based on how many training set molecules occupy that cube. A single cube may 

represent the occupation by one or various atoms or sites, and even those from the same 

molecule or may be from unlike molecules of the training set. Thus, a molecule may be 

represented by a binary string concurrent to the occupied cubes, and also the various types of 

atomic sites that exist in those cubes. To create an atom-based QSAR model, these volume bits 

which encode the geometrics and chemical characteristics of the molecule are regarded as 

independent variables in PLS (Partial Least square) regression analysis.   The maximum PLS 

factor that can be taken is N/5, where N is the number of ligands present in the training set. In 

this study, a significant 3D-QSAR model was generated using AAADRRR-190 hypothesis. For 

QSAR model generation, training and test partition was done by random selection method. 

Atom-based model selection criterion was chosen for model building . PLS factor was set as 03, 

the maximum number of PLS factors in each model can be 1/5 the total number of training set 



molecules. More the PLS factor value, more will be the reliability of models. Various models 

have been generated and the best model was selected on the basis of the statistical significance. 

3.5 Building of new substituent’s 

The QSAR model generated (which is statistically significant) was used to design novel 

compounds with better biological activity. The 3D –QSAR model built explains how and at what 

extent electron withdrawing, hydrophobic and H- donor properties should be modified to achieve 

better biological activity of inhibitors. The QSAR model generated shows blue regions where 

electron withdrawing, hydrophobic, and H –donor groups can be added to common 

pharmacophore and could lead to better biological activity. Also the red regions shows the sites 

where addition of these groups is prohibited for the inhibitors biological activity. On the basis of 

the QSAR model developed about 83 substituent’s were build using permutation and 

combination with the help of Chem draw( ChemDraw Std 13.0 Suite). 

3.6  Validation of Physiochemical Properties 

Lipinski rule of 5 was used for drug designing was used. it states that  that most "drug-like" 

molecules have logP <= 5, molecular weight <= 500, number of hydrogen bond acceptors <= 10, 

and number of hydrogen bond donors <= 5. Molecules violating more than one of these rules 

may have problems with bioavailability. The rule is called "Rule of 5", because the border values 

are 5, 500, 2*5, and 5. So Lipinski filter was applied to all the new substituent’s formed using 

molinformatics server. 

3.7  Molecular docking 

The ligands which passed the Lipinski filter were converted into pdb format using 

Chemdraw( ChemDraw Std 13.0 Suite). Autodock 4.2(Sotriffer et al.,2000) was   used for 

docking of these ligands with SHP-1 (PDB_ID: 2B30). All polar hydrogens were added to the 

receptor and Kollman United Atomic Charges were computed. For all ligands we added polar 

hydrogens and computed the Gasteiger charges. The structure of  ligands  and  receptor were 

than saved in Pdbqt format used for docking calculations.  The grid definition, adjusted to the 

receptor active site which included residues (Lys-277,Asn-278) was set to grid box with the 

dimension of (x=48 y=58, z=48),grid center (x=15.463, y=28.47, z=42.85) and spacing of 

0.375.The ligands which showed  binding energy greater than NSC87877were further used as  

test set to validate the QSAR model developed. 

 

3.8  3D QSAR of substituted ligands 

To validate the QSAR model developed the substituent’s which passed Lipinski filter  and 

showed better binding energy than NSC87877with SHP-1 were used as test set for QSAR model 

http://www.cambridgesoft.com/Ensemble_for_Chemistry/ChemDraw/ChemDrawStd13.0Suite/
http://www.cambridgesoft.com/Ensemble_for_Chemistry/ChemDraw/ChemDrawStd13.0Suite/


development and for testing these compounds. The inhibition constant calculated from autodock 

were converted into –Log ki and it was used as activity. 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



4. RESULTS 

4.1 Sequence and Structure analysis  

 Sequence and structural analysis was done to find the sequence and structure conservation 

among various members of non receptor tyrosine phosphatase. The Root Mean Square deviation 

values calculated for various members of nonreceptor tyrosine phosphatases with SHP-1, SHP-2 

are shown in Table2. From the Table2 it can be seen that HePTP and SHP-1 bear close 

resemblance to each other as Root Mean Square deviation  value  between the two comes out to 

be.656A..Also Figure5 shows that the inhibitor binding site and the structure is conserved in both 

HePTP and SHP-1. In Figure 5 SHP-1 structure is shown in red color and HePTP is shown in 

green color .The inhibitor binding site ie. LYS 277, ASP 278 and ARG 459 in SHP-1(blue color) 

and ASP 105, TYR 106 and ARG276 (Pink color) in HePTP is highly conserved 

 

4.2 Dataset and biological activity 

All the inhibitors of the AID_1077 and AID_1059 have been listed in Table3.AID _1007 

(Fluorescent Secondary assay for dose –response confirmation of chemical inhibitors of HePTP)  

and  AID _1059(In vitro HePTP Dose response Colorimetric assay for SAR study) are two 

immunoassays .AID_ 1077  had 147 compounds  and AID _1059 had 57 compounds which were 

common in AID_1077 and AID_1059.Table3 also shows the binding energy of these inhibitors 

with SHP-1(PDB_ID 2B30) which have been calculated using Pyrx. NS87877 (Cid 16654632) 

the only inhibitor of SHP-1 reported in PUBCHEM has been highlited in Table3. The inhibitors 

showing binding energy better than NSC87877(Cid 16654632)  have been used for creating 

dataset as shown in Table4.Also from Table3   it can be seen that not all the inhibitors which 

have binding energy greater than NSC87877 have been used for creating the dataset. This is 

because the inhibitors needed for QSAR studies belong to congeneric series (similar in 

structure).So some of the inhibitors although had binding energy greater than NSC87877 but did 

not have similar structures so were not taken in the dataset. For building congeneric series 

clustering feature of PUBCHEM was used. All the compound were taken from the same node 

indicating a congeneric series.Table4 shows the inhibitors included in dataset (on the basis of 

binding energy, activity and common structures).Table4 also shows structure, binding energy 

and IC50 values of compounds in dataset .All the compounds which had binding energy greater 

than NSC87877,good activity and similar structures are included in the dataset. 

 

 

 

 



 
Table2 RMSD Values of various members of non receptor tyrosine phosphatases 

Members SHP1/PTPN6 SHP2/PTPN11 

PTPN1/PTP1B 0.729 0.665 

PTPN2/TCPTP 0.734 0.667 

PTPN9 0.962 0.799 

PTPN5/STEP 0.788 0.747 

PTPN7/HePTP 0.656 0.673 

 

 

 

 

 

 

 
 

 

 

Figure5 Superimposition of SHP-1(shown in red colour) PDB_ID:2B30 and HePTP (shown in green colour) 

PDB_ID 1ZCO.The rmsd value between both structure was found to be 0 .656.The regions shown in blue (residues 

lysine 277and asparganine 278and arginine 459) in SHP-1 responsible for inhibitor binding site are conserved with 

regions shown in pink (asparganine 105,Tyrosine106 and arginine276) in HePTP. 

. 

 

Blue and pink regions shows the inhibitor binding 

region in SHP-1 and HePTP respectively which is 

conserved in both. 

Blue and pink regions shows the inhibitor binding region in 

SHP-1 and HePTP  respectively. 



