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LIST OF SYMBOLS

S.no. Symbols Description

1 ƛ Denotes the failure rate; the rate at which a system fails

2 µ 24Denotes the rate of repair; the rate at which the system is being 
repaired.

3 λD1 Initial state of the system where health is at its best

4 λD2 The minor degraded state to which our system goes after some use.

5 λD3 The major degraded state to wehich our system goes after prolonged use.

6 λFR The state of Random failure  where the system goes after sudden adverse 
situations viz. mishandling ,natural disasters.

7 λI1 State of inspection in which the components goes from the state D1

8 λI2 State of inspection in which the components goes from the state D2

9 λI3 State of inspection in which the components goes from the state D3

10 λM1 The state of Minor repair where the system goes from the state D1; if 
found faulty after inspection

11 λM2 The state of Minor repair where the system goes from the state D2; if 
found faulty after inspection

12 λMM2 The state of Major repair where the system goes from the state D2; if 
found faulty after inspection state I2

13 λM3 The state of Minor repair where the system goes from the state D3; if 
found faulty after inspection



9

14 λIM3 The state of Imperfect Repair where the system goes from the state D3; 
if found faiulty after inspection state I3

15 λMM3 The state of Major repair where the system goes from the state D3; if 
found faulty after inspection

16 λD1D2 Denotes the rate at which the system will go from D1 to D2

17 λD2D3 Denotes the rate at which the system will go from D2 to D3

18 λD1I1 Denotes the rate at which the system will go from D1 to i1

19 λI1M1 Denotes the rate at which the system will go from I1 to M1

20 λD2I2 Denotes the rate at which the system will go from D2 to I2

21 λI2M2 Denotes the rate at which the system will go from I2 to M2

22 λI2MM2 Denotes the rate at which the system will go from I2 to MM2

23 λD3I3 Denotes the rate at which the system will go from D3 to I3

24 λI3M3 Denotes the rate at which the system will go from I3 to M3

25 λI3MM3 Denotes the rate at which the system will go from I3 to MM3

26 λI3IM3 Denotes the rate at which the system will go from I3 to IM3

27 λD1FR Denotes the rate at which the system will go from D1 to FR
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28 λD2FR Denotes the rate at which the system will go from D2 to FR

29 λD3FR Denotes the rate at which the system will go from D3 to FR

30 µI1D1 Denotes the rate at which the system will revert back t ostate D1 after 
inspection at I1; as no repair work is needed

31 µI2D2 Denotes the rate at which the system will revert back to state D2 after 
inspection at I2; as no repair work is needed

31 µI3D3 Denotes the rate at which the system will revert back to state D3 after 
inspection at I3; as no repair work is needed

33 µM1D1 Denotes the rate at which the system will be restored from the repair 
state M1 to state D1

34 µM2D2 Denotes the rate at which the system will be restored from the repair 
state M2 to state D2

35 µMM2D1 Denotes the rate at which the system will be restored from the repair 
state MM2 to state D1

36 µM3D3 Denotes the rate at which the system will be restored from the repair 
state M3 to state D3

37 µIM3D2 Denotes the rate at which the system will be restored from the repair 
state IM3 to state D2

38 µMM3D1 Denotes the rate at which the system will be restored from the repair 
state MM3 to state D1

39 µFRD1 Denotes the rate at which the system will be restored from the state of 
random failure FR to state D1
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ABSTRACT

This project deals with opportunistic and condition based maintenance modeling for 

availability analysis of repairable mechanical systems using Markov approach. The

conventional techniques such as reliability block diagram, fault tree analysis and 

reliability graphs are no more applicable when repairs and other dependencies are 

incorporated in the model. Therefore, the Markov approach is selected since it is capable 

of modeling dependencies. Most of the mechanical systems deteriorate gradually before 

they fail catastrophically. Availability modeling with binary state doesn’t give realistic 

results. So, it would be more appropriate if multi state degradation is considered.

Opportunistic Maintenance models are developed with corrective maintenance, combined 

with condition based opportunistic maintenance. Models with three types of repair such 

as Perfect, Imperfect and Minimal are developed with and without opportunistic 

Maintenance. 

The Markov based condition based model is also developed for availability analysis. 

Aspects such as multi state degradation, random failures, periodic condition monitoring 

and repair actions such as ‘no repair’, ‘minimal repair’, ’perfect repair’ and ‘imperfect 

repair’ are considered for modeling. 

The solutions of the models are obtained analytically by solving system of ordinary 

differential equations by Ranga-Kutta method using MATLAB software and validated by 

Monte Carlo Simulation. The proposed methodology is demonstrated for repairable 

mechanical systems. The benefits of opportunistic maintenance are quantified in terms of 

the increased system availability. In condition based maintenance model the condition 

monitoring interval is determined for maximizing the system availability. The proposed 

methodology is helpful for maintenance engineers in deciding suitable maintenance and 

replacement policies. 
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CHAPTER-1 INTRODUCTION
Modern engineering systems, like process and energy systems, transport systems, 

offshore structures, bridges, pipelines are designed to ensure successful operation 

throughout the anticipated service life, in compliance with given safety requirements 

related to the risk posed to the personnel, the public and the environment. Unfortunately, 

the threat of deteriorating processes is always present, so that it is necessary to install 

proper maintenance measures to control the development of deterioration and ensure the 

performance of the system throughout its service life. This requires decisions on what to 

inspect and maintain, how to inspect and maintain, and when to inspect and maintain. 

These decisions are to be taken so as to achieve the maximum benefit from the control of 

the degradation process while minimizing the impact on the operation of the system and 

other economical and safety consequences. 

Engineers are always on the look out for ways of reducing system down time and 

increasing availability, without compromising on required level of system reliability. The 

ultimate objective of any maintenance regime is to maintain the system functionality to 

the maximum extent possible with optimum tradeoffs between the down times and cost 

of maintenance, avoiding any hazardous failures. Opportunistic maintenance works out to

be the perfect remedy, which utilizes the opportunity of system shutdown or module 

dismantle to perform any maintenance required in the immediate future and saves a 

substantial amount of system down-time.

A system of components working in a random environment is subjected to wear and 

damage over time and may fail unexpectedly. The components are replaced or repaired 

upon failure, and such unpleasant events of failure are at the same time also considered in 

practice as opportunities for preventive maintenance on other components. 

Opportunistic maintenance basically refers to the scheme in which preventive 

maintenance is carried out at opportunities, either by choice or based on the physical 

condition of the system. In this paper, we focus on the situation in which the 

opportunities for preventive maintenance are generated by the failure epochs of 
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individual components. At each failure epoch, the failed components are correctively 

repaired and other components that are still operational are also preventively serviced so 

that all the components are maintained and restored to certain conditions. An advantage 

of this opportunistic maintenance is that corrective repair combined with preventive 

repair can be used to save set-up costs. Note that by combining both types of repair, one 

may not know in advance which repair actions should be taken, and thus sacrifices the 

plannable feature of preventive maintenance. However, there are many situations in 

which opportunistic maintenance is effective. For example, when corrective repair on 

some components requires dismantling of the entire system, a corrective repair on these 

components combined with preventive repair on other or neighbouring components might 

be worthwhile. Another instance is when a certain corrective repair on failed components 

can be delayed until the next scheduled preventive maintenance.

The earliest maintenance technique is basically breakdown maintenance (also called 

unplanned maintenance, or run-to-failure maintenance), which takes place only at 

breakdowns. A later maintenance technique is time-based preventive maintenance (also 

called planned maintenance), which sets a periodic interval to perform preventive 

maintenance regardless of the health status of a physical asset. With the rapid 

development of modern technology, products have become more and more complex 

while better quality and higher reliability are required. This makes the cost of preventive 

maintenance higher and higher. Eventually, preventive maintenance has become a major 

expense of many industrial companies. Therefore, more efficient maintenance approaches 

such as condition-based maintenance (CBM) are being implemented to handle the 

situation. 

CBM is a maintenance program that recommends maintenance actions based on the 

information collected through condition monitoring. CBM attempts to avoid unnecessary 

maintenance tasks by taking maintenance actions only when there is evidence of 

abnormal behaviors of a physical asset. A CBM program, if properly established and 

effectively implemented, can significantly reduce maintenance cost by reducing the 

number of unnecessary scheduled preventive maintenance operations.

A CBM program consists of three key steps (see Fig. 1):
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∑ Data acquisition step (information collecting), to obtain data relevant to system 

health.

∑ Data processing step (information handling), to handle and analyse the data or 

signals collected in step 1 for better understanding and interpretation of the data.

∑ Maintenance decision-making step (decision-making), to recommend efficient 

maintenance policies.

Fig. 1.1. Three steps in a CBM program.

Various conventional techniques are available for reliability and availability analysis like 

Reliability Block Diagram (RBD), Fault tree Analysis (FTA) and Reliability Graph (RG). 

RBDs help in clearly understanding the functions of each component, while the Fault tree 

Analysis technique determines, in a logical way, which failure modes at one level 

produce critical failures at a higher level in the system. Although these techniques are 

simple and exact but they are essentially static in nature. Complex systems incorporating 

repair sequences and non exponential probability distributions cannot be realistically 

solved with these techniques.

Markov approach is advancement to such techniques as it provides the capability to 

introduce repair in the system. Markov approach encompasses mainly two concepts. The 

“state” of the system and the “transitions” in the system from operating to non-operating 

and vice versa.

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational 

algorithms that rely on repeated random sampling to obtain numerical results; i.e., by 
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running simulations many times over in order to calculate those same probabilities 

heuristically just like actually playing and recording your results in a real casino 

situation: hence the name. They are often used in physical and mathematical problems 

and are most suited to be applied when it is impossible to obtain a closed-form expression 

or infeasible to apply a deterministic algorithm. Monte Carlo methods are mainly used in 

three distinct problems: optimization, numerical integration and generation of samples 

from a probability distribution.

CHAPTER II : Literature Survey

CHAPTER III : Availability modelling techniques

CHAPTER IV: System Modelling

CHAPTER V: Solution of System Model and Result Analysis

CHAPTER VI: Conclusion and Scope for future
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CHAPTER 2 - LITERATURE REVIEW

Opportunistic maintenance has been first studied in Radner and Jorgenson 1963, and in 

McCall 1963. Since then, many extensions of opportunistic maintenance have been 

introduced and studied in the literature. Berg (1976) studies a system with two identical 

components with exponential distributed lifetimes, for which the non-failed component 

as well as the failed component are both replaced by a new one if the age of the non-

failed component exceeds a threshold. Zheng and Fard (1991) examine an opportunistic 

maintenance policy based on failure rate tolerance for a system with k different types of 

components.

Pham and Wang (2000) propose two new opportunistic maintenance policies for a k-out-

of-n system. These and other opportunistic maintenance models have been summarized in 

Dekker, van der Schouten and Wildeman (1997) and in Wang (2002). All these models, 

however, address the optimization issues for components operating independently. The 

thrust of the maintenance model introduced in this study is the general opportunistic 

repairs implemented at correlated failures for a system of components that are 

stochastically dependent.

Karin S. de Smidt-Destombes, Matthieu C. van der Heijden, Aart van Harten (2004) 

published a paper on “On the availability of a k-out-of-N system given limited spares and 

repair capacity under a condition based maintenance strategy”.

This paper considers a k-out-of-N system with identical, repairable components. 

Maintenance is initiated when the number of failed components exceeds some critical 

level. After a possible set-up time, all failed components are replaced by spares. A multi-

server repair shop repairs the failed components. The system availability depends on the 

spare part stock level, the maintenance policy and the repair capacity. They presented a 

mathematical model supporting the trade-off between these three parameters. Also, they 

presented both an exact and an approximate approach to analyse our model. In some 
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numerical experiments, we provide insight on the impact of repair capacity, number of 

spares and preventive maintenance policy on the availability.

Castanier, Grall, Be´renguer (2005) published a paper on “A condition-based 

maintenance policy with non-periodic inspections for a two-unit series system”.

This paper considers a condition-based maintenance policy for a two-unit deteriorating 

system. Each unit is subject to gradual deterioration and is monitored by sequential non-

periodic inspections. It can be maintained by good as new preventive or corrective 

replacements. Every inspection or replacement entails a set-up cost and a component-

specific unit cost but if actions on the two components are combined, the set-up cost is 

charged only once. A parametric maintenance decision framework is proposed to 

coordinate inspection/replacement of the two components and minimize the long-run 

maintenance cost of the system. A stochastic model is developed on the basis of the semi-

regenerative properties of the maintained system state and the associated cost model is 

used to assess and optimize the performance of the maintenance model. Numerical 

experiments emphasize the interest of a control of the operation groupings.

Andrew K.S. Jardine, Daming Lin, Dragan Banjevic (2006) published a paper on “A 

review on machinery diagnostics and prognostics implementing condition-based 

maintenance”.

This paper attempts to summarize and review the recent research and developments in 

diagnostics and prognostics of mechanical systems implementing CBM with emphasis on 

models, algorithms and technologies for data processing and maintenance decision-

making. Diagnostics and prognostics are two important aspects of a CBM program. 

