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ABSTRACT 

 

 Cancer is one of the leading causes of adult deaths worldwide. Chemotherapy, 

radiation therapy, immunotherapy, hormonal therapy and surgical removal of tumors are the 

most common clinical approaches being used for the treatment of cancer. Today, there are 

more than 100 FDA approved drugs in the markets for cancer therapy. Unfortunately, the 

chemotherapy treatment is almost always accompanied by a varied range of short and long 

term adverse effects. Also the cancerous cells evolve and develop resistance against these 

drugs during the course of treatment to escape the process of cell death and sustain their 

survival. Hence, the need arises to explicate the various molecular mechanisms which get 

altered and support the survival of transformed cells. This would help us find novel targets 

highly specific to tumor or cancer cells and design drugs against them. Since natural 

compounds offer a potentially infinite source of chemical diversity which cannot be matched 

by any synthetic chemical collection or combinatorial chemistry approach, in this study we 

have used in silico methods to identify small molecule natural compounds with inhibitory 

activity against cancer specific molecular targets. Firstly, we have used a series of 4-

methylpyridopyrimidinone derived PI3K inhibitors to develop a 3D-QSAR model which was 

then used to screen a dataset of natural compounds to predict more potent PI3K inhibitors. In 

complex diseases like cancer, single target approach sometimes do not result in desired 

outcome as the transformed cells find for an alternate pathway to compensate for the loss. In 

such cases, multi target approach is more efficient for a significant modification in the 

environment of cancer cells. With this perspective in mind, secondly we have proposed 

another natural compound with potential to simultaneously inhibit three cancer specific 

targets- Fatty acid synthase, Phosphatidylinositol 3-kinase (p110α) and Skp2 component of 

SCF E3 Ubiquitin Ligase. Lastly, we have reported a molecule of natural origin that shows 

the ability to stimulate body’s own immune system to fight against cancerous cells by 

activating NK cells through TLR3 receptor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BACKGROUND 

 

Cancer is an umbrella term used to describe a variety of diseases in which cells start 

dividing abnormally. These cells then spread through blood and lymph system to invade other 

tissues of the body. There exists more than 100 different types of cancer. Depending upon the 

site of origin, cancer can be grouped as carcinoma (starting in the skin or tissue lining of 

internal organs), sarcoma (cancer of connective and supportive tissue), leukemia (staring in 

the blood forming tissue), lymphoma or myeloma (beginning in the immune cells) and central 

nervous system cancer (originating in brain or spinal cord) (National Cancer Institute).  

 

Cancer is one of the leading causes of adult deaths worldwide. One in every four 

deaths in United States is due to cancer. American Cancer Society projected an estimate of 

about 1,638,910 new cancer cases and 577,190 deaths from cancer in US for the year 2012. 

Prostate cancer is the most prevalent one among the males whereas in females breast cancer 

tops the chart (Siegel et al., 2012). In India the most common fatal cancers include oral, 

stomach and lung cancer in males and cervical, stomach and breast cancer in females (Dikshit 

et al., 2012).  

 

The effective therapies for completely removing the cause of cancer are not yet 

available but efficient measures can be taken to control the growth of cancer. The traditional 

treatment options available for controlling cancer include chemotherapy, radiation therapy, 

childhood hematopoietic cell transplantation, bone marrow transplantation, surgical 

procedures and biological therapies for cancer. The newer technologies include hyperthermia, 

photodynamic therapy, gene therapy and targeted cancer therapies (National Cancer 

Institute). 

 

 Chemotherapy (also described by the terms antineoplastic or cytotoxitic therapy) is a 

treatment that involves the use of drugs for destroying the transformed cells or slowing the 

growth of rapidly dividing cancerous cells. Unlike radiation and surgery, which are 

considered to be local treatments, chemotherapy has a systemic effect as the drug enters the 

circulation to encounter the cancer cells wherever they are present. More than 100 FDA 

approved drugs are available today to be used for the treatment of cancer. If possible, cure 

otherwise control or palliation in the advanced stages of cancer, are the three possible goals 

of chemotherapy. Along with the drug specific side effect, the chemotherapy treatment is 

almost always accompanied by a varied range of adverse effects. Normal cells of the body 

which divide more rapidly like bone marrow/blood cells, cells comprising the hair follicles 

and the ones lining the reproductive tract and digestive tract are most likely to get damaged. 

The other common side effects include low RBC, WBC and platelet count, nausea and 

vomiting, appetite loss, constipation, diarrhea, mouth or throat sores, fatigue, heart damage, 

reproductive and sexual problems, damage to liver, kidney, urinary system, and much more. 

Permanent damage to organs, delay in development of children, nervous damage, elevated 

risk of secondary cancer are some of the long term adverse effects associated with the 

administration of these drugs (American_Cancer_Society, 2011). 



 

 Owing to the severe side effects associated with the use of these chemotherapeutic 

agents, the focus of the ongoing research is shifting from the drugs which have an systemic 

effect on the body to the therapies targeting molecules which either over express or 

differentially express in specific tumor or cancer cells and hence use the therapies which 

differentiate cancerous cells from normal cells of healthy tissues. Since these are more target 

specific, they often have lesser side effects as compared to the conventional chemotherapy 

drugs. Some of the biomolecules used for targeted therapies include aromatases, tyrosine 

kinases, serine/threonine kinases, growth factor receptors and many more enzymes which are 

specific for cancer cells or tissues (American_Cancer_Society, 2011).  

  

 Hormonal and immunotherapy are two more options available for cancer treatment. 

Hormonal therapy is generally used for the treatment of breast, prostate, and endometrial 

(uterine) cancers, which show growth in response to hormones found in the body. It makes 

use of sex hormones or hormones like drugs to alter the production of male or female sex 

hormones. It either prevents the body from producing the hormone or prevents the cancer 

cells from using the synthesized hormone. Immunotherapy uses the drugs which stimulate the 

natural immune system of a patient to recognize and attack the transformed cells. It uses two 

approaches: preparing body’s own immune system for fighting (Active Immunotherapy) or 

using ex vivo created immune system components to be inserted into the patient’s body to 

strengthen its defense mechanism (Passive Immunotherapy) (American_Cancer_Society, 

2011). 

 

 Cancer is a very active area of research. Despite of having hundreds of drugs, many 

potential drug candidates are being proposed each day for combating the limitations of the 

previously known drugs. Here the need arises for a fast and reliable technique to screen a 

huge number of chemical products available to explore their potential therapeutic activities to 

cut down on time and cost involved in in-vivo identification of drugs. Virtual Screening is a 

computational approach to drug discovery that successfully complements High Throughput 

Screening (HTS) for hit detection (Sun, 2008). But since most of the proposed synthetic 

inhibitors fail to clear preclinical or clinical trial because of the drug related or drug induced 

toxicities, the need arises for finding natural products or their derivatives having the potential 

to act as inhibitors against the cancer molecular targets. Most of the natural products follow 

the lipinski’s rule of five. Even the exceptions with high molecular weight, rotatable bonds 

and more stereogenic centers retain relatively low logP values. Thus, these have a high 

tendency to get absorbed more easily as compared to the conventional synthetic drugs. With 

the availability of more number of chiral centers (Feher and Schmidt, 2003) along with a 

wider distribution of molecular attributes like octanol-water partition coefficient, molecular 

mass and diversity of ring system, make natural products more suitable to be used as drugs 

(Lee and Schneider, 2001).  

 

 In this study we have used in silico approach to identify small molecule natural 

compounds with inhibitory activity against cancer specific molecular targets. Firstly, we have 

used a series of 4-methylpyridopyrimidinone derived PI3K inhibitors to develop a 3D-QSAR 

model and derive a relationship between the physiochemical properties and biological 



 

activity (pKi value) of the inhibitors.  The generated model was then used to screen a dataset 

of natural compounds and their biological activity was predicted. The compounds with high 

predicted activity were then analyzed for their molecular mode of interaction with human 

PI3Kα. In complex diseases like cancer, single target approach sometimes do not result in 

desired outcome as the transformed cells find for an alternate pathway to compensate for the 

loss. In such cases, multi target approach is more efficient for a significant modification in 

the environment of cancer cells. With this perspective in mind, secondly we have proposed 

another natural compound with potential to simultaneously inhibit three cancer specific 

targets- Fatty acid synthase, Phosphatidylinositol 3-kinase (p110α) and Skp2 component of 

SCF E3 Ubiquitin Ligase. Lastly, we have reported a molecule of natural origin that shows 

the ability to stimulate body’s own immune system to fight against cancerous cells by 

activating NK cells through TLR3 receptor. 

 

  

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 1 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

QSAR study on a series of 4-methylpyridopyrimidinone derived PI3K 

inhibitors for finding more potent drug candidates against PI3K   

 



 

INTRODUCTION 

 

PI3K signaling plays an important role in several cellular processes critical for cancer 

progression, including metabolism, growth, survival, and motility. There are three classes of 

PI3Ks according to their structure and function. Class IA of PI3Ks has been most clearly 

implicated in human cancer (Yuan and Cantley, 2008). Class IA PI3Ks consist of a regulatory 

subunit and a catalytic subunit. Three mammalian genes, PIK3R1, PIK3R2, and PIK3R3 

encode p85α (p85α, p55α, and p50α isoforms), p85β, and p55Ɣ regulatory subunits 

respectively, which are collectively referred to as p85 (Engelman et al., 2006; Katso et al., 

2001; Yuan and Cantley, 2008). The catalytic isoforms- p110α, p110β, and p110Ɣ, are the 

products of three genes, PIK3CA, PIK3CB, and PIK3CD. Many studies have shown that 

PIK3CA and PIK3R1 are somatically mutated in cancers, promoting activation of the PI3K 

pathway (Ikenoue et al., 2005; Mizoguchi et al., 2004; Philp et al., 2001; Samuels and 

Velculescu, 2004). 

 

 Class IA PI3Ks are activated by growth factor stimulation through receptor tyrosine 

kinases (RTKs) (Kang et al., 2006; Skolnik et al., 1991; Zhao and Vogt, 2008). The 

regulatory subunit, p85, directly binds to phosphotyrosine residues on RTKs and/or adaptors 

(Carpenter et al., 1993). This binding relieves the intermolecular inhibition of the p110 

catalytic subunit by p85 and localizes PI3K to the plasma membrane where its substrate, 

Phosphatidylinositol-4,5-bisphosphate (PIP2), resides (Carpenter et al., 1993; Zhao and Vogt, 

2008). More recently, somatic mutations in PIK3CA have been identified in a variety of 

human tumors, including breast, colon, and endometrial cancers and glioblastomas. 

Expression of these PIK3CA mutants leads to increased oncogenic potential in vitro and in 

vivo (Isakoff et al., 2005). They cause constitutive signaling along the PI3K pathway in the 

absence of growth factors and therefore seem to obviate the usual obligate interactions with 

tyrosine phosphorylated RTKs and/or adapters. Expression of mutated PIK3CA in fibroblasts 

and mammary epithelial cells has been shown to result in transformation, growth factor-

independent proliferation, and resistance to apoptosis (Isakoff et al., 2005; Zhao et al., 2005). 

In another experiment it was shown that lung-specific induction of the kinase-domain mutant 

p110α H1047R lead to the development of lung adenocarcinomas in transgenic mice 

(Engelman et al., 2008). 