Table3 shows all compounds of the assays and Binding energy of compounds with SHP-1(PDB_ID 2B30) 

calculated using Pyrx 

Compound ID Binding Energy Compound ID Binding Energy 

cid 24178230 -9.5 cid 3157647 -7.6 

cid 1209211 -9.5 cid 1228861 -7.4 

cid 1299058 -9.4 cid 5346285 -7.4 

cid 24178225 -9.3 cid 2266660 -7.4 

cid 2214811 -9.3 cid 44182133 -7.3 

cid 654089 -9.3 cid 889983 -7.3 

cid 1331726 -9.3 cid 1516220 -7.2 

cid 4715351 -9.3 cid 3157646 -7.2 

cid 1789 -9.3 cid 16654632 -7.1 

cid 4715351 -9.3 cid 2229326 -6.9 

cid 128895 -9.2 cid 3000187 -6.9 

cid 372955 -9.0 cid 3266419 -6.9 

cid 24178231 -8.9 cid 2878586 -6.9 

cid 2925154 -8.9 cid 1213466 -6.9 

cid 892446 -8.9 cid 891589 -6.9 

cid 2924978 -8.9 cid 3157647 -6.9 

cid 3239711 -8.9 cid 1072898 -6.9 

cid 24178215 -8.9 cid 1357397 -6.9 

cid 24178232 -8.8 cid 646406 -6.8 

cid 901652 -8.8 cid 2928673 -6.8 

cid 1329592 -8.7 cid 3136927 -6.5 

cid 1331766 -8.7 cid 44229061 -6.5 

cid 24178226 -8.5 cid 2012947 -6.5 

cid 176598 -8.4 cid 8853383 -6.5 

cid 24178233 -8.4 cid 2230267 -6.3 

cid 2301472 -8.3 cid 1282000 -6.3 

cid 1092683 -8.3 cid 2230291 -6.3 

cid 762708 -8.3 cid 2226406 -6.3 

cid 1072900 -8.3 cid 4302116 -6.3 

cid 5076888 -8.2 cid 1329592 -6.3 

cid 3453217 -8.2 cid 16654893 -6.2 

cid 2258411 -8.2 cid 16654891 -6.1 

cid 901652 -8.2 cid 16654890 -6.1 

cid 20110352 -8.2 cid 16654691 -6.1 

cid 2240797 -8.2 cid 646096 -6.1 

cid 403950 -7.8 cid 2940938 -6.1 

cid 6492412 -7.7 cid 1589738 -6.1 

cid 5766720 -7.7 cid 16217011 -6.0 

cid 6000533 -7.7 cid 2869196 -6.0 

cid 24178237 -7.6 cid 2975102 -6.0 

cid 24178227 -7.6 cid 2930528 -6.0 

cid 3239711 -7.6 cid 2300608 -6.0 

 



 

Table3 (continued) shows all compounds of the assays and Binding energy of compounds with SHP-1(PDB_ID 

2B30) calculated using Pyrx 

Compound ID Binding Energy Compound ID Binding Energy 

cid 2921964 -6.0 cid 2975144 -5.5 

cid 2914536 -5.9 cid 254573 -5.5 

cid 2173774 -5.9 cid 4969416 -5.4 

cid 5341943 -5.9 cid 2545467 -5.4 

cid 65456566 -5.9 cid 5765581 -5.3 

cid 24761488 -5.9 cid 9512029 -5.2 

cid 818221 -5.9 cid 1328767 -5.1 

cid 889170 -5.9 cid 24178232 -5.0 

cid 1209230 -5.9 cid 71599 -5.0 

cid 3883207 -5.8 cid 2207086 -5.0 

cid 5336454 -5.8 cid 16654969 -5.0 

cid 2826665 -5.8 cid 2269367 -5.0 

cid 2266660 -5.7   

cid 9595032 -5.6   

cid 5765582 -5.6   

cid 1756795 -5.6   

cid 2260301 -5.6   

cid 1435211 -5.6   

cid 3182456 -5.6   

cid 44182134 -5.5   

cid 5504142 -5.5   

cid 2062730 -5.5   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table4 shows the structure, IC50 values and binding energy of compounds 

 Compound ID    Structure -Log Ic50      B.E 
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4.3 Pharmacophore modeling  

Several seven-point common pharmacophore hypotheses with various combination of site were 

generated using active molecules. Minimum  sites 4 and Maximum site 7 were considered to 

have optimum combination of sites or features  common to active compounds. The molecules 

were classed into active and inactive based on activity threshold for identifying the 

pharmacophore features considering highest active molecule.The pharmacophore models were 

ranked on the basis of alignment to the active compounds. The “survival” scoring (s) function 

identifies the best candidate from the generated models and assigns an overall ranking of all the 

hypotheses. The scoring algorithm includes contributions from the alignment of site points and 

vectors, volume overlap, selectivity, number of ligands matched, relative conformational energy, 

and activity. However, the model should also discriminate between active and inactive 

molecules. If inactive molecules scores well, the hypotheses could be invalid as it does not 

discriminate between actives and inactives. The various hypothesis generated and their scores are 

listed in table 5.Among which hypothesis AAADRRR.190 was selected on the basis of score and 

discrimination of active and nonactive molecules i.e if active molecules score well, the 

hypothesis could be invalid as it does not discriminate between active and inactive. 

The best pharmacophore hypothesis AAADRRR-190 Figure 6 was selected for further QSAR 

study. The above mentioned 3D pharmacophore hypothesis Figure 6 encompass the following 

features: three hydrogen bond acceptor (A) in pink color, one hydrogen bond donors (D) in sky 

blue color  and three Aromatic ring (R) in yellow color. The hypothesis was selected on the basis 

of survival score. Survival weighted is combination of the vector, site, volume, and survival 

scores, and a  term for the number of matches, a large value of survival score indicates the better 

fitness of the active ligands on the common pharmacophore and validates the model. So from  

Table 5 it can be seen that hypothesis AAADRRR.190 has the best survival score 3.581which is 

highest among all the hypothesis generated. The Inactive score, Vector, site, Volume and 

selectivity of hypothesis came out to be 1.787, 0.948, .88, .757 and 2.579 respectively. Survival 

inactive survival score for actives with a multiple of the survival score for inactive subtracted. 

Site score, this score measures how closely the site points are superimposed in an alignment to 

the pharmacophore of the structures that contribute to the hypothesis, based on the RMS 

deviation of the site points of a ligand from those of the reference ligand. Selectivity estimate of 

the rarity of the hypothesis, High selectivity means that the hypothesis is more likely to   be 

unique to actives. All these values are highest among the selected hypothesis among  all the 

hypothesis (Table 4).All the molecules showed good alignment with good fitness score ranging 

3.00(for highest) to 1.95 (for lowest active). 

The 2D representation of the AAADRRR- 190 hypothesis is given in Figure 6c.Figure 7shows 

structure of all the compounds and common pharmacophore obtained.  

