
1

Opportunistic and Condition Based Maintenance
Modelling for Availability Analysis of Repairable

Mechanical System

Project Report submitted in partial fulfilment of the requirements for
the award of the degree of

M.Tech
in

Production Engineering
By

Rachna Chawla 2K10/Prd/19

Under the guidance of

Mr. Girish Kumar(Asst. Professor)

Department of Mechanical Engineering

Delhi Technological University, Delhi

July 2013

2

CERTIFICATE

Date:-

This is to certify that report entitled “Opportunistic andCondition Based

Maintenance Modeling for Availability Analysis of a Repairable

Mechanical System” by Ms. Rachna Chawla is the requirement of the

partial fulfillment for the award of Degree of Master of Technology (M.

Tech.) in Production Engineering at Delhi Technological University.

This work was completed under my supervision and guidance. She has

completed her work with utmost sincerity and diligence. The work

embodied in this project has not been submitted for the award of any

other degree to the best of my knowledge.

Mr. Girish Kumar

(Assistant Professor)

Department of Mechanical Engg

DTU, Delhi

3

STUDENT’S DECLARATION

I, Rachna Chawla, hereby certify that the work which is being presented in

the major project-II entitled “Opportunistic and Condition Based

Maintenance Modelling for Availability Analysis of Repairable Mechanical

System”, is submitted, in the partial fulfilment of the requirements for

degree of Master of Technology at Delhi Technological University is an

authentic record of my own work carried under the supervision of Mr. Girish

Kumar. I have not submitted the matter embodied in this seminar for the

award of any other degree or diploma also it has not been directly copied

from any source without giving its proper reference.

Rachna
M.Tech (PRD)

2K11/Prd/19

4

Table of Contents

CERTIFICATE... 2
STUDENT’S DECLARATION ... 3
List of Figures ... 6
List of Tables .. 7
LIST OF SYMBOLS .. 8
ABSTRACT.. 11
CHAPTER-1 INTRODUCTION... 12
CHAPTER 2 - LITERATURE REVIEW... 16
CHAPTER 3 - AVAILABILTY MODELLING TECHNIQUES.................................... 25

3.1 Conventional techniques for reliability and availability modelling.................. 25
3.1.1 Reliability Block Diagrams... 25

3.1.2 Fault Tree Analysis ... 26
3.2 Markov approach .. 29

3.2.1 Two components (Markov Process Approach)... 30
3.2.2 Advantages.. 32
3.2.3 Limitations .. 32

3.3 Monte Carlo Simulation.. 33
CHAPTER 4 - SYSTEM MODELLING ... 35

4.1 Condition based Maintenance Modeling .. 35
4.1.1 DEGRADATION ... 35
4.1.2 INSPECTION ... 35
4.1.3 CONDITION BASED MAINTENANCE.. 36
4.1.4 RANDOM FAILURE... 38
4.1.5 SYSTEM MODEL.. 38

4.2 System Model for Opportunistic maintenance ... 39
4.2.1 System states for two components in series.. 40
4.2.2 PERFECT REPAIR .. 42
4.2.3 Imperfect Repair ... 45
4.2.4 Minimal Repair ... 48

CHAPTER-5 SOLUTION OF SYSTEM MODEL.. 51
AND RESULT ANALYSIS... 51

5.1 Equation for Markov Analysis of CBM Model .. 51
5.2 Equation for Markov Analysis of OM Model... 53

5.2.1 Perfect repair without OM .. 53
5.2.2 Perfect repair with OM ... 54
5.2.3 Imperfect repair without OM.. 55
5.2.4 Imperfect repair with OM ... 56
5.2.5 Minimal repair without OM.. 57
5.2.6 Minimal repair with OM... 58

5.3 Simulation Algorithm of CBM Model.. 59
5.4 Simulation Algorithm of OM Model .. 63
5.5 Sensitivity Analysis of CBM Model... 67
5.6 Comparison of Result for OM Model... 72

5.6.1 RESULT DISCUSSION... 78

5

CHAPTER-6 CONCLUSION AND SCOPE FOR FUTURE WORK............................. 79
6.1 CONCLUSION... 79
6.2 FUTURE SCOPE OF WORK .. 80

REFERENCES ... 81
APPENDIX... 85

6

List of Figures

Figure 1 RBD of 2 component parallel.. 26
Figure 2 Symbols commonly used in diagramming a fault tree analysis 28
Figure 3 Transformation of two element series reliability block diagram to Fault tree
logic diagram .. 29
Figure 4 RBD of 2 components in parallel .. 30
Figure 5 Markov model of two components in parallel... 31
Figure 6 Multi State degradation ... 35
Figure 7 Periodic Inspection at every stage. ... 36
Figure 8 Condition based maintenance... 37
Figure 9 Random failure ... 38
Figure 10 System Model... 39
Figure 11 Series system .. 39
Figure 12 Four State system .. 40
Figure 13 Corrective Maintenance (Perfect repair) without opportunistic maintenance
model... 43
Figure 14 Corrective maintenance (Perfect repair) with opportunistic maintenance model
... 44
Figure 15 Corrective maintenance (Imperfect repair) without opportunistic maintenance
model... 46
Figure 16 Corrective Maintenance (Imperfect repair) with opportunistic maintenance
model... 47
Figure 17 Corrective maintenance (Minimal repair) without opportunistic maintenance
model... 49
Figure 18 Corrective maintenance (Minimal repair) with opportunistic maintenance
model... 50
Figure 19 Inspection Interval for I1. ... 69
Figure 20 Inspection Interval for I2. ... 70
Figure 21 Inspection Interval for I3. .. 71
Figure 22 Availability for Perfect Repair without OM.. 73
Figure 23 Availability for Perfect Repair with OM... 73
Figure 24 Availability for Imperfect Repair without OM ... 74
Figure 25 Availability for Imperfect Repair with OM... 74
Figure 26 Availability for Minimal Repair without OM ... 75
Figure 27 Availability for Minimal Repair with OM .. 75
Figure 28 Comparison of Availability Values for Perfect Repair with and without OM 76
Figure 29 Comparison of Availability Values for Imperfect Repair with and without OM
... 76
Figure 30 Comparison of Availability Values for Minimal Repair with and without OM
... 77

7

List of Tables

Table 1 System States ... 41
Table 2 CBM Distribution parameters for failure/Repair/Inspection Interval Transition of
Centrifugal Pump(Source of Data – Baringer.com) ... 52
Table 3 Sensitivity analysis for system availability varying inspection interval for
degradation stage 1. .. 68
Table 4 Sensitivity analysis for system availability varying inspection interval for
degradation stage 2. .. 70
Table 5 Sensitivity analysis for system availability varying inspection interval for
degradation stage 3. .. 71
Table 6 Results for availability .. 72

8

LIST OF SYMBOLS

S.no. Symbols Description

1 ƛ Denotes the failure rate; the rate at which a system fails

2 µ 24Denotes the rate of repair; the rate at which the system is being
repaired.

3 λD1 Initial state of the system where health is at its best

4 λD2 The minor degraded state to which our system goes after some use.

5 λD3 The major degraded state to wehich our system goes after prolonged use.

6 λFR The state of Random failure where the system goes after sudden adverse
situations viz. mishandling ,natural disasters.

7 λI1 State of inspection in which the components goes from the state D1

8 λI2 State of inspection in which the components goes from the state D2

9 λI3 State of inspection in which the components goes from the state D3

10 λM1 The state of Minor repair where the system goes from the state D1; if
found faulty after inspection

11 λM2 The state of Minor repair where the system goes from the state D2; if
found faulty after inspection

12 λMM2 The state of Major repair where the system goes from the state D2; if
found faulty after inspection state I2

13 λM3 The state of Minor repair where the system goes from the state D3; if
found faulty after inspection

9

14 λIM3 The state of Imperfect Repair where the system goes from the state D3;
if found faiulty after inspection state I3

15 λMM3 The state of Major repair where the system goes from the state D3; if
found faulty after inspection

16 λD1D2 Denotes the rate at which the system will go from D1 to D2

17 λD2D3 Denotes the rate at which the system will go from D2 to D3

18 λD1I1 Denotes the rate at which the system will go from D1 to i1

19 λI1M1 Denotes the rate at which the system will go from I1 to M1

20 λD2I2 Denotes the rate at which the system will go from D2 to I2

21 λI2M2 Denotes the rate at which the system will go from I2 to M2

22 λI2MM2 Denotes the rate at which the system will go from I2 to MM2

23 λD3I3 Denotes the rate at which the system will go from D3 to I3

24 λI3M3 Denotes the rate at which the system will go from I3 to M3

25 λI3MM3 Denotes the rate at which the system will go from I3 to MM3

26 λI3IM3 Denotes the rate at which the system will go from I3 to IM3

27 λD1FR Denotes the rate at which the system will go from D1 to FR

10

28 λD2FR Denotes the rate at which the system will go from D2 to FR

29 λD3FR Denotes the rate at which the system will go from D3 to FR

30 µI1D1 Denotes the rate at which the system will revert back t ostate D1 after
inspection at I1; as no repair work is needed

31 µI2D2 Denotes the rate at which the system will revert back to state D2 after
inspection at I2; as no repair work is needed

31 µI3D3 Denotes the rate at which the system will revert back to state D3 after
inspection at I3; as no repair work is needed

33 µM1D1 Denotes the rate at which the system will be restored from the repair
state M1 to state D1

34 µM2D2 Denotes the rate at which the system will be restored from the repair
state M2 to state D2

35 µMM2D1 Denotes the rate at which the system will be restored from the repair
state MM2 to state D1

36 µM3D3 Denotes the rate at which the system will be restored from the repair
state M3 to state D3

37 µIM3D2 Denotes the rate at which the system will be restored from the repair
state IM3 to state D2

38 µMM3D1 Denotes the rate at which the system will be restored from the repair
state MM3 to state D1

39 µFRD1 Denotes the rate at which the system will be restored from the state of
random failure FR to state D1

11

ABSTRACT

This project deals with opportunistic and condition based maintenance modeling for

availability analysis of repairable mechanical systems using Markov approach. The

conventional techniques such as reliability block diagram, fault tree analysis and

reliability graphs are no more applicable when repairs and other dependencies are

incorporated in the model. Therefore, the Markov approach is selected since it is capable

of modeling dependencies. Most of the mechanical systems deteriorate gradually before

they fail catastrophically. Availability modeling with binary state doesn’t give realistic

results. So, it would be more appropriate if multi state degradation is considered.

Opportunistic Maintenance models are developed with corrective maintenance, combined

with condition based opportunistic maintenance. Models with three types of repair such

as Perfect, Imperfect and Minimal are developed with and without opportunistic

Maintenance.

The Markov based condition based model is also developed for availability analysis.

Aspects such as multi state degradation, random failures, periodic condition monitoring

and repair actions such as ‘no repair’, ‘minimal repair’, ’perfect repair’ and ‘imperfect

repair’ are considered for modeling.

The solutions of the models are obtained analytically by solving system of ordinary

differential equations by Ranga-Kutta method using MATLAB software and validated by

Monte Carlo Simulation. The proposed methodology is demonstrated for repairable

mechanical systems. The benefits of opportunistic maintenance are quantified in terms of

the increased system availability. In condition based maintenance model the condition

monitoring interval is determined for maximizing the system availability. The proposed

methodology is helpful for maintenance engineers in deciding suitable maintenance and

replacement policies.

12

CHAPTER-1 INTRODUCTION
Modern engineering systems, like process and energy systems, transport systems,

offshore structures, bridges, pipelines are designed to ensure successful operation

throughout the anticipated service life, in compliance with given safety requirements

related to the risk posed to the personnel, the public and the environment. Unfortunately,

the threat of deteriorating processes is always present, so that it is necessary to install

proper maintenance measures to control the development of deterioration and ensure the

performance of the system throughout its service life. This requires decisions on what to

inspect and maintain, how to inspect and maintain, and when to inspect and maintain.

These decisions are to be taken so as to achieve the maximum benefit from the control of

the degradation process while minimizing the impact on the operation of the system and

other economical and safety consequences.

Engineers are always on the look out for ways of reducing system down time and

increasing availability, without compromising on required level of system reliability. The

ultimate objective of any maintenance regime is to maintain the system functionality to

the maximum extent possible with optimum tradeoffs between the down times and cost

of maintenance, avoiding any hazardous failures. Opportunistic maintenance works out to

be the perfect remedy, which utilizes the opportunity of system shutdown or module

dismantle to perform any maintenance required in the immediate future and saves a

substantial amount of system down-time.

A system of components working in a random environment is subjected to wear and

damage over time and may fail unexpectedly. The components are replaced or repaired

upon failure, and such unpleasant events of failure are at the same time also considered in

practice as opportunities for preventive maintenance on other components.

Opportunistic maintenance basically refers to the scheme in which preventive

maintenance is carried out at opportunities, either by choice or based on the physical

condition of the system. In this paper, we focus on the situation in which the

opportunities for preventive maintenance are generated by the failure epochs of

13

individual components. At each failure epoch, the failed components are correctively

repaired and other components that are still operational are also preventively serviced so

that all the components are maintained and restored to certain conditions. An advantage

of this opportunistic maintenance is that corrective repair combined with preventive

repair can be used to save set-up costs. Note that by combining both types of repair, one

may not know in advance which repair actions should be taken, and thus sacrifices the

plannable feature of preventive maintenance. However, there are many situations in

which opportunistic maintenance is effective. For example, when corrective repair on

some components requires dismantling of the entire system, a corrective repair on these

components combined with preventive repair on other or neighbouring components might

be worthwhile. Another instance is when a certain corrective repair on failed components

can be delayed until the next scheduled preventive maintenance.