 

Inhibition of PI3K signaling can diminish cell proliferation, and in some 

circumstances, promote cell death. A number of PI3K pathway inhibitors have been 

developed and are being evaluated in preclinical studies and in early clinical trials (Courtney 

et al., 2010). Many in silico approaches have come up with the ability to improve upon the 

existing drug candidates and modify them to make them more potent with better affinity for 

the target. Quantitative structure activity relationship (QSAR) is one such powerful approach 

being used to establish a correlation between the physiochemical properties of the chemical 

compounds and their biological activity to obtain a reliable statistical model. This model 

serves as a valuable tool for the design of new chemical entities and to predict their activity. 

The QSAR model so developed facilitates identification of promising lead candidates, thus 



 

decreasing the number of compounds required to be synthesized and tested in vitro (Verma et 

al., 2010). 

 

PF-04691502 has been reported to be a highly potent and selective ATP competitive 

kinase inhibitor of class 1 PI3Ks, and has progressed to phase I/II clinical trials for the 

treatment of solid tumors (Cheng et al., 2010; Yuan et al., 2011). PF-04691502, derived from 

4-methylpyridopyrimidinone (MPP) series was shown to exhibited potent in vitro activity 

against class I PI3K isoforms with mPI3Kα Ki of 0.57 nM (Cheng et al., 2013). A series of 

MPP derivatives was synthesized with different heteroaryl groups, cis or trans-cyclohexyl 

and terminal alcohol or terminal amide. Table 1 mentions MMP derived compound series so 

developed along with their Ki values. We have used this congeneric series containing 23 

compounds for building the 3D-QSAR model to identify the molecular features essential for 

effective interaction between the inhibitors and the active cleft of the PI3Kα. The model thus 

generated using the same series of representative inhibitors was then used to predict the 

activity of a large dataset of natural compounds. The compounds whose predicted biological 

activity was greater than the most potent inhibitor of the congeneric series were then analyzed 

using in silico docking studies to elucidate their molecular mode of interaction with the target 

protein molecule, PI3Kα.  

 

REVIEW OF LITERATURE 

 

PI3K signaling pathway 

 

 The PI3K family of lipid kinases phosphorylates the 3′OH group of 

phosphatidylinositols. There are three classes of PI3K, each with its own substrate specificity 

and distinct lipid products (Engelman et al., 2006; Katso et al., 2001; Zhao and Vogt, 2008). 

The Class IA of PI3Ks is the most widely implicated class in cancer. Class IA PI3Ks 

primarily phosphorylate phosphatidylinositol-4,5-bisphosphate (PIP2) on the plasma 

membrane to generate the second messenger, phosphatidylinositol-3,4,5-trisphosphate 

(PIP3). Class IA PI3Ks are heterodimers that consist of a p85 regulatory and a p110 catalytic 

subunit. There are several isoforms of both the catalytic (p110α, p110β and p110δ) and 

regulatory (p50α, p55α, p85α, p85β and p55γ) subunits. Class IA PI3Ks are most often 

activated by receptor tyrosine kinase (RTK) signaling, although the p110β-containing 

enzymes might also be activated by G protein-coupled receptors (Kurosu et al., 1997; Roche 

et al., 1998). The p85 regulatory subunit is crucial in mediating class IA PI3K activation by 

RTKs. The Src-homology 2 (SH2) domains of p85 bind to phosphotyrosine residues in the 

sequence context pYxxM (in which a ‘pY’ indicates a phosphorylated tyrosine) on activated 

RTKs, as in the case of platelet-derived growth factor receptors, or on adaptor molecules, 

such as ERBB3 or GRB2-associated binding protein 1. This binding of SH2 domains serves 

both to recruit the p85–p110 heterodimer to the plasma membrane, where its substrate PIP2 

resides, and to relieve basal inhibition of p110 by p85 (Yu et al., 1998). The 3′-phosphatase 

PTEN dephosphorylates PIP3 and therefore terminates PI3K signaling. Accumulation of PIP3 

on the cell membrane leads to the colocalization of signaling proteins with pleckstrin 



 

homology (PH) domains. This leads to the activation of these proteins and propagation of 

downstream PI3K signaling. Akt and phosphoinositide-dependent protein kinase 1 (PDK1) 

directly bind to PIP3 and are thereby recruited to the plasma membrane. The phosphorylation 

of Akt at T308 (which is in the activation loop of Akt) by PDK1 and at S473 (which is in a 

hydrophobic motif of Akt) by mTOR complex 2 (mTORC2) results in full activation of this 

protein kinase (Sarbassov et al., 2005). In turn, Akt phosphorylates several cellular proteins, 

including glycogen synthase kinase 3α (GSK3α), GSK3β, forkhead box transcription factors 

(FoxO), MDM2, BCL2-interacting mediator of cell death (BIM) and BCL2-associated 

agonist of cell death (BAD) to facilitate cell survival and cell cycle entry (Bader et al., 2005; 

Cantley, 2002; Shaw and Cantley, 2006). Although Akt is the PI3K effector that is most 

widely implicated in cancer, there are Akt-independent pathways activated by PI3K, which 

include the Bruton tyrosine kinase (BTK); the Tec families of non-receptor tyrosine kinases; 

serum- and glucocorticoid-regulated kinases (SGKs) (Qiu and Kung, 2000); and regulators of 

small GTPases that are implicated in cell polarity and migration (Cain and Ridley, 2009). 

However, the roles of these Akt-independent pathways in human cancer are currently less 

well defined. 

 

PI3K activation in cancer 

 

 The PI3K signaling pathway is inappropriately activated in many cancers. To date, the 

two most widely observed mechanisms of PI3K activation in human cancers are activation by 

receptor tyrosine kinases (RTKs) and somatic mutations in specific components of the 

signaling pathway. More recently, somatic activating mutations were identified in the class 

IA PI3K catalytic subunit, p110α (encoded by PIK3CA) (Samuels et al., 2004). Somatic 

mutations in PIK3CA occur in around 30% of some types of common epithelial cancers, 

which includes breast, colon, prostate and endometrial cancers. It is not yet clear whether 

PIK3CA mutations are early or late genetic events in cancer progression. However, a recent 

study of in situ and invasive breast cancers suggests that PIK3CA mutations arise before the 

development of an invasive phenotype (Dunlap et al., 2010). Most mutations (~80%) reside 

in one of two hotspot regions in the kinase domain and the helical domain. These mutant 

p110α subunits increase in vitro lipid kinase activity, maintain PI3K signaling under 

conditions of growth factor deprivation and can transform cells. Recently, it was found that 

the expression of the kinase domain mutant H1047R of p110α in mouse lungs induced 

adenocarcinomas in vivo (Engelman et al., 2008). The two classes of PIK3CA mutations 

promote constitutive PI3K signaling through distinct mechanisms. In the wild-type PI3K 

holoenzyme, p85 inhibits p110α through an intermolecular interaction, and this inhibition is 

relieved by a conformational change that is induced by the engagement of the p85 amino-

terminal SH2 domain with phosphotyrosines (Yu et al., 1998). X-ray crystal data and 

molecular modeling studies suggest that the helical domain mutants E545K and E542K 

abrogate this inhibitory intermolecular interaction between p85 and p110 ((Huang et al., 

2007; Miled et al., 2007). Accordingly, the activity of the helical domain p110α mutant was 

not increased by the presence of tyrosine phosphorylated peptides in vitro (Carson et al., 

2008). The kinase domain mutant H1047R is located near the activation loop and seems to 

promote constitutive PI3K signaling through a different mechanism.  



 

p110α as a target for isoform specific inhibitors 

 

 The PI3K inhibitors can be divided into isoform-specific inhibitors or pan-PI3K 

inhibitors. The pan-PI3K inhibitors target all class IA PI3Ks in the tumor. However, a 

theoretical advantage of isoform-specific inhibitors is that they might be tolerated at doses 

that result in complete target inhibition without producing untoward side effects, such as 

immunosuppression and glucose intolerance. Indeed, isoform-specific inhibitors might be 

particularly effective in certain cancers; for example, p110α-specific inhibitors might 

effectively shut off PI3K signaling in cancers with PIK3CA mutations. In addition, recent 

data suggest that p110α might be the predominant catalytic isoform in vasculogenesis, and 

that specific p110α inhibitors might block angiogenesis (Graupera et al., 2008). Furthermore, 

a preliminary study that compared isoform-selective PI3K inhibitors suggests that p110α 

might be the crucial PI3K isoform in breast cancers with ERBB2 amplifications (Torbett et 

al., 2008). Using RNA interference, one group found that silencing p110α, but not p110β or 

p110δ, led to decreased growth and increased apoptosis of medulloblastoma cells (Guerreiro 

et al., 2008).  

 

QSAR, a powerful in silico approach for lead optimization 

 

 The most popular approaches for ligand-based drug design are the QSAR method and 

pharmacophore modeling. QSAR is a computational method to quantify the correlation 

between the chemical structures of a series of compounds and a particular chemical or 

biological process. The underlying hypothesis behind QSAR method is that similar structural 

or physiochemical properties yield similar activity (Akamatsu, 2002; Verma and Hansch, 

2008). Initially a group of chemical entities or lead molecules are identified which show the 

desired biological activity of interest. A quantitative relationship is established between the 

physicochemical features of the active molecules and the biological activity. The developed 

QSAR model is then used to optimize the active compounds to maximize the relevant 

biological activity. The predicted compounds are then tested experimentally for the desired 

activity. The QSAR method thus can be used as a guiding tool for identification of compound 

modifications with improved activity. Depending on the goal of the study, the appropriate 

biological activity is experimentally measured for a series of compounds and this data serves 

as the dependent variable in QSAR modeling. Once the molecules are selected for the study 

they are modeled in silico and energy is minimized using molecular mechanics or quantum 

mechanical method (Bohl et al., 2004; Holloway, 1998; Wade et al., 2004). Next, relevant 

molecular descriptors are generated for the set of molecules to describe the chemical features 

of the molecules that are required for their biological activity. Molecular descriptors can be 

structural as well as physicochemical. The goal here is to create a molecular “fingerprint” for 

each molecule that relates to its activity. Depending on the QSAR method, knowledge-based, 

molecular mechanical or quantum chemical tools can be used to generate the molecular 

descriptors. Molecular descriptors are then used to develop a mathematical relation that can 

explain the variability of the biological activity of the molecules. In the final step, the 

developed models are subjected to various internal and external validation procedures to test 

their statistical significance, robustness and predictive power. Over the years the strategies to 



 

execute these steps have evolved to make the QSAR technique an essential part of the drug 

optimization process (Acharya et al., 2011).  

 

MATERIALS AND METHODS 

 

Preparation of data set 

 

A data set consisting of 23 inhibitors of PI3K derived from 4-

methylpyridopyrimidinone scaffold was taken from a previously reported study (Cheng et al., 

2013). The reported biological activity data (Ki values in nM) for these inhibitors was 

converted into logarithmic scale (pKi) to be used for QSAR study.  

