А

Major Project Report II

On

DIGITAL WATERMARKING IN VIDEO

Submitted in Partial fulfilment of the requirement

For the award of the degree of

MASTER OF TECHNOLOGY

In

(Signal Processing and Digital Design)

Submitted by

Naved Alam

Roll No. 2k10/SPD/12

Under the Guidance of

Assoc. Prof. Jeebanand Panda

Department of Electronics and Communication Engineering

DEPARTMENT OF ELECTRONICS & COMMUNIATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY BAWANA ROAD, DELHI- 110042 July 2013

DECLARATION BY THE CANDIDATE

July 2013

Date: _____

I hereby declare that the work presented in this dissertation entitled **"Digital watermarking in video"** has been carried out by me under the guidance of **Mr. Jeebanand Panda**, Associate Professor, Department of Electronics & Communication Engineering, Delhi Technological University, Delhi and hereby submitted for the partial fulfillment for the award of degree of Master of Technology in Signal Processing & Digital Design at Electronics & Communication Department, Delhi Technological University, Delhi.

I further undertake that the work embodied in this major project has not been submitted for the award of any other degree elsewhere.

> Naved Alam DTU/M.Tech/180 M.Tech (SP&DD)

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Mr. Jeebanand Panda Associate Professor Electronics & Communication Department Delhi Technological University, Delhi-42

Dated:

ACKNOWLEDGEMENTS

At this point I would like to thank the people that helped me producing this dissertation. First, I thank **Dr. Rajiv Kapoor** Head of Department (Electronics and Communication Engineering, DTU), and **Mr. Jeebanand Panda** for giving me the opportunity to write this dissertation and supporting me along the way. Next, I would like to say thanks to all my seniors and friends for their goodwill and support that helped me a lot in successful completion of this dissertation.

Naved Alam DTU/M.Tech/180 M.Tech (SP&DD)

ABSTRACT

In this era, any type of digital media such as image, text, audio, video All are easily accessible and transferable through the use of high speed internet, as the use of internet is increased in banks, big industries and in government organizations. Security and authenticity is must required, so the need of securing and protecting the multimedia data is also increased. In our thesis work we are proposing a most secure and authentication technique using 1-Level 2-D DWT and 2-level SVD for robust watermarking in video. In this thesis first we are starting from the introduction of watermarking followed by various techniques available in video watermarking. Literature survey of previous research paper based on video watermarking and in next section theory of wavelet and singular value decomposition. DWT and SVD both are mathematical technique. Wavelet is a compression technique in frequency domain which divide the image into low frequency, diagonal frequency and in high frequency band. In our proposed technique we convert a video into frames then after resizing we applied DWT on each frame of the video. Then we applied SVD in diagonal frequency (LH, HL) Sub-band. In watermark image we converted it into GRAY scale from RGB scale then divide it into columns matrix. Frame 1 to 64 and frame 65 to 128 and embed it into host frames of DWT in HL and LH band with some scaling factor C. After embedding the image we again applied SVD to make it more robust and then multiply the S2 matrices with the U1 and V1 matrices of HL and LH band to make inverse SVD then we applied IDWT to get watermarked video after rearranging these frames. For evaluation the watermarking in video we applied attacks on watermarked video such as Gaussian noise attack, Median Filtering attack, Histogram Equalization attack, Contrast adjustment attack, Sharpening attack and rotation attack. After applying these attacks we compute the PSNR and NCC of all attacks and compare the results with the watermarked video without attacks. Which shows this watermarking scheme is more secure and robust.

Keywords-DWT, SVD, ATTACKS, PSNR, NCC.

CONTENTS

Ackn	knowledgement iii		iii
	Abstract	iv	
1	Introduct	ion	1
	1.1 Requi	rements of watermarking	2
	1.2 Princi	ple of watermarking	3
	1.3 Struct	ure of typical watermarking system	3
	1.4 Classi	fication tree of watermarking	5
	1.5 Types	of watermarking	6
	1.5.1	based on detected media signal	6
	1.5.2	based on visibility	б
	1.5.3	based on robustness	7
	1.5.4	based on encoding format	7
	1.6 Appli	cation of watermarking	9
	1.7 Attacl	ks of watermarking	10
	1.8 Challe	enges and limitation	11
2	Technique	es of video watermarking	12
	2.1 Aspec	ets of video watermarking	13
	2.2 Challe	enges in video watermarking	14
	2.3 An ov	verview of video watermarking	14
	2.3.1	spatial domain video watermarking	15
	2.3.2	frequency domain video watermarking	16
	2.3.3	compression based watermarking	20
	2.4 Attack	ks on watermarked video	24
3	Literature survey26		
4 Theory of DWT and SVD		DWT and SVD	59
	4.1 Introd	luction of fourier transform	59

	4.2 History of wavelet	60	
	4.3 Scaling in DWT	61	
	4.4 DWT and filter banks	61	
	4.4.1 multi-resolution analysis and filter bank	61	
	4.4.2 condition for perfect reconstruction		
	4.5 Classification of wavelet	63	
	4.6 Wavelet families		
	4.7 Application of wavelet	65	
	4.8 Singular value decomposition		
5	5 Proposed Algorithm in DWT-SVD		
	5.1 DWT	67	
	5.2 SVD	69	
	5.3 Combination of DWT and SVD	70	
	5.4 Watermark Embedding Process	71	
	5.5 Watermark Extraction Process	74	

5.6	Results and Simulation	75

LIST OF FIGURES

1	Digital watermarking system	3
2	Watermark embedding block	4
3	Watermark extraction block	4
4	Classification tree of watermarking	5
5	Classification of digital watermarking in video	18
6	Definition of DCT region and Quantization	19
7.a	DWT decomposition of image	19
7.b	2-Level DWT	19
8	MPEG GOP Structure	23
9	Watermark Embedding Process in DWT domain	33
10	Embedding Process for 4-Level DWT	44
11	Watermark Embedding order in 3-Level DWT Sub-bands	54
12.a	1-D Bar Code	55
12.b	QR-Bar Code	56
13	Embedding Block Diagram in QR	55
14	Extraction Block Diagram in QR	58
15.a	A Wave	59
15.b	A Wavelet	60
16	Analysis and synthesis Bank in DWT	61
17	Three Level wavelet decomposition tree	62
18	1-Level DWT	72
19	Watermark Embedding Process	73
20	Watermark Extraction Process	74

LIST OF TABLES

1.	Wavelet families and its result	64
2.	Watermarking results after applying attacks	75
3.	Extracted Watermark and its psnr, ncc value after applying attacks	76