The earliest maintenance technique is basically breakdown maintenance (also called

unplanned maintenance, or run-to-failure maintenance), which takes place only at

breakdowns. A later maintenance technique is time-based preventive maintenance (also

called planned maintenance), which sets a periodic interval to perform preventive

maintenance regardless of the health status of a physical asset. With the rapid

development of modern technology, products have become more and more complex

while better quality and higher reliability are required. This makes the cost of preventive

maintenance higher and higher. Eventually, preventive maintenance has become a major

expense of many industrial companies. Therefore, more efficient maintenance approaches

such as condition-based maintenance (CBM) are being implemented to handle the

situation.

CBM is a maintenance program that recommends maintenance actions based on the

information collected through condition monitoring. CBM attempts to avoid unnecessary

maintenance tasks by taking maintenance actions only when there is evidence of

abnormal behaviors of a physical asset. A CBM program, if properly established and

effectively implemented, can significantly reduce maintenance cost by reducing the

number of unnecessary scheduled preventive maintenance operations.

A CBM program consists of three key steps (see Fig. 1):

14

∑ Data acquisition step (information collecting), to obtain data relevant to system

health.

∑ Data processing step (information handling), to handle and analyse the data or

signals collected in step 1 for better understanding and interpretation of the data.

∑ Maintenance decision-making step (decision-making), to recommend efficient

maintenance policies.

Fig. 1.1. Three steps in a CBM program.

Various conventional techniques are available for reliability and availability analysis like

Reliability Block Diagram (RBD), Fault tree Analysis (FTA) and Reliability Graph (RG).

RBDs help in clearly understanding the functions of each component, while the Fault tree

Analysis technique determines, in a logical way, which failure modes at one level

produce critical failures at a higher level in the system. Although these techniques are

simple and exact but they are essentially static in nature. Complex systems incorporating

repair sequences and non exponential probability distributions cannot be realistically

solved with these techniques.

Markov approach is advancement to such techniques as it provides the capability to

introduce repair in the system. Markov approach encompasses mainly two concepts. The

“state” of the system and the “transitions” in the system from operating to non-operating

and vice versa.

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational

algorithms that rely on repeated random sampling to obtain numerical results; i.e., by

15

running simulations many times over in order to calculate those same probabilities

heuristically just like actually playing and recording your results in a real casino

situation: hence the name. They are often used in physical and mathematical problems

and are most suited to be applied when it is impossible to obtain a closed-form expression

or infeasible to apply a deterministic algorithm. Monte Carlo methods are mainly used in

three distinct problems: optimization, numerical integration and generation of samples

from a probability distribution.

CHAPTER II : Literature Survey

CHAPTER III : Availability modelling techniques

CHAPTER IV: System Modelling

CHAPTER V: Solution of System Model and Result Analysis

CHAPTER VI: Conclusion and Scope for future

16

CHAPTER 2 - LITERATURE REVIEW

Opportunistic maintenance has been first studied in Radner and Jorgenson 1963, and in

McCall 1963. Since then, many extensions of opportunistic maintenance have been

introduced and studied in the literature. Berg (1976) studies a system with two identical

components with exponential distributed lifetimes, for which the non-failed component

as well as the failed component are both replaced by a new one if the age of the non-

failed component exceeds a threshold. Zheng and Fard (1991) examine an opportunistic

maintenance policy based on failure rate tolerance for a system with k different types of

components.

Pham and Wang (2000) propose two new opportunistic maintenance policies for a k-out-

of-n system. These and other opportunistic maintenance models have been summarized in

Dekker, van der Schouten and Wildeman (1997) and in Wang (2002). All these models,

however, address the optimization issues for components operating independently. The

thrust of the maintenance model introduced in this study is the general opportunistic

repairs implemented at correlated failures for a system of components that are

stochastically dependent.

Karin S. de Smidt-Destombes, Matthieu C. van der Heijden, Aart van Harten (2004)

published a paper on “On the availability of a k-out-of-N system given limited spares and

repair capacity under a condition based maintenance strategy”.

This paper considers a k-out-of-N system with identical, repairable components.

Maintenance is initiated when the number of failed components exceeds some critical

level. After a possible set-up time, all failed components are replaced by spares. A multi-

server repair shop repairs the failed components. The system availability depends on the

spare part stock level, the maintenance policy and the repair capacity. They presented a

mathematical model supporting the trade-off between these three parameters. Also, they

presented both an exact and an approximate approach to analyse our model. In some

17

numerical experiments, we provide insight on the impact of repair capacity, number of

spares and preventive maintenance policy on the availability.

Castanier, Grall, Be´renguer (2005) published a paper on “A condition-based

maintenance policy with non-periodic inspections for a two-unit series system”.

This paper considers a condition-based maintenance policy for a two-unit deteriorating

system. Each unit is subject to gradual deterioration and is monitored by sequential non-

periodic inspections. It can be maintained by good as new preventive or corrective

replacements. Every inspection or replacement entails a set-up cost and a component-

specific unit cost but if actions on the two components are combined, the set-up cost is

charged only once. A parametric maintenance decision framework is proposed to

coordinate inspection/replacement of the two components and minimize the long-run

maintenance cost of the system. A stochastic model is developed on the basis of the semi-

regenerative properties of the maintained system state and the associated cost model is

used to assess and optimize the performance of the maintenance model. Numerical

experiments emphasize the interest of a control of the operation groupings.

Andrew K.S. Jardine, Daming Lin, Dragan Banjevic (2006) published a paper on “A

review on machinery diagnostics and prognostics implementing condition-based

maintenance”.

This paper attempts to summarize and review the recent research and developments in

diagnostics and prognostics of mechanical systems implementing CBM with emphasis on

models, algorithms and technologies for data processing and maintenance decision-

making. Diagnostics and prognostics are two important aspects of a CBM program.

Research in the CBM area grows rapidly. Realizing the increasing trend of using multiple

sensors in condition monitoring, the authors also discuss different techniques for multiple

sensor data fusion. The paper concludes with a brief discussion on current practices and

possible future trends of CBM.

Romulo I. Zequeira, Jose E. Valdes, Christophe Berenguer (2007) presented the study of

the determination of the optimal maintenance policy for a manufacturing facility and the

18

optimal buffer inventory to satisfy the demand during the interruption period due to a

maintenance action. We consider the possibility of imperfect production and that

opportunities for the fabrication of the buffer inventory and opportunities to carry out a

maintenance action to the production facility are random.

Xiaojun Zhou, LifengXi, JayLee (2008) proposed opportunistic preventive maintenance

scheduling for a multi-unit series system based on dynamic programming. It is

understood that for a multi-unit series system, whenever one of the units stops to perform

a preventive maintenance (PM) action, the whole series system must be stopped. At that

time PM opportunities arise for the other units in the system. This paper proposes an

opportunistic PM scheduling algorithm for the multi-unit series system based on dynamic

programming with the integration of the imperfect effect into maintenance actions. An

optimal maintenance practice is determined by maximizing the short-term cumulative

opportunistic maintenance cost savings for the whole system. Matlab is considered for

the optimization which is based on numerical simulation. Numerical examples are given

throughout to show how this approach works. Finally, a comparison between the

proposed PM model and other models is given.

Radouane Laggounea,∗, Alaa Chateauneufb, Djamil Aissania(2009) proposed

Opportunistic policy for optimal preventive maintenance of a multi-component system in

continuous operating units. A solution procedure based on Monte Carlo simulations with

informative search method is proposed and applied to the optimization of preventive

maintenance plan for a hydrogen compressor in an oil refinery.

M. S. Samhouri *, A. Al-Ghandoor, R. H. Fouad, S. M. Alhaj Ali (2009) proposed a

genetic algorithm approach for an intelligent opportunistic maintenance system. The

maintenance regime of complex systems most often consists of a variety of maintenance

strategies, like preventive maintenance, corrective maintenance, condition-based

maintenance and so on. Opportunistic or opportunity-based maintenance (OM) gives the

maintenance staff an opportunity to replace or repair those items, which are found to be

defective or need replacement in the immediate future, during the maintenance of a

19

machine or component. This work presents an intelligent method of how to decide

whether a particular item requires opportunistic maintenance or not, and if so how cost

effective this opportunity-based maintenance will be when compared to a probable future

grounding. This maintenance strategy is considered important when dealing with

complex systems that contain expensive items with hard lives with condition-based

maintenance (CBM) strategies. Genetic algorithms (GA) are employed to decide whether

opportunistic maintenance is cost effective or not.

Yongjin(James)Kwon, RichardChiou, LeonardStepanskı (2009) published a paper on

“Remote, condition-based maintenance for web-enabled robotic system”.

In this paper, mathematical modeling of system availability has been derived in order to

account for other failures that might occur in the subsystems of the robot. Compared to

the schedule- based maintenance strategies, the proposed approach shows great potential

for improving overall production efficiency, while reducing the cost of maintenance. The

current trends in industry include an integration of information and knowledge-base

network with a manufacturing system, which coined a new term, e-manufacturing. From

the perspective of e-manufacturing any production equipment and its control functions do

not exist alone, instead becoming a part of the holistic operation system with distant

monitoring, remote quality control, and fault diagnostic capabilities.

Ling Wang, Jian Chu, Weijie Mao (2009) published a paper entitled as “A condition-

based replacement and spare provisioning policy for deteriorating systems with uncertain

deterioration to failure”.

A new policy, referred to as the condition-based replacement and spare provisioning

policy, is presented for deteriorating systems with a number of identical units. The

deterioration level of each unit in the system can be described by a scalar random

variable, which is continuous and increasing monotonically. Furthermore, the

deterioration level just when the unit failure occurs, termed deterioration to failure, is

uncertain. Therefore, the condition-based reliability is proposed in order to characterize

various and uncertain deterioration levels when unit failure occurs. A simulation model is

20

developed for the system operation under the proposed condition-based replacement and

spare provisioning policy.

Y.G. Li, P. Nilkitsaranont (2009) published a paper on “Gas turbine performance

prognostic for condition-based maintenance”.

This paper describes a prognostic approach to estimate the remaining useful life of gas

turbine engines before their next major overhaul based on historical health information. A

combined regression techniques, including both linear and quadratic models, is proposed

to predict the remaining useful life of gas turbine engines. A statistic ‘‘compatibility

check” is used to determine the transition point from a linear regression to a quadratic

regression. The developed prognostic approach has been applied to a model gas turbine

engine similar to Rolls-Royce industrial gas turbine AVON 1535 implemented with

compressor degradation over time.

Fangji Wu, TianyiWang, JayLee (2010) published a paper on “An online adaptive

condition-based maintenance method for mechanical systems”.

This paper proposes an online adaptive condition-based maintenance method with pattern

discovery and fault learning capabilities for mechanical systems. The method is mainly

based on a subtype of neural network techniques called self-organizing map (SOM). It is

able to reduce local clusters from the same pattern and optimize the SOM architecture to

further decrease the calculation cost in matching patterns in the neuron fitting process.

Moreover, distance analysis and statistical pattern recognition (SPR) on neurons of the

SOM are combined to establish rules and criteria for conducting and controlling the

discovery and learning process so continuous process as purging prototypes on the map

can be avoided.

Zhigang Tian, Tongdan Jin, Bairong Wu, Fangfang Ding (2011) published a paper on”

Condition based maintenance optimization for wind power generation systems under

continuous monitoring”. In this paper, they utilized condition monitoring information

collected from wind turbine components, condition based maintenance (CBM) strategy

can be used to reduce the operation and maintenance costs of wind power generation

21

systems. The existing CBM methods for wind power generation systems deal with wind

turbine components separately, that is, maintenance decisions are made on individual

components, rather than the whole system. However, a wind farm generally consists of

multiple wind turbines, and each wind turbine has multiple components including main

bearing, gearbox, generator, etc. There are economic dependencies among wind turbines

and their components. The proposed maintenance policy is defined by two failure

probability threshold values at the wind turbine level.

Zhigang Tian, Haitao Liao (2011) published a paper on “Condition based maintenance

optimization for multi-component systems using proportional hazards model”.

In this paper they presented the objective of condition based maintenance (CBM) is

typically to determine an optimal maintenance policy to minimize the overall

maintenance cost based on condition monitoring information. The existing work reported

in the literature only focuses on determining the optimal CBM policy for a single unit. In

this paper, we investigate CBM of multi-component systems, where economic

dependency exists among different components subject to condition monitoring. The

fixed preventive replacement cost, such as sending a maintenance team to the site, is

incurred once a preventive replacement is performed on one component.

Fangfang Ding, Zhigang Tian*(2012) proposed opportunistic maintenance policies which

are defined by the component’s age threshold values, and different imperfect

maintenance thresholds are introduced for failure turbines and working turbines. Three

types of preventive maintenance actions are considered, including perfect, imperfect and

two-level action. Simulation methods are developed to evaluate the costs of proposed

opportunistic maintenance policies. Numerical examples are provided to illustrate the

proposed approaches. Comparative study with the widely used corrective maintenance

policy demonstrates the advantage of the proposed opportunistic maintenance methods in

significantly reducing the maintenance cost.

Sharareh Taghipour ⇑, Dragan Banjevic (2012) proposed two optimization models for

the periodic inspection of a system with ‘‘hard-type’’ and ‘‘soft-type’’ components.

22

Given that the failures of hard-type components are self-announcing, the component is

instantly repaired or replaced, but the failures of soft-type components can only be

detected at inspections. A system can operate with a soft failure, but its performance may

be reduced. Although a system may be periodically inspected, a hard failure creates an

opportunity for additional inspection (opportunistic inspection) of all soft-type

components. Two optimization models are discussed in the paper. In the first, soft-type

components undergo both periodic and opportunistic inspections to detect possible

failures. In the second, hard-type components undergo periodic inspections and are

preventively replaced depending on their condition at inspection. Soft-type and hard-type

components are either minimally repaired or replaced when they fail. Minimal repair or

replacement depends on the state of a component at failure; this, in turn, depends on its

age. The paper formulates objective functions for the two models and derives recursive

equations for their required expected values. It develops a simulation algorithm to

calculate these expected values for a complex model.