 

Molecular modeling study 

 

The 2D structures were sketched using VlifeEngine of VLife MDS and then 

converted to 3D form. The 3D structures so obtained were optimized to attain a stable 

conformation with minimum energy using force field batch minimization platform of 

VlifeEngine (VlifeMDS, 2004). Merck Molecular Force Field (MMFF) and Gasteiger 

charges were used with maximum number of cycles as 10000, convergence criteria (root 

mean square gradient) as 0.01 and dielectric constant (for vaccum) as 1.0. A structure 

common to all 23 inhibitors was deduced and used as template (Figure 1(A)) to align all the 

geometry optimized PI3K inhibitors. Alignment of all the inhibitors to the template molecule, 

taking compound 1 (comp1) as the reference molecule, is shown in Figure 1(B). The whole 

study was performed on Intel ® Xeon (R) CPU E31230 @ 3.20 GHz with 8.00 GB RAM 

using Vlife MDS, Molecular Design Suite, version 4.3, supplied by Vlife Sciences, Pune, 

India. 

 

 

 

Figure 1: (A) Structure of template used for template based alignment of optimized molecules (B) 3D 

alignment of optimized PI3K inhibitors 



 

Computation of values for descriptors and data selection for training and test set 

 

A molecular field was computed for a grid of points in space around the aligned 

molecules using Merck Molecular Force Field. Descriptors representing hydrophobic, 

electrostatic and steric energies between the atoms of the aligned molecules and a methyl 

probe with +1 charge placed at each lattice point of the grid were computed. These molecular 

descriptors describe how each of the inhibitory molecules binds to the target in its active site. 

For the external validation of the model, the data set was divided into training and test set 

using the approach of random selection to avoid any kind of bias. The training set (75% of 

the total molecules in the data set) with known biological activity was used to generate the 

3D QSAR model. The test set, compounds of which were not included for building the 

model, was used to challenge the generated model to assess its predictive effectiveness. 

 

3D QSAR model building 

 

The model was generated using statistical method of multiple regression in 

conjunction with stepwise forward variable selection algorithm. pKi value was used as 

dependent variable and the descriptors as independent variables. Software generates a large 

number of molecular descriptors that can be used for the QSAR study. Because of this huge 

data, the choice of selection of appropriate descriptors having a considerable role in 

governing the biological activity of interest becomes difficult. The general purpose of 

multiple regression is to establish relationship between several independent or predictor 

variables and a dependent or criterion variable. Various parameters were set for the execution 

of stepwise principle component regression analysis. The cross correlation limit was set as 

0.5, maximum number of variable in final equation as 3 (n/5, where n is number of 

compounds in training set), term selection criteria as r2, variance cut-off as 0 and scaling as 

auto scaling.  

 

Validation of the 3D QSAR Model 

 

To establish a QSAR model two types of validations are required - internal and 

external. For internal validation leave-one-out cross validation method was used. In this 

method one observation was taken as validation data and the rest of the observations made up 

the training set. The coefficients of QSAR model were estimated using this new training set 

which were then used for predicting the activity of the test compound. The procedure was 

repeated until all the compounds had once served as a test compound. The predictive ability 

of the model was then assessed using the cross validated r2 and q2 (Foldes et al., 1990). 

External validation was done by predicting the activities of the compounds of the test set 

which were not used for model generation. 

 

 

 

 



 

Prediction of Biological activity of 1,69,109 natural compounds using the generated 3D 

QSAR model  

 

A data set consisting of 1,69,109 natural compounds by 10 different suppliers was 

obtained from ZINC database (Irwin and Shoichet, 2005) in SMILES format. The pKi values 

were predicted for these natural compounds using the generic prediction platform of 

VlifeMDS. The prediction was done based on the QSAR model generated using the 

congeneric series consisting of 23 PI3K inhibitors. The most potent compound in this series 

had a pKi value of 0.506. So the natural compounds with predicted activity above this 

threshold were selected for further analysis as they could prove to be more potent and 

selective novel candidates to be used as PI3K inhibitors. 

 

Protein and ligand preparation for docking studies 

 

 The crystal structure of PI3Kα of human origin was obtained from Protein Data Bank 

[PDB ID: 3HIZ] (Mandelker et al., 2009). The protein structure was pre-processed by 

removing water molecules and all non-bonded heteroatoms using Accelyrs Viewerlite 5.0 

(Viewerlite_5.0). This processed protein was further prepared using Schrödinger’s protein 

preparation wizard (Schrödinger, 2009). Hydrogen were added and optimized to the structure. 

In further preparation steps bad contacts were removed, bond lengths were optimized, 

disulfide bonds were created, protein terminals were capped and selenomethionine residues 

were converted to methionine. The missing residues were fixed manually. The top two 

natural compounds with predictive pKi values above 0.506 were prepared for docking studies 

to study their molecular smode of interactions with PI3Kα. LigPrep’s ligand preparation 

protocol was used to prepare these natural compounds. It generated different tautomeric, 

stereochemical and ionization variants of the small molecules along with energy 

minimization and flexible filtering.  

 

 A grid was generated at the active site of the prepared protein structure using the 

Glide docking module of Schrödinger (Friesner et al., 2004; Halgren et al., 2004). Prepared 

natural compounds were subjected to docking using Glide’s HTVS protocol. The two top 

scoring compounds were investigated to study their molecular interactions with the protein. 

The hydrophobic interactions and H-bonds were calculated using the Ligplot program 

(Wallace et al., 1995). H-bonds were taken into consideration when the distance between 

acceptor–donor atoms was less than 3.3 Å, with maximum hydrogen-acceptor atom distance 

of 2.7Å and acceptor-H-donor angle greater than 90°. 

 

RESULTS AND DISCUSSION 

 

QSAR molecular modeling 

 

 QSAR study requires ligands with experimentally measured values of the desired 

biological activity. The ligands should ideally be a part of a congeneric series but should also 



 

possess adequate chemical variability to have a diverse range of activity. Table 1 shows 2D 

structures of the 23 PI3K inhibitors of the congeneric series along with their Ki and values. 

After optimization and template based alignment of these compounds, descriptors 

representing steric, electrostatic and hydrophobic energies at all lattice points of the grid 

around the molecules were computed. Training and test sets were selected for MMP 

derivatives using random data selection method. 70 % of the total compounds i.e., 16 

molecules were selected for the training set and the rest comprised the test set (7 compounds). 

 

Table 1: The list of PI3K inhibitors along with their chemical structures, Ki and pKi values 

S. 

No. 
cis/trans * R1 R2 Chemical Structure Ki(nm) pKi 

1. trans -COOH 
4-MeO-3-

pyridine 

 

0.350 0.456 

2. cis -OH 
4-MeO-3-

pyridine 

 

4.510 -0.654 

3. cis -OH 
4-MeO-5-F-

3-pyridine 

 

1.180 -0.072 

4. cis -OH 
4-MeO-3-

pyrimidine 

 

2.410 -0.382 



 

5. cis -OH 3-Pyrazole 

 

13.50 -1.130 

6. cis -OH 
3-Me-3-

pyrazole 

 

26.40 -1.422 

7. cis -OH 3-Quinoline 

 

24.10 -1.382 

8. trans -OH 
4-MeO-5-F-

3-pyridine 

 

0.654 0.184 

9. trans -OH 
4-MeO-3-

pyrimidine 

 

1.000 0 

10. trans -OH 3-Pyrazole 

 

3.440 -0.537 



 

11. trans -OH 
3-Me-3-

pyrazole 

 

10.10 -1.004 

12. trans -OH 3-Quinoline 

 

1.670 -0.223 

13. cis -CONH2 
4-MeO-3-

pyridine 

 

0.7000 0.155 

14. cis -CONH2 
4-MeO-5-F-

3-pyridine 

 

1.820 -0.260 

15. cis -CONH2 
4-MeO-3-

pyrimidine 

 

6.890 -0.838 

16. cis -CONH2 3-Pyrazole 

 

24.80 -1.394 



 

17. cis -CONH2 
3-Me-3-

pyrazole 

 

7.410 -0.870 

18. cis -CONH2 3-Quinoline 

 

1.910 -0.281 

19. trans -CONH2 
4-MeO-3-

pyridine 

 

0.3120 0.506 

20. trans -CONH2 
4-MeO-5-F-

3-pyridine 

 

1.820 -0.260 

21. trans -CONH2 3-Pyrazole 

 

6.160 -0.790 

22. trans -CONH2 
3-Me-3-

pyrazole 

 

21.80 -1.338 



 

* Relative stereochemistry of the two substituents on cyclohexyl 

 

Stepwise forward algorithm in combination with multiple regression analysis (SW-

MR) was used to generate the model. The model developed by SW-MR using random data 

selection method is shown in table 2. Table 3 shows the minimum recommended values for 

various statistical measures used to evaluate the model. Data fitness plot for the generated 

model is shown in figure 2. The plot reflected its effectiveness as all the points lied close to 

the regression line. Figure 3(A) and 3(B) illustrates the radar plot of observed versus 

predicted biological activity values for both training and test sets of the developed model. 

The model can be used for external predictions as it has a high predictive correlation 

coefficient value of 0.8520. The contour map (Figure 4(A)) provided further understanding of 

the relationship between structural features of MMP derivatives and their activities which 

could be applied to design newer potential inhibitors of PI3K. 

 

Table 2: Statistics of the significant model generated using SW-MR 

 

Parameters Statistical Value 

Training Set Size (n) 16 

Test Set Size 7 

Degree of freedom 12 

r2 0.9215 

q2 0.8146 

F test 46.9577 

r2 se 0.1710 

q2 se 0.2628 

pred_r2 0.8520 

pred_r2se 0.2822 

 

Table 3: Statistical measures with their minimum recommended values 

 

Statistical measures Minimum recommended values 

K number of descriptors in a model (statistically n/5 descriptors in a model) 

Df degree of freedom (n-k-1) (higher is better) 

q2 cross-validated r2 (>0.5) 

q2se Error term for q2 

pred_r2 r2 for external test set (>0.5) 

pred_r2se Error term for pred_r2 

23. trans -CONH2 3-Quinoline 

 

5.740 -0.760 



 

 

 

Figure 2: Data fitness plot for the 3D QSAR model generated 

 

 

 

 

Figure 3: Graph of actual and predicted biological activity for (A) training (B) test set 

 

 

 



 

 

 

 

 

Figure 4: (A) 3D-alignment of molecules with the important steric and hydrophobic points contributing to the 

biological activity of the ligands (B) Graph showing the contribution of molecular descriptors in controlling the 

activity of the inhibitors 

 

 



 

Interpretation of the built 3D QSAR model 

 

 The model had a good internal as well as external predictive power as indicated by the 

q2 value of 0.9215 and predicted r2 of 0.8520 respectively. It was observed that steric and 

hydrophobic descriptors at grid points E_514, E_980 and S_1065 play important role in 

imparting inhibitory activity against PI3K. Figure 4(B) illustrates the contribution of these 

descriptors in controlling the activity of the inhibitors. The correlation between the molecular 

descriptors representing the physiochemical parameters of the ligands and their biological 

activity is given by the following equation:   

 

𝑝𝐾𝑖 =  0.0950 E514 +  0.5878 E980 − 0.1425 S1065 − 0.3019 

 

The positive coefficient of E_514 and E_980 indicated that positive electrostatic 

potential is preferred in that region and hence substitution of more electrostatic groups will 

result in increased activity of the compounds. Presence of charged or polar groups around 

these grid points would be preferred for effective inhibitor design. Steric field descriptor 

(S_1065) had a negative coefficient which suggested that the presence of small groups in this 

region would enhance the activity of the inhibitors. Descriptor at position E_980 was 

contributing the most towards the inhibitory activity of the compounds. The model provided a 

3D fingerprint of the compounds which helped in developing a relationship of 

physiochemical parameters with structure and biological activity, making it capable of 

predicting activities of novel compounds. Thus, the 3D QSAR model generated was used for 

predicting the biological activity of 1,69,109 naturally occurring chemical compounds. 