Research in the CBM area grows rapidly. Realizing the increasing trend of using multiple 

sensors in condition monitoring, the authors also discuss different techniques for multiple 

sensor data fusion. The paper concludes with a brief discussion on current practices and 

possible future trends of CBM.

Romulo I. Zequeira, Jose E. Valdes, Christophe Berenguer (2007) presented the study of 

the determination of the optimal maintenance policy for a manufacturing facility and the 
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optimal buffer inventory to satisfy the demand during the interruption period due to a 

maintenance action. We consider the possibility of imperfect production and that 

opportunities for the fabrication of the buffer inventory and opportunities to carry out a 

maintenance action to the production facility are random.

Xiaojun Zhou, LifengXi, JayLee (2008) proposed opportunistic preventive maintenance 

scheduling for a multi-unit series system based on dynamic programming. It is 

understood that for a multi-unit series system, whenever one of the units stops to perform 

a preventive maintenance (PM) action, the whole series system must be stopped. At that 

time PM opportunities arise for the other units in the system. This paper proposes an 

opportunistic PM scheduling algorithm for the multi-unit series system based on dynamic 

programming with the integration of the imperfect effect into maintenance actions. An 

optimal maintenance practice is determined by maximizing the short-term cumulative 

opportunistic maintenance cost savings for the whole system. Matlab is considered for 

the optimization which is based on numerical simulation. Numerical examples are given 

throughout to show how this approach works. Finally, a comparison between the 

proposed PM model and other models is given.

Radouane Laggounea,∗, Alaa Chateauneufb, Djamil Aissania(2009) proposed

Opportunistic policy for optimal preventive maintenance of a multi-component system in 

continuous operating units. A solution procedure based on Monte Carlo simulations with 

informative search method is proposed and applied to the optimization of preventive 

maintenance plan for a hydrogen compressor in an oil refinery.

M. S. Samhouri *, A. Al-Ghandoor, R. H. Fouad, S. M. Alhaj Ali (2009) proposed a 

genetic algorithm approach for an intelligent opportunistic maintenance system. The 

maintenance regime of complex systems most often consists of a variety of maintenance 

strategies, like preventive maintenance, corrective maintenance, condition-based 

maintenance and so on. Opportunistic or opportunity-based maintenance (OM) gives the 

maintenance staff an opportunity to replace or repair those items, which are found to be 

defective or need replacement in the immediate future, during the maintenance of a 
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machine or component. This work presents an intelligent method of how to decide 

whether a particular item requires opportunistic maintenance or not, and if so how cost 

effective this opportunity-based maintenance will be when compared to a probable future 

grounding. This maintenance strategy is considered important when dealing with 

complex systems that contain expensive items with hard lives with condition-based 

maintenance (CBM) strategies. Genetic algorithms (GA) are employed to decide whether 

opportunistic maintenance is cost effective or not.

Yongjin(James)Kwon, RichardChiou, LeonardStepanskı (2009) published a paper on 

“Remote, condition-based maintenance for web-enabled robotic system”.

In this paper, mathematical modeling of system availability has been derived in order to 

account for other failures that might occur in the subsystems of the robot. Compared to 

the schedule- based maintenance strategies, the proposed approach shows great potential 

for improving overall production efficiency, while reducing the cost of maintenance. The 

current trends in industry include an integration of information and knowledge-base 

network with a manufacturing system, which coined a new term, e-manufacturing. From 

the perspective of e-manufacturing any production equipment and its control functions do 

not exist alone, instead becoming a part of the holistic operation system with distant 

monitoring, remote quality control, and fault diagnostic capabilities.

Ling Wang, Jian Chu, Weijie Mao (2009) published a paper entitled as “A condition-

based replacement and spare provisioning policy for deteriorating systems with uncertain 

deterioration to failure”.

A new policy, referred to as the condition-based replacement and spare provisioning 

policy, is presented for deteriorating systems with a number of identical units. The 

deterioration level of each unit in the system can be described by a scalar random 

variable, which is continuous and increasing monotonically. Furthermore, the 

deterioration level just when the unit failure occurs, termed deterioration to failure, is 

uncertain. Therefore, the condition-based reliability is proposed in order to characterize 

various and uncertain deterioration levels when unit failure occurs. A simulation model is 
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developed for the system operation under the proposed condition-based replacement and 

spare provisioning policy. 

Y.G. Li, P. Nilkitsaranont (2009) published a paper on “Gas turbine performance 

prognostic for condition-based maintenance”.

This paper describes a prognostic approach to estimate the remaining useful life of gas 

turbine engines before their next major overhaul based on historical health information. A 

combined regression techniques, including both linear and quadratic models, is proposed 

to predict the remaining useful life of gas turbine engines. A statistic ‘‘compatibility 

check” is used to determine the transition point from a linear regression to a quadratic 

regression. The developed prognostic approach has been applied to a model gas turbine 

engine similar to Rolls-Royce industrial gas turbine AVON 1535 implemented with 

compressor degradation over time.

Fangji Wu, TianyiWang, JayLee (2010) published a paper on “An online adaptive 

condition-based maintenance method for mechanical systems”.

This paper proposes an online adaptive condition-based maintenance method with pattern 

discovery and fault learning capabilities for mechanical systems. The method is mainly 

based on a subtype of neural network techniques called self-organizing map (SOM). It is 

able to reduce local clusters from the same pattern and optimize the SOM architecture to 

further decrease the calculation cost in matching patterns in the neuron fitting process. 

Moreover, distance analysis and statistical pattern recognition (SPR) on neurons of the 

SOM are combined to establish rules and criteria for conducting and controlling the 

discovery and learning process so continuous process as purging prototypes on the map 

can be avoided. 

Zhigang Tian, Tongdan Jin, Bairong Wu, Fangfang Ding (2011) published a paper on” 

Condition based maintenance optimization for wind power generation systems under 

continuous monitoring”. In this paper, they utilized condition monitoring information 

collected from wind turbine components, condition based maintenance (CBM) strategy 

can be used to reduce the operation and maintenance costs of wind power generation 
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systems. The existing CBM methods for wind power generation systems deal with wind 

turbine components separately, that is, maintenance decisions are made on individual 

components, rather than the whole system. However, a wind farm generally consists of 

multiple wind turbines, and each wind turbine has multiple components including main 

bearing, gearbox, generator, etc. There are economic dependencies among wind turbines 

and their components. The proposed maintenance policy is defined by two failure 

probability threshold values at the wind turbine level. 

Zhigang Tian, Haitao Liao (2011) published a paper on “Condition based maintenance 

optimization for multi-component systems using proportional hazards model”.

In this paper they presented the objective of condition based maintenance (CBM) is 

typically to determine an optimal maintenance policy to minimize the overall 

maintenance cost based on condition monitoring information. The existing work reported 

in the literature only focuses on determining the optimal CBM policy for a single unit. In 

this paper, we investigate CBM of multi-component systems, where economic 

dependency exists among different components subject to condition monitoring. The 

fixed preventive replacement cost, such as sending a maintenance team to the site, is 

incurred once a preventive replacement is performed on one component.

Fangfang Ding, Zhigang Tian*(2012) proposed opportunistic maintenance policies which 

are defined by the component’s age threshold values, and different imperfect 

maintenance thresholds are introduced for failure turbines and working turbines. Three 

types of preventive maintenance actions are considered, including perfect, imperfect and 

two-level action. Simulation methods are developed to evaluate the costs of proposed 

opportunistic maintenance policies. Numerical examples are provided to illustrate the 

proposed approaches. Comparative study with the widely used corrective maintenance 

policy demonstrates the advantage of the proposed opportunistic maintenance methods in 

significantly reducing the maintenance cost.

Sharareh Taghipour ⇑, Dragan Banjevic (2012) proposed two optimization models for 

the periodic inspection of a system with ‘‘hard-type’’ and ‘‘soft-type’’ components. 
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Given that the failures of hard-type components are self-announcing, the component is 

instantly repaired or replaced, but the failures of soft-type components can only be 

detected at inspections. A system can operate with a soft failure, but its performance may 

be reduced. Although a system may be periodically inspected, a hard failure creates an 

opportunity for additional inspection (opportunistic inspection) of all soft-type 

components. Two optimization models are discussed in the paper. In the first, soft-type 

components undergo both periodic and opportunistic inspections to detect possible 

failures. In the second, hard-type components undergo periodic inspections and are 

preventively replaced depending on their condition at inspection. Soft-type and hard-type 

components are either minimally repaired or replaced when they fail. Minimal repair or 

replacement depends on the state of a component at failure; this, in turn, depends on its 

age. The paper formulates objective functions for the two models and derives recursive 

equations for their required expected values. It develops a simulation algorithm to 

calculate these expected values for a complex model.

Rosmaini Ahmad, Shahrul Kamaruddin (2012) published a paper on “An overview of 

time-based and condition-based maintenance in industrial application”.

This paper presents an overview of two maintenance techniques widely discussed in the 

literature: time-based maintenance (TBM) and condition-based maintenance (CBM). The 

paper discusses how the TBM and CBM techniques work toward maintenance decision 

making. Recent research articles covering the application of each technique are reviewed. 

The paper then compares the challenges of implementing each technique from a practical 

point of view, focusing on the issues of required data determination and collection, data 

analysis/modelling, and decision making. 

Cui Yanbin, Cui Bo (2012) published a paper on “The Condition Based Maintenance 

Evaluation Model on On-post Vacuum Circuit Breaker”.

The safe operation of power supply equipments is closely related to the security of 

electric network. The planned maintenance of existing power equipments cannot meet the 

needs of development of power system. To solve the problems in maintenance for 

vacuum circuit breaker, this paper build the equipment condition and risk assessment 
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index system and bring out the outdoor on-post vacuum circuit breaker condition based 

maintenance evaluation model which based on Rough Set and Support Vector Machine 

according to the real condition. To prove the high accuracy of this method, a research 

which about the data of 100 Box-type sub-station in the distributing network of one 

power supply company is conducted in this paper.

Qingfeng Wang, Jinji Gao(2012) published a paper on “Research and application of risk 

and condition based maintenance task optimization technology in an oil transfer station”.

This paper carries out a research on Risk and Condition Based Maintenance (RCBM) 

task optimization technology. Utilizing the internet of things (IOT), real-time database, 

signal-processing, Gray Neural Network, probability statistical analysis and service 

oriented architecture (SOA) technology, a Risk and Condition Based Indicator Decision-

making System (RCBIDS) is built. RCBIDS integrates RCM, condition monitoring 

system (CMS), key performance management module, file management module, fault 

and defect management module, maintenance management module together, which aims 

to realize remote condition monitoring, maintenance technical support services (TSS), 

quantitative maintenance decision-making, and to ensure the Reliability, Availability, 

Maintainability and Safety (RAMS). 

Chiming Guoa, Wenbin Wang, Bo Guoa, Xiaosheng Sic(2012) published a paper on “A 

Maintenance Optimization Model for Mission-Oriented Systems Based on Wiener 

Degradation”.

This paper deals with mission-oriented systems subject to gradual degradation modeled 

by a Wiener stochastic process within the context of CBM. For a mission-oriented 

system, the mission usually has constraints on availability/reliability, the opportunity for 

maintenance actions, and the monitoring type (continuous or discrete). Furthermore, in 

practice, a mission-oriented system may undertake some preventive maintenance (PM) 

and after such PM, the system may return to an intermediate state between an as-good-as 

new state and an as-bad-as old state, i.e. the PM is not perfect and only partially restores 

the system. 
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CHAPTER 3 - AVAILABILTY MODELLING 
TECHNIQUES

In this chapter reliability and availability modelling and analysis are described. The 

conventional techniques such as RBD, FTA etc., with their limitations are discussed. 

Finally the modern technique such as Markov approach is elaborated.

3.1 Conventional techniques for reliability and availability 
modelling

The conventional methods used in reliability modelling are:-

∑ Reliability block diagrams

∑ Fault tree analysis

Other methods are also there which are not discussed here such as Boolean truth table 

and reliability graphs.

3.1.1 Reliability Block Diagrams
A reliability block diagram shows the interdependencies among all elements (subsystems, 

equipments, etc.) or functional groups of the item for item success in each service use 

event. The blocks in the diagram follow a logical order which relates the sequence of 

events during the prescribed operation of the item. The reliability block diagram is drawn 

so that each element or function employed in the item can be identified. Each block of the 

reliability block diagram represents one element of function contained in the item. All 

blocks are configured in series, parallel, standby, or combinations thereof as appropriate. 

Refer fig 3.1.
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Figure 1 RBD of 2 component parallel.

The following general assumptions apply to reliability block diagrams:

∑ Blocks denote elements or functions of the items that are considered when 

evaluating reliability and which have reliability values associated with them.

∑ Lines connecting blocks have no reliability values. 

∑ All inputs to the item are within specification limits.