Rosmaini Ahmad, Shahrul Kamaruddin (2012) published a paper on “An overview of

time-based and condition-based maintenance in industrial application”.

This paper presents an overview of two maintenance techniques widely discussed in the

literature: time-based maintenance (TBM) and condition-based maintenance (CBM). The

paper discusses how the TBM and CBM techniques work toward maintenance decision

making. Recent research articles covering the application of each technique are reviewed.

The paper then compares the challenges of implementing each technique from a practical

point of view, focusing on the issues of required data determination and collection, data

analysis/modelling, and decision making.

Cui Yanbin, Cui Bo (2012) published a paper on “The Condition Based Maintenance

Evaluation Model on On-post Vacuum Circuit Breaker”.

The safe operation of power supply equipments is closely related to the security of

electric network. The planned maintenance of existing power equipments cannot meet the

needs of development of power system. To solve the problems in maintenance for

vacuum circuit breaker, this paper build the equipment condition and risk assessment

23

index system and bring out the outdoor on-post vacuum circuit breaker condition based

maintenance evaluation model which based on Rough Set and Support Vector Machine

according to the real condition. To prove the high accuracy of this method, a research

which about the data of 100 Box-type sub-station in the distributing network of one

power supply company is conducted in this paper.

Qingfeng Wang, Jinji Gao(2012) published a paper on “Research and application of risk

and condition based maintenance task optimization technology in an oil transfer station”.

This paper carries out a research on Risk and Condition Based Maintenance (RCBM)

task optimization technology. Utilizing the internet of things (IOT), real-time database,

signal-processing, Gray Neural Network, probability statistical analysis and service

oriented architecture (SOA) technology, a Risk and Condition Based Indicator Decision-

making System (RCBIDS) is built. RCBIDS integrates RCM, condition monitoring

system (CMS), key performance management module, file management module, fault

and defect management module, maintenance management module together, which aims

to realize remote condition monitoring, maintenance technical support services (TSS),

quantitative maintenance decision-making, and to ensure the Reliability, Availability,

Maintainability and Safety (RAMS).

Chiming Guoa, Wenbin Wang, Bo Guoa, Xiaosheng Sic(2012) published a paper on “A

Maintenance Optimization Model for Mission-Oriented Systems Based on Wiener

Degradation”.

This paper deals with mission-oriented systems subject to gradual degradation modeled

by a Wiener stochastic process within the context of CBM. For a mission-oriented

system, the mission usually has constraints on availability/reliability, the opportunity for

maintenance actions, and the monitoring type (continuous or discrete). Furthermore, in

practice, a mission-oriented system may undertake some preventive maintenance (PM)

and after such PM, the system may return to an intermediate state between an as-good-as

new state and an as-bad-as old state, i.e. the PM is not perfect and only partially restores

the system.

24

CHAPTER III : Availability modelling techniques

CHAPTER IV: System Modelling

CHAPTER V: Solution of System Models and Result Analysis

CHAPTER VI: Conclusion and Scope for future

25

CHAPTER 3 - AVAILABILTY MODELLING
TECHNIQUES

In this chapter reliability and availability modelling and analysis are described. The

conventional techniques such as RBD, FTA etc., with their limitations are discussed.

Finally the modern technique such as Markov approach is elaborated.

3.1 Conventional techniques for reliability and availability
modelling

The conventional methods used in reliability modelling are:-

∑ Reliability block diagrams

∑ Fault tree analysis

Other methods are also there which are not discussed here such as Boolean truth table

and reliability graphs.

3.1.1 Reliability Block Diagrams
A reliability block diagram shows the interdependencies among all elements (subsystems,

equipments, etc.) or functional groups of the item for item success in each service use

event. The blocks in the diagram follow a logical order which relates the sequence of

events during the prescribed operation of the item. The reliability block diagram is drawn

so that each element or function employed in the item can be identified. Each block of the

reliability block diagram represents one element of function contained in the item. All

blocks are configured in series, parallel, standby, or combinations thereof as appropriate.

Refer fig 3.1.

26

Figure 1 RBD of 2 component parallel.

The following general assumptions apply to reliability block diagrams:

∑ Blocks denote elements or functions of the items that are considered when

evaluating reliability and which have reliability values associated with them.

∑ Lines connecting blocks have no reliability values.

∑ All inputs to the item are within specification limits.

∑ Failure of any element or function denoted by a block in the diagram will cause

failure of the entire item, except where alternative modes of operation may be

present; i.e., redundant units or paths.

∑ Each element or function denoted by a block in the diagram is independent with

regard to probability of failure from all other blocks.

3.1.2 Fault Tree Analysis
The "fault tree" analysis (FTA) technique is a method for block diagramming constituting

lower level elements. It determines, in a logical way, which failure modes at one level

produce critical failures at a higher level in the system. The fault tree provides a concise

and orderly description of the various combinations of possible occurrences within the

system which can result in a predetermined critical output event. Fault tree methods can

be applied beginning in the early design phase, and progressively refined and updated to

track the probability of an undesirable event as the design evolves. Initial fault tree

diagrams might represent functional blocks (e.g., units, equipments, etc.), becoming more

definitive at lower levels as the design materializes in the form of specific parts and

materials.

Results of the analysis are useful in the following applications:

27

∑ Allocation of critical failure mode probabilities among lower levels of the system

breakdown.

∑ Comparison of alternative design configurations from a safety point of view.

∑ Identification of critical fault paths and design weaknesses for corrective action.

∑ Evaluation of alternative corrective action approaches.

∑ Development of operational, test, and maintenance procedures to recognize and

accommodate unavoidable critical failure modes

28

Figure 2 Symbols commonly used in diagramming a fault tree analysis

29

Figure 3 Transformation of two element series reliability block diagram to Fault tree
logic diagram

3.2 Markov approach
A Markov process is a mathematical model that is useful in the study of the availability

of complex systems. The basic concepts of the Markov process are those of “state” of the

system (e.g., operating, non operating) and state “transition” (from operating to non

operating due to failure, or from non operating to operating due to repair).. Any Markov

process is defined by a set of probabilities pij which define the probability of transition

from any state i to any state j. One of the most important features of any Markov model is

that the transition probability pij depends only on states i and j and is completely

independent of all past states except the last one, state i; also pij does not change with

time.

In system availability modelling utilizing the Markov process approach, the following

additional assumptions are made:

∑ The conditional probability of a failure occurring in time (t, t + dt) is λ dt.

∑ The conditional probability of a repair occurring in time (t, t + dt) is µ dt.

30

∑ Each failure or repair occurrence is independent of all other occurrences.

∑ λ (failure rate) and µ (repair rate) are constant.

Let us now apply the Markov process approach to the availability analysis of a single unit

with failure rate λ and repair rate µ.

3.2.1 Two components (Markov Process Approach)
The Markov graph for two components is shown:

Figure 4 RBD of 2 components in parallel

31

Figure 5 Markov model of two components in parallel

Where:

S1 = OO = both the components are operating

S2 = FO = first unit has failed and second is operating

S3 = OF= first unit is operating and second has failed

S4= FF= both the components have failed

λ = failure rate

µ = repair rate

The differential equations involved are:-

-(λ1 + λ2)P1 (t) + µ1 P2 (t) + µ2 P3 (t)

32

-(µ1 + λ2)P2 (t) + λ1 P4 (t) + µ2 P4 (t)

-(λ1 + µ2)P3 (t) + λ2 P1 (t) + µ1 P4 (t)

-(µ1+ µ2)P4 (t) + λ1 P3 (t) + λ2 P2 (t)

Analytically, these differential equations can be solved by Ranga-Kutta method or

Laplace transformation. However, we have solved by Ranga-Kutta using MATLAB and

the availability of the system is obtained by adding the operating states.

3.2.2 Advantages
Markov models offer significant advantages over other reliability modelling techniques,

some of these advantages are:

∑ Simplistic modelling approach: the models are simple to generate although they

do require a more complicated mathematical approach.

∑ Redundancy management techniques: system reconfiguration required by failure

is easily incorporated in the model.

∑ Coverage: covered and uncovered failures of components are mutually exclusive

events. These are not easily modelled using classical techniques, but are readily

handled by the Markov mathematics.

∑ Complex systems: many simplifying techniques exist which allow the modelling

of complex systems.

∑ Sequenced events: often the analyst is interested in computing the probability of

an event resulting from a sequence of sub events. while these types of problems

do not lend themselves well to classical techniques, they are easily handled using

Markov modelling.

3.2.3 Limitations
The major drawback of Markov methods is the explosion of the number of states as the

size of the system increases. The resulting diagrams for large systems are generally

extremely large and complicated, difficult to construct and computationally extensive.

33

3.3 Monte Carlo Simulation
Monte Carlo (MC) simulation is a quantitative risk analysis technique in which uncertain

inputs in a model (for example an Excel spreadsheet) are represented by probability

distributions (instead of by one value such as the most likely value). By letting your

computer recalculate your model over and over again (for example 10,000 times) and

each time using different randomly selected sets of values from the (input) probability

distributions, the computer is using all valid combinations of possible input to simulate

all possible outcomes. The results of a MC simulation are distributions of possible

outcomes (rather than the one predicted outcome you get from a deterministic model);

that is, the range of possible outcomes that could occur and the likelihood of any outcome

occurring. This is like running hundreds or thousands of "What-if" analyzes on your

model, all in one go, but with the added advantage that the ’what-if’ scenarios are

generated with a frequency proportional to the probability we think they have of

occurring.

The most important advantages of Monte Carlo include:

n The probability distributions within the model can be easily and flexibly used,

without the need to approximate them;

n Correlations and other relations and dependencies (such as ”if” statements) can be

modeled without difficulty;

n The level of mathematics required is quite basic;

n The behavior of and changes to the model can be investigated with great ease and

speed.

An often claimed disadvantage of MC Simulation is that it is an approximate technique.

However, any degree of precision can be achieved (at least in theory) by simply

increasing the number of iterations, so the real limitations of MC simulation are:

∑ The number of random numbers that can be produced from a random number

generating algorithm and;

34

∑ The time a computer needs to generate the iterations (and the time the risk analyst

has).

35

CHAPTER 4 - SYSTEM MODELLING

In this chapter condition based maintenance model and opportunistic maintenance models

are developed for system availability analysis.

4.1 Condition based Maintenance Modeling
For Condition based Modeling aspects such as degradation, Random failure, Periodic

inspection and repair actions such as ‘no repair’, ‘minimal repair’, ‘ imperfect repair’, and

‘perfect repair’ are considered.

4.1.1 DEGRADATION
Whenever a system or a model is in working it degrades with time. The degradation is

gradual not sudden. We are trying to study a mode that follows this kind of failure.

In degradation modeling we study a system that is prone to degradation and mostly we

study the systems where reliability is critical. As shown in the figure is such a system.

There are four stages shown. Fresh component is given the stage D1, then with time it

degrades to a stage D2 and so on and finally it goes to a failure state. We will be studying

the degradation rate from one stage to the other for all the stages.

Figure 6 Multi State degradation

4.1.2 INSPECTION
Inspection is a way to see the health of the system and deciding whether the system

requires repair/maintenance or not. Now there are two types of inspections:

36

Figure 7 Periodic Inspection at every stage.

Online: In this we need not to stop the system for inspection so the availability of the

system is more, and

Offline: In this we need to stop the system for inspection.

As described in the above figure we take the system further and do periodic inspections at

each state defined. These inspections help us in maintain the system by doing timely

repairs and maintenance.

4.1.3 CONDITION BASED MAINTENANCE
Condition based maintenance (CBM), shortly described, is maintenance when need

arises. This maintenance is performed after one or more indicator shows the equipment is

going to fail or that equipment performance is deteriorating.

37

Figure 8 Condition based maintenance
In our system model, we have described three types of maintenance on the basis of the

requirement of the system. The three types of maintenance are: Minor maintenance,

intermediate maintenance and major maintenance.

In stage D1, our system is new, thus , we need not require much maintenance for it.

Therefore we have kept the probability for our system to undergo minor maintenance to

be 0.1 and the probability that system would go back to the stage D1 without any

maintenance to be 0.9.

Similarly in stage D2 as our system is in continuous working state, it deteriorates and

thus its efficiency decreases and the need to repair it or maintain it increases as compared

to the system in stage D1. Due to this reason we have decreased the probability that the

system would go back to stage D2 without any repair from 0.9 to 0.7 and the probability

that the system would require maintenance has been increased from 0.1 to 0.3.

Finally, when our system moves from stage D2 to D3, it deteriorates further giving rise to

the need to repair it in order to increase its availability. Therefore the probability is that

he system requires minor repair or intermediate repair or major repair or no repair has

38

been altered again the probability that the system would require major maintenance has

been changed to 0.2.The probability that the system would require intermediate repair has

been changed to 0.4. The probability that the system would require minor maintenance

has been change to 0.2 and finally the probability that the system would go back to stage

D3 without any repair has been changed to 0.2.

4.1.4 RANDOM FAILURE
Random failure is defined as the situation/Condition in which the system fails due to

some random causes. These random causes can be anything from natural calami8ty to

human error. Random failures can also occur due to voltage fluctuations, manufacturing

defects, problem in system components, etc.

Figure 9 Random failure
Random failure causes the system to go in offline mode thereby bringing its availability

to 0.

4.1.5 SYSTEM MODEL

Considering all system modeling aspects, following model is developed:

39

Figure 10 System Model

4.2 System Model for Opportunistic maintenance

We have considered Motor and Pump in series connection. Time to
failure and time to repair data are tabulated for Motor and Pump from
website (www.baringer.com).

Figure 11 Series system

In multi state degradation, a series of state is assumed in which the
machine would function before finally reaching the failed state, these
states exist between the new state of the machine and the failed state of
the machine.

http://www.baringer.com/

40

For our work we have assumed to have three states of working and one
failed state. Thus making it in a four state system.

Figure 12 Four State system

4.2.1 System states for two components in series

W: Working;
R: Repair,
O: Operable.