 

 

 



 

                           Table5 Phase hypothesis 

 

Phase 

hypothesis 

 

Survival 

 

Survival 

inactive 

 

Vector 

 

Site 

 

Volume 

 

Selectivity 

 

AAADRRR.190 

 

3.581 

 

1.787 

 

.948 

 

.88 

 

.757 

 

2.579 

 

AAADRRR.263 

 

3.543 

 

1.769 

 

.947 

 

.87 

 

.730 

 

2.476 

 

AAADRRR.235 

 

3.540 

 

1.755 

 

.947 

 

.87 

 

.720 

 

2.475 

 

 

6a                                                            6b 

                                   
 

 

      

    6c  

 

Figure. 6a and 6b shows common pharmacophore for active ligands [three hydrogenbond acceptor (A) in pink color, 

one hydrogen bond donors (D) in sky blue color, and three aromatic ring (R) in yellow color. 6c shows 2D 

representation of common pharmacophore. 
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Figure7  Shows the structure of compounds in datset and common pharmacophore obtained 

 

 



 

4.4 Building of 3D QSAR model 

 

A 3D-QSAR study has been performed successfully on the series of inhibitors to understand the 

effect spatial arrangement of structural features on biological activity of these inhibitors. Result 

of the 3D-QSAR can be visualized from Figure8.. The blue cubes in 3D plots of the3D 

pharmacophore regions refer to ligand regions in which the specific feature is important for 

better activity, whereas the red cubes demonstrates that particular structural feature or functional 

group is not essential for the activity or likely to reason for decreased in biological activity. From 

Figure 8a it can be seen that H donor can be added to carbon just adjacent to acceptor shown in 

common pharmacophore. Figure 8b shows that electron accepting group can be added near one 

of the rings and to carbon chain. Figure8c shows  hydrophobic groups can be added near one of 

the rings. All these changes can lead to increase in biological activity of inhibitors. The statistical 

results of 3D-QSAR study are summarized in Table6. The reliability of the present 3D-QSAR 

analysis can be justified by the fact that all statistical measures are significant. The   model 

generated showed statistically good results with r²( Correlation Coefficient )=.897, correlation 

coefficient r  measures how closely the observed data tracks the fitted regression line. 

q²=.8173.q
2 

is leave one out cross validation. It involves using a single observation from original 

sample as the validation determinant and remaining observation as training data. This is repeated 

such that each observation in the sample is used once as validation data. The statistical 

significance of model was also confirmed by a high value of Fischer ratio =60.9 Fischer ratio 

indicates while the fit of the data to the regression line is excellent, how can one decide if this 

correlation is based purely on chance. A very low value of RMSE =.11 again indicates the 

model is significant. One of the other parameter which signify model predictivity is Pearson R. 

Its value of .94 shows that correlation between  predicted and observed activity for test 

compound is excellent. The fitness graph can be visualized from Figure9. The performance of 

QSAR model on the training and test set molecules is shown in Figure 9.The solid line in the 

plot indicates the hypothetical “best fit” line between the predicted and experimental activity. 

The scatter plot indicates a good relation between the predicted and experimental activity with 

r
2
=.81.  Table 7 shows that 3PLS factors were taken for QSAR model development by randomly 

selecting 17 compounds as training set and 7 compounds as test set. It also shows the pharm set 

and also fitness of compounds. PLS factors was set as 03, the maximum number of factors in 

each model can be 1/5 total no of training molecules. So for our model number of PLS factors 

was taken to be 3 in our case.The QSAR model showed good statistical results and was then 

considered for building of new substituents. 

 

 

 

 

 



 

8a                                                 

                 

   

8b 

  

          

 

  8c 

 

Figure8 QSAR visualization of various substituent’s affect: 8a: hydrogen-bond donor effect, 8b: 

electron withdrawing feature,8c:hydrophobic effect. Blue regions shows where various 

substituent’s like hydrogen bond donor, electron withdrawing and hydrophobic substituent’s can 



be substituted. Red regions shows the region in which substitution can decrease biological 

activity and is not allowed Figure8 shows 3D-pharmacophore regions around compounds. For 

the selected pharmacophore blue and red cubes represent favorable and unfavorable regions, 

respectively. Molecular substitutions which increase the number of blue cubes will definitely 

lead to increases biological activity, while molecular substitutions which increase the number of 

red cubes will lead to decreased activity. Figure8a shows the H donor characteristic for the 

selected hypothesis .The blue cubes near donor7 and its neighbor carbon indicates that addition 

of H donor here will increase biological activity of inhibitors. Figure8b shows Electron 

withdrawing characteristic for selected hypothesis. Visual analysis of Figure shows that addition 

of electron withdrawing group near ring9 will increase biological activity of inhibitors.  The 

potency of compound can be increased by addition of small electron withdrawing groups like 

fluoro, chloro, bromo etc on ring9 and the carbon chain. Figure 8c shows the effect of positive 

and negative hydrophobic potential. it can be deduced from fig that hydrophobic group are well 

tolerated near ring9 and ring10 while the substitution of hydrophobic group near donor attached 

to ring 12 is unacceptable or may decrease the biological activity of the inhibitors. 

 

         Table6 3D-QSAR statistical parameters 

 
 

PLS 

factors 

 

SD 

 

r² 

 

F 

 

P 

 

RMSE 

 

q² 

 

Pearson R 

 

1 

 

0.2271 

 

0.6496 

 

27.8 

 

9.378e-005 

 

0.1719 

 

0.6242 

 

0.9546 

 

2 

 

0.1275 

 

0.897 

 

60.9 

 

1.233e-007 

 

0.1198 

 

0.8173 

 

0.9467 

 

3 

 

0.0817 

 

0.9607 

 

105.9 

 

2.184e-009 

 

0.1749 

 

0.6111 

 

0.711 

                                 

                                             

SD standard deviation of   the regression, r² for the regression, F variance ratio. Large values of F 

indicate a more statistically significant regression, P significance level of variance ratio. Smaller 

values indicate a greater degree of confidence, RMSE root-mean-square error, q² for the 

predicted activities, Pearson R value for the correlation between the predicted and observed 

activity for the test set. 

                 

 

 

 

 

 

 

 



 

 

 

 
Figure9   Fitness graph between observed activity versus PHASE predicted activity for training and test set 

compounds 

 

 

Validity of the model can be expressed by internal predictivity (q
2
 = 0.81) which is obtained by 

leave-one-out (LOO) or leave n out method. The q
2
 by leave-one-out method is more reliable and 

robust statistical parameter than r
2 

because it is obtained by external validation method of 

dividing the dataset into training and test set. The large value of F (60.9) indicates a statistically 

significant regression model, which is supported by the small value of the variance ratio (P), an 

indication of a high degree of confidence. Further small values of standard deviation of the 

regression (0.12) and RMSE (0.119) make an obvious implication that the data used for model 

generation are best for the QSAR analysis. Apart from the above-mentioned features, PLS factor 

also confirms the reliability of the model. In this study, number of PLS factor was taken as 3 and 

for each increment it gives one equation and there should be stepwise improvement eachtime the 

model generated. In addition to the above parameters it is interesting to note that active ligands 

are closely fitted to the regression line and inactive ligands are scattered. The solid line in the 

plot indicates the hypothetical “best fit” line between the predicted and experimental activity. 

The scatter plot indicates a good relation between the predicted and experimental activity with 

r2=.81.   