 

Prediction of biological activity for a large dataset comprising of 1,69,109 natural 

compounds 

 

 A special subset of ZINC database consisting of 1,69,109 small molecules of natural 

origin was downloaded. The generated model had the statistical characteristics which proved 

it to be quite effective for external predictions. The generic prediction platform in 3D QSAR 

module of VlifeMDS was used to predict the activity values of these natural compounds. 

Table 4 lists the natural compounds which had the predicted pKi value greater than that of the 

most potent PI3K inhibitor (comp19 with pKi of 0.506) of the congeneric series. 

 

Interaction analysis of the predicted natural compounds using in silico docking studies 

 

 The two top scoring natural compounds with predicted pKi value greater than 0.506, 

were docked against the crystal structure of PI3Kα using XP docking protocol of Glide to 

find their mode of interactions with the target protein. Interactions between comp19 

(pKi=0.506) and PI3Kα were taken as reference (Figure 6(A)). Comp19 was forming 4 strong 

hydrogen bonds with Ser 774, Lys 802, Val 851 and His 855 of PI3Kα. It also showed 

hydrophobic interactions with various surrounding residues of the kinase, namely Trp 780, 

Glu 849, Val 850, Ser 854, Gln 859, Met 922 and Asp 933 (Figure 6(B)).  



 

Table 4: List of natural chemical compounds with their pKi value predicted on the basis of the generated 3D 

QSAR model 

 

S.No. ZINC IDs of natural compounds pKi value 

1. ZINC19371512 5.848 

2. ZINC04073321 5.720 

3. ZINC35442546 5.697 

4. ZINC35442546 5.686 

5. ZINC02412844 5.643 

6. ZINC12898750 5.638 

7. ZINC67903457 5.631 

8. ZINC68606315 5.615 

9. ZINC67912403 5.592 

10. ZINC68574511 5.591 

 

 
Figure 5: Chemical structures of (A) first natural compound, HPM (B) second natural compound, MNT 

 

 The chemical structure of two top scoring compounds is shown in Figure 5(A) and 

5(B). Since all further studies have been conducted on these two compounds, they have 

henceforth been referred to as HPM and MNT respectively. The first compound, HPM, 4-((4-

(2-hydroxyethyl) piperazin-1-yl) methyl)-7,8-dihydrocyclopenta[g] chromen-2(6H)-one had 

an activity value of 5.848 and showed good affinity for PI3Kα. Trp 836 and Val 851 were 

involved in hydrogen bond formation while residues participating in hydrophobic interactions 

were Trp 780, Ile 848, Val 850, Asn 853, Ser 854, Met 922, Phe 930, Ile 932 and Asp 933 

(Figure 7(A) and 7(B)). The second compound, MNT, (S)-11b-methyl-2-(4-nitrophenyl)-

5,6,11,11b-tetrahydro-1H-imidazo[1',5':1,2]pyrido[3,4-b]indole-1,3(2H)-dione also showed 

good binding affinity for PI3Kα and pKi of 5.720. It was found forming hydrogen bond with 

residue Asn 853 and hydrophobic interactions with Pro 778, Trp 780, Ile 800, Lys 802, Ile 



 

848, Val 851, Ser 854, Met 922 and Ile 932 (Figure 8(A) and 8(B)). Both the compounds 

were showing interaction with most of the residues which were also involved in the 

interaction with comp19. It was observed that all the three compounds had almost similar 

orientation or docking conformation, with ligands docked at the same position (Figure 9). 

They were occupying the same space. Hence we can strongly suggest that these two 

compounds can potentially inhibit PI3Kα enzymatic activity. 

 

 

 
 

 
Figure 6: (A) Hydrogen bond interactions between comp19 and PI3Kα (B) Ligplot showing hydrogen bond 

interactions and hydrophobic interactions between comp19 and PI3Kα 

 



 

 

 

 

 

  
 

 
 

Figure 7: (A) Residues of PI3Kα involved in hydrogen bond interactions with HPM (B) Ligplot showing 

hydrogen bond interactions and hydrophobic interactions between HPM and PI3Kα 

 

 

 

 

 



 

 

 

 

 

  
 

 
 

Figure 8: (A) Residues of PI3Kα involved in hydrogen bond interactions with MNT (B) Ligplot showing 

hydrogen bond interactions and hydrophobic interactions between MNT and PI3Kα 



 

 
 

Figure 9: Relative position of all the three ligands in the cavity of PI3Kα 

 

 

CONCLUSION 

  

 A 3D QSAR model was generated for a congeneric series of 4-

methylpyridopyrimidinone derivatives having inhibitory activity against PI3K. The model 

was generated using statistical method of multiple regression analysis in conjunction with 

stepwise variable selection method. The statistical measures r2, q2, F-test and standard error 

for the training set and the pred_r2 for the test set fulfilled the conditions for the model to be 

considered robust and predictive. The developed model was used to predict the activity 

values for a large set of natural compounds. The top scoring compounds were analyzed to 

find their molecular mode of interactions with PI3Kα. We finally reported two natural 

compounds HPM and MNT which had high activity value (pKi) of 5.848 and 5.720 

respectively. They had a better affinity for PI3Kα in comparison to the most potent 

compound of the congeneric series with pKi of 0.506, as observed from the interaction 

pattern between these compounds and the targeted kinase. The present study provides 

substantial evidence for considering these natural compounds as prospective leads for the 

treatment of cancerous cells. Thus, 3D QSAR is an attractive discipline which not only 

provides graphical results that are often less attractive for scientific community but also has 

the ability to forecast the activity or potency of compounds being considered for inhibition of 

target protein. As QSAR approach already plays an important role in lead structure 

optimization, it is anticipated that it will soon become essential for handling large amount of 

data generated using combinatorial chemistry. 
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Computational identification of multi-target drug to treat tumors: Hitting 

fatty acid synthase, phosphatidylinositol-3-kinase (p110α) and SCF E3 

ubiquitin ligase. 

 



 

INTRODUCTION 

 

 The emergence of knowledge about tumor-specific molecular targets has shifted the 

approach of conventional cancer therapy towards targeted therapy. In contrast to conventional 

chemotherapy which acts on all dividing cells generating toxic effects and damage of normal 

tissues, targeted drugs allow to hit, in a more specific manner, subpopulations of cells directly 

involved in tumor progression. Although the diversity of targets giving rise to this new 

generation of anticancer drugs has expanded, many challenges still persist in the design of 

effective treatment regimens. The complex interplay of signal-transduction pathways further 

complicates the customization of cancer treatments to target single mechanisms. The problem 

of relapse, as almost invariably cancer patients developed drug resistance, is the major 

hindrance so far that often occurs due to the activation of alternative pathways (Sebolt-

Leopold and English, 2006). Therefore, the number of successful single target drugs did not 

increase appreciably during the past decade. Some recent studies have suggested that partial 

inhibition of a small number of targets can be more efficient than the complete inhibition of a 

single target (Csermely et al., 2005). With the approval by FDA and EMEA of Sorafenib and 

Sunitinib - targeting VEGFR, PDGFR, FLT-3 and c-Kit - a different scenario is emerging, 

where a new generation of anti-cancer drugs, able to inhibit more than one pathway, would 

probably play a major role (Petrelli and Giordano, 2008). In this study we have identified a 

novel small molecule natural compound that shows inhibitory activity against three important 

cancer targets- Fatty acid synthase, Phosphatidylinositol 3-kinase (p110α) and SCF E3 

Ubiquitin Ligase.  

 

 Fatty acid synthase (FASN) is an important enzyme that performs lipogenesis in 

neoplastic tissues. Cancer or tumor cells require more energy for the rapid proliferation of 

cells. The glucose uptake increases in these transformed cells leading to higher production of 

pyruvate via glycolytic pathway. This pyruvate is utilized for the generation of more ATP 

using Krebs cycle. The intermediate product, acetyl-CoA acts as a substrate for FASN 

enzyme. Lipogenesis leads to the production of long-chain fatty acids from acetyl-CoA and 

malonyl-CoA. Most of the normal cells have a low expression of FASN, that to tightly 

regulated by diet, hormones and growth factors. To meet the energy and lipid demands of 

highly proliferating cells for membrane synthesis, β-oxidation and lipid modification of 

proteins, they start de novo synthesis of fatty acids, thereof showing high expression of 

FASN. Many studies report an important role of FASN in tumor growth and survival. 

Knockdown or inhibition of this enzyme results in apoptosis of cancerous cells. It is believed 

that the selective anti tumor activity of FASN inhibitors might be due to the accumulation of 

toxic intermediate metabolites leading to cytostatic and cytotoxic effects. It has also been 

proposed that the over expression of FASN makes cells resistant to many chemotherapeutic 

agents. Thus, FASN blockage represents an attractive strategy for cancer treatment (Flavin et 

al., 2010).  

 

 The Phosphatidylinositol-3-kinase (PI3K) signaling has an impact on cancer cell 

growth, survival, motility, and metabolism. This pathway is activated by several different 



 

mechanisms in cancers, including somatic mutation and amplification of genes encoding key 

components. Class IA PI3Ks are activated by growth factor stimulation through receptor 

tyrosine kinases (RTKs). The regulatory subunit, p85, directly binds to phosphotyrosine 

residues on RTKs and/or adaptors. This binding relieves the intermolecular inhibition of the 

p110 catalytic subunit by p85 and localizes PI3K to the plasma membrane where its 

substrate, Phosphatidylinositol-4,5-bisphosphate (PIP2), resides. More recently, somatic 

mutations in PIK3CA have been identified in a variety of human tumors, including breast, 

colon, and endometrial cancers and glioblastomas. Expression of these PIK3CA mutants 

leads to increased oncogenic potential in vitro and in vivo. They cause constitutive signaling 

along the PI3K pathway in the absence of growth factors. Inhibition of PI3K signaling can 

diminish cell proliferation, and in some circumstances, promote cell death. A number of PI3K 

pathway inhibitors have been developed and are being evaluated in preclinical studies and in 

early clinical trials (Courtney et al., 2010). 