41

Table 1 System States

42

4.2.2 PERFECT REPAIR

n To develop the system model with perfect repair, the health state 1,2 and 3 are

considered as working state and Health state 4 is considered as repair state.

n With Corrective Maintenance, component is brought from failed health state ‘4’

to good health state ‘1’ i.e. 4-1

n With Corrective as well as Opportunistic Maintenance component is brought from

failed health state ‘4’ to good health state ‘1’, from state ‘3’ to good health state

‘1’ and from state ‘2’ to ‘1’ i.e. 4-1, 3-1 and 2-1.

43

Figure 13 Corrective Maintenance (Perfect repair) without opportunistic maintenance
model

44

Figure 14 Corrective maintenance (Perfect repair) with opportunistic maintenance model

45

4.2.3 Imperfect Repair

n In this model, it is assumed that component is brought from failed health state ‘4’

to state ‘2’ with corrective maintenance.

n With Corrective as well as Opportunistic Maintenance component is brought from

failed health state ‘4’ to good health state ‘2’, from state ‘3’ to good health state

‘1’ and from state ‘2’ to ‘1’ i.e. 4-2, 3-1 and 2-1.

46

n

Figure 15 Corrective maintenance (Imperfect repair) without opportunistic maintenance
model

47

Figure 16 Corrective Maintenance (Imperfect repair) with opportunistic maintenance
model

48

4.2.4 Minimal Repair

n In this model, it is assumed that component is brought from failed health state ‘4’

to state ‘3’ with corrective maintenance.

n With Corrective as well as Opportunistic Maintenance component is brought from

failed health state ‘4’ to good health state ‘2’, from state ‘3’ to good health state

‘1’ and from state ‘2’ to ‘1’ i.e. 4-2, 3-2 and 2-1.

49

Figure 17 Corrective maintenance (Minimal repair) without opportunistic maintenance
model

50

Figure 18 Corrective maintenance (Minimal repair) with opportunistic maintenance
model

51

CHAPTER-5 SOLUTION OF SYSTEM MODEL

AND RESULT ANALYSIS

After developing the model as above, we will now obtain the solution using analytical

approach (Markov Analysis).

5.1 Equation for Markov Analysis of CBM Model

1. Pd1 = -λd1d2Pd1(t) –λd1i1Pd1(t)- λd1frPd1(t)+µi1d1Pi1(t) + µm1d1Pm1(t) +
µmm2d1Pmm2(t) + µmm3Pmm3(t) +µfrd1Pfr(t)

2. Pd2 = λd1d1Pd1(t) –λd2d3Pd2(t)- λd2frPd2(t)- λd2i2Pd2(t) + µi2d2Pi2(t) +
µm2d2Pm2(t) + µim3d2Pim3(t)

3. Pd3 = λd2d3Pd2(t) –λd3i3Pd3(t)- λd3frPd3(t)+µm3d3Pm3(t) + µi3d3Pi3(t)

4. PI1 = λd1i1Pd1(t) –λi1m1Pi1(t)-µi1d1Pi1(t).

5. PI2 = λ2i2Pd2(t) –λi2m2Pi2(t)- λi2mm2Pi2(t) - µi2d2Pi2(t)

6. PI3 = λd3i3Pd3(t) –λi3m3Pi3(t)- λi3mm3Pi3(t) - λi3m3Pi3(t) - µi3d3Pi3(t)

7. PFr = λd1frPd1(t) +ëdfrPd2(t) + ëd3frPd3(t)-µfrd1Pfr(t)

8. Pm1 = λi1m1Pi1(t) – µm1d1Pm1(t)

9. Pm2 = λi2m2Pi2(t) – µm2d2Pm2(t)

10. Pmm2 = λi2mm2Pi2(t) –µmm2d1Pmm2(t)

11. Pm3 = λi3m3Pi3(t) – µm3d3Pm3(t)

12. = λi3m3Pi3(t) – µim3Pi3(t)

13. Pmm3 = λi3mm3Pi3(t) – µmm3d1Pmm3(t)

52

Table 2 CBM Distribution parameters for failure/Repair/Inspection Interval Transition of
Centrifugal Pump(Source of Data – Baringer.com)

S.no. Transition PARAMETER VALUE
1 D1D2 λD1D2 0.00025
2 D2D3 λD2D3 0.00067
3 D1I1 λD1I1 0.004
4 I1M1 ΛI1M1 0.5
5 D2I2 λD2I2 0.00595
6 I2M2 λI2M2 0.25
7 I2MM2 λI2MM2 0.25
8 D3I3 λD3I3 0.01
9 I3M3 λI3M3 0.125
10 I3MM3 λI3MM3 0.125
11 I3IM3 λI3IM3 0.125
12 D1Fr λD1Fr 0.00002
13 D2Fr λD2Fr 0.00002
14 D3Fr λD3Fr 0.00002
15 I1D1 µI1D1 0.005
16 I2D2 µI2D2 0.025
17 I3D3 µI3D3 0.0125
18 M1D1 µM1D1 0.05
19 M3D2 µM2D2 0.025
20 MM2D1 µMM2D1 0.0125
21 M3D3 µM3D3 0.016
22 IM3D2 µIM3D2 0.01
23 MM3D1 µMM3D1 0.0625
24 FrD1 µFrD1 0.02

53

5.2 Equation for Markov Analysis of OM Model

5.2.1 Perfect repair without OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)+µ4-1*P4(t)+ µ13-1*P13(t)

2. dP2/dt = λ1-2*P1(t)-(λ 2-3+ λ 2-6)*P2(t)+ µ14-2*P14(t)

3. dP3/dt = λ2-3*P2(t)-(λ3-4+ λ3-7)*P3(t)+ µ15-3*P15(t)

4. dP4/dt = λ3-4*P3(t)- µ4-1*P4(t)

5. dP5/dt = µ8-5*P8(t)-(λ5-6+ λ5-9)*P5(t)+ λ1-5*P1(t)

6. dP6/dt = λ5-6*P5(t)+ λ2-6*P2(t) - (λ6-7+ λ6-10)*P6(t)

7. dP7/dt = λ3-7*P3(t)+ λ6-7*P6(t)-(λ7-11+ λ7-8)*P7(t)

8. dP8/dt = λ7-8*P7(t)- µ8-5*P8(t)

9. dP9/dt = λ5-9*P5(t)+ µ12-9*P12(t)-(λ9-10+ λ9-13)*P9(t)

10. dP10/dt = λ6-10*P6(t) + λ9-10*P9(t) - (λ10-11+ λ10-14)*P10(t)

11. dP11/dt = λ10-11*P10(t) + λ7-11*P7(t) - (λ11-15+ λ11-12)*P11(t)

12. dP12/dt = λ11-12*P11(t)- µ12-9*P12(t)

13. dP13/dt = λ9-13*P9(t) - µ13-1*P13(t)

14. dP14/dt = λ10-14*P10(t) - µ14-2*P14(t)

54

15. dP15/dt = λ11-15*P11(t) - µ15-3*P15(t)

5.2.2 Perfect repair with OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)+µ4-1*P4(t)+ µ13-1*P13(t)

2. dP2/dt = λ1-2*P1(t)-(λ 2-3+ λ 2-6)*P2(t)+ µ14-2*P14(t)

3. dP3/dt = λ2-3*P2(t)-(λ3-4+ λ3-7)*P3(t)+ µ15-3*P15(t)

4. dP4/dt = λ3-4*P3(t)- µ4-1*P4(t) + µ12-4*P12(t)+ µ8-4*P8(t)

5. dP5/dt = µ8-5*P8(t)-(λ5-6+ λ5-9)*P5(t)+ λ1-5*P1(t)

6. dP6/dt = λ5-6*P5(t)+ λ2-6*P2(t) - (λ6-7+ λ6-10)*P6(t)

7. dP7/dt = λ3-7*P3(t)+ λ6-7*P6(t)-(λ7-11+ λ7-8)*P7(t)

8. dP8/dt = λ7-8*P7(t)- µ8-5*P8(t) - µ8-4*P8(t)

9. dP9/dt = λ5-9*P5(t)+ µ12-9*P12(t)-(λ9-10+ λ9-13)*P9(t)

10. dP10/dt = λ6-10*P6(t) + λ9-10*P9(t) - (λ10-11+ λ10-14)*P10(t)

11. dP11/dt = λ10-11*P10(t) + λ7-11*P7(t) - (λ11-15+ λ11-12)*P11(t)

12. dP12/dt = λ11-12*P11(t)- µ12-9*P12(t)- µ12-4*P12(t)

13. dP13/dt = λ9-13*P9(t) - µ13-1*P13(t) + µ14-13*P14(t)+ µ15-13*P15(t)

14. dP14/dt = λ10-14*P10(t) - µ14-2*P14(t) - µ14-13*P14(t)

55

15. dP15/dt = λ11-15*P11(t) - µ15-3*P15(t) - µ15-13*P15(t)

5.2.3 Imperfect repair without OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)

2. dP2/dt = -(λ2-3+ λ2-6) *P2(t)+ µ4-2*P4(t)+ λ 1-2*P1(t)

3. dP3/dt = -(λ 3-4+ λ 3-7)*P3(t)+ λ 2-3*P2(t)

4. dP4/dt = λ3-4*P3(t)- µ4-2*P4(t)

5. dP5/dt = -(λ5-6+ λ5-9) *P5(t)+ λ1-5*P1(t)+ µ13-5*P13(t)

6. dP6/dt = λ5-6*P5(t)+λ2-6*P2(t)-(λ6-7+λ6-10)*P6(t)+µ8-6*P8(t)+µ14-6*P14(t)

7. dP7/dt = µ15-7*P15(t)+ λ 6-7*P6(t)+ λ3-7*P3(t) - (λ7-11+ λ7-8)*P7(t)

8. dP8/dt = λ7-8*P7(t)- µ8-6* P8(t)

9. dP9/dt = λ5-9* P5(t)-(λ9-10+ λ9-13)* P9(t)

10. dP10/dt = λ6-10*P6(t)+ λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+ µ12-10*P12(t)

11. dP11/dt = λ10-11* P10(t)+ λ7-11* P7(t)-(λ11-15+ λ11-12)* P11(t)

12. dP12/dt = λ11-12*P11(t) - µ12-10*P12(t)

13. dP13/dt = λ9-13*P9(t)- µ13-5*P13(t);

14. dP14/dt = λ10-14*P10(t)- µ14-6*P14(t)

56

15. dP15/dt = λ11-15* P11(t)- µ15-7* P15(t)

5.2.4 Imperfect repair with OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)

2. dP2/dt = -(λ2-3+ λ2-6) *P2(t)+ µ4-2*P4(t)+ λ 1-2*P1(t)

3. dP3/dt = -(λ 3-4+ λ 3-7)*P3(t)+ λ 2-3*P2(t)

4. dP4/dt = λ3-4*P3(t)- µ4-2*P4(t) + µ12-4*P12(t) + µ8-4*P4(t)

5. dP5/dt = -(λ5-6+ λ5-9) *P5(t)+ λ1-5*P1(t)+ µ13-5*P13(t)

6. dP6/dt = λ5-6*P5(t)+λ2-6*P2(t)-(λ6-7+λ6-10)*P6(t)+µ8-6*P8(t)+µ14-6*P14(t)

7. dP7/dt = µ15-7*P15(t)+ λ 6-7*P6(t)+ λ3-7*P3(t) - (λ7-11+ λ7-8)*P7(t)

8. dP8/dt = λ7-8*P7(t)- µ8-6*P8(t) - µ 8-4*P4(t)

9. dP9/dt = λ5-9* P5(t)-(λ9-10+ λ9-13)*P9(t)

10.dP10/dt = λ6-10*P6(t)+ λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+ µ12-10*P12(t)

11.dP11/dt = λ10-11* P10(t)+ λ7-11* P7(t)-(λ11-15+ λ11-12)*P11(t)

12.dP12/dt = λ11-12*P11(t) - µ12-10*P12(t) - µ 12-4*P12(t)

13.dP13/dt = λ9-13*P9(t)- µ13-5*P13(t)+ µ14-13* P14(t) + µ15-13*P15(t)

14.dP14/dt = λ10-14*P10(t)- µ14-6*P14(t) - µ14-13*P14(t)

57

15.dP15/dt = λ11-15* P11(t)- µ15-7* P15(t) - µ15-13*P15(t)

5.2.5 Minimal repair without OM

1 dP1/dt = -(λ1-5+ λ1-2)* P1(t)

2 dP2/dt = -(λ 2-3+ λ 2-6)* P2(t)

3 dP3/dt = -(λ 3-4+ λ 3-7)* P3(t)+ µ4-3*P4(t)+ λ 2-3*P2(t)

4 dP4/dt = λ3-4*P3(t)- µ 4-3*P4(t)

5 dP5/dt = -(λ5-6+ λ5-9)* P5(t)+ λ 1-5*P1(t)

6 dP6/dt = λ5-6* P5(t)+ λ2-6* P2(t) - (λ6-7+ λ6-10)* P6(t)

7 dP7/dt = µ8-7* P8(t)+ λ6-7* P6(t)-(λ7-11+ λ7-8)* P7(t)+ λ 3-7* P3(t)

8 dP8/dt = λ7-8* P7(t)- µ8-7* P8(t)

9 dP9/dt = λ5-9* P5(t)+ µ13-9* P13(t)-(λ 9-10+ λ 9-13)* P9(t)

10 dP10/dt = λ6-10*P6(t)+λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+µ14-10* P14(t)

11 dP11/dt = λ10-11*P10(t)+λ 7-11*P7(t)-(λ11-15+λ11-12)*P11(t)+µ15-11*P15(t)+

µ12-11*P12(t)

12 dP12/dt = λ 11-12* P11(t)- µ 12-11* P12(t)

13 dP13/dt = λ 9-13* P9(t)- µ13-9* P13(t)

58

14 dP14/dt = λ 10-14* P10(t)- µ 14-10* P14(t)