 

Table7 Fitness and PHASE predicted activity data for all compounds 
 

Cid 

 

QSAR set 

 

Activity 

 

PLS factors 

 

Phase predicted 

activity 

 

Pharm set 

 

Fitness 

 

1209211 

 

Training 

 

5.560 

 

1 2 3 

 

5.89,5.56,5.59 

 

Inactive 

 

2.75 

 

2925154 

 

Test 

 

6.250 

 

1 2 3 

 

6.16,6.36,6.33 

 

Active 

 

2.57 

 

2924978 

 

Test 

 

6.070 

 

1 2 3 

 

5.87,5.99,5.96 

 

Active 

 

2.16 

 

762708 

 

Training 

 

5.550 

 

1 2 3 

 

5.62,5.52,5.60 

 

Inactive 

 

1.95 

 

1092683 

 

Training 

 

6.080 

 

1 2 3 

 

6.06,6.12,6.02 

 

Active 

 

2.34 

 

1329592 

 

Training 

 

5.400 

 

1 2 3 

 

5.47,5.34,5.40 

 

Inactive 

 

2.34 

 

24178225 

 

Training 

 

6.020 

 

1 2 3 

 

6.22,6.09,5.92 

 

Active 

 

2.33 

 

2301472 

 

Training 

 

6.070 

 

1 2 3 

 

6.21,6.14,6.06 

 

Active 

 

2.51 

 

24178230 

 

Test 

 

5.890 

 

1 2 3 

 

6.12,6.04,6.10 

 

Active 

 

2.77 

 

1072900 

 

Training 

 

6.150 

 

1 2 3 

 

5.72,5.99,6.04 

 

Active 

 

2.12 

 

24178237 

 

Test 

 

6.160 

 

1 2 3 

 

6.24,6.27,6.42 

 

Active 

 

2.89 

 

3157647 

 

Training 

 

6.700 

 

1 2 3 

 

6.26,6.39,6.61 

 

Active 

 

3.00 

 

24178215 

 

Training 

 

5.470 

 

1 2 3 

 

5.60,5.69,5.62 

 

Inactive 

 

2.13 

 

24178233 

 

Training 

 

5.950 

 

1 2 3 

 

5.95,5.95,6.00 

 

Active 

 

2.71 

 

16654632 

 

Training 

 

5.530 

 

1 2 3 

 

5.44,5.44,5.48 

 

Inactive 

 

2.34 

 

24178232 

 

Test 

 

5.810 

 

1 2 3 

 

6.02,5.81,5.86 

 

Active 

 

2.79 

 

24178227 

 

Training 

 

6.400 

 

1 2 3 

 

6.28,6.43,6.42 

 

Active 

 

2.68 

 

3239711 

 

Test 

 

5.400 

 

1 2 3 

 

5.56,5.59,5.62 

 

Inactive 

 

2.35 

 

372955 

 

Test 

 

5.530 

 

1 2 3 

 

5.54,5.46,5.52 

 

Inactive 

 

2.66 

 

24178231 

 

Training 

 

6.240 

 

1 2 3 

 

6.30,6.37,6.31 

 

Active 

 

2.71 

 

2214811 

 

Training 

 

5.730 

 

1 2 3 

 

5.84,5.69,5.75 

 

Active 

 

2.77 

 

1299058 

 

Training 

 

5.670 

 

1 2 3 

 

5.96,5.62,5.66 

 

Inactive 

 

2.73 

 

1331726 

 

Training 

 

6.000 

 

1 2 3 

 

5.72,6.09,6.04 

 

Active 

 

2.22 

 

24178226 

 

Training 

 

6.320 

 

1 2 3 

 

6.30,6.32,6.43 

 

Active 

 

2.84 

 



 

4.5 Building of new substituent’s 

The results shown in Figure8 were used to build substituents. Figure10 shows how the QSAR 

results have been used to add substituent’s R1, R2, R3, R4, and R5. Figur10a, 10b, 10c shows how 

R1(hydrogen donor),R2,R3,R4(electron withdrawing group),R5(hydrophobic groups) have been 

substituted according to QSAR results. So 83 substituents were built as can be seen from 

Table8.Different substituents were attached at R1,R2,R3,R4,R5 (Table8). 
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                      Figure10a  H-donor group R1attached according to QSAR result. 
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Figure10b Electron withdrawing group R2, R3, R4 attached according to QSAR result. 
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 Figure10c Hydrophobic group R5 attached according to QSAR result 
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  Figure10  R1, R2, R3, R4, R5 substituents attached to common pharmacophore. 

 



So 83 substituents were built as can be seen from Table8.Different substituents were attached at 

R1,R2,R3,R4,R5 (Table8) 

                                

                            Table8 Shows various substituent’s built. 

Compounds     R1    R2    R3   R4  R5 

   1    CH3     I      Cl   F C2H5 

   2    CH3    Cl     Cl   F C2H5 

   3    CH3     F     Cl   F C2H5 

   4    NH2     I     F   F C2H5 

   5    NH2    Cl     F   F C2H5 

   6    NH2     F     F   F C2H5 

   7    OH     I     F   F C3H7 

   8    OH    Cl     F   F C2H5 

   9    OH     F     F   F C2H5 

   10    CH3     I     F   F C2H5 

   11    CH3    Cl     F   F C2H5 

   12    CH3     F     F   F C2H5 

   13    CH3     I     I  Cl C2H5 

   14    CH3    Cl    Cl  Cl C2H5 

   15    CH3    F      F  Cl C2H5 

   16    NH2    I     I  Cl C2H5 

   17    NH2    Cl    Cl  Cl C2H5 

   18    NH2     F     F  Cl C2H5 

   19    OH     Br     I  Cl C3H7 

   20    OH    Cl    Cl  Cl C2H5 

   21    OH    F     F  Cl C2H5 

   23    CH3    Cl    Cl  Cl C2H5 

   24    CH3    F     F   Cl C2H5 

   25    CH3    F    F   F C2H5 

   26    CH3   Cl    Cl   F C3H7 

   27    CH3    I     I   F C2H5 

   28    OH    F     F   F C2H5 

   29    OH   Cl     Cl   F C2H5 

   30    OH    I      I   I C2H5 

   31    NH2    F     F   F C3H7 

   32    NH2   Cl     F   F C2H5 

   33    NH2    I     F   F C2H5 

   34    CH3    F    Cl   Cl C2H5 

   35    CH3    Cl    Cl   Cl C2H5 



  36    CH3     I    Cl   Cl C2H5 

  37    OH     F    Cl   Cl C2H5 

  38    OH     F     Cl   Cl C2H5 

  39    OH     F    Cl   Cl C2H5 

  40    OH  Cl    Cl   Cl C2H5 

  41    OH  Cl    Cl   Cl C2H5 

  42    OH  Cl    Cl   Cl C2H5 

  43    OH   I    Cl   Cl C3H7 

  44    OH   I    Cl   Cl C2H5 

  45    OH   I    Cl   Cl C2H5 

  46    NH2   F    Cl    Cl C2H5 

  47    NH2   F    Cl    Cl C2H5 

  48    NH2   F    Cl    Cl C2H5 

  49    NH2   Cl    Cl    Cl C2H5 

  50    NH2   Cl    Cl    Cl C2H5 

  51    NH2   Cl    Cl    Cl C2H5 

  52    NH2    I    Cl    Cl C2H5 

  53    NH2    I    Cl    Cl C2H5 

  54    NH2    I    Cl    Cl C2H5 

  55    CH3    F     I     I C2H5 

  56    CH3    F     I     I C2H5 

  57    CH3    F     I     I C2H5 

  58    CH3   Cl     I     I C2H5 

  59    CH3   Cl     I     I C2H5 

  60    CH3   Cl     I     I C3H7 

  61    CH3     I     I     I C2H5 

  62    CH3     I     I     I C2H5 

  63    CH3     I     I     I C2H5 

  64    CH3     I     I     I C2H5 

  65    CH3     I     I     I C2H5 

  66    OH    F     I     I C2H5 

  67    OH    F     I     I C2H5 

 68    OH     F     I     I C2H5 

 69    OH    Cl     I     I C3H7 

 70    OH    Cl     I     I C2H5 

 71    OH    Cl     I     I C2H5 

 72    OH     I     I     I C2H5 

 73    OH     I     I     I C2H5 

 74    OH     I     I     I C2H5 

 75    NH2     F     I     I C3H7 



76    NH2     F     I     I C2H5 

77    NH2     F     I     I C2H5 

78    NH2    Cl     I     I C2H5 

79    NH2    Cl     I     I C2H5 

80    NH2    Cl     I     I C2H5 

81    NH2     I     I     I C2H5 

82    NH2     I     I     I C2H5 

83    NH2     I     I     I C2H5 

 