∑ Failure of any element or function denoted by a block in the diagram will cause 

failure of the entire item, except where alternative modes of operation may be 

present; i.e., redundant units or paths.

∑ Each element or function denoted by a block in the diagram is independent with 

regard to probability of failure from all other blocks.

3.1.2 Fault Tree Analysis
The "fault tree" analysis (FTA) technique is a method for block diagramming constituting 

lower level elements. It determines, in a logical way, which failure modes at one level 

produce critical failures at a higher level in the system. The fault tree provides a concise 

and orderly description of the various combinations of possible occurrences within the 

system which can result in a predetermined critical output event. Fault tree methods can 

be applied beginning in the early design phase, and progressively refined and updated to 

track the probability of an undesirable event as the design evolves. Initial fault tree 

diagrams might represent functional blocks (e.g., units, equipments, etc.), becoming more 

definitive at lower levels as the design materializes in the form of specific parts and 

materials. 

Results of the analysis are useful in the following applications:
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∑ Allocation of critical failure mode probabilities among lower levels of the system 

breakdown. 

∑ Comparison of alternative design configurations from a safety point of view.

∑ Identification of critical fault paths and design weaknesses for corrective action.

∑ Evaluation of alternative corrective action approaches.

∑ Development of operational, test, and maintenance procedures to recognize and 

accommodate unavoidable critical failure modes
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Figure 2 Symbols commonly used in diagramming a fault tree analysis
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Figure 3 Transformation of two element series reliability block diagram to Fault tree 
logic diagram

3.2 Markov approach
A Markov process is a mathematical model that is useful in the study of the availability 

of complex systems. The basic concepts of the Markov process are those of “state” of the 

system (e.g., operating, non operating) and state “transition” (from operating to non 

operating due to failure, or from non operating to operating due to repair).. Any Markov 

process is defined by a set of probabilities pij which define the probability of transition 

from any state i to any state j. One of the most important features of any Markov model is 

that the transition probability pij depends only on states i and j and is completely 

independent of all past states except the last one, state i; also pij does not change with 

time.

In system availability modelling utilizing the Markov process approach, the following 

additional assumptions are made:

∑ The conditional probability of a failure occurring in time (t, t + dt) is λ dt.

∑ The conditional probability of a repair occurring in time (t, t + dt) is µ dt.
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∑ Each failure or repair occurrence is independent of all other occurrences.

∑ λ (failure rate) and µ (repair rate) are constant.

Let us now apply the Markov process approach to the availability analysis of a single unit 

with failure rate λ and repair rate µ.

3.2.1 Two components (Markov Process Approach)
The Markov graph for two components is shown:

Figure 4 RBD of 2 components in parallel
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Figure 5 Markov model of two components in parallel

Where:

S1 = OO = both the components are operating

S2 = FO = first unit has failed and second is operating

S3 = OF= first unit is operating and second has failed

S4= FF= both the components have failed

λ = failure rate

µ  = repair rate

The differential equations involved are:-

-( λ1 + λ2 )P1 (t) + µ1 P2 (t) + µ2 P3 (t)
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-( µ1 + λ2 )P2 (t) + λ1 P4 (t) + µ2 P4 (t)

-( λ1 + µ2 )P3 (t) + λ2 P1 (t) + µ1 P4 (t)

-( µ1+ µ2 )P4 (t) + λ1 P3 (t) + λ2 P2 (t)

Analytically, these differential equations can be solved by Ranga-Kutta method or 

Laplace transformation. However, we have solved by Ranga-Kutta using MATLAB and 

the availability of the system is obtained by adding the operating states.

3.2.2 Advantages 
Markov models offer significant advantages over other reliability modelling techniques, 

some of these advantages are:

∑ Simplistic modelling approach: the models are simple to generate although they 

do require a more complicated mathematical approach.

∑ Redundancy management techniques: system reconfiguration required by failure 

is easily incorporated in the model.

∑ Coverage: covered and uncovered failures of components are mutually exclusive 

events. These are not easily modelled using classical techniques, but are readily 

handled by the Markov mathematics.

∑ Complex systems: many simplifying techniques exist which allow the modelling 

of complex systems.

∑ Sequenced events: often the analyst is interested in computing the probability of 

an event resulting from a sequence of sub events. while these types of problems 

do not lend themselves well to classical techniques, they are easily handled using 

Markov modelling.

3.2.3 Limitations
The major drawback of Markov methods is the explosion of the number of states as the 

size of the system increases. The resulting diagrams for large systems are generally 

extremely large and complicated, difficult to construct and computationally extensive.
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3.3 Monte Carlo Simulation
Monte Carlo (MC) simulation is a quantitative risk analysis technique in which uncertain 

inputs in a model (for example an Excel spreadsheet) are represented by probability 

distributions (instead of by one value such as the most likely value). By letting your 

computer recalculate your model over and over again (for example 10,000 times) and 

each time using different randomly selected sets of values from the (input) probability 

distributions, the computer is using all valid combinations of possible input to simulate 

all possible outcomes. The results of a MC simulation are distributions of possible 

outcomes (rather than the one predicted outcome you get from a deterministic model); 

that is, the range of possible outcomes that could occur and the likelihood of any outcome 

occurring. This is like running hundreds or thousands of "What-if" analyzes on your 

model, all in one go, but with the added advantage that the ’what-if’ scenarios are 

generated with a frequency proportional to the probability we think they have of 

occurring.

The most important advantages of Monte Carlo include:

n The probability distributions within the model can be easily and flexibly used, 

without the need to approximate them;

n Correlations and other relations and dependencies (such as ”if” statements) can be 

modeled without difficulty;

n The level of mathematics required is quite basic;

n The behavior of and changes to the model can be investigated with great ease and 

speed.

An often claimed disadvantage of MC Simulation is that it is an approximate technique. 

However, any degree of precision can be achieved (at least in theory) by simply 

increasing the number of iterations, so the real limitations of MC simulation are:

∑ The number of random numbers that can be produced from a random number 

generating algorithm and;
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∑ The time a computer needs to generate the iterations (and the time the risk analyst 

has).
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CHAPTER 4 - SYSTEM MODELLING

In this chapter condition based maintenance model and opportunistic maintenance models 

are developed for system availability analysis.

4.1 Condition based Maintenance Modeling
For Condition based Modeling aspects such as degradation, Random failure, Periodic 

inspection and repair actions such as ‘no repair’, ‘minimal repair’, ‘ imperfect repair’, and 

‘perfect repair’ are considered.

4.1.1 DEGRADATION
Whenever a system or a model is in working it degrades with time. The degradation is 

gradual not sudden. We are trying to study a mode that follows this kind of failure.

In degradation modeling we study a system that is prone to degradation and mostly we 

study the systems where reliability is critical. As shown in the figure is such a system.

There are four stages shown. Fresh component is given the stage D1, then with time it 

degrades to a stage D2 and so on and finally it goes to a failure state. We will be studying 

the degradation rate from one stage to the other for all the stages.

Figure 6 Multi State degradation

4.1.2 INSPECTION
Inspection is a way to see the health of the system and deciding whether the system 

requires repair/maintenance or not. Now there are two types of inspections:
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Figure 7 Periodic Inspection at every stage.

Online: In this we need not to stop the system for inspection so the availability of the 

system is more, and 

Offline: In this we need to stop the system for inspection.

As described in the above figure we take the system further and do periodic inspections at 

each state defined. These inspections help us in maintain the system by doing timely 

repairs and maintenance.  

4.1.3 CONDITION BASED MAINTENANCE
Condition based maintenance (CBM), shortly described, is maintenance when need 

arises. This maintenance is performed after one or more indicator shows the equipment is 

going to fail or that equipment performance is deteriorating.
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Figure 8 Condition based maintenance
In our system model, we have described three types of maintenance on the basis of the 

requirement of the system. The three types of maintenance are: Minor maintenance, 

intermediate maintenance and major maintenance.

In stage D1, our system is new, thus , we need not require much maintenance for it. 

Therefore we have kept the probability for our system to undergo minor maintenance to 

be 0.1 and the probability that system would go back to the stage D1 without any 

maintenance to be 0.9.

Similarly in stage D2 as our system is in continuous working state, it deteriorates and 

thus its efficiency decreases and the need to repair it or maintain it increases as compared 

to the system in stage D1. Due to this reason we have decreased the probability that the 

system would go back to stage D2 without any repair from 0.9 to 0.7 and the probability 

that the system would require maintenance has been increased from 0.1 to 0.3.

Finally, when our system moves from stage D2 to D3, it deteriorates further giving rise to 

the need to repair it in order to increase its availability. Therefore the probability is that 

he system requires minor repair or intermediate repair or major repair or no repair has 
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been altered again the probability that the system would require major maintenance has 

been changed to 0.2.The probability that the system would require intermediate repair has 

been changed to 0.4. The probability that the system would require minor maintenance 

has been change to 0.2 and finally the probability that the system would go back to stage 

D3 without any repair has been changed to 0.2.

4.1.4 RANDOM FAILURE
Random failure is defined as the situation/Condition in which the system fails due to 

some random causes. These random causes can be anything from natural calami8ty to 

human error. Random failures can also occur due to voltage fluctuations, manufacturing 

defects, problem in system components, etc.

Figure 9 Random failure
Random failure causes the system to go in offline mode thereby bringing its availability 

to 0.  

4.1.5 SYSTEM MODEL

Considering all system  modeling aspects, following model is developed:
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Figure 10 System Model

4.2 System Model for Opportunistic maintenance

We have considered Motor and Pump in series connection. Time to 
failure and time to repair data are tabulated for Motor and Pump from 
website (www.baringer.com).

Figure 11 Series system

In multi state degradation, a series of state is assumed in which the 
machine would function before finally reaching the failed state, these 
states exist between the new state of the machine and the failed state of  
the machine.

http://www.baringer.com/
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For our work we have assumed to have three states of working and one 
failed state. Thus making it in a four state system.

Figure 12 Four State system

4.2.1 System states for two components in series 

W: Working;
R: Repair,
O: Operable. 
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Table 1 System States
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4.2.2 PERFECT REPAIR

n To develop the system model with perfect repair, the health state 1,2 and 3 are 

considered as working state and Health state 4 is considered as repair state.

n With Corrective Maintenance, component is brought from failed health state ‘4’ 

to good health state ‘1’ i.e. 4-1

n With Corrective as well as Opportunistic Maintenance component is brought from 

failed health state ‘4’ to good health state ‘1’, from state ‘3’ to good health state 

‘1’ and from state ‘2’ to ‘1’ i.e. 4-1, 3-1 and 2-1. 
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Figure 13 Corrective Maintenance (Perfect repair) without opportunistic maintenance 
model
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Figure 14 Corrective maintenance (Perfect repair) with opportunistic maintenance model
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4.2.3 Imperfect Repair

n In this model, it is assumed that component is brought from failed health state ‘4’ 

to state ‘2’ with corrective maintenance.

n With Corrective as well as Opportunistic Maintenance component is brought from 

failed health state ‘4’ to good health state ‘2’, from state ‘3’ to good health state 

‘1’ and from state ‘2’ to ‘1’ i.e. 4-2, 3-1 and 2-1.
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n

Figure 15 Corrective maintenance (Imperfect  repair) without opportunistic maintenance 
model
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Figure 16 Corrective Maintenance (Imperfect repair) with opportunistic maintenance 
model
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4.2.4 Minimal Repair

n In this model, it is assumed that component is brought from failed health state ‘4’ 

to state ‘3’ with corrective maintenance.

n With Corrective as well as Opportunistic Maintenance component is brought from 

failed health state ‘4’ to good health state ‘2’, from state ‘3’ to good health state 

‘1’ and from state ‘2’ to ‘1’ i.e. 4-2, 3-2 and 2-1.
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Figure 17 Corrective maintenance (Minimal repair) without opportunistic maintenance 
model
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Figure 18 Corrective maintenance (Minimal repair) with opportunistic maintenance 
model
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CHAPTER-5 SOLUTION OF SYSTEM MODEL

AND RESULT ANALYSIS

After developing the model as above, we will now obtain the solution using analytical 

approach (Markov Analysis).