 

 The SCF (Skp1, Cullins, F-box proteins) multisubunit E3 ubiquitin ligase, also known 

as CRL (Cullin-RING ubiquitin Ligase) is the largest E3 ubiquitin ligase family that 

promotes the ubiquitination of various regulatory proteins for targeted degradation, thus 

regulating many biological processes. The majority of SCF E3 ligase substrates are involved 

in regulation of cell cycle progression, gene transcription, signal transduction and DNA 

replication among others. Through targeted degradation of these substrates, SCF E3 ligases 

regulate many biological processes. Accumulated evidence strongly suggests that abnormal 

regulation of SCF E3 ubiquitin ligases contributes to uncontrolled proliferation, genomic 

instability, and cancer. Among the components of SCF, some are oncogenes (e.g. Skp2) that 

promote degradation of tumor suppressors and are amplified and/or overexpressed in human 

cancers, whereas others are tumor-suppressors (e.g. Fbxw7) that target the degradation of 

oncoproteins and are mutated in human cancers. Therefore, targeting such a specific E3 

ligase component, known to be activated in human cancer would provide a high level of 

specificity and selectivity with less associated toxicity. Hence inhibition of cancer specific E3 

ligase components can prove to be an effective approach for cancer treatment (Jia and Sun, 

2011). 

 

REVIEW OF LITERATURE 

 

Use of multiple target drug design strategy 

 

 Agents that affect one target only (‘single hits’) might not always affect complex 

systems in the desired way even if they completely change the behavior of their immediate 

target. For example, single targets might have ‘back-up’ systems that are sometimes different 

enough not to respond to the same drug, and many cellular networks are robust and prevent 

major changes in their outputs despite dramatic changes in their constituents (Ocampo et al., 

2002; Papp et al., 2004). Therefore despite considerable progress in genome- and proteome-

based high-throughput screening methods and rational drug design, the number of successful 

single target drugs did not increase appreciably during the past decade (Szuromi et al., 2004). 



 

Several highly efficient drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs), 

salicylate, metformin or Gleevece, affect many targets simultaneously. Furthermore, 

combinatorial therapy, which represents another form of multi-target drugs, is used 

increasingly to treat many types of diseases, such as AIDS, cancer and atherosclerosis 

(Borisy et al., 2003; Huang, 2002; Kaelin, 2004). Snake and spider venoms are both multi-

component systems and plants also employ batteries of various factors to fence off 

pathogenic attack; thus, the use of multiple molecules is apparently an evolutionary success 

story. Finally, traditional medical treatments often use multi-component extracts of natural 

products. Based on these examples (Agoston et al., 2005) it could be proposed that 

systematic drug-design strategies should be directed against multiple targets, and that this 

novel drug-design paradigm might often result in the development of more-efficient 

molecules than the currently favored single-target drugs. Development of a multi-target drug 

is likely to produce a drug that interacts with lower affinity than a single-target drug because 

it is unlikely that a small, drug-like molecule will bind to a variety of different targets with 

equally high affinity. However, low-affinity drug binding is apparently not a disadvantage. 

For example, memantine (a drug used to treat Alzheimer’s disease) and other multi-target 

noncompetitive NMDA receptor antagonists show that low affinity, multi-target drugs might 

have a lower prevalence and a reduced range of side-effects than high-affinity, single-target 

drugs (Lipton, 2004; Rogawski, 2000). Most components of cellular protein, signaling and 

transcriptional networks are in ‘weak linkage’ with each other (Rogawski, 2000). A ‘weak 

linker’ is an interacting partner that binds with low affinity or only transiently to the other 

partner. Thus, most multi-target drugs are weak linkers. Because most links in cellular 

networks are weak, a low-affinity multi-target drug might be sufficient to achieve a 

significant modification (Csermely, 2004). 

 

FASN, a potential cancer target 

 

 Fatty acid synthase (FASN) is a key biosynthetic enzyme involved in lipogenesis and 

the production of long-chain fatty acids from acetyl-coenzyme A (CoA) and malonyl-CoA. 

Uptake of glucose into cancer cells leads to the production of pyruvate via the glycolytic 

pathway. Pyruvate is utilized to produce ATP via the Krebs cycle in the mitochondria; in 

turn, acetyl-CoA, one of the products, acts as a substrate for neoplastic lipogenesis. Normal 

cells (except liver and adipose tissue) have low levels of expression and activity of FASN, 

which is tightly regulated by diet, hormones and growth factors (Menendez and Lupu, 2007). 

However, in rapidly proliferating cancer cells, fatty acids can be synthesized de novo in order 

to provide lipids for membrane formation and energy production via β-oxidation and lipid 

modification of proteins. As such, FASN is highly expressed in many cancers, including 

prostate, ovarian, breast, endometrial, thyroid, colorectal, bladder, lung, thyroid, oral, tongue, 

esophageal, hepatocellular, pancreatic and gastric carcinomas, as well as malignant 

melanoma, mesothelioma, nephroblastoma and retinoblastoma, soft tissue sarcoma (Kuhajda, 

2000, 2006; Menendez and Lupu, 2004, 2006, 2007; Menendez et al., 2005; Swinnen et al., 

2006), gastrointestinal stromal tumor (Rossi et al., 2006), Paget’s disease of the vulva (Alo et 

al., 2005) and multiple myeloma (Wang et al., 2008). Interestingly, increased FASN 

expression has also been observed in some benign and pre-invasive lesions of prostate, 



 

breast, lung, stomach, colon and cutaneous nevi (Innocenzi et al., 2003; Kuhajda, 2000; 

Kusakabe et al., 2002; Milgraum et al., 1997; Piyathilake et al., 2000). Elevated expression 

of FASN has been linked to poor prognosis (Ogino et al., 2008; Rossi et al., 2003; Shurbaji et 

al., 1996; Takahiro et al., 2003; Visca et al., 2004). In addition, several reports have 

demonstrated that FASN plays an important role in tumor cell development and survival, 

with siRNA knockdown or pharmacological inhibition of FASN resulting in apoptosis of 

cancer cells and prolonged survival of xenograft tumors (De Schrijver et al., 2003; Graner et 

al., 2004; Kridel et al., 2004; Pizer et al., 2000). Overexpression studies in immortalized non-

transformed human prostate epithelial cells and in transgenic mice have demonstrated that 

FASN is a bonafide oncogene in prostate cancer (Migita et al., 2009), and similarly in breast 

cancer, fatty acid biosynthesis induces a cancer-like phenotype in noncancerous epithelial 

cells that is dependent on HER1/HER2 signaling (Vazquez-Martin et al., 2008). A potential 

mechanism of FASN oncogenicity may involve cytoplasmic stabilization of β-catenin with 

palmitoylation of Wnt-1 and subsequent activation of the WNT/β-catenin pathway 

(Fiorentino et al., 2008).  

 

 Recently, the crystal structure and catalytically active sites of FASN have been 

delineated. FASN is made up of a paired multifunctional polypeptide with seven catalytic 

domains. These domains (in linear order from the carboxy terminus) are: thioesterase, acyl-

carrier protein, β-ketoacyl reductase, enoyl reductase, β-hydroxyacyl dehydratase, 

acetyl/malonyl-CoA transferase and β-ketoacyl synthase. There are two additional non 

enzymatic domains: a pseudoketoreductase; and a peripheral pseudomethyltransferase, which 

is probably a remnant of an ancestral methyltransferase domain maintained in some related 

polyketide synthases (Maier et al., 2008b). Substrate shuttling is facilitated by flexible 

tethering of the acyl carrier protein domain and by the limited contact between the 

condensing and modifying portions of the multi subunit enzyme, which are mainly connected 

by linkers rather than direct interaction (Flavin et al., 2010; Maier et al., 2008). Initial work 

by Maier et al. resolved the 4.5-Å crystal structure of intact porcine FASN (Maier et al., 

2006); while, later, the crystal structure of mammalian FASN at 3.2-Å resolution, covering 

five catalytic domains, was determined (however, the flexibly tethered terminal ACP and 

thioesterase domains remained unresolved) (Maier et al., 2008b). A significant step forward 

was the determination of the crystal structure of the thioesterase domain from human FASN 

in complex with the orlistat ligand (Pemble et al., 2007). Importantly, natural product 

inhibitors of the ketoreductase domain and small-molecule inhibitors of the β-ketoacyl 

synthase and thioesterase domains have been described as having anti-oncogenic properties. 

 

 A conserved set of chemical reactions are employed by all organisms for fatty acid 

biosynthesis (Smith and Tsai, 2007; White et al., 2005). Stepwise elongation of precursors is 

achieved by cyclic decarboxylative condensation of acyl-coenzyme A (CoA) with the 

elongation substrate malonyl-CoA, initiated by the starter substrate acetyl-CoA. In the 

priming step, the acetyl transferase loads acetyl-CoA onto the terminal thiol of the 

phosphopantheteine cofactor of the acyl carrier protein (ACP), which passes the acetyl 

moiety over to the active site cysteine of the b-ketoacyl synthase (KS). Malonyl transferase 

transfers the malonyl group of malonyl-CoA to ACP, and the KS catalyzes the 



 

decarboxylative condensation of the acetyl and malonylmoieties to an ACP-bound β-ketoacyl 

intermediate. The β-carbon position is then modified by sequential action of the NADPH (the 

reduced form of nicotinamide adenine dinucleotide, NADP+)–dependent β-ketoreductase, a 

dehydratase, and the NADPH-dependent enoyl reductase to yield a saturated acyl product 

elongated by two carbon units. This acyl group functions as a starter substrate for the next 

round of elongation, until the growing fatty acid chain reaches a length of 16 to 18 carbon 

atoms and is released from ACP. In mFAS, the malonyl and acetyl transferase reactions are 

catalyzed by a single bifunctional protein domain, the malonylacetyl transferase, and the 

products are released from ACP as free fatty acids by a thioesterase (TE) domain (Smith and 

Tsai, 2007). 

 

 Fatty acid synthase is an attractive potential target for cancer therapy. To date, several 

compounds are known to inhibit FASN. These include cerulenin, C75, orlistat, C93 and 

naturally occurring polyphenols. Cerulenin and C75, both early small-molecule FASN 

inhibitors, have demonstrated significant antitumor activity. Cerulenin, isolated from 

Cephalosporium caerulens, contains an epoxy group that reacts with the ketoacyl synthase 

domain of FASN (Funabashi et al., 1989). It was one of the first compounds to be found to 

inhibit FASN in breast cancer cell lines, inducing programmed cell death, and to delay 

disease progression in a xenograft model of ovarian cancer (Pizer et al., 1996a; Pizer et al., 

1996b). C75 was designed after cerulenin to overcome its chemical instability (Kuhajda et 

al., 2000). C75 is a weak, irreversible inhibitor of FASN that interacts with the β-ketoacyl 

synthase, the enoyl reductase and the thioesterase domains (Rendina and Cheng, 2005). C75 

showed tumor growth inhibition in a xenograft breast cancer model (Pizer et al., 2000) and 

chemopreventive activity for mammary cancer in transgenic mice (Alli et al., 2005). More 

potent analogs of C75 have also been designed as FASN inhibitors (Wang et al., 2009). 

Several natural plant-derived polyphenols have been shown to inhibit FASN, including 

epigallocatechin-3-gallate (EGCG) and the flavonoids luteolin, taxifolin, kaempferol, 

quercetin and apigenin (Brusselmans et al., 2005; Li and Tian, 2004; Tian, 2006). One of the 

best characterized polyphenol FASN inhibitors is EGCG, a natural component of green tea. 