15 dP15/dt = λ11-15* P11(t)- µ 15-11* P15(t)

5.2.6 Minimal repair with OM

1. dP1/dt = -(λ1-5+ λ1-2)* P1(t)

2. dP2/dt = -(λ 2-3+ λ 2-6)* P2(t)

3. dP3/dt = -(λ 3-4+ λ 3-7)* P3(t)+ µ4-3*P4(t)+ λ 2-3*P2(t)

4. dP4/dt = λ3-4*P3(t)- µ 4-3*P4(t)+ µ 8-4*P8(t)

5. dP5/dt = -(λ5-6+ λ5-9)* P5(t)+ λ 1-5*P1(t)

6. dP6/dt = λ5-6* P5(t)+ λ2-6* P2(t) - (λ6-7+ λ6-10)* P6(t)

7. dP7/dt = µ8-7* P8(t)+ λ6-7* P6(t)-(λ7-11+ λ7-8)* P7(t)+ λ 3-7* P3(t)

8. dP8/dt = λ7-8* P7(t)- µ8-7* P8(t)+ µ12-8* P12(t)- µ8-4* P8(t)

9. dP9/dt = λ5-9* P5(t)+ µ13-9* P13(t)-(λ 9-10+ λ 9-13)* P9(t)

10. dP10/dt = λ6-10*P6(t)+λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+µ14-10* P14(t)

11. dP11/dt = λ10-11*P10(t)+λ 7-11*P7(t)-(λ11-15+λ11-12)*P11(t)+µ15-11*P15(t)+ µ12-

11*P12(t)

12. dP12/dt = λ 11-12* P11(t)- µ 12-11* P12(t)- µ 12-8* P12(t)

59

13. dP13/dt = λ 9-13* P9(t)- µ13-9* P13(t)+ µ 14-13* P14(t)

14. dP14/dt = λ 10-14* P10(t)- µ 14-10* P14(t)+ µ 15-14* P15(t)- µ 14-13* P14(t)

15. dP15/dt = λ11-15* P11(t)- µ 15-11* P15(t)- µ15-14* P15(t)

5.3 Simulation Algorithm of CBM Model
To verify the solution obtained analytically, we use the simulation techniques. Here we

are using Monte Carlo Simulation method. It helps in obtaining the result by generating

random numbers. With the use of Matlab software for generating random numbers, we

proceed to achieve the solution of our model systematically. This step wise procedure is

as follows:

We start observing the working of our component from beginning. It is in perfect

condition and is brand new. We designate this as stage one, D1 .

Now we make an algorithm follow these steps:

Step 1.

We start with stage one, D1. Now using Matlab we generate three random numbers

between 0 and 1; as from here it can go to three stages namely I1, Fr and D2.

These random numbers are used to calculate the time values for each of the three stages.

We proceed the stage for which minimum time is obtained.

Suppose the least time is obtained for Fr.

Step 2.

60

This means the component goes towards the random failure. Here we need to undertake

substantial work and replacement work on it and bring it back to stage D1.

Now we proceed with step 1 again.

Suppose the least time is obtained for I1.

Step 3.

This means we undertake inspection of the component. Now, we generate random

variable between 0 and 1.

It its value is [0.9,1]; we send it to minor repair work. Now we again generate random

variable to determine the time of repair work done. After that the component is again sent

back to stage D1.

Now we proceed with step 1 again.

Suppose the least time is obtained for D2.

Step 4.

This means the component has arrived at the deteriorated level, D2. Now we generate 3

random variables between 0 and 1; as from here it can go to stages namely I2, Fr, and D2.

Time values for these three states are calculated and we proceed to the stage for which

the minimum time is obtained.

Suppose the least time is obtained for Fr.

Step 5.

61

This means the component goes towards the random failure. Here we need to undertake

substantial repair and replacement work on it and bring it to stage D1.

Now we proceed with step 1 again.

Suppose the least time is obtained for I2.

Step 6.

This means we undertake inspection of the component. Now, we generate random

variable between 0 and 1.

It its value is [0,0.7]; we approve the condition as okay and send it back to stage D2. Now

the step 4 is repeated again.

It its value is [0.7,0.9]; we send it to minor repair work. Now we again generate random

variable to determine the time of repair work done. After that the component is again sent

back to stage D2. Now the step 4 is repeated again.

It its value is [0.9,1]; we send it to major repair work. Now we again generate random

variable to determine the time of repair work done. After that the component is again sent

back to stage D1. Now the step 1 is repeated again.

Suppose the least time is obtained for D3.

Step 7.

This means the component has arrived at the deteriorated level, D2. Now we generate 2

random variables between 0 and 1; as from here it can go to stages namely I3 and Fr.

62

Time values for these two states are calculated and we proceed to the stage for which the

minimum time is obtained.

Suppose the least time is obtained for Fr.

Step 8.

This means we undertake inspection of the component. Now, we generate random

variable between 0 and 1.

It its value is [0,0.2]; we approve the condition as okay and send it back to stage D3. Now

the step 7 is repeated again.

It its value is [0.2,0.4]; we send it to minor repair work. Now we again generate random

variable to determine the time of repair work done. After that the component is again sent

back to stage D3. Now the step 7 is repeated again.

It its value is [0.4,0.8]; we send it to imperfect repair work. Now we again generate

random variable to determine the time of repair work done. After that the component is

again sent back to stage D2. Now the step 4 is repeated again.

It its value is [0.8,1]; we send it to major repair work. Now we again generate random

variable to determine the time of repair work done. After that the component is again sent

back to stage D1. Now the step 1 is repeated again.

The above mentioned steps are followed in continuation forming a cycle. Here we note

down each time value and run our system till the specified cycle time.

We notice that the results obtained by both the approaches are same.

63

5.4 Simulation Algorithm of OM Model
Initially both the components (A and B) of the system are in state 1 and 1, i.e. 1, 1

henceforth we will use the same assignment for A and B state.

We have used various random variables for each stage for deciding randomly where the

system should go.

Time coefficient are considered when the stage moves from one state to another.

Repair coefficients are considered whenever one of the states reaches failed state (i.e.

state 4).

Perfect repair without Opportunistic Maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should

change the state of A (21) or B (12). And subsequently it is decided with the help

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is

applied and system is bought to 1st state.

Step5: Repair time (rt) is calculated using standard formulae and system state is bought

back to perfect state if the mission time you have entered hasn’t crossed else the loop will

keep iterating.

Step 6: Availability is calculated using time added for traversal from each state (ct) and

repair time whenever the state fails (rt) using standard formulae.

64

Perfect repair with opportunistic maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should

change the state of A (21) or B (12). And subsequently it is decided with the help

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is

applied

Step 5: When any of the component goes to failed state, we do opportunistic maintenance

Step 6: In opportunistic maintenance we try to bring the other component back to better

stage (two stage improvement) if the time to repair from failed state to state1 takes more

time than the opportunistic maintenance of the other component , otherwise simple repair

is done.

Step7: Repair time (rt) is calculated using standard formulae and system state is bought

back to perfect state if the mission time you have entered hasn’t crossed else the loop will

keep iterating.

Step 8: Availability is calculated using time added for traversal from each state (ct) and

repair time whenever the state fails (rt) using standard formulae.

Imperfect repair without Opportunistic Maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of

the system.

Step2: System initially is in 11 State.

65

If condition applied on random variable decides whether the system should

change the state of A (21) or B (12). And subsequently it is decided with the help

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is

applied and system is bought to 2nd state.

Step5: Repair time (rt) is calculated using standard formulae and system state is bought

back to perfect state if the mission time you have entered hasn’t crossed else the loop will

keep iterating.

Step 6: Availability is calculated using time added for traversal from each state (ct) and

repair time whenever the state fails (rt) using standard formulae.

Imperfect repair with opportunistic maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should

change the state of A (21) or B (12). And subsequently it is decided with the help

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is

applied

Step 5: When any of the component goes to failed state, we do opportunistic maintenance

66

Step 6: In opportunistic maintenance we try to bring the other component back to better

stage (two stage improvement) if the time to repair from failed state to state 2 takes more

time than the opportunistic maintenance of the other component, otherwise simple repair

is done.

Step7: Repair time (rt) is calculated using standard formulae and system state is bought

back to perfect state if the mission time you have entered hasn’t crossed else the loop will

keep iterating.

Step 8: Availability is calculated using time added for traversal from each state (ct) and

repair time whenever the state fails (rt) using standard formulae.

Minimal repair without Opportunistic Maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should

change the state of A (21) or B(12). And subsequently it is decided with the help

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is

applied and system is bought to 3rd state.

Step5: Repair time (rt) is calculated using standard formulae and system state is bought

back to perfect state if the mission time you have entered hasn’t crossed else the loop will

keep iterating.

Step 6: Availability is calculated using time added for traversal from each state (ct) and

repair time whenever the state fails (rt) using standard formulae.

67

Minimal repair with opportunistic maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should

change the state of A (21) or B (12). And subsequently it is decided with the help

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is

applied

Step 5: When any of the component goes to failed state, we do opportunistic maintenance

Step 6: In opportunistic maintenance we try to bring the other component back to better

stage (one stage improvement) if the time to repair from failed state to state 3 takes more

time than the opportunistic maintenance of the other component otherwise simple repair

is done.

Step7: Repair time (rt) is calculated using standard formulae and system state is bought

back to perfect state if the mission time you have entered hasn’t crossed else the loop will

keep iterating.

Step 8: Availability is calculated using time added for traversal from each state (ct) and

repair time whenever the state fails (r) using standard formulae.

5.5 Sensitivity Analysis of CBM Model
Sensitivity refers to the change in the result obtained when one or more independent

parameters considered in the calculations are varied. Sensitivity Analysis is a technique

to check the sensitivity of the solution obtained. For that, keeping other factors constant,

one of the parameters is varied.

68

VARYING THE INSPECTION INTERVAL:

In the beginning we change the periodic inspection time at I1 keeping those at I2 and I3

constant. We observe that as we decrease the periodic time, the availability of the

component decreases. This is so because in the beginning the component is new and the

frequent inspection lead to time wastage and increases the possibility of minor repair

work on the component. Thus decrease its availability. As shown in the table below:

Table 3 Sensitivity analysis for system availability varying inspection interval for
degradation stage 1.

S.No. I1(hrs) I2(hrs) I3(hrs) Availability

Markov MCS

1. 50 150 100 0.8807 0.8809

2. 100 150 100 0.9194 0.9198

3. 200 150 100 0.9607 0.9609

4. 300 150 100 0.9731 0.9738

5. 400 150 100 0.9792 0.9791

6. 600 150 100 0.9859 0.9855

7. 800 150 100 0.9893 0.9895

8. 1000 150 100 0.9991 0.9997

9. 1100 150 100 0.9922 0.9923

10. 1200 150 100 0.9931 0.9933

11. 1300 150 100 0.9934 0.9935

12. 1500 150 100 0.9942 0.9945

69

Figure 19 Inspection Interval for I1.

Next, we change the periodic inspection time at I2 keeping those at I1 and I3 constant.

We observe that when we increase the periodic inspection time there is very slight

increase in availability of the component. This is so , because the system has degraded to

an extent that it needs frequent inspection to increase the availability of the component.

70

Table 4 Sensitivity analysis for system availability varying inspection interval for
degradation stage 2.
S.No. I1(hrs) I2(hrs) I3(hrs) Availability

Markov MCS

1. 250 50 100 0.9667 0.9669

2. 250 100 100 0.9695 0.9675

3. 250 150 100 0.9677 0.9679

4. 250 200 100 0.9682 0.9683

5. 250 400 100 0.9689 0.9688

6. 250 600 100 0.9692 0.9695

7. 250 800 100 0.9694 0.9696

8. 250 1000 100 0.9694 0.9696

9. 250 1500 100 0.9696 0.9697

10. 250 2000 100 0.9697 0.9697

11. 250 10000 100 0.9700 0.9701

12. 250 20000 100 0.9697 0.9698

Figure 20 Inspection Interval for I2.

71

Next, we change the periodic inspection time at I3 keeping those at I1 and I2 constant.

We observe that, as we increase the periodic inspection time the availability of the

component merely increases. This is so, because the component has degraded to a higher

level and need frequent inspection.

Table 5 Sensitivity analysis for system availability varying inspection interval for
degradation stage 3.

S.No. I1(hrs) I2(hrs) I3(hrs) Availability

Markov MCS

1. 250 150 25 0.9676 0.9675

2. 250 150 50 0.9676 0.9675

3. 250 150 100 0.9677 0.9676

4. 250 150 150 0.9677 0.9676

5. 250 150 200 0.9677 0.9676

6. 250 150 300 0.9678 0.9677

7. 250 150 400 0.9678 0.9677

8. 250 150 500 0.9678 0.9678

Figure 21 Inspection Interval for I3.

72

5.6 Comparison of Result for OM Model
In this section, we compare the various results obtained by the simulation of the program

codes in MATLAB for all the three types of maintenance policies. The source of data is

baringer.com. The results include the availability of the multi state system, found out by

using both Markov analysis and the Monte Carlo Simulation.

The following pages represent the tabulated result with their corresponding graphical

presentation, with all the three methods compared graphically in the end.