5.1 Equation for Markov Analysis of CBM Model

1. Pd1 = -λd1d2Pd1(t) –λd1i1Pd1(t)- λd1frPd1(t)+µi1d1Pi1(t) + µm1d1Pm1(t) + 
µmm2d1Pmm2(t) + µmm3Pmm3(t) +µfrd1Pfr(t)

2. Pd2 = λd1d1Pd1(t) –λd2d3Pd2(t)- λd2frPd2(t)- λd2i2Pd2(t) + µi2d2Pi2(t) + 
µm2d2Pm2(t) + µim3d2Pim3(t) 

3. Pd3 = λd2d3Pd2(t) –λd3i3Pd3(t)- λd3frPd3(t)+µm3d3Pm3(t) + µi3d3Pi3(t)

4. PI1 = λd1i1Pd1(t) –λi1m1Pi1(t)-µi1d1Pi1(t).

5. PI2 = λ2i2Pd2(t) –λi2m2Pi2(t)- λi2mm2Pi2(t) - µi2d2Pi2(t)

6. PI3 = λd3i3Pd3(t) –λi3m3Pi3(t)- λi3mm3Pi3(t) - λi3m3Pi3(t) - µi3d3Pi3(t)

7. PFr = λd1frPd1(t) +ëdfrPd2(t) + ëd3frPd3(t)-µfrd1Pfr(t) 

8. Pm1 = λi1m1Pi1(t) – µm1d1Pm1(t)

9. Pm2 = λi2m2Pi2(t) – µm2d2Pm2(t) 

10. Pmm2 = λi2mm2Pi2(t) –µmm2d1Pmm2(t) 

11. Pm3 = λi3m3Pi3(t) – µm3d3Pm3(t) 

12. = λi3m3Pi3(t) – µim3Pi3(t) 

13. Pmm3 = λi3mm3Pi3(t) – µmm3d1Pmm3(t) 
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Table 2 CBM Distribution parameters for failure/Repair/Inspection Interval Transition of 
Centrifugal Pump(Source of Data – Baringer.com)

S.no. Transition PARAMETER VALUE
1 D1D2 λD1D2 0.00025
2 D2D3 λD2D3 0.00067
3 D1I1 λD1I1 0.004
4 I1M1 ΛI1M1 0.5
5 D2I2 λD2I2 0.00595
6 I2M2 λI2M2 0.25
7 I2MM2 λI2MM2 0.25
8 D3I3 λD3I3 0.01
9 I3M3 λI3M3 0.125
10 I3MM3 λI3MM3 0.125
11 I3IM3 λI3IM3 0.125
12 D1Fr λD1Fr 0.00002
13 D2Fr λD2Fr 0.00002
14 D3Fr λD3Fr 0.00002
15 I1D1 µI1D1 0.005
16 I2D2 µI2D2 0.025
17 I3D3 µI3D3 0.0125
18 M1D1 µM1D1 0.05
19 M3D2 µM2D2 0.025
20 MM2D1 µMM2D1 0.0125
21 M3D3 µM3D3 0.016
22 IM3D2 µIM3D2 0.01
23 MM3D1 µMM3D1 0.0625
24 FrD1 µFrD1 0.02
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5.2 Equation for Markov Analysis of OM Model

5.2.1 Perfect repair without OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)+µ4-1*P4(t)+ µ13-1*P13(t)

2. dP2/dt =  λ1-2*P1(t)-( λ 2-3+ λ 2-6)*P2(t)+ µ14-2*P14(t)

3. dP3/dt =  λ2-3*P2(t)-( λ3-4+ λ3-7)*P3(t)+ µ15-3*P15(t)

4. dP4/dt  = λ3-4*P3(t)- µ4-1*P4(t)

5. dP5/dt  = µ8-5*P8(t)-( λ5-6+ λ5-9)*P5(t)+ λ1-5*P1(t)

6. dP6/dt  = λ5-6*P5(t)+ λ2-6*P2(t) - ( λ6-7+ λ6-10)*P6(t)

7. dP7/dt  =  λ3-7*P3(t)+ λ6-7*P6(t)-( λ7-11+ λ7-8)*P7(t)

8. dP8/dt  = λ7-8*P7(t)- µ8-5*P8(t)

9. dP9/dt  =  λ5-9*P5(t)+ µ12-9*P12(t)-( λ9-10+ λ9-13)*P9(t)

10. dP10/dt = λ6-10*P6(t) + λ9-10*P9(t) - ( λ10-11+ λ10-14)*P10(t)

11. dP11/dt  = λ10-11*P10(t) + λ7-11*P7(t) - ( λ11-15+ λ11-12)*P11(t)

12. dP12/dt = λ11-12*P11(t)- µ12-9*P12(t)

13. dP13/dt = λ9-13*P9(t) - µ13-1*P13(t)

14. dP14/dt = λ10-14*P10(t) - µ14-2*P14(t)
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15. dP15/dt = λ11-15*P11(t) - µ15-3*P15(t)

5.2.2 Perfect repair with OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)+µ4-1*P4(t)+ µ13-1*P13(t)

2. dP2/dt =   λ1-2*P1(t)-( λ 2-3+ λ 2-6)*P2(t)+ µ14-2*P14(t)

3. dP3/dt =  λ2-3*P2(t)-( λ3-4+ λ3-7)*P3(t)+ µ15-3*P15(t)

4. dP4/dt  = λ3-4*P3(t)- µ4-1*P4(t) + µ12-4*P12(t)+ µ8-4*P8(t)

5. dP5/dt  = µ8-5*P8(t)-( λ5-6+ λ5-9)*P5(t)+ λ1-5*P1(t)

6. dP6/dt  = λ5-6*P5(t)+ λ2-6*P2(t) - ( λ6-7+ λ6-10)*P6(t)

7. dP7/dt  =  λ3-7*P3(t)+ λ6-7*P6(t)-( λ7-11+ λ7-8)*P7(t)

8. dP8/dt  = λ7-8*P7(t)- µ8-5*P8(t) - µ8-4*P8(t)

9. dP9/dt  =  λ5-9*P5(t)+ µ12-9*P12(t)-( λ9-10+ λ9-13)*P9(t)

10. dP10/dt = λ6-10*P6(t) + λ9-10*P9(t) - ( λ10-11+ λ10-14)*P10(t)

11. dP11/dt  = λ10-11*P10(t) + λ7-11*P7(t) - ( λ11-15+ λ11-12)*P11(t)

12. dP12/dt = λ11-12*P11(t)- µ12-9*P12(t )- µ12-4*P12(t)

13. dP13/dt = λ9-13*P9(t) - µ13-1*P13(t) + µ14-13*P14(t)+ µ15-13*P15(t)

14. dP14/dt = λ10-14*P10(t) - µ14-2*P14(t) - µ14-13*P14(t)
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15. dP15/dt = λ11-15*P11(t) - µ15-3*P15(t) - µ15-13*P15(t)

5.2.3 Imperfect repair without OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)

2. dP2/dt =  -(λ2-3+ λ2-6) *P2(t)+ µ4-2*P4(t)+ λ 1-2*P1(t)

3. dP3/dt =  -(λ 3-4+ λ 3-7)*P3(t)+ λ 2-3*P2(t)

4. dP4/dt = λ3-4*P3(t)- µ4-2*P4(t)

5. dP5/dt = -( λ5-6+ λ5-9) *P5(t)+ λ1-5*P1(t)+ µ13-5*P13(t)

6. dP6/dt = λ5-6*P5(t)+λ2-6*P2(t)-(λ6-7+λ6-10)*P6(t)+µ8-6*P8(t)+µ14-6*P14(t)

7. dP7/dt =  µ15-7*P15(t)+ λ 6-7*P6(t)+ λ3-7*P3(t) - (λ7-11+ λ7-8)*P7(t)

8. dP8/dt =  λ7-8*P7(t)- µ8-6* P8(t)

9. dP9/dt =  λ5-9* P5(t)-( λ9-10+ λ9-13)* P9(t)

10. dP10/dt = λ6-10*P6(t)+ λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+ µ12-10*P12(t)

11. dP11/dt = λ10-11* P10(t)+ λ7-11* P7(t)-( λ11-15+ λ11-12)* P11(t)

12. dP12/dt = λ11-12*P11(t) - µ12-10*P12(t)

13. dP13/dt = λ9-13*P9(t)- µ13-5*P13(t);

14. dP14/dt = λ10-14*P10(t)- µ14-6*P14(t)
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15. dP15/dt = λ11-15* P11(t)- µ15-7* P15(t)

5.2.4 Imperfect repair with OM

1. dP1/dt = -(λ1-5+ λ1-2)*P1(t)

2. dP2/dt =  -(λ2-3+ λ2-6) *P2(t)+ µ4-2*P4(t)+ λ 1-2*P1(t)

3. dP3/dt =  -(λ 3-4+ λ 3-7)*P3(t)+ λ 2-3*P2(t)

4. dP4/dt = λ3-4*P3(t)- µ4-2*P4(t) + µ12-4*P12(t) + µ8-4*P4(t)

5. dP5/dt = -( λ5-6+ λ5-9) *P5(t)+ λ1-5*P1(t)+ µ13-5*P13(t)

6. dP6/dt = λ5-6*P5(t)+λ2-6*P2(t)-(λ6-7+λ6-10)*P6(t)+µ8-6*P8(t)+µ14-6*P14(t)

7. dP7/dt =  µ15-7*P15(t)+ λ 6-7*P6(t)+ λ3-7*P3(t) - (λ7-11+ λ7-8)*P7(t)

8. dP8/dt =  λ7-8*P7(t)- µ8-6*P8(t) - µ 8-4*P4(t)

9. dP9/dt =  λ5-9* P5(t)-( λ9-10+ λ9-13)*P9(t)

10.dP10/dt = λ6-10*P6(t)+ λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+ µ12-10*P12(t)

11.dP11/dt = λ10-11* P10(t)+ λ7-11* P7(t)-( λ11-15+ λ11-12)*P11(t)

12.dP12/dt = λ11-12*P11(t) - µ12-10*P12(t) - µ 12-4*P12(t)

13.dP13/dt = λ9-13*P9(t)- µ13-5*P13(t)+ µ14-13* P14(t) + µ15-13*P15(t)

14.dP14/dt = λ10-14*P10(t)- µ14-6*P14(t) - µ14-13*P14(t)
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15.dP15/dt = λ11-15* P11(t)- µ15-7* P15(t) - µ15-13*P15(t)

5.2.5 Minimal repair without OM

1 dP1/dt = -( λ1-5+ λ1-2)* P1(t)

2 dP2/dt = -( λ 2-3+ λ 2-6)* P2(t)

3 dP3/dt = -( λ 3-4+ λ 3-7)* P3(t)+ µ4-3*P4(t)+ λ 2-3*P2(t)

4 dP4/dt = λ3-4*P3(t)- µ 4-3*P4(t)

5 dP5/dt = -( λ5-6+ λ5-9)* P5(t)+ λ 1-5*P1(t)

6 dP6/dt =   λ5-6* P5(t)+ λ2-6* P2(t) - ( λ6-7+ λ6-10)* P6(t)

7 dP7/dt = µ8-7* P8(t)+ λ6-7* P6(t)-( λ7-11+ λ7-8)* P7(t)+ λ 3-7* P3(t)

8 dP8/dt = λ7-8* P7(t)- µ8-7* P8(t)

9 dP9/dt = λ5-9* P5(t)+ µ13-9* P13(t)-( λ 9-10+ λ 9-13)* P9(t)

10 dP10/dt = λ6-10*P6(t)+λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+µ14-10* P14(t)

11 dP11/dt = λ10-11*P10(t)+λ 7-11*P7(t)-(λ11-15+λ11-12)*P11(t)+µ15-11*P15(t)+ 

µ12-11*P12(t)

12 dP12/dt = λ 11-12* P11(t)- µ 12-11* P12(t)

13 dP13/dt = λ 9-13* P9(t)- µ13-9* P13(t)
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14 dP14/dt = λ 10-14* P10(t)- µ 14-10* P14(t)

15 dP15/dt =  λ11-15* P11(t)- µ 15-11* P15(t)

5.2.6 Minimal repair with OM

1. dP1/dt = -( λ1-5+ λ1-2)* P1(t)

2. dP2/dt = -( λ 2-3+ λ 2-6)* P2(t)

3. dP3/dt = -( λ 3-4+ λ 3-7)* P3(t)+ µ4-3*P4(t)+ λ 2-3*P2(t)

4. dP4/dt = λ3-4*P3(t)- µ 4-3*P4(t)+ µ 8-4*P8(t)

5. dP5/dt = -( λ5-6+ λ5-9)* P5(t)+ λ 1-5*P1(t)

6. dP6/dt =   λ5-6* P5(t)+ λ2-6* P2(t) - ( λ6-7+ λ6-10)* P6(t)

7. dP7/dt = µ8-7* P8(t)+ λ6-7* P6(t)-( λ7-11+ λ7-8)* P7(t)+ λ 3-7* P3(t)

8. dP8/dt = λ7-8* P7(t)- µ8-7* P8(t)+ µ12-8* P12(t)- µ8-4* P8(t)

9. dP9/dt = λ5-9* P5(t)+ µ13-9* P13(t)-( λ 9-10+ λ 9-13)* P9(t)

10. dP10/dt = λ6-10*P6(t)+λ9-10*P9(t)-(λ10-11+λ10-14)*P10(t)+µ14-10* P14(t)

11. dP11/dt = λ10-11*P10(t)+λ 7-11*P7(t)-(λ11-15+λ11-12)*P11(t)+µ15-11*P15(t)+ µ12-

11*P12(t)

12. dP12/dt = λ 11-12* P11(t)- µ 12-11* P12(t)- µ 12-8* P12(t)
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13. dP13/dt = λ 9-13* P9(t)- µ13-9* P13(t)+ µ 14-13* P14(t)

14. dP14/dt = λ 10-14* P10(t)- µ 14-10* P14(t)+ µ 15-14* P15(t)- µ 14-13* P14(t)

15. dP15/dt =  λ11-15* P11(t)- µ 15-11* P15(t)- µ15-14* P15(t)

5.3 Simulation Algorithm of CBM Model
To verify the solution obtained analytically, we use the simulation techniques. Here we 

are using Monte Carlo Simulation method. It helps in obtaining the result by generating 

random numbers. With the use of Matlab software for generating random numbers, we 

proceed to achieve the solution of our model systematically. This step wise procedure is 

as follows:

We start observing the working of our component from beginning. It is in perfect 

condition and is brand new. We designate this as stage one, D1 .