4.6 Validation of Physiochemical properties 

The substituent’s build were subjected to Lipinski filter Table 9 shows Log P value,molecular 

weight,H bond acceptors,H bond donor and TPSA values for all the substituents built.The 

substituents which passed the lipinski filter have been higlighted.15 substituents were found to 

pass all the Lipinski filter.The substituents which passed Lipinski filter were subjected to 

docking. For likeliness of a compound to become a drug Log P Value should be less than or 

equal to 5,Molecular weight should be less than 500 daltons ,H bond donor should be less than 5 

,H bond acceptors should be less than 10.All the compounds which followed all the Lipinski 

filter have been highlighted in green in Table 9.These were further subjected to molecular 

docking to find out if their binding energy were better than NSC87877. 

 

4.7   Molecular docking 

The   substituent’s which   passed   Lipinski  rule filter  were docked with SHP-1 PDB_ID 

(2B30).  The binding energy and interacting residues are shown in Table10.All the substituent’s 

showed binding energy greater than NSC87877 (only inhibitor known for SHP-1).Table 10 

Shows the binding energy and interacting residues of substituent’s built with SHP-1calculated 

using autodock .The The grid definition, adjusted to the receptor active site which included 

residues (Lys-277,Asn-278) was set to grid box with the dimension of (x=48 y=58, z=48),grid 

center (x=15.463, y=28.47, z=42.85) and spacing of 0.375.The parameters were kept same for all 

the compounds during docking .Nsc87877 was taken as a reference molecule during docking. 

 

 

 

 

 

 

 

 



Table 9 Shows compounds with Lipinski filter application. Validation of physiochemical properties was done by 

application of Lipinski filter through molinformatics server 

 

Compound 

no 

Log P Molecular 

weight 

H acceptors H donors TPSA 

    1 7.148 596 6 1 67.85 

    2 4.734 495 6 1 67.85 

    3 4.435 488 6 1 67.85 

    4 6.226 581 7 3 93.8 

    5 4.821 489 7 3 93.87 

    6 4.513 473 7 3 93.87 

    7 6.914 596 7 2 88.07 

    8 4.118 490 7 2 88.07 

    9 4.811 474 7 2 88.07 

   10 6.84 580 6 1  

   11 4.435 488 6 1 67.85 

   12 4.128 472 6 1 67.85 

   13 7.663 613 6 1 67.85 

   14 7.268 521 6 1 67.85 

   15 6.95 505 6 1 67.85 

   16 6.74 597 7 3 93.87 

   17 6.33 506 7 3 93.87 

   18 4.73 489 7 3 93.87 

   19 6.42 612 7 2 88.07 

   20 4.32 490 7 2 88.07 

   21 4.32 490 7 2 88.07 

   22 7.35 596 6 1 67.85 

   23 6.95 505 6 1 67.85 

   24 4.64 488 6 1 67.85 

   25 6.04 580 6 1 67.85 

   26 7.04 610 6 1 67.85 

   27 7.76 688 6 1 67.85 

   28 6.73 582 7 2 88.07 

   29 7.03 598 7 2 88.00 

   30 7.23 690 7 2 88.00 

   31 6.82 595 7 3 93.00 

   32 6.74 597 7 3 93.00 

   33 7.14 689 7 3 93.00 

  34 7.335 596 6 1 67.85 

  35 7.663 613 6 1 67.85 



  36 7.065 704 6 1 67.85 

  37 4.118 490 7 2 88.00 

  38 6.633 507 7 2 88.00 

  39 6.740 597 7 3 93.00 

  40 5.426 495 7 2 88.00 

  41 6.94 523 7 2 88.00 

  42 6.07 568 7 2 88.00 

  43 6.22 612 7 2 88.00 

  44 7.34 615 7 2 88.00 

  45 7.75 706 7 2 88.00 

  46 4.82 489 7 3 93.00 

  47 4.33 490 7 3 93.00 

  48 7.33 596 6 1 67.85 

  49 4.12 505 7 3 93.00 

  50 6.64 522 7 3 93.00 

  51 7.04 614 7 3 93.00 

  52 6.53 597 7 3 93.00 

  53 7.04 614 7 3 93.00 

  54 7.45 705 7 3 93.00 

  55 7.76 688 6 1 67.00 

  56 7.35 596 6 1 67.00 

  57 7.76 688 6 1 67.00 

  58 7.19 596 6 1 67.00 

  59 7.66 613 6 1 67.00 

  60 7.37 718 6 1 67.00 

  61 7.55 688 6 1 67.00 

  62 6.06 704 6 1 67.00 

  63 7.55 688 6 1 67.00 

  64 7.65 704 6 1 67.00 

  65 7.38 796 6 1 67.00 

  66 6.52 582 7 2 88.00 

  67 7.03 598 7 2 88.00 

  68 7.43 690 7 2 88.00 

  69  6.83 598 7 2 88.00 

  70 5.34 615 7 2 88.00 

  71 6.75 706 7 2 88.00 

 

 

 



72 6.233 690 7 2 88.00 

73 5.750 706 7 2 88.00 

74 6.145 798 7 2 88.00 

75 6.610 595 7 3 93.87 

76 6.226 581 7 3 93.87 

77 5.450 689 7 3 93.87 

78 6.533 597 7 3 93.87 

79 6.040 614 7 3 93.87 

80 6.400 705 7 3 93.87 

81 6.930 689 7 3 93.87 

82 6.453 705 7 3 93.87 

83 6.858 797 7 3 93.87 

 

 

 

Table10 Shows the binding energy and interacting residues of substituents built with SHP-1calculated using 

autodock 

Compounds Binding 

Energy 

Interacting residue of 

SHP-1 

Interacting residue 

of ligands 

   2 -9.10 Gln83,Lys277 NH,O 

   3 -8.29 Gln266,Gln83 O,NH 

   5 -8.58 Gln83,Gln266 NH2,O 

   6 -9.23 Gln83,Gln266 NH2,O 

   8 -8.44 Lys277,Gln83 O,OH 

   9 -8.25 Glu77,Asn274 OH,O 

   11 -8.74 Gln83,Gln266 O,NH 

   12 -8.55 Gln81,Lys277, NH,O 

   18 -8.66 Asn274,Gln83 O,NH2 

   20 -8.74 Gln81,Gln83 OH,O 

   21 -8.41 Glu77,Asn274 OH,O 

   24 -8.25 Glu77,Glu83 O,NH 

   37 -8.47 Gln81,Arg262 OH,O 

   46 -8.94 Glu77,Lys277 NH2,O 

   47 -9.23 Gln81,Gln83 NH2,O 

NSC87877 -7.1 Lys277,Asp 278     O 
 

 

 



4.7 Testing of substituent’s using 3D QSAR model development 

 The substituent’s which  passed Lipinski filter and binding enregy greater than NSC87877 from 

Table9 and Table 10  were tested using 3D-QSAR model development. The inhibition constant 

calculated from autodock were converted into –log ki and –log ki was used as activity. The  

model generated showed statistically good results with r²=.8015,q²=.7215.The statistical 

significance of model was also confirmed by a high value of Fischer ratio =47.8and a very low 

value of RMSE =.49.One of the other parameter which signify model predictivity is Pearson R. 