EGCG is a high micromolar time-dependent inhibitor of FASN ketoacyl reductase domain 

(Wang and Tian, 2001). Although EGCG is a promiscuous inhibitor targeting multiple 

signaling pathways (Khan et al., 2006), its apoptosis-inducing effect seems to correlate with 

its activity at FASN (Brusselmans et al., 2003). Another compound, luteolin, has the greatest 

effect on lipogenesis of the polyphenols and inhibits FASN directly. It has structural 

homology to PI3K inhibitors and has strong antioxidant activity (Brusselmans et al., 2005). 

Recently, more potent analogs of EGCG have been developed and have been shown to inhibit 

tumor growth in a breast cancer xenograft model (Puig et al., 2009). Orlistat is a US FDA-

approved pancreatic lipase inhibitor, originally developed as an antiobesity drug, and is a 

potent inhibitor of FASN. Kridel et al. first identified orlistat in a proteomic screen for 

prostate cancer-specific enzymes as a potent FASN inhibitor showing antiproliferative 

activity against several prostate cancer cell lines in vitro, as well as tumor growth inhibition 

in a xenograft prostate cancer model (Kridel et al., 2004). Orlistat is an irreversible inhibitor 

forming a covalent adduct with the active serine of FASN thioesterase domain as shown in a 

published co-crystal structure (Pemble et al., 2007). In addition to the original report, orlistat 



 

has shown modest anticancer activity in a few in vivo models. Inhibition of tumor FASN 

activity by orlistat reduces prostate tumor growth in mice xenografts and, at a high 

concentration, reduces proliferation and promotes apoptosis in the mouse metastatic 

melanoma cell line B16-F10 (helping reduce the number of mediastinal lymph node 

metastases) and HER2-overexpressing breast cancer cell lines. Further evidence indicates that 

orlistat can accelerate tumor cell apoptosis in culture at high concentrations and increase 

survival rates somewhat in gastric tumor-bearing mice in vivo (Dowling et al., 2009). 

However, orlistat suffers from several limitations hampering its development as a systemic 

drug: low cell permeability, low solubility, lack of selectivity (Hoover et al., 2008), poor oral 

bioavailability and poor metabolic stability (Zhi et al., 1996). Several orlistat analogs have 

been developed in an attempt to improve on these limitations (Zhang et al., 2008). C93 (or 

FAS93), a synthetic FASN inhibitor designed after the bacterial FabB inhibitor 

thiolactomycin, was recently developed as part of an effort to overcome C75’s lack of 

potency and side effects (McFadden et al., 2005). C93 has shown some significant tumor 

growth delay in non small-cell lung cancer xenograft models and ovarian cancer xenograft 

models, as well as some chemopreventive effects in chemically induced lung tumors (Orita et 

al., 2007; Zhou et al., 2007). Importantly, C93 did not cause anorexia and weight loss in 

treated animals (Orita et al., 2007). Several recent reports describe new potent FASN 

inhibitors identified through high-throughput screening or medicinal chemistry programs. For 

example, a research group at Merck developed a series of 3-aryl-4-hydroxyquinolin-2(1H)-

one derivatives while another research group at AstraZeneca developed a series of bisamide 

derivatives as FASN inhibitors (Rivkin et al., 2006). FASN inhibition initiates selective 

apoptosis of cancer cells both in vivo and in vitro, which may involve accumulation of toxic 

intermediary metabolite malonyl-CoA with reduction of both membrane synthesis and 

phospholipid function leading to both cytostatic and cytotoxic effects (Thupari et al., 2001).  

 

 Multidrug resistance is a significant problem in cancer chemotherapy and, 

importantly, FASN overexpression seems to be a recently identified mechanism of multidrug 

resistance in cancer. Liu et al. identified that ectopic overexpression of FASN induced drug 

resistance in breast cancer cell lines MCF7 and MDA-MB-468; use of orlistat sensitized 

these cells to anticancer therapy. The proposed mechanism is FASN overexpression may lead 

to a decrease in drug-induced apoptosis due to an overproduction of palmitic acid (Liu et al., 

2008a). This phenomenon of FASN-induced drug resistance may be exploited therapeutically 

through the use of FASN inhibitors solely or in combination with other chemo-therapeutic 

agents. 

 

Targeting PI3K signaling in cancer 

 

 Phosphatidylinositol 3-kinases (PI3Ks) represent a family of lipid kinases that plays a 

key role in signal transduction, cell metabolism and survival (Engelman, 2009; 

Vanhaesebroeck et al., 2010). The PI3K family is divided into three classes, I, II and III, 

based on their substrate specificity and structure. Among them, class I PI3K seems to be the 

most relevant in cancer. Class I PI3K has a catalytic subunit (p110) and a regulatory subunit 

(p85) that stabilizes p110 and inactivates its kinase activity at basal state. Physiologically, 



 

PI3K transduces signals received from activated tyrosine kinase receptors (RTK), G protein-

coupled receptors (GPCR) or from activated RAS. Upon receipt of such signals, the p85 

regulatory subunit interacts with the phosphorylated tyrosine residues of activated RTKs. 

This engagement then causes release of the p85-mediated inhibition of p110, such that p110 

can interact with the lipid membranes to phosphorylate phosphatidylinositol-4,5-bisphosphate 

(PIP2) to Phosphatidylinositol-3,4,5-trisphosphate (PIP3). This reaction triggers a signaling 

cascade through the activation of AKT and its downstream effectors. The amount of PIP3 

generated and resultant PI3K pathway activation are tightly regulated by the tumor 

suppressor protein, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). 

PTEN can inactivate the PI3K pathway by converting PIP3 into PIP2. The PI3K pathway can 

be activated not only via RTKs, but also by RAS and GPCR. RAS can activate the PI3K 

pathway by its direct interaction with p110α, p110Ɣ, and p110δ subunits, while GPCRs can 

interact with p110β and p110Ɣ subunits (Vanhaesebroeck et al., 2010). 

 

 PI3K signaling is activated in human cancers via several different mechanisms 

(Samuels et al., 2004). Increased PI3K signaling is often due to direct mutational activation 

or amplification of genes encoding key components of the PI3K pathway such as PIK3CA 

and AKT1, or loss of PTEN (Ikenoue et al., 2005; Samuels et al., 2004). PI3K also can be 

activated by genetic mutation and/or amplification of upstream RTKs, and possibly by 

mutationally activated Ras (Yuan and Cantley, 2008). The mechanism of PI3K activation in 

an individual cancer may suggest the most effective type of therapeutic to inhibit the 

pathway. More recently, somatic mutations in PIK3CA have been identified in a variety of 

human tumors, including breast, colon, and endometrial cancers and glioblastomas (Samuels 

and Velculescu, 2004; Shayesteh et al., 1999). Most of these mutations cluster to two hot spot 

regions in exons 9 and 20 (Samuels and Velculescu, 2004). Exon 20 encodes the catalytic 

domain of p110α, and mutations in this domain may constitutively activate its enzymatic 

activity. Exon 9 encodes the helical domain of p110α, and these mutations de-repress an 

inhibitory interaction between the N-terminal SH2 domain of p85 and the p110α catalytic 

subunit (Huang et al., 2007). A smaller cluster of mutations is also found in the N-terminal 

p85 interacting domain. Interestingly, these mutations increase the lipid kinase activity of 

p110α but do not appear to alter the interaction between p110α and p85α (Ikenoue et al., 

2005). Expression of these PIK3CA mutants leads to increased oncogenic potential in vitro 

and in vivo (Bader et al., 2006). They cause constitutive signaling along the PI3K pathway in 

the absence of growth factors and therefore seem to prevent the usual interactions with 

tyrosine phosphorylated RTKs and/or adapters. Some studies have suggested that the 

presence of these mutations confers resistance to therapies targeting RTKs. Expressing 

mutated PIK3CA in fibroblasts and mammary epithelial cells results in transformation, 

growth factor-independent proliferation, and resistance to apoptosis. Additionally, transgenic 

mice with lung-specific induction of the kinase-domain mutant p110α H1047R develop lung 

adenocarcinomas. Mutations in the p85 regulatory subunit PIK3R1 have also been observed 

in a variety of human cancers, including glioblastomas, ovarian cancers, and colorectal 

cancers. Mutations in PIK3R1 generally produce either truncations or in-frame deletions that 

often localize to the inter-SH2 domain of p85α. Structural analyses suggest that the iSH2 

domain of p85 interacts with the C2 domain of p110. Thus, it seems likely that these p85α 



 

mutations also activate PI3K signaling by relieving the inhibitory effect of p85 on p110. 

Laboratory studies suggest that these mutations also lead to constitutive PI3K signaling 

(Engelman, 2009). In addition to its effects on cell growth, proliferation and survival, class 

IA PI3K regulates glucose metabolism through insulin signaling (Sopasakis et al., 2010). It is 

commonly deregulated in cancer through mutations or amplifications of the PIK3CA gene or 

through alterations in the function of upstream tumor suppressors such as PTEN. About 80% 

of the mutations of the PIK3CA gene are clustered in three hotspots in the p110a gene that 

encodes the catalytic subunit: two in the helical domain (E542K and E545K) and one in the 

kinase domain (H1047R). PIK3CA mutations are oncogenic, as they can induce the 

generation of tumors in several preclinical models without other molecular aberrations. In 

addition to experiments in genetically engineered mice, the first generation of PI3Kα-specific 

inhibitors, while less isoform selective than the more recent compounds, have been 

instrumental in defining the biologic role of different PI3K isoforms in normal and cancer 

cells. However, these agents have provided only inconclusive data on their antitumor activity 

in cell lines harboring PIK3CA mutations compared to those that are PIK3CA wild-type. One 

of the main reasons is the limited number of cell lines in which these compounds have been 

evaluated. Cell lines without PIK3CA mutations often harbor alterations in oncogenic 

tyrosine kinase receptors, such as ERBB2 amplification, which preferentially uses the p110α 

isoform for signal transduction. However, some of the cell lines harboring PIK3CA mutations 

had additional molecular aberrations, some of which are known mechanisms of resistance. 

The new PI3Kα-isoform specific inhibitors have shown promising activity in cell lines 

harboring PIK3CA mutations. Several new generation PI3Kα-selective inhibitors are 

currently being evaluated in phase I clinical trials, including BYL719 (NCT01219699), INK-

1114 (NCT01449370) and GDC-0032 (NCT01296555). The clinical results of the dose 

escalation part of the phase I trial investigating BYL719 have recently been presented. Trial 

enrollment was restricted to patients with solid tumors harboring PIK3CA mutations or 

amplifications. This population was selected based on the higher antitumor activity observed 

in preclinical models with PIK3CA mutations or amplifications using the Cancer Cell Line 

Encyclopedia. This was the first reported study of a PI3K inhibitor in which molecular 

prescreening was undertaken starting from the dose escalation part. From a safety 

perspective, the most commonly observed adverse effects associated with BYL719 were 

hyperglycemia, nausea, fatigue, rash and gastrointestinal toxicities, all of which are also 

frequently encountered with the pan-PI3K inhibitors. A relevant question is whether an 

isoform-selective PI3K inhibitor is able to achieve greater target inhibition than pan-PI3K 

inhibitors while producing a similar degree and extent of side effects. At present, there is a 

paucity of published preclinical data comparing any of the PI3Ka-selective inhibitors 

currently in clinical development with pan-isoform PI3K inhibitors. While early results from 

phase I trial of BYL719 appear encouraging, direct comparison of the preliminary efficacy 

results achieved with this agent against those reported with the pan-isoform PI3K inhibitors 

would be invalid, as none of the early phase trials involving pan-PI3K inhibitors have been 

specifically designed to evaluate only the PIK3CA mutant population (Brana and Siu, 2012). 