Now we make an algorithm follow these steps:

Step 1.

We start with stage one, D1. Now using Matlab we generate three random numbers 

between 0 and 1; as from here it can go to three stages namely I1, Fr and D2.

These random numbers are used to calculate the time values for each of the three stages. 

We proceed the stage for which minimum time is obtained.

Suppose the least time is obtained for Fr.

Step 2.
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This means the component goes towards the random failure. Here we need to undertake 

substantial work and replacement work on it and bring it back to stage D1.

Now we proceed with step 1 again.

Suppose the least time is obtained for I1.

Step 3. 

This means we undertake inspection of the component. Now, we generate random 

variable between 0 and 1.

It its value is [0.9,1]; we send it to minor repair work. Now we again generate random 

variable to determine the time of repair work done. After that the component is again sent 

back to stage D1.

Now we proceed with step 1 again.

Suppose the least time is obtained for D2.

Step 4. 

This means the component has arrived at the deteriorated level, D2.  Now we generate 3 

random variables between 0 and 1; as from here it can go to stages namely I2, Fr, and D2.

Time values for these three states are calculated and we proceed to the stage for which 

the minimum time is obtained.

Suppose the least time is obtained for Fr.

Step 5.
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This means the component goes towards the random failure. Here we need to undertake 

substantial repair and replacement work on it and bring it to stage D1.

Now we proceed with step 1 again.

Suppose the least time is obtained for I2.

Step 6.

This means we undertake inspection of the component. Now, we generate random 

variable between 0 and 1.

It its value is [0,0.7]; we approve the condition as okay and send it back to stage D2. Now 

the step 4 is repeated again.

It its value is [0.7,0.9]; we send it to minor repair work. Now we again generate random 

variable to determine the time of repair work done. After that the component is again sent 

back to stage D2. Now the step 4 is repeated again.

It its value is [0.9,1]; we send it to major repair work. Now we again generate random 

variable to determine the time of repair work done. After that the component is again sent 

back to stage D1. Now the step 1 is repeated again.

Suppose the least time is obtained for D3.

Step 7.

This means the component has arrived at the deteriorated level, D2.  Now we generate 2 

random variables between 0 and 1; as from here it can go to stages namely I3 and Fr.
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Time values for these two states are calculated and we proceed to the stage for which the 

minimum time is obtained.

Suppose the least time is obtained for Fr.

Step 8.

This means we undertake inspection of the component. Now, we generate random 

variable between 0 and 1.

It its value is [0,0.2]; we approve the condition as okay and send it back to stage D3. Now 

the step 7 is repeated again.

It its value is [0.2,0.4]; we send it to minor repair work. Now we again generate random 

variable to determine the time of repair work done. After that the component is again sent 

back to stage D3. Now the step 7 is repeated again.

It its value is [0.4,0.8]; we send it to imperfect repair work. Now we again generate 

random variable to determine the time of repair work done. After that the component is 

again sent back to stage D2. Now the step 4 is repeated again.

It its value is [0.8,1]; we send it to major repair work. Now we again generate random 

variable to determine the time of repair work done. After that the component is again sent 

back to stage D1. Now the step 1 is repeated again.

The above mentioned steps are followed in continuation forming a cycle. Here we note 

down each time value and run our system till the specified cycle time.

We notice that the results obtained by both the approaches are same.
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5.4 Simulation Algorithm of OM Model
Initially both the components (A and B) of the system are in state 1 and 1, i.e. 1, 1

henceforth we will use the same assignment for A and B state.

We have used various random variables for each stage for deciding randomly where the 

system should go.

Time coefficient are considered when the stage moves from one state to another.

Repair coefficients are considered whenever one of the states reaches failed state (i.e. 

state 4). 

Perfect repair without Opportunistic Maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of 

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should 

change the state of A (21) or B (12). And subsequently it is decided with the help 

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared 

with mission   time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is 

applied and system is bought to 1st state.

Step5: Repair  time (rt) is calculated using standard formulae and system state is bought 

back to perfect state if the mission time you have entered hasn’t crossed else the loop will 

keep iterating.

Step 6: Availability is calculated using time added for traversal from each state (ct) and 

repair time whenever the state fails (rt) using standard formulae.
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Perfect repair with opportunistic maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of 

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should 

change the state of A (21) or B (12). And subsequently it is decided with the help 

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared 

with mission   time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is 

applied

Step 5: When any of the component goes to failed state, we do opportunistic maintenance

Step 6: In opportunistic maintenance we try to bring the other component back to better 

stage (two stage improvement) if the time to repair from failed state to state1 takes more 

time than the opportunistic maintenance of the other component , otherwise simple repair 

is done.

Step7: Repair  time (rt) is calculated using standard formulae and system state is bought 

back to perfect state if the mission time you have entered hasn’t crossed else the loop will 

keep iterating.

Step 8: Availability is calculated using time added for traversal from each state (ct) and 

repair time whenever the state fails (rt) using standard formulae.

Imperfect repair without Opportunistic Maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of 

the system.

Step2: System initially is in 11 State.
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If condition applied on random variable decides whether the system should 

change the state of A (21) or B (12). And subsequently it is decided with the help 

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared 

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is 

applied and system is bought to 2nd state.

Step5: Repair  time (rt) is calculated using standard formulae and system state is bought 

back to perfect state if the mission time you have entered hasn’t crossed else the loop will 

keep iterating.

Step 6: Availability is calculated using time added for traversal from each state (ct) and 

repair time whenever the state fails (rt) using standard formulae.

Imperfect repair with opportunistic maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of 

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should 

change the state of A (21) or B (12). And subsequently it is decided with the help 

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared 

with mission  time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is 

applied

Step 5: When any of the component goes to failed state, we do opportunistic maintenance
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Step 6: In opportunistic maintenance we try to bring the other component back to better 

stage (two stage improvement) if the time to repair from failed state to state 2 takes more 

time than the opportunistic maintenance of the other component, otherwise simple repair 

is done.

Step7: Repair  time (rt) is calculated using standard formulae and system state is bought 

back to perfect state if the mission time you have entered hasn’t crossed else the loop will 

keep iterating.

Step 8: Availability is calculated using time added for traversal from each state (ct) and 

repair time whenever the state fails (rt) using standard formulae.

Minimal repair without Opportunistic Maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of 

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should 

change the state of A (21) or B(12). And subsequently it is decided with the help 

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared 

with mission time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is 

applied and system is bought to 3rd state.

Step5: Repair  time (rt) is calculated using standard formulae and system state is bought 

back to perfect state if the mission time you have entered hasn’t crossed else the loop will 

keep iterating.

Step 6: Availability is calculated using time added for traversal from each state (ct) and 

repair time whenever the state fails (rt) using standard formulae.
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Minimal repair with opportunistic maintenance

Step 1: User inputs mission time, time for which he/she wants to see the availability of 

the system.

Step2: System initially is in 11 State.

If condition applied on random variable decides whether the system should 

change the state of A (21) or B (12). And subsequently it is decided with the help 

of random variable which state comes next using switch case.

Step3: Time (ct) is added for each passing state using standard formulae and is compared 

with mission    time to see if it exceeds, if exceeds then the while loop breaks.

Step4: When any one of the state of A or B reaches failed state, repair mechanism is 

applied

Step 5: When any of the component goes to failed state, we do opportunistic maintenance

Step 6: In opportunistic maintenance we try to bring the other component back to better 

stage (one stage improvement) if the time to repair from failed state to state 3 takes more 

time than the opportunistic maintenance of the other component otherwise simple repair 

is done.

Step7: Repair  time (rt) is calculated using standard formulae and system state is bought 

back to perfect state if the mission time you have entered hasn’t crossed else the loop will 

keep iterating.

Step 8: Availability is calculated using time added for traversal from each state (ct) and 

repair time whenever the state fails (r ) using standard formulae.

5.5 Sensitivity Analysis of CBM Model
Sensitivity refers to the change in the result obtained when one or more independent 

parameters considered in the calculations are varied. Sensitivity Analysis is a technique 

to check the sensitivity of the solution obtained. For that, keeping other factors constant, 

one of the parameters is varied.
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VARYING THE INSPECTION INTERVAL:

In the beginning we change the periodic inspection time at I1 keeping those at I2 and I3 

constant. We observe that as we decrease the periodic time, the availability of the 

component decreases. This is so because in the beginning the component is new and the 

frequent inspection lead to time wastage and increases the possibility of minor repair 

work on the component. Thus decrease its availability. As shown in the table below:

Table 3 Sensitivity analysis for system availability varying inspection interval for 
degradation stage 1.

S.No. I1(hrs) I2(hrs) I3(hrs) Availability

Markov MCS

1. 50 150 100 0.8807 0.8809

2. 100 150 100 0.9194 0.9198

3. 200 150 100 0.9607 0.9609

4. 300 150 100 0.9731 0.9738

5. 400 150 100 0.9792 0.9791

6. 600 150 100 0.9859 0.9855

7. 800 150 100 0.9893 0.9895

8. 1000 150 100 0.9991 0.9997

9. 1100 150 100 0.9922 0.9923

10. 1200 150 100 0.9931 0.9933

11. 1300 150 100 0.9934 0.9935

12. 1500 150 100 0.9942 0.9945
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Figure 19 Inspection Interval for I1.

Next, we change the periodic inspection time at I2 keeping those at I1 and I3 constant. 

We observe that when we increase the periodic inspection time there is very slight 

increase in availability of the component. This is so , because  the system has degraded to 

an extent that it needs frequent inspection to increase the availability of the component.
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Table 4 Sensitivity analysis for system availability varying inspection interval for 
degradation stage 2.
S.No. I1(hrs) I2(hrs) I3(hrs) Availability

Markov MCS

1. 250 50 100 0.9667 0.9669

2. 250 100 100 0.9695 0.9675

3. 250 150 100 0.9677 0.9679

4. 250 200 100 0.9682 0.9683

5. 250 400 100 0.9689 0.9688

6. 250 600 100 0.9692 0.9695

7. 250 800 100 0.9694 0.9696

8. 250 1000 100 0.9694 0.9696

9. 250 1500 100 0.9696 0.9697

10. 250 2000 100 0.9697 0.9697

11. 250 10000 100 0.9700 0.9701

12. 250 20000 100 0.9697 0.9698

Figure 20 Inspection Interval for I2.
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Next, we change the periodic inspection time at I3 keeping those at I1 and I2 constant. 

We observe that, as we increase the periodic inspection time the availability of the 

component merely increases. This is so, because the component has degraded to a higher 

level and need frequent inspection.

Table 5 Sensitivity analysis for system availability varying inspection interval for 
degradation stage 3.

S.No. I1(hrs) I2(hrs) I3(hrs) Availability

Markov MCS

1. 250 150 25 0.9676 0.9675

2. 250 150 50 0.9676 0.9675

3. 250 150 100 0.9677 0.9676

4. 250 150 150 0.9677 0.9676

5. 250 150 200 0.9677 0.9676

6. 250 150 300 0.9678 0.9677

7. 250 150 400 0.9678 0.9677

8. 250 150 500 0.9678 0.9678

Figure 21 Inspection Interval for I3.
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5.6 Comparison of Result for OM Model
In this section, we compare the various results obtained by the simulation of the program 

codes in MATLAB for all the three types of maintenance policies. The source of data is 

baringer.com. The results include the availability of the multi state system, found out by 

using both Markov analysis and the Monte Carlo Simulation.

The following pages represent the tabulated result with their corresponding graphical 

presentation, with all the three methods compared graphically in the end. 