Table 6 Results for availability
MISSION TIME

5000 10000 15000

Markov
Analysis

MCS Markov
Analysis

MCS Markov
Analysis

MCS

Perfect
without OM 0.9986 0.9985 0.9972 0.9972 0.9965 0.9968
Perfect with

OM
0.9989 0.9989 0.9975 0.9974 0.9972 0.9971

Imperfect
without OM

0.9980 0.9981 0.9955 0.9951 0.9915 0.9912

Imperfect
with OM

0.9989 0.9987 0.9965 0.9969 0.9932 0.9929

Minimal
without OM

0.9975 0.9976 0.9955 0.9756 0.9244 0.9245

Minimal with
OM

0.9977 0.9979 0.9767 0.9761 0.9955 0.9254

73

Figure 22 Availability for Perfect Repair without OM

Figure 23 Availability for Perfect Repair with OM

74

Figure 24 Availability for Imperfect Repair without OM

Figure 25 Availability for Imperfect Repair with OM

75

Figure 26 Availability for Minimal Repair without OM

Figure 27 Availability for Minimal Repair with OM

76

Figure 28 Comparison of Availability Values for Perfect Repair with and without OM

Figure 29 Comparison of Availability Values for Imperfect Repair with and without OM

77

Figure 30 Comparison of Availability Values for Minimal Repair with and without OM

78

5.6.1 RESULT DISCUSSION

As the results obtained provide a definite indication of the trend in the availability for

different maintenance policies, these numeric results can be analyzed quantitatively to

compare the relative improvement in the performance of the system in the different

scenarios. For the same mission time moving from perfect repair to minimal repair, the

availability shows the decreasing trend. The percentage of decrease in the availability

from perfect to imperfect repair is less but the percentage of decrease in availability from

imperfect to minimal is very high. This clearly establishes that the minimal repair policy

is extremely inefficient and should be seldom used unless cost of maintenance is the only

dictating factor.

The availability of the system increases when opportunistic maintenance is done. When

the system is new, the effect of opportunistic maintenance on availability is very less and

the effect increases with mission time till the steady state is reached . The system shows

the slight availability increase in all the types of repair work. When opportunistic

maintenance is considered, the system shows the same decreasing trend as it was showing

in the system with corrective maintenance only.

Thus analysis of availability of repairable mechanical systems under different scenarios is

a vital tool in creating a system/policy for a definite application to maximize its

performance and the availability increases with the opportunistic maintenance.

79

CHAPTER-6 CONCLUSION AND SCOPE FOR
FUTURE WORK

The final chapter of this project contains the conclusion of the project and the scope for

improvement in this project.

6.1 CONCLUSION
System availability model considering multi stage degradation, periodic inspection,

condition based maintenance and random failure is developed. The system model is

solved analytically by MARKOV approach and verified by Monte-Carlo simulation. And

the results by both the methods are almost same.

A sensitivity analysis is conducted to see the effect of variation in probability for various

maintenance decision, variation of inspection interval and final degraded states with and

without failure.

∑ As far as frequency of inspection is concerned at stage D1, less frequent

inspection should be done as the health of the component is very good and

unnecessary inspection will only lead to time wastage and reducing our

component availability .

∑ At stage D2, the inspection should be done too frequently either as here too the

health of the component is fairly good.

∑ At stage D3, inspection work should be done quite frequently as the health of the

component has deteriorated and frequent inspection would readily provide us

information about its degradation so we can undertake necessary repair actions.

The system models with opportunistic maintenance are developed for motor-pump

system. Each based on different maintenance policy.

∑ There is gain in availability when opportunistic maintenance is done with

corrective maintenance.

∑ The maximum gain in availability hours is observed in perfect repair when

opportunistic maintenance is done with corrective maintenance.

80

∑ The minimum gain in availability hours is observed in minimal repair as

expected.

6.2 FUTURE SCOPE OF WORK

In this project, the failure and the repair behavior are modeled with exponential

distribution so that Markov approach can be applied. But in real life the exponential

distribution is not appropriate for mechanical systems. So, there is a need to develop a

model with non-exponential distributions such as weibull for failure and log normal for

repair which are realistic for a mechanical system.

The costs in the repair are not considered in this project and there is a scope to study

availability gains and the amount of resource spent on the repairs.

The other maintenance such as preventive and reliability centered maintenance cab be

analyzed for availability by considering multi-state degradation.

In many industries, still, not much attention is paid to the above considered factors, this

analysis shows how the individual parameters can contribute significantly to the

enhanced availability. Hence, it can be an initiation in this regard for many firms to

analyze the parameters discussed here and improve the availability of the component(s)

and thereby, that of the overall system.

81

REFERENCES

1. Martin KF,1994,” A review by discussion of condition monitoring and fault
diagnosis in machine tools”, International Journal of Machine Tools
Manufacturing, 34(4):527-551.

2. Savic, G. Walters, J. Knezevic, 1995, "Optimal, opportunistic maintenance
policy using genetic algorithms, 2: analysis". Journal of Quality in
Maintenance Engineering, Vol. 1, No. 3, 25-34.

3. Fricks RM., Trivedi, KS.,1997, “Modelling failure dependencies in reliability
analysis using stochastic Petri nets, in ESM”, Proceedings 11th European
Simulation Multiconf., Istanbul, Turkey, SCS Europe, 1-22.

4. Chen A, Guo RS, Yang A, Tseng CL,1998, “An integrated approach to
semiconductor equipment monitoring”, Journal of Chinese Society of
Mechanical Engineering, 19(6):581-591.

5. O. Mohamed-Salah, A-K. Daoud, G. Ali, "A simulation model for
opportunistic maintenance strategies". 7th IEEE International Conference on
Energy Technologies and Factory Automation, Vol. 1, 1999, Barcelona,
Spain, 703 – 708.

6. J. Crocker, U. Kumar, 2000, "Age related maintenance versus reliability
centered maintenance: a case study on aero-engines". Journal of Reliability
Engineering and Systems Safety, Vol. 67, No. 2, 113-118.

7. Grall A, Berenguer C, Dieulle L.,2002, “A condition-based maintenance
policy for stochastically deteriorating systems” Reliability Engineering and
System Safety ,76:167-180.

8. Amari SV.,2004, “Optimal design of a condition- based maintenance model.
Annual Reliability and Maintainability Symposium”, 528-533.

9. Karin S. de Smidt-Destombes, Matthieu C. van der Heijden, Aart van Harten,
2004, “On the availability of a k-out-of-N system given limited spares and
repair capacity under a condition based maintenance strategy”. Journal of
Reliability Engineering and System Safety 83, 287–300.

10. Castanier, Grall, Be´renguer, 2005, “A condition-based maintenance policy
with non-periodic inspections for a two-unit series system”, Journal of
Reliability Engineering and System Safety 87, 109–120.

82

11. Chen D, Trivedi KS.,2005,”Optimization for condition-based maintenance
with Semi Markov decision process” Reliability Engineering and System
Safety, 90(1): 25-29.

12. Xie W, Hong Y, Trivedi K.,2005, “Analysis of a two-level software
rejuvenation policy”, Reliability Engineering and System Safety, 87(1):13-
22.

13. Andrew K.S. Jardine, Daming Lin, Dragan Banjevic, 2006, “A review on
machinery diagnostics and prognostics implementing condition-based
maintenance”, Journal of Mechanical systems and signal processing 20, 1483–
1510.

14. Endrenyi J, Anders GJ.,2006, “Aging, maintenance, and reliability”, IEEE
Power and Energy Magazine, 59-67.

15. Jardine AKS, Lin D, Banjevic D,2006,”A review on machinery diagnostic and
prognostics implementing condition-based maintenance”, Mechanical
Systems and Signal Processing, 20:1483-1510.

16. X. Zhaou, L. Xi, J. Lee, 2006, "A dynamic opportunistic maintenance policy
for continuously monitored systems". Trans. J. of Quality Management
Engineering, Vol. 12, No. 3, 294 – 305.

17. L. Cui, H. Li, 2006, "Opportunistic maintenance for multi-component shock
models". Journal of Mathematical Methods of Operations Research, Vol. 63,
No. 3, 180 – 191.

18. Chen A, Wu GS, 2007,” Real-time health prognosis and dynamic preventive
maintenance policy for equipment under aging Markovian deterioration”,
International Journal of Production Research ,45(15):3351-3379.

19. Romulo I. Zequeiraa, Jose E. Valdesb, Christophe Berenguer, 2008, “Optimal
buffer inventory and opportunistic preventive maintenance under random
production capacity availability”, Int. J. Production Economics 111, 686–696.

20. M. S. Samhouri , A. Al-Ghandoor, R. H. Fouad, S. M. Alhaj Ali, 2009, “An
Intelligent Opportunistic Maintenance (OM) System: A Genetic Algorithm
Approach”, Jordan Journal of Mechanical and Industrial Engineering, Volume
3, Number 4,Pages 246 – 251.

21. Xiaojun Zhou, LifengXi, JayLee, 2009, “Opportunistic preventive
maintenance scheduling for a multi-unit series system based on dynamic
programming”, Int. J. Production Economics 33, 361–366.

83

22. Radouane Laggoune, Alaa Chateauneuf, Djamil Aissani, 2009,” Opportunistic
policy for optimal preventive maintenance of a multi-component system in
continuous operating units”, Journal of Computers and Chemical Engineering
111, 1499–1510.

23. Ling Wang, Jian Chu, Weijie Mao, 2009, “A condition-based replacement and
spare provisioning policy for deteriorating systems with uncertain
deterioration to failure”, European Journal of Operational Research 194, 184–
205.

24. Pandian A, Ali A.,2009,”A review of recent trends in machine diagnosis and
prognosis algorithm”, World Congress on Nature & Biologically Inspired
Computing, 1731–1736.

25. Gorjian N, Ma L, Mittinty M, Yarlagadda P, Sun Y.,2009,”A review on
degradation models in reliability analysis”, Proceedings of the 4th World
Congress on Engineering Asset Management, Athens, Greece, 1-16.

26. Yongjin(James)Kwon, RichardChiou, LeonardStepanskı, 2009, “Remote,
condition-based maintenance for web-enabled robotic system”, Journal of
Robotics and Computer-Integrated Manufacturing 25 , 552– 559.

27. Radouane Laggoune, AlaaChateauneuf, DjamilAissani, 2010, “Impact of few
failure data on the opportunistic replacement policy for multi-component
systems”, Journal of Reliability Engineering and System Safety 95, 108–119.

28. Qiang H, Zhihua D, Xiao Z.,2010, ”Application of HSMM on NC machine’s
state recognition”, International conference on E-health Networking, Digital
Ecosystems and Technologies, 189-191.

29. Taghipour S, Banjevic D, Jardine AKS,2010, “Periodic inspection
optimization model for a complex repairable system”, Reliability Engineering
and System Safety, 95(9):944 – 952.

30. Wang N, Sun S, Li S, Si S.,2010,”Modelling and optimization of deteriorating
equipment with predictive maintenance and inspection”, IEEE 17th

International conference on Industrial Engineering and Engineering
Management , 942-946.

31. Fangji Wu, TianyiWang, JayLee, 2010, “An online adaptive condition-based
maintenance method for mechanical systems”.Journal of Mechanical Systems
and Signal Processing 24 , 2985–2995.

32. Marquez AC, Heguedas AS,2010, “Models for maintenance optimization: A
study for repairable systems and finite time periods”, Reliability Engineering
and System Safety ,75:367-377.

84

33. El-Damcese MA Temraz NS,2011, “Availability and reliability measures for
multi-state system by using Markov reward model”.,Reliability:Theory and
Application , 2:68-85.

34. Zhigang Tian, Tongdan Jin, Bairong Wu, Fangfang Ding, 2011,” Condition
based maintenance optimization for wind power generation systems under
continuous monitoring”.Journal of Renewable Energy 36, 1502-1509.

35. Zhigang Tian, Haitao Liao, 2011, “Condition based maintenance optimization
for multi-component systems using proportional hazards model”. Journal of
Reliability Engineering and System Safety 96, 581–589.

36. Majid MAA, Nasir M.,2011, “Multi-state system availability model of
electricity generation for a cogeneration district cooling plant”, Asian Journal
of Applied Sciences, 4(4):431-438.

37. Chryssaphinou O, Liminios N, Malefaki S.,2011, “Multi-state reliability
systems under discrete time Semi-Markovian hypothesis”, IEEE Trans.
Reliability, 60(1):80-87.

38. Sharareh Taghipour, Dragan Banjevic, 2012, “Optimal inspection of a
complex system subject to periodic and opportunistic inspections and
preventive replacements”, European Journal of Operational Research 220,
649–660.

39. Fangfang Ding, Zhigang Tian, 2012, “Opportunistic maintenance for wind
farms considering multi-level imperfect maintenance thresholds”. Journal of
Renewable Energy 45, 175-182.

40. Rosmaini Ahmad, Shahrul Kamaruddin, 2012, “An overview of time-based
and condition-based maintenance in industrial application”. Journal of
Computers & Industrial Engineering 63 , 135–149.

41. Cui Yanbin, Cui Bo, 2012, “The Condition Based Maintenance Evaluation
Model on On-post Vacuum Circuit Breaker”, Journal of Systems Engineering
Procedia 4 , 182 – 188.

42. Qingfeng Wang, Jinji Gao, 2012, “Research and application of risk and
condition based maintenance task optimization technology in an oil transfer
station”. Journal of Loss Prevention in the Process Industries 25, 1018-1027.

43. Chiming Guoa, Wenbin Wang, Bo Guoa, Xiaosheng Si, 2012, “A
Maintenance Optimization Model for Mission-Oriented Systems Based on
Wiener Degradation”. Journal of Reliability Engineering and System Safety
90, 1856-1874.