 

 

 



 

SCF E3 ubiquitin ligases as anticancer targets 

 

 The ubiquitin-proteasome system (UPS) regulates many biological processes through 

timely degradation of diverse cellular proteins. It, therefore, plays an essential role in 

maintaining homeostasis and in response to environmental stimuli (Hershko et al., 2000). 

UPS-targeted protein degradation requires substrate ubiquitination, which is a multi-step 

enzymatic process catalyzed by a cascade of enzymes, including ubiquitin-activating enzyme 

E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3. While E1 and E2 activate and 

transfer ubiquitin in the reaction, E3 recognizes the substrate and catalyzes the covalent 

attachment of ubiquitin to the substrate (Ciechanover, 1998). Multiple runs of this reaction 

result in polyubiquitination of substrate. The fate of ubiquitinated proteins is determined, 

however, by the nature of ubiquitin attachment and the type of isopeptide linkage of the 

polyubiquitin chain. While the K48-linked polyubiquitination predominantly targets protein 

for degradation after being recognized by the proteasome, the K63-linked polyubiquitination 

and mono-ubiquitination normally alters protein function, cellular localization, enzyme 

activity, DNA repair, or interaction with other proteins (Pickart, 2000). The SCF multisubunit 

E3 ligase complex, consisting of Skp-1, Cullins, F-Box proteins and RBX/ROC RING finger 

proteins, is the largest family of ubiquitin ligases that promote the degradation of about 20% 

of UPS-regulated proteins, including cell cycle regulatory proteins, transcription factors, 

oncoproteins and tumor suppressors among others. The crystal structure of SCF-RBX 

complex revealed that Cul-1 acts as a scaffold that binds at its N-terminus the Skp-1 and F-

box protein and at its C-terminus the RING protein RBX1. It is well established that the 

substrate specificity of SCF complex is determined by the F box proteins that bind to Skp1 

and Cullins through its F-box domain and to substrates through its WD40 or leucine rich 

domains, whereas the core SCF E3 ubiquitin ligase is a complex of Cullins-RBX/ROC, in 

which RBX binds to E2 and facilitates ubiquitin transfer from E2 to substrates. Furthermore, 

the activity of SCF E3 ubiquitin ligases requires cullin neddylation, which disrupts inhibitory 

binding of cullin by CAND1. In the human genome, there are 69 F-box proteins, including 

WD40 domain containing FBXWs, leucine-rich repeats-containing FBXLs and other diverse 

domains-containing FBXOs, seven cullins (Cul-1, -2, 3, 4A, 4B, -5, and -7) and two RING 

proteins, RBX1/ROC1 and RBX2/ROC2, also known as SAG (Sensitive to Apoptosis Gene). 

Cullin-based assembly of SCF E3 ligase subunits can be classified into four categories: Cul1-

Skp1-F-box, Cul2/5-Elongins-B/C-VHL/SOCS box, Cul3-BTB, and Cul4A/B-DDB1-DWD, 

making SCF/CRL the largest family of E3 ubiqutin ligases, responsible for the degradation of 

~20% of all proteins subjected to proteasomal degradation (Jia and Sun, 2011).  

 

 The majority of SCF E3 ligase substrates are involved in regulation of cell cycle 

progression, gene transcription, signal transduction and DNA replication among others (Jia 

and Sun, 2009; Nakayama and Nakayama, 2006). Through targeted degradation of these 

substrates, SCF E3 ligases regulate many biological processes. Accumulated evidence 

strongly suggests that abnormal regulation of SCF E3 ubiquitin ligases contributes to 

uncontrolled proliferation, genomic instability, and cancer (Nakayama and Nakayama, 2006). 

Among the components of SCF, some are oncogenes (e.g. Skp2) that promote degradation of 

tumor suppressors and are amplified or overexpressed in human cancers, whereas others are 



 

tumor-suppressors (e.g. Fbxw7) that target the degradation of oncoproteins and are mutated 

in human cancers (Frescas and Pagano, 2008; Nalepa et al., 2006). 

 

 F-box proteins are the substrate-recognizing subunits of SCF E3 ligase which 

determine the substrate specificity of SCF. A single F-box protein can recognize and target 

multiple substrates (e.g. Skp2 targets p27, p21, p57), whereas the same substrate can be 

recognized and targeted by different F-box proteins (e.g. cyclin E targeted by both Skp2 and 

Fbxw7). More interestingly, a single F-box protein can target the degradation of several 

substrates with opposite biological functions (e.g. Skp2 targets p21/p27 as well as cyclin 

A/D1/E) (Skaar et al., 2009). Thus, when or whether a particular substrate is targeted for 

degradation by a given F-box protein will likely be cell context dependent, leading to 

different biological consequences. Among ~70 F-box proteins in the human genome, only 

three are well studied: oncogenic Skp2, tumor suppressive Fbxw7, and β-TrCP, which could 

be tumor suppressive as well as oncogenic in a substrate dependent manner (Frescas and 

Pagano, 2008; Welcker and Clurman, 2008). Skp2 recognizes and promotes the degradation 

of several negative cell cycle regulators, including p27, p21, p130 and p57 (Deshaies and 

Joazeiro, 2009; Nakayama and Nakayama, 2006; Petroski and Deshaies, 2005). Skp2 is 

overexpressed in many human cancer types with associated p27 decrease and poor prognosis, 

seen in gastric cancer, colon cancer, and breast cancer (Jia and Sun, 2011). Tissue specific 

expression of Skp2 in mouse prostate gland caused hyperplasia, dysplasia and low-grade 

carcinoma (Shim et al., 2003), whereas targeted expression of Skp2 in the T-lymphoid 

lineage co-operated with activated N-Ras to induce T cell lymphomas with a short latent 

period and high penetrance (Latres et al., 2001). Furthermore, a knock-in mouse model 

showed a crucial role of Skp2 dependent degradation of p27 for the progress of colon 

adenomas to carcinoma (Timmerbeul et al., 2006). Interestingly, in a mouse knockout model, 

although Skp2 disruption on its own does not induce cellular senescence, Skp2-null 

environment facilitates tumor-suppressive senescence response upon inactivation of tumor 

suppressor genes or aberrant proto-oncogenic signals. Consistently, down-regulation of Skp2 

using an anti-sense oligonucleotide or siRNA silencing inhibited growth of melanoma 

(Katagiri et al., 2006), oral cancer cells (Kudo et al., 2005), glioblastoma cells and lung 

cancer cells (Lee and McCormick, 2005; Sumimoto et al., 2005). Thus, pharmacological 

inhibitors of the Skp2 pathway would be of therapeutic value for cancer treatment.  

 

 One of the approach that can be used to screen for the inhibitors of SCF E3 ubiquitin 

ligase or its components is to disrupt interaction between SCF components, such as disruption 

of Cks1-Skp2 interaction (Hao et al., 2005; Huang et al., 2005) for p27 accumulation, or to 

disrupt interaction between F-box proteins and their tumor suppressive substrates (e.g. β-

TrCP vs. IκB) (Chen et al., 2008; Xu et al., 2005). Recently, a small molecule inhibitor, 

CpdA, was identified from a biochemical-based screening using in vitro 

transcribed/translated and 35S-labeled p27, and an in vitro–reconstituted system 

incorporating purified cyclin E/Cdk2, Skp2, Skp1, Cul1, Roc1, and HeLa cell extract. CpdA 

was found to prevent incorporation of Skp2 into the SCF E3 ligase and to induce G1 arrest as 

well as p27-dependent cell killing via induction of autophagy. Furthermore, CpdA sensitized 



 

multiple myeloma to a number of anticancer drugs, including dexamethasone, doxorubicin, 

melphalan and bortezomib (Chen et al., 2008). 

 

MATERIALS AND METHODS 

 

Protein preparation and dataset 

 

 The crystal structure of TE domain of FASN [PDB ID: 1XKT] (Chakravarty et al., 

2004), PI3Kα [PDB ID: 3HIZ] (Mandelker et al., 2009) and Skp2 component of SCF E3 

ubiquitin ligase [PDB ID: 2AST] (Hao et al., 2005) of human origin were downloaded for 

Protein Data Bank. Crystal water molecules and all non-bonded heteroatoms including the 

docked ligand were removed from the protein structure using Accelerys Viewerlite 5.0 

(Viewerlite_5.0). The proteins were prepared using Schrödinger’s protein preparation wizard 

(Schrödinger, 2009). Hydrogen bonds were added and optimized to the structure. Other 

preparation steps involved removal of bad contacts, optimization of bond lengths, creation of 

disulfide bonds, capping of protein terminals and conversion of selenomethionine to 

methionine. The missing residues were fixed manually. 

 

 A data set consisting of 1,69,109 natural compounds by 10 different suppliers was 

downloaded from ZINC database in SMILES format (Irwin and Shoichet, 2005). This dataset 

was then prepared using LigPrep’s ligand preparation protocol. It generates different 

tautomeric, stereochemical and ionization variants of the small molecules along with energy 

minimization and flexible filtering. These prepared protein and small molecule dataset was 

then used further for virtual screening and docking studies.  

 

High throughput virtual screening and docking studies 

 

 A grid was generated surrounding the active residues of TE domain of prepared 

FASN protein structure using the Glide docking module of Schrödinger (Friesner et al., 2004; 

Halgren et al., 2004). Prepared data-set of natural compounds was then virtually screened 

against the FASN protein at desired grid coordinates using Glide model’s HTVS docking 

protocols. The compounds above the threshold of -6.00 HTVS docking score were then 

selected and again subjected to docking with FASN using Glide’s XP protocol for docking 

score refinement. The top scoring compounds above a cutoff of -8.00 XP docking score were 

then subject to XP docking with the skp2 component of ubiquitin ligase at the site of its 

interaction with cks1. The resulting top scoring compounds when then further screened 

against the active site of PI3Kα protein using the same XP docking protocol. The top scoring 

compound was the one which showed good binding affinity for all the three target proteins at 

the desired sites. Thus, this compound was then inspected through MD simulations to study 

in detail its dynamic mode of molecular interaction with the respective protein molecules. All 

Glide docking studies were performed on i7 processor @ 2.8GHz with 8.00 GB RAM. 

Schrödinger 9 Maestro interface was compiled and run under Ubuntu 64 bits operating 

system. 



 

Molecular dynamics simulations of ligand-bound complexes 

 

 Desmond Molecular Dynamic System with Optimized Potentials for Liquid 

Simulations (OPLS) all-atom force field 2005 (Jorgensen et al., 1996; Kaminski et al., 2001; 

Xu et al., 2007) was used to inspect the top scoring compounds through MD simulations. The 

protein-ligand complex obtained from Glide’s XP docking protocol was prepared using 

Desmond set-up wizard. Missing residues were corrected manually. The prepared system was 

solvated in a triclinical periodic box of SPC water and then neutralized using an appropriate 

number of counter-ions. The distance between box wall and protein-ligand complex was set 

to more than 10Å to avoid direct interaction with its own periodic image. Energy 

minimization of the prepared system was done up to a maximum 10 steps using steepest 

descent method until a gradient threshold (25 kcal/mol/Å) is reached. Default protocol of 

Desmond was used to equilibrate the system. Further MD simulations were carried out on 

this equilibrated system for a time period of 10 ns at a constant temperature of 300K and 

constant pressure of 1 atm. During the simulation process, smooth particle Mesh-Ewald 

method was used to calculate long range electrostatic interactions. A 9 Å radius cut-off was 

used for coulombic short range interaction cutoff method. Frames of trajectory were captured 

after every 10 ps time step. 