Table 6 Results for availability
MISSION TIME

5000 10000 15000

Markov 
Analysis

MCS Markov 
Analysis

MCS Markov 
Analysis

MCS

Perfect 
without OM 0.9986 0.9985 0.9972 0.9972 0.9965 0.9968
Perfect with 

OM
0.9989 0.9989 0.9975 0.9974 0.9972 0.9971

Imperfect 
without OM

0.9980 0.9981 0.9955 0.9951 0.9915 0.9912

Imperfect 
with OM

0.9989 0.9987 0.9965 0.9969 0.9932 0.9929

Minimal 
without OM

0.9975 0.9976 0.9955 0.9756 0.9244 0.9245

Minimal with 
OM

0.9977 0.9979 0.9767 0.9761 0.9955 0.9254
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Figure 22 Availability for Perfect Repair without OM

Figure 23 Availability for Perfect Repair with OM
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Figure 24 Availability for Imperfect Repair without OM

Figure 25 Availability for Imperfect Repair with OM
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Figure 26 Availability for Minimal Repair without OM

Figure 27 Availability for Minimal Repair with OM
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Figure 28 Comparison of Availability Values for Perfect Repair with and without OM

Figure 29 Comparison of Availability Values for Imperfect Repair with and without OM
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Figure 30 Comparison of Availability Values for Minimal Repair with and without OM
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5.6.1 RESULT DISCUSSION

As the results obtained provide a definite indication of the trend in the availability for 

different maintenance policies, these numeric results can be analyzed quantitatively to 

compare the relative improvement in the performance of the system in the different 

scenarios. For the same mission time moving from perfect repair to minimal repair, the 

availability shows the decreasing trend. The percentage of decrease in the availability 

from perfect to imperfect repair is less but the percentage of decrease in availability from 

imperfect to minimal is very high. This clearly establishes that the minimal repair policy 

is extremely inefficient and should be seldom used unless cost of maintenance is the only 

dictating factor.

The availability of the system increases when opportunistic maintenance is done. When 

the system is new, the effect of opportunistic maintenance on availability is very less and 

the effect increases with mission time till the steady state is reached . The system shows 

the slight availability increase in all the types of repair work. When opportunistic 

maintenance is considered, the system shows the same decreasing trend as it was showing 

in the system with corrective maintenance only.

Thus analysis of availability of repairable mechanical systems under different scenarios is 

a vital tool in creating a system/policy for a definite application to maximize its 

performance and the availability increases with the opportunistic maintenance.
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CHAPTER-6 CONCLUSION AND SCOPE FOR 
FUTURE WORK 

The final chapter of this project contains the conclusion of the project and the scope for 

improvement in this project.

6.1 CONCLUSION
System availability model considering multi stage degradation, periodic inspection, 

condition based maintenance and random failure is developed. The system model is 

solved analytically by MARKOV approach and verified by Monte-Carlo simulation. And 

the results by both the methods are almost same.

A sensitivity analysis is conducted to see the effect of variation in probability for various 

maintenance decision, variation of inspection interval and final degraded states with and 

without failure. 

∑ As far as frequency of inspection is concerned at stage D1, less frequent 

inspection should be done as the health of the component is very good and 

unnecessary inspection will only lead to time wastage and reducing our 

component availability . 

∑ At stage D2, the inspection should be done too frequently either as here too the 

health of the component is fairly good. 

∑ At stage D3, inspection work should be done quite frequently as the health of the 

component has deteriorated and frequent inspection would readily provide us 

information about its degradation so we can undertake necessary repair actions.

The system models with opportunistic maintenance are developed for motor-pump 

system. Each based on different maintenance policy.

∑ There is gain in availability when opportunistic maintenance is done with 

corrective maintenance.

∑ The maximum gain in availability hours is observed in perfect repair when 

opportunistic maintenance is done with corrective maintenance.
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∑ The minimum gain in availability hours is observed in minimal repair as 

expected.

6.2 FUTURE SCOPE OF WORK

In this project, the failure and the repair behavior are modeled with exponential 

distribution so that Markov approach can be applied. But in real life the exponential 

distribution is not appropriate for mechanical systems. So, there is a need to develop a 

model with non-exponential distributions such as weibull for failure and log normal for 

repair which are realistic for a mechanical system.

The costs in the repair are not considered in this project and there is a scope to study 

availability gains and the amount of resource spent on the repairs.

The other maintenance such as preventive and reliability centered maintenance cab be 

analyzed for availability by considering multi-state degradation.

In many industries, still, not much attention is paid to the above considered factors, this 

analysis shows how the individual parameters can contribute significantly to the 

enhanced availability. Hence, it can be an initiation in this regard for many firms to

analyze the parameters discussed here and improve the availability of the component(s) 

and thereby, that of the overall system.
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APPENDIX

Program for Markov Analysis of CBM model
function dydt = CBM 

(t,y,ld1d2,ld1i1,ld1fr,ld2d3,ld2fr,ld2i2,ld3i3,ld3fr,li1m1,li3m3,li2m2,li2mm2,li3mm3,li3im3,mui1d1,mum

1d1,mumm2d1,mumm3d1,mufrd1,mui2d2,mum2d2,muim3d2,mum3d3,mui3d3)

ld1d2=0.00025;ld1i1=0.004;ld1fr=0.00002;ld2fr=0.00002;

ld2i2=0.006667;ld2d3=0.00067;

ld3i3=0.01;ld3fr=0.00002;li1m1=0.5;li3m3=0.125;

li2m2=0.25;li2mm2=.25;li3mm3=.125;li3im3=.125;

mui1d1=0.005,mum1d1=0.05;

mumm2d1=0.0125;mumm3d1=0.0625;mufrd1=0.02;

mui2d2=0.025;mum2d2=0.025;muim3d2=0.01;

mum3d3=0.016;mui3d3=0.0125;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(ld1d2+ld1i1+ld1fr)*y(1)+mum1d1*y(8)+mumm2d1*y(10)+mumm3d1*y(13)+mufrd1*y(7));

(-(ld2d3+ld2fr+ld2i2)*y(2)+ld1d2*y(1)+mui2d2*y(5)+mum2d2*y(9)+muim3d2*y(12));

(-(ld3i3+ld3fr)*y(3)+ld2d3*y(2)+mum3d3*y(11)+mui3d3*y(6));

(ld1i1*y(1)-li1m1*y(4)-mui1d1*y(4));

(ld2i2*y(2)-(li2m2+li2mm2)*y(5)-mui2d2*y(5));

(-(li3m3+li3mm3+li3im3)*y(6)+ld3i3*y(3)-mui3d3*y(6));

(ld1fr*y(1)+ld2fr*y(2)+ld3fr*y(3)-mufrd1*y(7));

(li1m1*y(4)-mum1d1*y(8));

(li2m2*y(5)-mum2d2*y(9));

(li2mm2*y(5)-mumm2d1*y(10));

(li3m3*y(6)-mum3d3*y(11));

(li3im3*y(6)-muim3d2*y(12));

(li3mm3*y(6)-mumm3d1*y(13));];

End



86

Program for Markov Analysis of Perfect Repair System
(without OM)

function dydt = 

withoutopp1(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,le

mda610,lemda711,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu41,m

u153,mu142,mu131,mu129,mu85) 

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107; 

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1)+mu41*y(4)+mu131*y(13));

(lemda12)*y(1)-(lemda23+lemda26)*y(2)+mu142*y(14);

(lemda23)*y(2)-(lemda34+lemda37)*y(3)+mu153*y(15);

lemda34*y(3)-mu41*y(4);

mu85*y(8)-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

lemda37*y(3)+lemda67*y(6)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu85*y(8);

lemda59*y(5)+mu129*y(12)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu129*y(12);

lemda913*y(9)-mu131*y(13);

lemda1014*y(10)-mu142*y(14);

lemda1115*y(11)-mu153*y(15);];

end
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Program for Markov Analysis of Perfect Repair System(with 
OM)

function dydt =withopp1 

(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lem

da711,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu41,mu153,mu142

,mu131,mu129,mu85,mu1513,mu124,mu1413,mu84) 

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107; 

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

mu1413=0.001;mu84=0.01333;

mu1513=0.003334;mu124=0.005;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1)+mu41*y(4)+mu131*y(13));

(lemda12)*y(1)-(lemda23+lemda26)*y(2)+mu142*y(14);

(lemda23)*y(2)-(lemda34+lemda37)*y(3)+mu153*y(15);

lemda34*y(3)-mu41*y(4)+mu124*y(12)+mu84*y(8);

mu85*y(8)-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

lemda37*y(3)+lemda67*y(6)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu85*y(8)-mu84*y(8);

lemda59*y(5)+mu129*y(12)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu129*y(12)-mu124*y(12);

lemda913*y(9)-mu131*y(13)+mu1413*y(14)+mu1513*y(15);

lemda1014*y(10)-mu142*y(14)-mu1413*y(14);

lemda1115*y(11)-mu153*y(15)-mu1513*y(15);];

end
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Program for Markov Analysis of Imperfect Repair 
System(without OM)

function dydt =withoutopp3 

(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lem

da711,mu1210,mu157,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu4

1,mu42,mu153,mu86,mu146,mu135,mu142,mu131,mu129,mu85,mu1513,mu124,mu1413,mu84)  

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107; 

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

mu1210=0.0025;

mu1413=0.001;mu84=0.1333;mu42=0.0025;mu135=0.003334;

mu86=0.0025;mu146=0.003334;mu157=0.003334;

mu1513=0.001;mu124=0.005;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2)+mu42*y(4)+lemda12*y(1));

(-(lemda34+lemda37)*y(3))+lemda23*y(2);

lemda34*y(3)-mu42*y(4);

-(lemda56+lemda59)*y(5)+lemda15*y(1)+mu135*y(13);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6)+mu86*y(8)+mu146*y(14);

mu157*y(15)+lemda67*y(6)+lemda37*y(3)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu86*y(8);

lemda59*y(5)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1210*y(12);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu1210*y(12);

lemda913*y(9)-mu135*y(13);

lemda1014*y(10)-mu146*y(14);

lemda1115*y(11)-mu157*y(15);];

end
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Program for Markov Analysis of Imperfect Repair 
System(with OM)

function dydt =withopp3 

(t,y,lemda12,lemda15,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lem

da711,mu1210,mu157,lemda1011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu4

1,mu42,mu153,mu86,mu146,mu135,mu142,mu131,mu129,mu85,mu1513,mu124,mu1413,mu84)  

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107; 

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;mu1210=0.0025;

mu1413=0.001;mu84=0.01333;mu42=0.0025;mu135=0.003334;

mu86=0.0025;mu146=0.003334;mu157=0.003334;

mu1513=0.003334;mu124=0.005;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2)+mu42*y(4)+lemda12*y(1));

(-(lemda34+lemda37)*y(3))+lemda23*y(2);

lemda34*y(3)-mu42*y(4)+mu124*y(12)+mu84*y(4);

-(lemda56+lemda59)*y(5)+lemda15*y(1)+mu135*y(13);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6)+mu86*y(8)+mu146*y(14);

mu157*y(15)+lemda67*y(6)+lemda37*y(3)-(lemda711+lemda78)*y(7);

lemda78*y(7)-mu86*y(8)-mu84*y(4);

lemda59*y(5)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1210*y(12);

lemda1011*y(10)+lemda711*y(7)-(lemda1115+lemda1112)*y(11);

lemda1112*y(11)-mu1210*y(12)-mu124*y(12);

lemda913*y(9)-mu135*y(13)+mu1413*y(14)+mu1513*y(15);

lemda1014*y(10)-mu146*y(14)-mu1413*y(14);

lemda1115*y(11)-mu157*y(15)-mu1513*y(15);];

end
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Program for Markov Analysis of Minimal Repair System
(without OM)

function dydt =withoutopp2 

(t,y,lemda12,lemda15,mu43,mu87,mu1511,mu1410,mu1211,lemda26,lemda37,lemda56,lemda910,le

mda23,lemda59,lemda67,lemda610,lemda711,lemda1011,lemda34,lemda78,lemda913,lemda1014,lem

da1112,lemda1115,mu41,mu153,mu142,mu131,mu139,mu85) 

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107; 

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu1511=0.001;mu1410=0.001;mu1211=0.001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;

mu139=0.001;mu43=0.001;mu87=0.001;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2));

(-(lemda34+lemda37)*y(3))+mu43*y(4)+lemda23*y(2);

lemda34*y(3)-mu43*y(4);

-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

mu87*y(8)+lemda67*y(6)-(lemda711+lemda78)*y(7)+lemda37*y(3);

lemda78*y(7)-mu87*y(8);

lemda59*y(5)+mu139*y(13)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1410*y(14);

lemda1011*y(10)+lemda711*y(7)-

(lemda1115+lemda1112)*y(11)+mu1511*y(15)+mu1211*y(12);

lemda1112*y(11)-mu1211*y(12);

lemda913*y(9)-mu139*y(13);

lemda1014*y(10)-mu1410*y(14);

lemda1115*y(11)-mu1511*y(15);];

end



91

Program for Markov Analysis of Minimal Repair System(with 
OM)

function dydt =withopp2(t,y,lemda12,lemda15,mu43,mu87,mu1511,mu1410,mu1514,mu1413,mu128, 

mu1211,lemda26,lemda37,lemda56,lemda910,lemda23,lemda59,lemda67,lemda610,lemda711,lemda1

011,lemda34,lemda78,lemda913,lemda1014,lemda1112,lemda1115,mu41,mu153,mu142,mu131,mu13