85

APPENDIX

Program for Markov Analysis of CBM model
function dydt = CBM

(t,y,ld1d2,ld1i1,ld1fr,ld2d3,ld2fr,ld2i2,ld3i3,ld3fr,li1m1,li3m3,li2m2,li2mm2,li3mm3,li3im3,mui1d1,mum

1d1,mumm2d1,mumm3d1,mufrd1,mui2d2,mum2d2,muim3d2,mum3d3,mui3d3)

ld1d2=0.00025;ld1i1=0.004;ld1fr=0.00002;ld2fr=0.00002;

ld2i2=0.006667;ld2d3=0.00067;

ld3i3=0.01;ld3fr=0.00002;li1m1=0.5;li3m3=0.125;

li2m2=0.25;li2mm2=.25;li3mm3=.125;li3im3=.125;

mui1d1=0.005,mum1d1=0.05;

mumm2d1=0.0125;mumm3d1=0.0625;mufrd1=0.02;

mui2d2=0.025;mum2d2=0.025;muim3d2=0.01;

mum3d3=0.016;mui3d3=0.0125;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(ld1d2+ld1i1+ld1fr)*y(1)+mum1d1*y(8)+mumm2d1*y(10)+mumm3d1*y(13)+mufrd1*y(7));

(-(ld2d3+ld2fr+ld2i2)*y(2)+ld1d2*y(1)+mui2d2*y(5)+mum2d2*y(9)+muim3d2*y(12));

(-(ld3i3+ld3fr)*y(3)+ld2d3*y(2)+mum3d3*y(11)+mui3d3*y(6));

(ld1i1*y(1)-li1m1*y(4)-mui1d1*y(4));

(ld2i2*y(2)-(li2m2+li2mm2)*y(5)-mui2d2*y(5));

(-(li3m3+li3mm3+li3im3)*y(6)+ld3i3*y(3)-mui3d3*y(6));

(ld1fr*y(1)+ld2fr*y(2)+ld3fr*y(3)-mufrd1*y(7));

(li1m1*y(4)-mum1d1*y(8));

(li2m2*y(5)-mum2d2*y(9));

(li2mm2*y(5)-mumm2d1*y(10));

(li3m3*y(6)-mum3d3*y(11));

(li3im3*y(6)-muim3d2*y(12));

(li3mm3*y(6)-mumm3d1*y(13));];

End

86

Program for Markov Analysis of Perfect Repair System
(without OM)

function dydt =

withoutopp1(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,le

mda610,lemda711,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu41,m

u153,mu142,mu131,mu129,mu85)

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107;

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1)+mu41*y(4)+mu131*y(13));

(lemda12)*y(1)-(lemda23+lemda26)*y(2)+mu142*y(14);

(lemda23)*y(2)-(lemda34+lemda37)*y(3)+mu153*y(15);

lemda34*y(3)-mu41*y(4);

mu85*y(8)-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

lemda37*y(3)+lemda67*y(6)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu85*y(8);

lemda59*y(5)+mu129*y(12)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu129*y(12);

lemda913*y(9)-mu131*y(13);

lemda1014*y(10)-mu142*y(14);

lemda1115*y(11)-mu153*y(15);];

end

87

Program for Markov Analysis of Perfect Repair System(with
OM)

function dydt =withopp1

(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lem

da711,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu41,mu153,mu142

,mu131,mu129,mu85,mu1513,mu124,mu1413,mu84)

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107;

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

mu1413=0.001;mu84=0.01333;

mu1513=0.003334;mu124=0.005;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1)+mu41*y(4)+mu131*y(13));

(lemda12)*y(1)-(lemda23+lemda26)*y(2)+mu142*y(14);

(lemda23)*y(2)-(lemda34+lemda37)*y(3)+mu153*y(15);

lemda34*y(3)-mu41*y(4)+mu124*y(12)+mu84*y(8);

mu85*y(8)-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

lemda37*y(3)+lemda67*y(6)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu85*y(8)-mu84*y(8);

lemda59*y(5)+mu129*y(12)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu129*y(12)-mu124*y(12);

lemda913*y(9)-mu131*y(13)+mu1413*y(14)+mu1513*y(15);

lemda1014*y(10)-mu142*y(14)-mu1413*y(14);

lemda1115*y(11)-mu153*y(15)-mu1513*y(15);];

end

88

Program for Markov Analysis of Imperfect Repair
System(without OM)

function dydt =withoutopp3

(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lem

da711,mu1210,mu157,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu4

1,mu42,mu153,mu86,mu146,mu135,mu142,mu131,mu129,mu85,mu1513,mu124,mu1413,mu84)

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107;

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

mu1210=0.0025;

mu1413=0.001;mu84=0.1333;mu42=0.0025;mu135=0.003334;

mu86=0.0025;mu146=0.003334;mu157=0.003334;

mu1513=0.001;mu124=0.005;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2)+mu42*y(4)+lemda12*y(1));

(-(lemda34+lemda37)*y(3))+lemda23*y(2);

lemda34*y(3)-mu42*y(4);

-(lemda56+lemda59)*y(5)+lemda15*y(1)+mu135*y(13);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6)+mu86*y(8)+mu146*y(14);

mu157*y(15)+lemda67*y(6)+lemda37*y(3)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu86*y(8);

lemda59*y(5)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1210*y(12);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu1210*y(12);

lemda913*y(9)-mu135*y(13);

lemda1014*y(10)-mu146*y(14);

lemda1115*y(11)-mu157*y(15);];

end

89

Program for Markov Analysis of Imperfect Repair
System(with OM)

function dydt =withopp3

(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lem

da711,mu1210,mu157,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu4

1,mu42,mu153,mu86,mu146,mu135,mu142,mu131,mu129,mu85,mu1513,mu124,mu1413,mu84)

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107;

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;mu1210=0.0025;

mu1413=0.001;mu84=0.01333;mu42=0.0025;mu135=0.003334;

mu86=0.0025;mu146=0.003334;mu157=0.003334;

mu1513=0.003334;mu124=0.005;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2)+mu42*y(4)+lemda12*y(1));

(-(lemda34+lemda37)*y(3))+lemda23*y(2);

lemda34*y(3)-mu42*y(4)+mu124*y(12)+mu84*y(4);

-(lemda56+lemda59)*y(5)+lemda15*y(1)+mu135*y(13);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6)+mu86*y(8)+mu146*y(14);

mu157*y(15)+lemda67*y(6)+lemda37*y(3)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu86*y(8)-mu84*y(4);

lemda59*y(5)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1210*y(12);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu1210*y(12)-mu124*y(12);

lemda913*y(9)-mu135*y(13)+mu1413*y(14)+mu1513*y(15);

lemda1014*y(10)-mu146*y(14)-mu1413*y(14);

lemda1115*y(11)-mu157*y(15)-mu1513*y(15);];

end

90

Program for Markov Analysis of Minimal Repair System
(without OM)

function dydt =withoutopp2

(t,y,lemda12,lemda15,mu43,mu87,mu1511,mu1410,mu1211,lemda26,lemda37,lemda56,lemda910,le

mda23,lemda59,lemda67,lemda610,lemda711,lemda1011,lemda34,lemda78,lemda913,lemda1014,lem

da1112,lemda1115,mu41,mu153,mu142,mu131,mu139,mu85)

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107;

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu1511=0.001;mu1410=0.001;mu1211=0.001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

mu139=0.001;mu43=0.001;mu87=0.001;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2));

(-(lemda34+lemda37)*y(3))+mu43*y(4)+lemda23*y(2);

lemda34*y(3)-mu43*y(4);

-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

mu87*y(8)+lemda67*y(6)-(lemda711+lemda78)*y(7)+lemda37*y(3);

lemda78*y(7)-mu87*y(8);

lemda59*y(5)+mu139*y(13)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1410*y(14);

lemda1011*y(10)+lemda711*y(7)-

(lemda1115+lemda1112)*y(11)+mu1511*y(15)+mu1211*y(12);

lemda1112*y(11)-mu1211*y(12);

lemda913*y(9)-mu139*y(13);

lemda1014*y(10)-mu1410*y(14);

lemda1115*y(11)-mu1511*y(15);];

end

91

Program for Markov Analysis of Minimal Repair System(with
OM)

function dydt =withopp2(t,y,lemda12,lemda15,mu43,mu87,mu1511,mu1410,mu1514,mu1413,mu128,

mu1211,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lemda711,lemda1

011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu41,mu153,mu142,mu131,mu13

9,mu85)

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107;

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu1511=0.001;mu1410=0.001;mu1211=0.001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;mu139=0.001;

mu43=0.001;mu87=0.001;

mu1413=0.001;mu84=0.01333;

mu1514=0.005;mu128=0.006667;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2));

(-(lemda34+lemda37)*y(3))+mu43*y(4)+lemda23*y(2);

lemda34*y(3)-mu43*y(4)+mu84*y(8);

-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

mu87*y(8)+lemda67*y(6)-(lemda711+lemda78)*y(7)+lemda37*y(3);

lemda78*y(7)-mu87*y(8)+mu128*y(12)-mu84*y(8);

lemda59*y(5)+mu139*y(13)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1410*y(14);

lemda1011*y(10)+lemda711*y(7)-

(lemda1115+lemda1112)*y(11)+mu1511*y(15)+mu1211*y(12);

lemda1112*y(11)-mu1211*y(12)-mu128*y(12);

lemda913*y(9)-mu139*y(13)+mu1413*y(14);

lemda1014*y(10)-mu1410*y(14)+mu1514*y(15)-mu1413*y(14);

lemda1115*y(11)-mu1511*y(15)-mu1514*y(15);];

end

92

Program for MCS of CBM

function t= monteCBM(missiontime, ld1d2, ld1fr, ld1i1, ld2d3, ld2fr, ld3fr, ld2i2, ld3i3, mufrd1, mui1d1,
mum3d3, muim3d2, mumm3d1, mumm2d1, mum2d2, mui2d2, mui3d3, td1d2, td1fr, td1i1, td2d3, td2i2,
td2fr, tdd, tdr, td1, td2, td3, ct, rt, trt, rfrt, trfrt, it, tit, state, i, a, p, avail)
%ld1d2=1/2500; %failre rate from d1 to d2
%ld1fr=1/50000;
%ld1i1=1/240; %d1 to inspection rate
%ld2d3=1/1500;
%ld2fr=1/50000;
%ld3fr=1/50000;
%ld2i2=1/168;
%ld3i3=1/96;
%mufrd1=1/50; %repaire rate from random failure to d1
%mum1d1=1/2;
%mui1d1=1/2;
%mui2d2=1/4;
%mui3d3=1/8;
%mumm2d1=1/8;
%mumm3d1=1/16;
%muim3d2=1/10;
%mum3d3=1/6;
%mum2d2=1/4;
ld1d2=0.00025;ld1i1=0.004;ld1fr=0.00002;ld2fr=0.00002;
ld2i2=0.006667;ld2d3=0.00067;
ld3i3=0.01;ld3fr=0.00002;
mui1d1=0.005,mum1d1=0.05;mumm2d1=0.0125;mumm3d1=0.0625;mufrd1=0.02;
mui2d2=0.025;mum2d2=0.025;muim3d2=0.01;mum3d3=0.016;mui3d3=0.0125;
a=zeros(1,1000);
p=zeros(1,1000);
avail=0;
availability=0;
missiontime=input('enter the mission time');
for i=1:1:1000

ct=0;
rt=0; %repair time
trt=0; %total repair time
rfrt=0; % random failure repair time
trfrt=0; %total random failure repair time
it=0; %inspection time
tit=0; %total inspection time
state=1;
while ct<missiontime

%so that user doesnt input less than 0
%value

switch state
case 1

yd1d2=random('unif', 0,1); % for randomly calling value between 0 and 1
yd1fr=random('unif', 0,1);
yd1i1=random('unif', 0,1);
td1d2=-1/ld1d2*log(yd1d2); % time take from d1 to d2
td1fr=-1/ld1fr*log(yd1fr);
td1i1=-1/ld1i1*log(yd1i1);
tdd=min(td1d2,td1fr);

93

tdr=min(td1d2,td1i1);
td1=min(tdd,tdr);
if td1==td1d2

ct=ct+td1d2;
state=2;

elseif td1==td1fr
ct=ct+td1fr;
yfrd1=random('unif',0,1);
rfrt=-1/mufrd1*log(yfrd1);
trfrt=trfrt+rfrt;
ct=ct+rfrt;
state=1;

else ct=ct+td1i1;
yi1=random('unif',0,1);
if(yi1>0)&(yi1<.1)

ym1d1=random('unif',0,1);
yi1d1=random('unif',0,1);
rt=-1/mum1d1*log(ym1d1); %maintenance to d1
trt=rt+trt;
it=-1/mui1d1*log(yi1d1); % inspection to d1
tit=tit+it;
ct=ct+rt+it;
state=1;

else
yi1d1=random('unif',0,1);
it=-1/mui1d1*log(yi1d1);
tit=tit+it;
ct=ct+it;
state=1;

end
end

case 2
yd2d3=random('unif',0,1);
yd2fr=random('unif',0,1);
yd2i2=random('unif',0,1);
td2d3=-1/ld2d3*log(yd2d3);
td2fr=-1/ld2fr*log(yd2fr);
td2i2=-1/ld2i2*log(yd2i2);
tdd=min(td2d3,td2fr);
tdr=min(td2d3,td2i2);
td2=min(tdd,tdr);
if td2==td2d3

ct=ct+td2d3;
state=3;

elseif td2==td2fr
ct=ct+td2fr;
yfrd1=random('unif',0,1);
rfrt=-1/mufrd1*log(yfrd1);
trfrt=trfrt+rfrt;
ct=ct+rfrt;
state=1;

else ct=ct+td2i2;
yi2=random('unif',0,1);
if(yi2>0.1)&(yi2<0.3)

ym2d2=random('unif',0,1);
yi2d2=random('unif',0,1);

94

rt=-1/mum2d2*log(ym2d2);
trt=trt+rt;
it=-1/mui2d2*log(yi2d2);
tit=tit+it;
ct=ct+it+rt;
state=2;

elseif (yi2>0)&(yi2<.1)
ymm2d1=random('unif',0,1);
yi2d2=random('unif',0,1);
rt=-1/mumm2d1*log(ymm2d1);
trt=trt+rt;
it=-1/mui2d2*log(yi2d2);
tit=tit+it;
ct=ct+it+rt;
state=1;

else
yi2d2=random('unif',0,1);
it=-1/mui2d2*log(yi2d2);
tit=tit+it;
ct=ct+it;
state=2;

end
end

case 3
yd3fr=random('unif',0,1);
yd3i3=random('unif',0,1);
td3fr=-1/ld3fr*log(yd3fr);
td3i3=-1/ld3i3*log(yd3i3);
td3=min(td3fr,td3i3);
if td3==td3fr;

ct=ct+td3fr;
yfrd1=random('unif',0,1);
rfrt=-1/mufrd1*log(yfrd1);
trfrt=trfrt+rfrt;
ct=ct+rfrt;
state=1;

else ct=ct+td3i3;
yi3=random('unif',0,1);
if (yi3>.2)&(yi3<.4)

ym3d3=random('unif',0,1);
yi3d3=random('unif',0,1);
rt=-1/mum3d3*log(ym3d3);
trt=trt+rt;
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it+rt;
state=3;

elseif(yi3>.4)&(yi3<.8);
yim3d2=random('unif',0,1);
yi3d3=random('unif',0,1);
rt=-1/muim3d2*log(yim3d2);
trt=trt+rt;
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it+rt;
state=2;