Its value of .91 shows that correlation between  predicted and observed activity for test 

compound is excellent. Table10 shows QSAR statistical results and Table11shows observed and 

PHASE predicted activity. Table 11 shows the compounds which were used as test and 

compounds which were used as training their activity   also the activity predicted by PHASE and 

PLS factor taken.Figure10 shows   the fitness graph between Phase activity and Phase predicted 

activity. The solid line in the plot indicates the hypothetical “best fit” line between the predicted 

and experimental activity. The scatter plot indicates a good relation between the predicted and 

experimental activity with r
2
=.80.From Figure 11 it can  be seen that blue regions for hydrogen-

bond donor,electron withdrawing feature and hydrophobic regions are present where we have 

substituted NH₂,F,Cl,Cl,C₂H₅  respectively in 47 th compound (the most active compound) 

hence responsible for its activity. 

 

 

                                 Table11 QSAR statistical results for the model 

PLS 

factors  

SD  r²  F  P  RMSE  q²  Pearson R  

 1  .142  0.7138  38.7  1.22e-005  .39  0.563  0.871  

 2  .108  0.8015  47.8  1.34e-007  .49  0.7215  0.910  

 

 

 
            Figure11 Fitness graph between observed activity versus PHASE predicted activity 



                           Table12 Phase predicted activity 

 

 

 

 

                                                               
 

 

 

 

     

 

Compounds  QSAR set  Activity  PLS factors  Phase predicted activity  

 

2 Test 6.630 1 ,2 6.31,6.24 

3 Test 6.070 1,2 6.57,6.56 

5 Test 6.280 1,2 6.27,6.26 

6 Training 6.740 1,2 6.66,6.62 

8 Training 6.180 1,2 6.04,6.11 

9 Training 6.040 1,2 6.03,6.06 

11 Training 6.400 1,2  6.31,6.27 

12 Training 6.230 1,2  6.27,6.13 

18 Training 6.340 1,2 6.42,6.43 

20 Test 6.400 1,2 6.12,6.14 

21 Training 6.160 1,2 6.12,6.14 

24 Training 6.040 1,2 6.38,6.21 

37 Training 6.210 1,2 6.22,6.29 

46 Training 6.550 1,2 6.50,6.61 

47 Training 6.740 1,2 6.61,6.71 



 

  12a                                                            12b 

                       

12c 

 

Figure12shows a hydrogen-bond donor effect, b: electron withdrawing feature, c:hydrophobic 

effect in the most active compound in 47. From Figure 11 it can  be seen that blue regions for 

hydrogen-bond donor,electron withdrawing feature and hydrophobic regions are present where 

we have substituted NH₂,F,Cl,Cl,C₂H₅  respectively in 47compound hence responsible for its 

activity 



5. DISCUSSION 

Transplantation of stem cells from the original transplant recipient into secondary and tertiary 

irradiated recipients reconstitutes hematopoiesis with resultant normal life spans. Transplantation 

requires two essential properties proliferation to replenish the stem cell compartment (self-

renewal) and lifelong production of blood(Pearce W et al., 2008). During transplantation high 

number of HSC is needed as the cells reaching target eventually decreases. Hematopoietic stem 

cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and 

immune response. HSCs transplantation has been applied for the treatment of several diseases. 

However, HSCs persist in the small quantity within the body, mostly in the quiescent state. HSC 

maintenance, balance between self-renewal and proliferation are essential requirement for 

advancement of HSC expansion and transplantation in the future. Hematopoiesis and HSC 

development are the key role to improve efficient HSC expansion for the transplantations.so 

work here has aimed to increase the proliferation of HSC needed during transplantation.SHP-

1which acts as negative regulator of proliferation has been targeted.Both structure 

based(docking) and ligand based (Pharmacophore modeling and 3D-QSAR) approaches have 

been used for designing drug against SHP-1.The dataset of inhibitors builtwas used to carry out 

Pharmacophore modelling and QSAR studies.Phase module of Schrodinger suite was used .For 

the generation of pharmacophore model 24 compounds were considered.Mininmum sites 4 and 

Maximum sites 7 were considered to have optimum combination of sites or features common to 

active compounds.The molecules were classed into active and inactive based on activity 

threshold for identifiying the pharmacophore feature considering highest active molecule.On the 

basis of Survival score and rescoring of active and inactive molecule AAADRRR.190 with a 

survival score of 3.581 which is highest among all the hypothesis was selected.Survival score is 

a combination of Vector,Site,Volume and term for number of matches,a large value of Survival 

score indicates better fitness of active ligand on the common pharmacophore and validate the 

model.All the molecules showed good alignment with good fitness score ranging from 3.00(for 

highest) to 1.95(for lowest active).The 3D-QSAR dimensional analysis was carried out based on 

Pharmacophore alignment.For QSAR model generation dataset was randomly divided into 

training set of 17 componds and 07 compounds in test set .As for good model  generation 70% of 

compounds should be in training set and 30% in the test set.PLS factor was set as 03,the 

maximum number of PLS factors in each model can be 1/5 total number of training molecules.So 

it was taken to be 3 in our case.More the PLS factor values more will be the relaibility of 

model.Various models have been generated and best model was selected. The reliability of the 

present 3D-QSAR analysis can be justified by the fact that all statistical measures are significant. 

The  model generated showed statistically good results with r²( Correlation Coefficient )=.897, 

correlation coefficient r  measures how closely the observed data tracks the fitted regression line. 

q²=.8173.q
2 

is leave one out cross validation. It involves using a single observation from original 

sample as the validation determinant and remaining observation as training data. This is repeated 

such that each observation in the sample is used once as validation data.The statistical 

significance of model was also confirmed by a high value of Fischer ratio =60.9 Fischer ratio 



indicates while the fit of the data to the regression line is excellent, how can one decide if this 

correlation is based purely on chance. A very low value of RMSE =.11.One of the other 

parameter which signify model predictivity is Pearson R. Its value of .94 shows that correlation 

between  predicted and observed activity for test compound is excellent. From Figure 8a it can 

be seen that H donor can be added to carbon just adjacent to acceptor shown in common 

pharmacophore. Figure 8b shows that electron accepting group can be added near one of the 

rings and to carbon chain. Figure8c shows  hydrophobic groups can be added near one of the 

rings. All these changes can lead to increase in biological activity of inhibitors.Based on these 

QSAR results several substitution were made and various groups were added to form some novel 

compounds with good biological activity. One of the main goals in drug discovery is 

identification of innovative small molecular scaffolds exhibiting high binding affinity and 

selectivity for the target together with a reasonable absorption,distribution,metabolism,excertion 

and toxicity (ADMET) profile,lead and/or drug likeness. Lipinski rule of 5 is a rule of thumb to 

evaluate drug likeliness or to determine if a chemical compound with a certain pharmalogical or 

biological activity has properties that would make it a likely orally active drug in humans.The 

rule describes molecular properties important for a drugs pharmacokinetics in human 

body,including its ADMET.So lipinski filter was applied to the substituents for checking their 

likeliness to become a drug.Substituents which followed Lipinski rule and showed binding 

energy better then NSC87877 were further tested with QSAR model development.Novel 

inhibitors showing higher activity can be further tested for ADMET profiling and 

bioavailibility.Then wet lab synthesis can be done. 