9,mu85) 

lemda12=0.00004107;lemda15=0.00001;lemda26=0.00001;

lemda37=0.00001;lemda56=0.00004107;lemda910=0.00004107; 

lemda23=0.00004107;lemda59=0.00001;lemda67=0.00004107;

lemda610=0.00001;lemda711=0.00001;lemda1011=0.00004107;

lemda34=0.00004107;lemda78=0.00004107;lemda913=0.00001;

lemda1014=0.00001;lemda1112=0.00004107;lemda1115=0.00001;

mu1511=0.001;mu1410=0.001;mu1211=0.001;

mu41=0.0016667;mu153=0.002;mu142=0.002;mu131=0.002;

mu129=0.0016667;mu85=0.0016667;mu139=0.001;

mu43=0.001;mu87=0.001;

mu1413=0.001;mu84=0.01333;

mu1514=0.005;mu128=0.006667;

y0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

dydt = [(-(lemda15+lemda12)*y(1));

(-(lemda23+lemda26)*y(2));

(-(lemda34+lemda37)*y(3))+mu43*y(4)+lemda23*y(2);

lemda34*y(3)-mu43*y(4)+mu84*y(8);

-(lemda56+lemda59)*y(5)+lemda15*y(1);

lemda56*y(5)+lemda26*y(2)-(lemda67+lemda610)*y(6);

mu87*y(8)+lemda67*y(6)-(lemda711+lemda78)*y(7)+lemda37*y(3);

lemda78*y(7)-mu87*y(8)+mu128*y(12)-mu84*y(8);

lemda59*y(5)+mu139*y(13)-(lemda910+lemda913)*y(9);

lemda610*y(6)+lemda910*y(9)-(lemda1011+lemda1014)*y(10)+mu1410*y(14);

lemda1011*y(10)+lemda711*y(7)-

(lemda1115+lemda1112)*y(11)+mu1511*y(15)+mu1211*y(12);

lemda1112*y(11)-mu1211*y(12)-mu128*y(12);

lemda913*y(9)-mu139*y(13)+mu1413*y(14);

lemda1014*y(10)-mu1410*y(14)+mu1514*y(15)-mu1413*y(14);

lemda1115*y(11)-mu1511*y(15)-mu1514*y(15);];

end



92

Program for MCS of CBM

function t= monteCBM(missiontime, ld1d2, ld1fr, ld1i1, ld2d3, ld2fr, ld3fr, ld2i2, ld3i3, mufrd1, mui1d1, 
mum3d3, muim3d2, mumm3d1, mumm2d1, mum2d2, mui2d2, mui3d3, td1d2, td1fr, td1i1, td2d3, td2i2, 
td2fr, tdd, tdr, td1, td2, td3, ct, rt, trt, rfrt, trfrt, it, tit, state, i, a, p, avail)
%ld1d2=1/2500;     %failre rate from d1 to d2
%ld1fr=1/50000;     
%ld1i1=1/240;        %d1 to inspection rate
%ld2d3=1/1500;
%ld2fr=1/50000;
%ld3fr=1/50000;
%ld2i2=1/168;
%ld3i3=1/96;
%mufrd1=1/50;        %repaire rate from random failure to d1
%mum1d1=1/2;
%mui1d1=1/2;
%mui2d2=1/4;
%mui3d3=1/8;
%mumm2d1=1/8;
%mumm3d1=1/16;
%muim3d2=1/10;
%mum3d3=1/6;
%mum2d2=1/4;
ld1d2=0.00025;ld1i1=0.004;ld1fr=0.00002;ld2fr=0.00002;
ld2i2=0.006667;ld2d3=0.00067;
ld3i3=0.01;ld3fr=0.00002;
mui1d1=0.005,mum1d1=0.05;mumm2d1=0.0125;mumm3d1=0.0625;mufrd1=0.02;
mui2d2=0.025;mum2d2=0.025;muim3d2=0.01;mum3d3=0.016;mui3d3=0.0125;
a=zeros(1,1000);
p=zeros(1,1000);
avail=0;
availability=0;
missiontime=input('enter the mission time');
for i=1:1:1000

ct=0;
rt=0;          %repair time
trt=0;              %total repair time
rfrt=0;             % random failure repair time
trfrt=0;            %total random failure repair time
it=0;               %inspection time
tit=0;              %total inspection time
state=1;
while ct<missiontime

%so that user doesnt input less than 0
%value

switch state
case 1

yd1d2=random('unif', 0,1);      % for randomly calling value between 0 and 1
yd1fr=random('unif', 0,1);
yd1i1=random('unif', 0,1);
td1d2=-1/ld1d2*log(yd1d2);      % time take from d1 to d2
td1fr=-1/ld1fr*log(yd1fr);
td1i1=-1/ld1i1*log(yd1i1);
tdd=min(td1d2,td1fr);
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tdr=min(td1d2,td1i1);
td1=min(tdd,tdr);
if td1==td1d2

ct=ct+td1d2;
state=2;

elseif td1==td1fr
ct=ct+td1fr;
yfrd1=random('unif',0,1);
rfrt=-1/mufrd1*log(yfrd1);
trfrt=trfrt+rfrt;
ct=ct+rfrt;
state=1;

else ct=ct+td1i1;
yi1=random('unif',0,1);
if(yi1>0)&(yi1<.1)

ym1d1=random('unif',0,1);
yi1d1=random('unif',0,1);
rt=-1/mum1d1*log(ym1d1);    %maintenance to d1
trt=rt+trt;
it=-1/mui1d1*log(yi1d1);    % inspection to d1
tit=tit+it;
ct=ct+rt+it;
state=1;

else
yi1d1=random('unif',0,1);
it=-1/mui1d1*log(yi1d1);
tit=tit+it;
ct=ct+it;
state=1;

end
end

case 2
yd2d3=random('unif',0,1);
yd2fr=random('unif',0,1);
yd2i2=random('unif',0,1);
td2d3=-1/ld2d3*log(yd2d3);
td2fr=-1/ld2fr*log(yd2fr);
td2i2=-1/ld2i2*log(yd2i2);
tdd=min(td2d3,td2fr);
tdr=min(td2d3,td2i2);
td2=min(tdd,tdr);
if td2==td2d3

ct=ct+td2d3;
state=3;

elseif td2==td2fr
ct=ct+td2fr;
yfrd1=random('unif',0,1);
rfrt=-1/mufrd1*log(yfrd1);
trfrt=trfrt+rfrt;
ct=ct+rfrt;
state=1;

else ct=ct+td2i2;
yi2=random('unif',0,1);
if(yi2>0.1)&(yi2<0.3)

ym2d2=random('unif',0,1);
yi2d2=random('unif',0,1);
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rt=-1/mum2d2*log(ym2d2);
trt=trt+rt;
it=-1/mui2d2*log(yi2d2);
tit=tit+it;
ct=ct+it+rt;
state=2;

elseif (yi2>0)&(yi2<.1)
ymm2d1=random('unif',0,1);
yi2d2=random('unif',0,1);
rt=-1/mumm2d1*log(ymm2d1);
trt=trt+rt;
it=-1/mui2d2*log(yi2d2);
tit=tit+it;
ct=ct+it+rt;
state=1;

else
yi2d2=random('unif',0,1);
it=-1/mui2d2*log(yi2d2);
tit=tit+it;
ct=ct+it;
state=2;

end
end

case 3
yd3fr=random('unif',0,1);
yd3i3=random('unif',0,1);
td3fr=-1/ld3fr*log(yd3fr);
td3i3=-1/ld3i3*log(yd3i3);
td3=min(td3fr,td3i3);
if td3==td3fr;

ct=ct+td3fr;
yfrd1=random('unif',0,1);
rfrt=-1/mufrd1*log(yfrd1);
trfrt=trfrt+rfrt;
ct=ct+rfrt;
state=1;

else ct=ct+td3i3;
yi3=random('unif',0,1);
if (yi3>.2)&(yi3<.4)

ym3d3=random('unif',0,1);
yi3d3=random('unif',0,1);
rt=-1/mum3d3*log(ym3d3);
trt=trt+rt;
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it+rt;
state=3;

elseif(yi3>.4)&(yi3<.8);
yim3d2=random('unif',0,1);
yi3d3=random('unif',0,1);
rt=-1/muim3d2*log(yim3d2);
trt=trt+rt;
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it+rt;
state=2;
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elseif(yi3>.8)&(yi3<1);
ymm3d1=random('unif',0,1);
yi3d3=random('unif',0,1);
rt=-1/mumm3d1*log(ymm3d1);
trt=trt+rt;
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it+rt;
state=1;

else
yi3d3=random('unif',0,1);
it=-1/mui3d3*log(yi3d3);
tit=tit+it;
ct=ct+it;
state=3;

end
end

end
end
a(1,i)=(ct-trt-trfrt)/ct;
avail=avail+a(1,i);
a(1,i)=avail/i;
p(1,i)=i;

end
a(1,:)
plot(p(1,:),a(1,:))
end
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Program for MCS of Perfect Repair without OM

function t= perfectwithoutOM(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, mu1411, mu3431, 
mu4313, mu2421, mu4212, mu4111, 
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11  is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include  repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;

mu2414=0.001;   %k
mu4241=0.01333;
mu3414=0.003334;  %k
mu4341=0.005;

random11=0; 
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random12=0; 
random13=0; 
random14=0; 
random23=0; 
random33=0; 
random22=0; 
random32=0; 
random21=0; 
random31=0;  

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000);            % matrix of 1*1000
p=zeros(1,1000);            % matrix of 1*1000

missiontime=input('enter the mission time');  

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);         
random12=random('unif', 0,1); 
random13=random('unif', 0,1); 
random14=random('unif', 0,1); 
random23=random('unif', 0,1); 
random33=random('unif', 0,1); 
random22=random('unif', 0,1); 
random32=random('unif', 0,1); 
random21=random('unif', 0,1); 
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end
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case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22; 
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);      
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'}   % have to apply for rpair method
t14=-1/l14*log(random13);      
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 11;

case 23                 
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end             

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);  
rt=rt + (-1/mu2421*log(random23));
fprintf('rt is %d',rt)
ct=ct+t24

state = 21;

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
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else
state = 43;

end

case 34
testStrings = {'your system is in 34 state'}             % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);      
rt=rt + (-1/mu3431*log(random33));
fprintf('rt is %d',rt)
ct=ct+t34
state = 31;

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);
rt=rt + (-1/mu4313*log(random33));
fprintf('rt is %d',rt)
ct=ct+t43
state = 13;

case 22   
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);
rt=rt+ (-1/mu4212*log(random32));
fprintf('rt is %d',rt)
ct=ct+t42
state = 12;



100

case 21     
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11); 
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41           
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 11;

end    
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);    
p(1,i)=i; 

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair  is%d',M);
%a(1,x)=avail/x;

%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end
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Program for MCS of Perfect Repair with OM

function t= perfectwithopportunisticmaintenance(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, 
mu1411, mu3431, mu4313, mu2421, mu4212, mu4111, 
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11  is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include  repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107; 
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;

mu2414=0.001;   %k
mu1411
mu4241=0.01333;
mu3414=0.003334;  %k
mu4341=0.005;

random11=0; 
random12=0; 
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random13=0; 
random14=0; 
random23=0; 
random33=0; 
random22=0; 
random32=0; 
random21=0; 
random31=0;  

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000);            % matrix of 1*1000
p=zeros(1,1000);            % matrix of 1*1000

missiontime=input('enter the mission time');  

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);         
random12=random('unif', 0,1); 
random13=random('unif', 0,1); 
random14=random('unif', 0,1); 
random23=random('unif', 0,1); 
random33=random('unif', 0,1); 
random22=random('unif', 0,1); 
random32=random('unif', 0,1); 
random21=random('unif', 0,1); 
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
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if(random12<.5)
state = 13;
else
state = 22; 
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);      
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'}   % have to apply for rpair method
t14=-1/l14*log(random13);      
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 11;

case 23                 
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end             

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);  

rt2414=-1/mu2414*log(random23); 
rt2421=-1/mu2421*log(random23); 

if(rt2414<rt2421)
%rt=rt + rt2414;
rt=rt + rt2421;   
ct=ct+t24
state = 11;

else

rt=rt + rt2421;
%fprintf('rt is %d',rt)
ct=ct+t24
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state = 21;
end

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'}             % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);  

rt3414=-1/mu3414*log(random33); 
rt3431=-1/mu3431*log(random33); 

if(rt3414<rt3431)
%rt=rt + rt3414;
rt=rt + rt3431;   
ct=ct+t34
state = 11;       

else

rt=rt + (-1/mu3431*log(random33));
%fprintf('rt is %d',rt)
ct=ct+t34
state = 31;
end

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);

rt4341=-1/mu4341*log(random33); 
rt4313=-1/mu4313*log(random33);

if(rt4341<rt4313)
rt=rt + rt4313;
ct=ct+t43
state = 11;

else
rt=rt + rt4313;
ct=ct+t43
state = 13;
end



105

case 22   
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);

rt4241= -1/mu4241*log(random32);
rt4212= -1/mu4212*log(random32);

if(rt4241<rt4212)
rt=rt+rt4212;    
ct=ct+t42
state = 11;

else
rt=rt+rt4212;    
ct=ct+t42
state = 12;
end

case 21     
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11); 
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end
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case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41           
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 11;

end    
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);    
p(1,i)=i; 