95

elseif(yi3>.8)&(yi3<1);
ymm3d1=random('unif',0,1);
yi3d3=random('unif',0,1);
rt=-1/mumm3d1*log(ymm3d1);
trt=trt+rt;
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it+rt;
state=1;

else
yi3d3=random('unif',0,1);
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it;
state=3;

end
end

end
end
a(1,i)=(ct-trt-trfrt)/ct;
avail=avail+a(1,i);
a(1,i)=avail/i;
p(1,i)=i;

end
a(1,:)
plot(p(1,:),a(1,:))
end

96

Program for MCS of Perfect Repair without OM

function t= perfectwithoutOM(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, mu1411, mu3431,
mu4313, mu2421, mu4212, mu4111,
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;

mu2414=0.001; %k
mu4241=0.01333;
mu3414=0.003334; %k
mu4341=0.005;

random11=0;

97

random12=0;
random13=0;
random14=0;
random23=0;
random33=0;
random22=0;
random32=0;
random21=0;
random31=0;

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000); % matrix of 1*1000
p=zeros(1,1000); % matrix of 1*1000

missiontime=input('enter the mission time');

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);
random12=random('unif', 0,1);
random13=random('unif', 0,1);
random14=random('unif', 0,1);
random23=random('unif', 0,1);
random33=random('unif', 0,1);
random22=random('unif', 0,1);
random32=random('unif', 0,1);
random21=random('unif', 0,1);
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

98

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22;
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'} % have to apply for rpair method
t14=-1/l14*log(random13);
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 11;

case 23
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);
rt=rt + (-1/mu2421*log(random23));
fprintf('rt is %d',rt)
ct=ct+t24

state = 21;

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;

99

else
state = 43;

end

case 34
testStrings = {'your system is in 34 state'} % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);
rt=rt + (-1/mu3431*log(random33));
fprintf('rt is %d',rt)
ct=ct+t34
state = 31;

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);
rt=rt + (-1/mu4313*log(random33));
fprintf('rt is %d',rt)
ct=ct+t43
state = 13;

case 22
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);
rt=rt+ (-1/mu4212*log(random32));
fprintf('rt is %d',rt)
ct=ct+t42
state = 12;

100

case 21
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11);
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 11;

end
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);
p(1,i)=i;

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair is%d',M);
%a(1,x)=avail/x;

%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end

101

Program for MCS of Perfect Repair with OM

function t= perfectwithopportunisticmaintenance(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41,
mu1411, mu3431, mu4313, mu2421, mu4212, mu4111,
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;

mu2414=0.001; %k
mu1411
mu4241=0.01333;
mu3414=0.003334; %k
mu4341=0.005;

random11=0;
random12=0;

102

random13=0;
random14=0;
random23=0;
random33=0;
random22=0;
random32=0;
random21=0;
random31=0;

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000); % matrix of 1*1000
p=zeros(1,1000); % matrix of 1*1000

missiontime=input('enter the mission time');

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);
random12=random('unif', 0,1);
random13=random('unif', 0,1);
random14=random('unif', 0,1);
random23=random('unif', 0,1);
random33=random('unif', 0,1);
random22=random('unif', 0,1);
random32=random('unif', 0,1);
random21=random('unif', 0,1);
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12

103

if(random12<.5)
state = 13;
else
state = 22;
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'} % have to apply for rpair method
t14=-1/l14*log(random13);
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 11;

case 23
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);

rt2414=-1/mu2414*log(random23);
rt2421=-1/mu2421*log(random23);

if(rt2414<rt2421)
%rt=rt + rt2414;
rt=rt + rt2421;
ct=ct+t24
state = 11;

else

rt=rt + rt2421;
%fprintf('rt is %d',rt)
ct=ct+t24

104

state = 21;
end

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'} % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);

rt3414=-1/mu3414*log(random33);
rt3431=-1/mu3431*log(random33);

if(rt3414<rt3431)
%rt=rt + rt3414;
rt=rt + rt3431;
ct=ct+t34
state = 11;

else

rt=rt + (-1/mu3431*log(random33));
%fprintf('rt is %d',rt)
ct=ct+t34
state = 31;
end

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);

rt4341=-1/mu4341*log(random33);
rt4313=-1/mu4313*log(random33);

if(rt4341<rt4313)
rt=rt + rt4313;
ct=ct+t43
state = 11;

else
rt=rt + rt4313;
ct=ct+t43
state = 13;
end

105

case 22
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);

rt4241= -1/mu4241*log(random32);
rt4212= -1/mu4212*log(random32);

if(rt4241<rt4212)
rt=rt+rt4212;
ct=ct+t42
state = 11;

else
rt=rt+rt4212;
ct=ct+t42
state = 12;
end

case 21
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11);
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

106

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 11;

end
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);
p(1,i)=i;

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair is%d',M);

%a(1,x)=avail/x;
%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end

107

Program for MCS of Imperfect Repair without OM
function t= perfectrepairwithoutOM(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, mu1411,
mu3431, mu4313, mu2421, mu4212, mu4111,
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;
random11=0;
random12=0;
random13=0;
random14=0;
random23=0;
random33=0;
random22=0;
random32=0;
random21=0;
random31=0;

108

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000); % matrix of 1*1000
p=zeros(1,1000); % matrix of 1*1000

missiontime=input('enter the mission time');

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);
random12=random('unif', 0,1);
random13=random('unif', 0,1);
random14=random('unif', 0,1);
random23=random('unif', 0,1);
random33=random('unif', 0,1);
random22=random('unif', 0,1);
random32=random('unif', 0,1);
random21=random('unif', 0,1);
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

109

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22;
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'} % have to apply for rpair method
t14=-1/l14*log(random13);
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 12;

case 23
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);
rt=rt + (-1/mu2421*log(random23));
fprintf('rt is %d',rt)
ct=ct+t24

state = 22;

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

110

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'} % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);
rt=rt + (-1/mu3431*log(random33));
fprintf('rt is %d',rt)
ct=ct+t34
state = 32;

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);
rt=rt + (-1/mu4313*log(random33));
fprintf('rt is %d',rt)
ct=ct+t43
state = 23;

case 22
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);
rt=rt+ (-1/mu4212*log(random32));
fprintf('rt is %d',rt)
ct=ct+t42
state = 22;

111

case 21
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11);
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 21;

end
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);
p(1,i)=i;

end

M=mean(a)
fprintf('mean value over 1000 cases for perfect repair is%d',M);

%a(1,x)=avail/x;
%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end

112

Program for MCS of Imperfect Repair with OM

function t= imperfectwithopportunisticmaintenance(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41,
mu1411, mu3431, mu4313, mu2421, mu4212, mu4111,
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu3432=.003334;
mu2422=.003334;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;

mu2414=0.001; %k
mu4241=0.01333;
mu3414=0.003334; %k
mu4341=0.005;

113

mu4323=0.0025;

random11=0;
random12=0;
random13=0;
random14=0;
random23=0;
random33=0;
random22=0;
random32=0;
random21=0;
random31=0;

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000); % matrix of 1*1000
p=zeros(1,1000); % matrix of 1*1000

missiontime=input('enter the mission time');

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);
random12=random('unif', 0,1);
random13=random('unif', 0,1);
random14=random('unif', 0,1);
random23=random('unif', 0,1);
random33=random('unif', 0,1);
random22=random('unif', 0,1);
random32=random('unif', 0,1);
random21=random('unif', 0,1);
random31=random('unif', 0,1);
switch state

114

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

case 12
testStrings={'your system is in 12 state'}
t12 =-1/l12*log(random11)
ct =ct+t12
if(random12<.5)
state = 13;
else
state = 22;
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'} % have to apply for rpair method
t14=-1/l14*log(random13);
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 12;

case 23
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end

case 24
testStrings = {'your system is in 24 state'}

115

%add time formulae
t24=-1/l23*log(random23);

rt2414=-1/mu2414*log(random23);
rt2422=-1/mu2422*log(random23);
if(rt2414<rt2422)
rt=rt + rt2422;
ct=ct+t24
state = 12;

else
rt=rt + rt2422;
ct=ct+t24
state = 22;
end

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'} % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);
rt3414=-1/mu3414*log(random33);
rt3432=-1/mu3432*log(random33);
if(rt3414<3432)

rt=rt+rt3432;
ct=ct+t34
state = 12;

else

rt=rt + rt3432;
ct=ct+t34
state = 32;
end

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);

rt4341=-1/mu4341*log(random33);
rt4313=-1/mu4323*log(random33);
if(rt4341<rt4313)
rt=rt + rt4313;
ct=ct+t43
state = 21;

else
rt=rt + rt4313;

116

ct=ct+t43
state = 23;
end

case 22
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);

rt4241= -1/mu4241*log(random32);
rt4222= -1/mu4212*log(random32);
if(rt4241<rt4222)

rt=rt+ rt4222;
ct=ct+t42
state = 21;
else
rt=rt+ rt4222;
ct=ct+t42
state = 22;
end

case 21
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11);
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;

117

end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 21;

end
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);
p(1,i)=i;

end

M=mean(a)
fprintf('mean value over 1000 cases for perfect repair is%d',M);

%a(1,x)=avail/x;
%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end

118

Program for MCS of Minimal Repair without OM

function t= minimalrepairwithoutOM(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, mu1411,
mu3431, mu4313, mu2421, mu4212, mu4111,
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;
random11=0;
random12=0;
random13=0;
random14=0;
random23=0;
random33=0;
random22=0;
random32=0;
random21=0;
random31=0;

119

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000); % matrix of 1*1000
p=zeros(1,1000); % matrix of 1*1000

missiontime=input('enter the mission time');

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);
random12=random('unif', 0,1);
random13=random('unif', 0,1);
random14=random('unif', 0,1);
random23=random('unif', 0,1);
random33=random('unif', 0,1);
random22=random('unif', 0,1);
random32=random('unif', 0,1);
random21=random('unif', 0,1);
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

120

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22;
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'} % have to apply for rpair method
t14=-1/l14*log(random13);
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 13;

case 23
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);
rt=rt + (-1/mu2421*log(random23));
fprintf('rt is %d',rt)
ct=ct+t24

state = 23;

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

121

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'} % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);
rt=rt + (-1/mu3431*log(random33));
fprintf('rt is %d',rt)
ct=ct+t34
state = 33;

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);
rt=rt + (-1/mu4313*log(random33));
fprintf('rt is %d',rt)
ct=ct+t43
state = 33;

case 22
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);
rt=rt+ (-1/mu4212*log(random32));
fprintf('rt is %d',rt)
ct=ct+t42
state = 32;

122

case 21
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11);
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 31;

end
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);
p(1,i)=i;

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair is%d',M);
%a(1,x)=avail/x;

%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end

123

Program for MCS of Minimal Repair with OM

function t= minimalwithopportunisticmaintenance(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41,
mu1411, mu3431, mu4313, mu2421, mu4212, mu4111,
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu2423=0.001;
mu3424=0.005;
mu3433=0.001;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;
mu2414=0.001; %k
mu4241=0.01333;
mu3414=0.003334; %k
mu4341=0.005;

124

mu4342=0.00667;
mu4333=0.001;
mu4232=0.001;
random11=0;
random12=0;
random13=0;
random14=0;
random23=0;
random33=0;
random22=0;
random32=0;
random21=0;
random31=0;

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000); % matrix of 1*1000
p=zeros(1,1000); % matrix of 1*1000

missiontime=input('enter the mission time');

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);
random12=random('unif', 0,1);
random13=random('unif', 0,1);
random14=random('unif', 0,1);
random23=random('unif', 0,1);
random33=random('unif', 0,1);
random22=random('unif', 0,1);
random32=random('unif', 0,1);
random21=random('unif', 0,1);
random31=random('unif', 0,1);

125

switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22;
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'} % have to apply for rpair method
t14=-1/l14*log(random13);
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 13;

case 23
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end

case 24

126

testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);

rt2414=-1/mu2414*log(random23);
rt2423=-1/mu2423*log(random23);
if(rt2414<2423)

rt=rt+rt2423;
ct=ct+t24
state = 13;

else
rt=rt + rt2423;
ct=ct+t24
state = 23;

end

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'} % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);

rt3424=-1/mu3424*log(random33);
rt3433=-1/mu3433*log(random33);
if(rt3424<3433)

rt=rt+rt3433;
ct=ct+t34
state = 23;

else

rt=rt + rt3433;
ct=ct+t34
state = 33;
end

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);

rt4342=-1/mu4342*log(random33);
rt4333=-1/mu4333*log(random33);
if(rt4342<rt4333)

rt=rt+rt4333;
ct=ct+t43
state = 32;

127

else
rt=rt+rt4333;
ct=ct+t43
state = 33;

end

case 22
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);

rt4241= -1/mu4241*log(random32);
rt4232= -1/mu4232*log(random32);
if(rt4241<4232)

rt=rt+rt4232;
ct=ct+t42
state = 31;

else
rt=rt+rt4232;
ct=ct+t42
state = 32;

end

case 21
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11);
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;

128

end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 31;

end
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);
p(1,i)=i;

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair is%d',M);
%a(1,x)=avail/x;

%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end