 

 

 

 

 

 

 

 

 

 

 

 



5. CONCLUSION AND FUTURE PROSPECTIVE 

.Signaling by stem cell factor and Kit, its receptor, plays important roles in hematopoiesis . The 

activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites 

for signal transduction molecules containing SH2 domains Shp-2 phosphatase and Shp-1 

phosphatase  bind to the phosphotyrosine at 568 and  570 residue in juxtamembrane region of C-

kit. SHP-1 binds to the phosphotyrosine residue 570 of C-kit and negatively regulate 

proliferation of HSC. The purpose of this study was to use both ligand based drug designing and 

structure based drug designing to design inhibitors against SHP-1to increase proliferation of 

HSC. The dataset of inhibitors built was used to carry Pharmacophore modeling and QSAR so 

that more inhibitors can be designed and can be tested for their biological activity.The 3D-QSAR 

obtained from AAADRRR-190 hypothesis was found to be statistically good 

r
2
=.89,q

2
=.81,Fischer ratio=60.9,PearsonR=.94.So it was easy to draw clear inference to design 

novel compounds for better biological activity from the QSAR model.The 3D-QSAR model built 

was used to explain how and to what extent electron withdrawing,hydrophobic and H-donor 

properties should be modified to achieve better inhibition.The QSAR visualiztion showed the 

favorable region for addition of H donor,Electron withdrawing groups and hydrophobic 

groups.Based on this model  some substituents were built.The  substituents physiochemical 

properties were validated using Lipinski rule of 5.The substitutents which passed Lipinski filter 

were docked with SHP-1using autodock..Most of newly designed molecules were found to show 

interaction with Gln81,Gln83,Gln266,Asn274,Lys277,Asn278,Gln266 of SHP-1.The compounds 

which showed binding energy greater than NSC87877  and followed Lipinski rule of 5 were 

tested using 3D QSAR model generation.The QSAR model showed statistical significant results 

r
2
=.80,q

2
=.72,F=47.8 thus validating that 15 componds built showed good biological activity. 

One of the main goals in drug discovery is identification of innovative small molecular scaffolds 

exhibiting high binding affinity and selectivity for the target together with a reasonable 

absorption,distribution,metabolism,excertion and toxicity (ADMET) profile,lead and/or drug 

likeness.Such chemical entities are likely to be able to enter higher phases of the drug 

development process..Thus in vitro approaches can be used to investigate the ADMET properties 

of these newly designed chemical entities and to optimize selection of the most suitable 

candidates for drug development. 

Thus the QikProp program can be further used to obtain the ADMET properties of the 

analogues.it will predict both physically significant descriptors and pharmaceutically relevant 

properties. 

Also virtual screening on the basis of pharmacophore model can be done in order to propose 

various drug molecules,which have all the essential features.Then wet lab synthesis of these 

compounds as well characterization via techniques like H
1
N.M.R and L.C.M.S can be done. 
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APPENDIX 

3.5 Docking 

Docking is a method which predicts the preferred orientation of one molecule to a second when 

bound to each other to form a stable complex. Knowledge of the preferred orientation in turn 

may be used to predict the strength of association or binding affinity between two molecules 

Molecular docking is thought of as an optimization problem, which describes the “best-fit” 

Orientation of a ligand that binds to a particular protein of interest. It is similar to “lock-and-

key”model, where one is interested in finding the correct relative orientation of the “key which 

will open up the “lock”. Thus the protein can be thought of as the “lock” and the ligand can be 

thought of as a “key”. Docking is important as a binding interaction between a small molecule 

ligand and an enzyme protein may result in activation or inhibition of the enzyme. If the protein 

is a receptor, ligand binding may result in agonism or antagonism. Docking is the most 

commonly used in the field of drug design-most drugs are small organic molecules, and docking 

may be applied to: 

 

Hit identification-docking combined with a scoring function can be used to quickly screen large 

databases of potential drugs in silico to identify molecules that are likely to bind to protein or 

target of interest. 

 

Lead optimization-docking can be used to predict in where and in which relative orientation a 

ligand binds to a protein (also referred to as the binding mode or pose).This information may be 

used to design more potent and selective analogs.(Donald et al.,vol1) 

 

PyRx is a Virtual Screening software for Computational Drug Discovery that can be used to 

screen libraries of compounds against potential drug targets. PyRx enables Medicinal Chemists 

to run Virtual Screening form any platform and helps users in every step of this process - from 

data preparation to job submission and analysis of the results 

AutoDock is a suite of automated docking tools. It is designed to predict how small molecules, 

such as substrates or drug candidates, bind to a receptor of known 3D structure. 

 

3.6 Pharmacophore modelling 

The concept of pharmacophore was first introduced in 1990 by Paul Ehrlich, who defined the 

pharmacophore as “a molecular framework that carries (phoros) the essential features 

responsible for a drugs (pharmacon) biological activity”. Ligand-based pharmacophore 

modeling has become a key computational startergy for facilitating drug discovery in the 

absence of a macromolecular target structure. it is usually carried out by extracting common 

chemical features from 3D structures of a set of known ligands representative of essential 

interactions between ligands and a specific macromolecular target. In general,pharmacophore 

generation from multiple ligands (usually called training set compounds ) involves two main 

steps: 



Creating the conformational space for each ligand in the training set to represent conformational 

flexibility of ligands 

Aligning the multiple ligands in the training set and determining the essential common features to 

construct pharmacophore models (Simone, B.2009). 

 

Molecular alignment is the major challenging issue in ligand based pharmacophore modeling. 

The alignment methods can be classified into two categories in terms of their fundamental 

nature: point –based and property-based approaches (Wolber, G.2008). 

The point (in the point-based method) can be further differentiated as atoms, fragments or 

chemical features. In point-based algorithm, pairs of atoms, fragments or chemical feature points 

are usually superimposed using a least square fitting. The biggest limitation of these approaches 

is the need for predefined anchor points because the generation of these points can become 

problematic in the case of dissimilar ligands. 

The property-based algorithms make use of molecular field descriptors,usually represented by set 

of Guassain functions, to generate alignments.The alignment optimization is carried out with 

some varaint of similarity measure of the intermolecular overlap of the Gaussians as the 

objective function. 

Another challenging problem lies in the practical task of proper selection of training set 

compounds .This problem,apparently being simple and non technical,often confuses users,even 

expereinced ones. it has been demonstrated that the type of ligand molecules ,the size of the 

dataset and its chemical diversity affect the final generated pharmacophore model considerably 

(Dror, O. 2006). 