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair  is%d',M);

%a(1,x)=avail/x;
%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end
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Program for MCS of Imperfect Repair without OM
function t= perfectrepairwithoutOM(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, mu1411, 
mu3431, mu4313, mu2421, mu4212, mu4111, 
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11  is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include  repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;
random11=0; 
random12=0; 
random13=0; 
random14=0; 
random23=0; 
random33=0; 
random22=0; 
random32=0; 
random21=0; 
random31=0;  
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%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000);            % matrix of 1*1000
p=zeros(1,1000);            % matrix of 1*1000

missiontime=input('enter the mission time');  

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);         
random12=random('unif', 0,1); 
random13=random('unif', 0,1); 
random14=random('unif', 0,1); 
random23=random('unif', 0,1); 
random33=random('unif', 0,1); 
random22=random('unif', 0,1); 
random32=random('unif', 0,1); 
random21=random('unif', 0,1); 
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end
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case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22; 
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);      
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'}   % have to apply for rpair method
t14=-1/l14*log(random13);      
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 12;

case 23    
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end             

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);  
rt=rt + (-1/mu2421*log(random23));
fprintf('rt is %d',rt)
ct=ct+t24

state = 22;

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)
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state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'}      % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);      
rt=rt + (-1/mu3431*log(random33));
fprintf('rt is %d',rt)
ct=ct+t34
state = 32;

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);
rt=rt + (-1/mu4313*log(random33));
fprintf('rt is %d',rt)
ct=ct+t43
state = 23;

case 22   
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);
rt=rt+ (-1/mu4212*log(random32));
fprintf('rt is %d',rt)
ct=ct+t42
state = 22;
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case 21     
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11); 
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41           
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 21;

end    
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);    
p(1,i)=i; 

end

M=mean(a)
fprintf('mean value over 1000 cases for perfect repair  is%d',M);

%a(1,x)=avail/x;
%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end
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Program for MCS of Imperfect Repair with OM

function t= imperfectwithopportunisticmaintenance(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, 
mu1411, mu3431, mu4313, mu2421, mu4212, mu4111, 
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11 is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include  repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu3432=.003334;
mu2422=.003334;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;

mu2414=0.001;   %k
mu4241=0.01333;
mu3414=0.003334;  %k
mu4341=0.005;
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mu4323=0.0025;

random11=0; 
random12=0; 
random13=0; 
random14=0; 
random23=0; 
random33=0; 
random22=0; 
random32=0; 
random21=0;
random31=0;  

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000);            % matrix of 1*1000
p=zeros(1,1000);            % matrix of 1*1000

missiontime=input('enter the mission time');  

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);         
random12=random('unif', 0,1); 
random13=random('unif', 0,1); 
random14=random('unif', 0,1); 
random23=random('unif', 0,1); 
random33=random('unif', 0,1); 
random22=random('unif', 0,1); 
random32=random('unif', 0,1); 
random21=random('unif', 0,1); 
random31=random('unif', 0,1);
switch state
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case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

case 12
testStrings={'your system is in 12 state'}
t12 =-1/l12*log(random11)
ct =ct+t12
if(random12<.5)
state = 13;
else
state = 22; 
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);      
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'}   % have to apply for rpair method
t14=-1/l14*log(random13);      
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 12;

case 23                 
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end             

case 24
testStrings = {'your system is in 24 state'}
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%add time formulae
t24=-1/l23*log(random23);  

rt2414=-1/mu2414*log(random23); 
rt2422=-1/mu2422*log(random23); 
if(rt2414<rt2422)
rt=rt + rt2422;
ct=ct+t24
state = 12;    

else
rt=rt + rt2422;
ct=ct+t24
state = 22;
end

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'}             % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33); 
rt3414=-1/mu3414*log(random33); 
rt3432=-1/mu3432*log(random33);
if(rt3414<3432)

rt=rt+rt3432;
ct=ct+t34
state = 12;

else   

rt=rt + rt3432;
ct=ct+t34
state = 32;
end

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);

rt4341=-1/mu4341*log(random33); 
rt4313=-1/mu4323*log(random33); 
if(rt4341<rt4313)
rt=rt + rt4313;
ct=ct+t43
state = 21;

else
rt=rt + rt4313;
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ct=ct+t43
state = 23;
end

case 22   
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);

rt4241= -1/mu4241*log(random32);
rt4222= -1/mu4212*log(random32);
if(rt4241<rt4222)

rt=rt+ rt4222;
ct=ct+t42
state = 21;
else
rt=rt+ rt4222;
ct=ct+t42
state = 22;
end

case 21     
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11); 
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
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end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41           
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 21;

end    
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);    
p(1,i)=i; 

end

M=mean(a)
fprintf('mean value over 1000 cases for perfect repair  is%d',M);

%a(1,x)=avail/x;
%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end
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Program for MCS of Minimal Repair without OM

function t= minimalrepairwithoutOM(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, mu1411, 
mu3431, mu4313, mu2421, mu4212, mu4111, 
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11  is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include  repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;
random11=0; 
random12=0; 
random13=0; 
random14=0; 
random23=0; 
random33=0; 
random22=0; 
random32=0; 
random21=0; 
random31=0;  
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%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000);            % matrix of 1*1000
p=zeros(1,1000);            % matrix of 1*1000

missiontime=input('enter the mission time');  

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);       
random12=random('unif', 0,1); 
random13=random('unif', 0,1); 
random14=random('unif', 0,1); 
random23=random('unif', 0,1); 
random33=random('unif', 0,1); 
random22=random('unif', 0,1); 
random32=random('unif', 0,1); 
random21=random('unif', 0,1); 
random31=random('unif', 0,1);
switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end
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case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22; 
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);      
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'}   % have to apply for rpair method
t14=-1/l14*log(random13);      
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 13;

case 23                 
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end             

case 24
testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);  
rt=rt + (-1/mu2421*log(random23));
fprintf('rt is %d',rt)
ct=ct+t24

state = 23;

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)
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state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'}             % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);      
rt=rt + (-1/mu3431*log(random33));
fprintf('rt is %d',rt)
ct=ct+t34
state = 33;

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);
rt=rt + (-1/mu4313*log(random33));
fprintf('rt is %d',rt)
ct=ct+t43
state = 33;

case 22   
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);
rt=rt+ (-1/mu4212*log(random32));
fprintf('rt is %d',rt)
ct=ct+t42
state = 32;
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case 21     
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11); 
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41           
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 31;

end    
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);    
p(1,i)=i; 

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair  is%d',M);
%a(1,x)=avail/x;

%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end  
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Program for MCS of Minimal Repair with OM

function t= minimalwithopportunisticmaintenance(l12,l13,l14,l23,l22,l33,l34,l43,l24,l32,l42,l21,l31,l41, 
mu1411, mu3431, mu4313, mu2421, mu4212, mu4111, 
random11,random12,random13,random14,random23,random33,random22,random32,random21,random31,
ct, rt, state, i, a, p, avail)
%l11  is stage when components are in 1,1 state1=good,2=faulty,3=dangerours,4=faulty
%m1411 is the repairing of faulty state 14 to 11

%to include  repair time with every fault
%total time calculation
%how to call a function

% time taken by system A to degrade from one state to another is .00004107
% time taken by system B to degrade from one state to another is .00001

% time taken by system A to repair is .001667
% time taken by system B to repair is .002
l12=0.00001;
l13=0.00001;
l14=0.00001;
l22=0.00001;
l34=0.00001;
l24=0.00001;
l32=0.00001;
aa=0;

l23=0.00004107;
l33=0.00004107;
l43=0.00004107;
l33=0.00004107;
l42=0.00004107;
l21=0.00004107;
l31=0.00004107;
l41=0.00004107;

mu2423=0.001;
mu3424=0.005;
mu3433=0.001;

mu1411=0.002;
mu3431=0.002;
mu2421=0.002;

mu4313=0.001667;
mu4212=0.001667;
mu4111=0.001667;
mu2414=0.001;   %k
mu4241=0.01333;
mu3414=0.003334;  %k
mu4341=0.005;
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mu4342=0.00667;
mu4333=0.001;
mu4232=0.001;
random11=0; 
random12=0; 
random13=0; 
random14=0; 
random23=0; 
random33=0; 
random22=0; 
random32=0; 
random21=0; 
random31=0;  

%get the mission time from user and compare everytime for the condition of
%time

a=zeros(1,1000);            % matrix of 1*1000
p=zeros(1,1000);            % matrix of 1*1000

missiontime=input('enter the mission time');  

for i=1:1:1000

state=11;
ct=0;

rt=0;
avail=0;

%availability=0;

while ct<missiontime

random11=random('unif', 0,1);         
random12=random('unif', 0,1); 
random13=random('unif', 0,1); 
random14=random('unif', 0,1); 
random23=random('unif', 0,1); 
random33=random('unif', 0,1); 
random22=random('unif', 0,1); 
random32=random('unif', 0,1); 
random21=random('unif', 0,1); 
random31=random('unif', 0,1);
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switch state

case 11
testStrings={'11 state'}

if(random11 < 0.5)
state = 12;

else
state = 21;
end

case 12
testStrings={'your system is in 12 state'}
t12=-1/l12*log(random11)
ct=ct+t12
if(random12<.5)
state = 13;
else
state = 22; 
end

case 13
testStrings = {'your system is in 13 state'}
%add time formulae
t13=-1/l13*log(random12);      
ct=ct+t13
if(random13<.5)
state = 14;
else
state = 23;
end

case 14

testStrings = {'your system is in 14 state'}   % have to apply for rpair method
t14=-1/l14*log(random13);      
ct=ct+t14
rt=rt + (-1/mu1411*log(random13));
fprintf('rt is %d',rt)
state = 13;

case 23                 
testStrings = {'your system is in 23 state'}
t23=-1/l23*log(random13);
ct=ct+t23
if(random23<.5)
state = 24;
else
state = 33;
end             

case 24
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testStrings = {'your system is in 24 state'}
%add time formulae
t24=-1/l23*log(random23);  

rt2414=-1/mu2414*log(random23); 
rt2423=-1/mu2423*log(random23); 
if(rt2414<2423)

rt=rt+rt2423;
ct=ct+t24
state = 13;

else
rt=rt + rt2423;
ct=ct+t24
state = 23;

end

case 33
testStrings = {'your system is in 33 state'}
t33=-1/l33*log(random23);
ct=ct+t33
if(random33<.51)

state = 34;
else

state = 43;
end

case 34
testStrings = {'your system is in 34 state'}             % have to apply for rpair method
%add time formulae
t34=-1/l34*log(random33);     

rt3424=-1/mu3424*log(random33); 
rt3433=-1/mu3433*log(random33);
if(rt3424<3433)

rt=rt+rt3433;
ct=ct+t34
state = 23;

else

rt=rt + rt3433;
ct=ct+t34
state = 33;
end

case 43
testStrings = {'your system is in 43 state'}
t43=-1/l43*log(random33);

rt4342=-1/mu4342*log(random33); 
rt4333=-1/mu4333*log(random33);
if(rt4342<rt4333)

rt=rt+rt4333;
ct=ct+t43
state = 32;
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else
rt=rt+rt4333;
ct=ct+t43
state = 33;

end

case 22   
testStrings = {'your system is in 22 state'}
t22=-1/l22*log(random12);
ct=ct+t22
if(random22<.5)

state = 23;
else

state = 32;
end

case 32
testStrings = {'your system is in 32 state'}
t32=-1/l32*log(random22);
ct=ct+t32
if(random32<.5)

state = 33;
else

state = 42;
end

case 42
testStrings = {'your system is in 42 state'}
t42=-1/l42*log(random32);

rt4241= -1/mu4241*log(random32);
rt4232= -1/mu4232*log(random32);
if(rt4241<4232)

rt=rt+rt4232;
ct=ct+t42
state = 31;

else
rt=rt+rt4232;
ct=ct+t42
state = 32;

end

case 21     
testStrings = {'your system is in 21 state'}
t21=-1/l21*log(random11); 
ct=ct+t21
if(random21<.5)

state = 22;
else

state = 31;
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end

case 31
testStrings = {'your system is in 31 state'}
t31=-1/l31*log(random21);

ct=ct+t31
if(random31<0.5)

state = 32;
else

state = 41;
end

case 41           
testStrings = {'your system is in 41 state'}
t41=-1/l41*log(random31);
rt=rt+ (-1/mu4111*log(random31));
fprintf('rt is %d',rt)
ct=ct+t41
state = 31;

end    
end
%x=x+1;

a(1,i)=(ct-rt)/ct;
aa=(ct-rt)/ct;

fprintf('availability is %d',aa);    
p(1,i)=i; 

end
M=mean(a)
fprintf('mean value over 1000 cases for perfect repair  is%d',M);
%a(1,x)=avail/x;

%avail=avail+a(1,x)
%a(1,i)

plot(p(1,:),a(1,:))

end