3.7 Quantitative Structure Activity Relationship (QSAR) 

QSAR stands for “quantitative structure-activity relationships”, is a method that relates chemical 

structure to biological or chemical activity using mathematical models . If the activity of a set of 

ligands can be determined, a model can be constructed to describe this relationship. Unlike a 

pharmacophore model, which encodes only the essential features of an active ligand, the QSAR 

model allows one to determine the effect of a certain property on the activity of a molecule. For 

example, the QSAR model may reveal a property to have a highly negative, or alternatively a 

weak positive effect on ligand activity. Such information is not available using a pharmacophore 

model (Perkinson et al., 2003). 

Quantifying the structure and activity of a ligand is important in the modeling process. Structure 

quantification is not a trivial problem, since a structure cannot be represented by a mere value. 

Instead, a set of properties, usually known as the “descriptors”, is computed from the structure 

and used to quantify it. By using structural descriptors as independent variables and activity as a 

dependent variable, a model can be built to describe the relationship between the two. 



 

3.7.1 Building a QSAR Model: 

The process of constructing a QSAR model can be summarized as follows: First, ligands and 

their activities are collected. Descriptors are calculated and selected before a mathematical 

modeling method is chosen and the ligand data are then used to construct the QSAR models. 

After the models are completed, they are tested by internal and external validation procedures. 

Only then can a QSAR model be used in any practical applications, such as predicting the 

activity of a novel compound. As is the case when building a pharmacophore model, the active 

ligand set must be gathered from molecular databases or from literature searches before QSAR 

modeling begins. The process requires not only the collection of ligand structures but also of 

their activities. Generally, IC50s (half maximal inhibitory concentration), EC50s (half maximal 

effective concentration)   and  Ki values (inhibition constant)  are commonly used to quantify 

drug activity. However, the quantification of ligand activity as used in QSAR is not limited to 

pharmacokinetic parameters. Other activity indexes can also be incorporated into model 

depending on the phenomena one wishes to predict. In addition to structure verification as 

described in the section on pharmacophore model construction, ligand activity data should also 

be checked. All activity data should come from the same experimental procedure or assay, and it 

is preferable if the data comes from the same laboratory, and even the same researcher (Yvonne 

et al.,1981) 

 

Before a QSAR model can be built, ligand structure descriptors should be ascertained or 

calculated. Some descriptors obtained directly from data sources or calculated using simple 

arithmetic operations take into account the specific number of atoms, molecular chain length, 

molecular mass, etc. However, other descriptors may require complex computation, for example 

pharmacophore-based descriptors molecular field descriptors, which are derived from the 

interaction of probes and molecules and used in CoMFA and CoMSIA .  It is important that the 

descriptors are related to the biological or chemical activity which the model will be used to 

predict. In other words, if a descriptor is not related to activity, one should avoid incorporating 

the descriptor into the modeling process. 

 

After the activity index (the dependent variable) and descriptors (the independent variables) are 

prepared for each ligand, a variable selection method and a modeling method can be selected, 

and a model is built. The selection process If two descriptors represent a similar biological or 

chemical parameter, one of them should be disregarded. In order to select descriptors, genetic 

algorithms principle component analysis , artificial neural networks  and k-nearest neighbor 

approaches can all be used. If a linear model is assumed, some conventional statistical methods, 

such as the partial least squares method and multiple linear regression   can be used. If a 

nonlinear model is preferred on the other hand, machine learning methods like artificial neural 

networks  or support vector machines can be applied. The main differences among the frequently 

used QSAR algorithms reside in their means of descriptor generation. For example, most QSAR 

algorithms, like CoMFA,CoMSIA use similar linear statistical models to explore the relationship 



between activity and descriptors, which are calculated by different processes. In CoMFA and 

CoMSIA, pre-aligned molecules are put onto a grid, or lattice. The descriptors are calculated by 

the interaction of the molecule and a probe is placed at each intersection of the lattice. The 

differences between CoMFA and CoMSIA are in the use of different probes and interaction-

calculating functions. 

In CoMFA, only probes representing steric and electrostatic interactions can be used. In 

CoMSIA, probes representing hydrophobic and hydrogen bond interactions, in addition to 

CoMFA probes may be selected. In addition, CoMSIA uses a Gaussian-type function for 

calculating prober-molecule interaction. By using such a smooth function, the result value is 

more reasonable than the function used in CoMFA, and defining a cut-off limit to remove invalid 

values is no longer required.. The fit value describes the goodness of alignment between a ligand 

and a pharmacophore model and is obtained from a pharmacophore model generated and 

optimized using known structure and activity data. The model must then be validated before it 

can be used to predict activity. There are some popular methods used to validate a QSAR model  

including internal validation approaches (such as the “leave-one-out” or “leave-n-out” cross 

validation methods , and external validation approaches. In cross validation, one (leave-one-out) 

or more (leave-n-out) ligand of the training set is excluded. The excluded data is predicted by the 

model constructed with reduced training set data. These steps are repeated until all data has been 

excluded and predicted, and the power of a model is determined by the accuracy of prediction. 

External validation is a widely used method, and is considered important in the QSAR building 

pipeline. In external validation, the capability of the model is tested using data which is not 

included in the training set, in contrast to internal validation, which utilizes data taken from the 

training set to validate the model. In most of the studies, both internal and external validations 

are performed to ensure the reliability of the model. After the model has passed these strict 

validation tests, it can be used to predict the activity of novel molecules (John et al., 1983). 

 

3.7.2 Statistical concepts 

 

A QSAR generally takes the form of a linear equation 

Biological Activity = Const + (C1  P1) + (C2  P2) + (C3  P3) + ... 

where the parameters P1 through Pn are computed for each molecule in the series and the 

coefficients C1 through Cn are calculated by fitting variations in the parameters and the 

biological activity 

 

 

a) Standard deviation s: 

The standard deviation of the data, s, shows how far the activity values are spread about their 

average. This value provides an indication of the quality of the guess by showing the amount of 

variability inherent in the data The standard deviation is calculated as shown below 

 

  



 s=√ (compound activity-average activity)
2  

+ (compound activity-average activity)
2
+…….∕  (n-1) 

In the above equation n represents no of compounds. This formula gives how to calculate 

standard deviation 

 

 

b) Correlation coefficient r: 

Variation in the data can be quantified by correlation coefficient r which measures how closely 

the observed data tracks the fitted regression line 

               
          

Where original variance = (compound activity-average activity)
2
+(compound activity-average 

activity……. 

And regression variance = original variance-variance around the line 

 

r
2
= 0 and 1.  r

2
of 0 means that there is no relationship between activity and parameter     

r
2
=1mean there is perfect correlation. 

 

 

c) F statistics: 

While the fit of the data to the regression line is excellent, how can one decide if this correlation 

is based purely on chance 

 

F statistics is calculated as 

                                     
 This value can be checked in statistical table to determine the significance of regression 

equation. 

 

 

                                                                                             

d) Leave one out cross validation q
2
:       

It involves using a single observation from original sample as the validation determinant and 

remaining observation as training data. This is repeated such that each observation in the sample 

is used once as validation data. 

                            

                                   q
2
= (1-∑(Ypredicted-Yactual)

2
/∑(Yactual-Ymea)

2 

 

where Y is the activity.q
2
 should be close to r

2
. 

 



                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 