 

 The root mean square deviation (RMSD) of the protein docked with ligand within the 

binding pocket was calculated for the entire simulation trajectory with reference to the first 

frame. The hydrophobic interactions and H-bonds were calculated using Ligplot program 

(Wallace et al., 1995), where the H-bonds were defined as acceptor–donor atom distances of 

< 3.3 Å, hydrogen-acceptor atom distance of maximum 2.7Å, and acceptor-H-donor angle 

greater than 90°.  

 

RESULTS AND DISCUSSION 

 

High Throughput virtual screening and docking studies 

 

 After the screening of natural compound dataset against the TE domain of FASN with 

grid around the catalytic triad and using HTVS glide docking protocol, several hundred 

compounds were obtained with HTVS docking score above -6. All these ligands were then 

docked to the TE domain at the same grid coordinates using XP docking protocol. As a result, 

5 small molecule natural compounds were obtained with XP docking score greater than -8. 

These selected compounds were then screened against Skp2 using the same XP docking 

protocol. The grid was generated around the residues which interact with the cks1, the 

peptide involved in recognition of p27 by Skp2 component of SCF E3 ubiquitin ligase and 

provide it substrate specificity. Out of those five compounds, two compounds showed 

considerable binding affinity for Skp2 with XP docking score above -7. These two 

compounds were then checked for binding affinity with the active cleft of PI3Kα. One of the 

two compounds with XP docking score of -10.03 was showing very good binding affinity for 

PI3Kα. Thus, (2R,3R,4S,5S,6R)-3,5-dihydroxy-2-(((Z)-4-hydroxy-3-((E)-1-hydroxy-2-((4-



 

hydroxybenzyl)imino)ethoxy)-1-((4-hydroxybenzyl)imino)butan-2-yl)oxy)-6-

(hydroxymethyl)tetrahydro-2H-pyran-4-yl acetate (ZINC70670105, referred to as MTD) was 

the common compound with inhibitory nature against the TE domain of FASN (Docking 

score= -9.10), Skp2 (Docking score= -7.03 )and PI3Kα (Docking score= -10.03). Figure 1 

illustrates the chemical structure of MTD. Detailed analysis was done to get insights into the 

binding mode of interaction of MTD with each of these proteins. Since molecular docking 

provides only a static view of the interactions between protein and ligand, molecular 

dynamics simulations were performed for MTD in complex with each protein to study the 

dynamical behavior of the interactions. 

 

 
 

Figure 1: Chemical structure of MTD 

 

Interaction analysis of MTD with TE domain of FASN 

 

 The TE carries out the chain-terminating step of fatty acid synthesis, leading to the 

release of palmitic acid by the hydrolysis of the acyl-S-phosphopantetheine thioester bound to 

the preceding acyl carrier protein (ACP) domain. However, once removed, the domain can no 

longer interact with the remainder of FAS to hydrolyze newly synthesized fatty acyl-S-

phosphopanthetheine thioester. The inhibition of FAS thioesterase (TE) was recently found to 

halt tumor cell proliferation and inhibit the growth of prostate tumors in mice (Kridel et al., 

2004). 

 

 TE is a serine active site enzyme in which the nucleophilicity of the serine residue is 

supported by a conserved histidine residue (Pazirandeh et al., 1991). Two participants of the 



 

catalytic triad, Ser-2308 and His-2481, were identified in the homologous chicken FAS TE 

by site-directed mutagenesis experiments (Pazirandeh et al., 1989). The identity of third 

player, Asp-2338 was based on its location, where it is the only acidic residue in very close 

proximity to Ser-2308 and His-2481. To confirm the importance of Asp-2338, its mutation to 

an Ala residue was shown to eliminate TE activity (Chakravarty et al., 2004). 

 

 MTD was involved in hydrophobic interaction with two of the catalytically important 

residues- Ser 2308 and His 2481 along with the other residues, namely Pro 2249, Tyr 2309, 

Phe 2370, Arg 2447 and Tyr 2462, lining the active site of TE domain (Fig. 2(A)). Strong 

hydrogen bonds between MTD and Ile 2250, Gln 2374, Ala 2448, Gly 2451 and Arg 2482 

residues of protein were also observed (Fig. 2(B)). Hence the inhibitory activity of MTD was 

attributed to the blockage of active site of TE domain preventing its interaction with its 

natural substrate, the growing fatty acid chain. To check the dynamic stability of protein-

ligand complex, TE-MTD structure was subjected to 10 ns molecular dynamics simulations. 

Steady RMSD graph (Fig. 3(A)) indicated the stabilization of the protein backbone during the 

simulation trajectory. Moreover the low RMSD values of 2.5 Å along the trajectory signified 

that the simulated structure did not deviated much from its initial structure during the 

simulations run. A shift in the position and conformation of MTD was visualized by 

superimposing the pre and post MD TE-MTD complexes (Fig. 3(B)). An average structure 

was computed for the most stable time frame, i.e., 6 to 10 ns to further analyze the changes in 

interaction pattern. After simulation run Asp 2338 and His 2481, two of the catalytic active 

residues were showing hydrophobic interactions with MTD. Other residues of TE domain 

involved in hydrophobic interaction included Ile 2250, Phe 2370, Ala 2448, Thr 2450, Gly 

2451, Tyr 2462 and Arg 2482. Hydrogen bonds observed before MD were lost while a new 

hydrogen bond interaction appeared with Tyr 2343 (Fig 4(A) and 4(B)). Since MTD 

substantially and stably interacted with residues lining the catalytic site of TE domain 

including the active residues forming the catalytic triad, critical for its functioning, it can be 

strongly suggested that MTD can potentially inhibit FASN enzymatic activity.  

 

 Thus, the inhibition of FASN thioesterase (TE) domain would help in arresting the 

tumor growth as the rapidly growing cells would not be able to meet their growing energy 

demands for survival. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 
 

Figure 2: (A) Hydrogen bond interaction between MTD and TE domain of FASN (B) Ligplot showing the 

interactive phase between MTD and TE domain of FASN 

 



 

 

 

 

 

 

 
 

 

 

 
 

 

Figure 3: (A) RMSD trajectory of MTD bound FASN complex during the 10 ns MD simulation run  (B) 

Superimposition of Pre-MD (green) and Post-MD (Brown) MTD-FASN complexes 

 

 

 

 

 

 

 

 



 

 

 
 

 

 
 

Figure 4: (A) Hydrogen bonding pattern in dynamically stable MTD-FASN complex (B) Ligplot of post MD 

MTD-FASN complex illustrating hydrogen and hydrophobic interactions 

 

 



 

MTD with potential to hamper interaction between Skp2 and Cks1 

 

 F-box proteins are members of a large family that regulates the cell cycle, the immune 

response, signaling cascades and developmental programmes by targeting proteins for 

ubiquitination. F-box proteins are the substrate-recognition components of SCF ubiquitin-

protein ligases. F-box proteins not only recruit substrate, but also position it optimally for the 

ubiquitination reaction (Schulman et al., 2000).  

 

 Hao et al., 2005 deduced the crystal structure of quaternary Skp1-Skp2-Cks1-

p27Kip1 complex to study the interactive phase between Skp2, Cks1 and P27Kip1. It was 

found that Skp2-Cks1 binding is mediated by both hydrogen bond networks and van der 

Waals contacts. The most extensive network of hydrogen bonds is between the Skp2 LRR 

domain (Trp265, Arg294, Asp319, and Arg344 side chains) and the Cks1 H2 helix (Ser41, 

Glu40, and Asn45 side chains and Ser41 carbonyl group). Additional hydrogen bond 

networks are formed by residues from the Skp2 tail (Arg398, His392, Thr400, and Thr394 

side chains and backbone groups) and the Cks1 H2 helix (Glu42). Van der Waals contacts 

occur both at the center of the intermolecular interface and its periphery. At the center, the 

side chain of Phe393 from the Skp2 tail packs into a small hydrophobic pocket between the 

H1 and H2 helices of Cks1, making contacts to Leu31, Leu46, Pro33, Met38, and the 

aliphatic portion of Glu42 of Cks1. Peripheral van der Waals contacts involve Phe368 and 

His392 of Skp2 and Pro33 and His36 of Cks1 (Hao et al., 2005). 

 

 Based on this knowledge of interaction pattern between Skp2 and Cks1, the potential 

of MTD to inhibit the recruitment of Cks1 by Skp2 for p27 recognition was studied. It was 

observed that MTD was forming hydrogen bonds with many residues of Skp2, namely Arg 

167, Ser 189, Asn 190, Glu 214, Ser 238 and Arg 344. Out of these residues Arg 344 is 

important for binding of Cks1 to Skp2. It was hydrophobically interacting with many other 

essential residues like Trp 265, Asp 319, Thr 394, Arg 398 along with the neighboring amino 

acids, pro 166, Asp 187, Gly 215, Gly 239, Asn 262, Ser 264, Asn 289 and Ser 291(Fig. 5(A) 

and 5(B)). Clearly it MTD was occupying the space required by Cks1 to interact with Skp2 

thereby preventing the interaction required for ubiquitination process of p27. This complexed 

structure was then simulated for 10 ns to attain dynamic stability using OPLS force field in 

desmond MD software. The RMSD graph (Fig. 6(A)) showed that the Skp2-MTD complex 

initially deviated upto 4 Å and then acquired a stable trajectory and remained steady until the 

end. To identify the changes in the conformations before and after MD simulations, both the 

complexes were superimposed as shown in Fig. 6(B). An average structure computed from 

the most stable time frame (7-10 ns), was further analyzed for its interaction pattern and the 

interactions are shown in Fig. 7(A) and 7(B). In the stabilized structure post simulations, the 

MTD binding now involved two hydrogen bond interactions with the residues Asp 187 and 

Glu 214 of Skp2, in addition to hydrophobic interactions with residues Pro 166, Ser 189, Asn 

190, Ser 238, Trp 265, Phe 267, Arg 398, Pro 399 and Thr 400. Many of these residues are 

important for the binding of Cks1 to Skp2. As ubiquitin-mediated proteolysis of the Cdk2 

inhibitor p27Kip1 plays a central role in cell cycle progression, and enhanced degradation of 

p27Kip1 is associated with many common cancers, this analysis suggests that the binding of 



 

MTD to Skp2 would result in substantially altered functional properties of the enzyme which 

would result in the inhibition of p27 degradation by SCF E3 ubiquitin ligase. 

 

 

 

 
 

 

 
 

Figure 5: (A) Residues of Skp2 involved in hydrogen bond interaction with MTD (B) Ligplot showing –bonds 

and hydrophobic interactions between Skp2 and MTD 

 



 

 

 

 

 

 

 

 
 

 

 

 
 

 

Figure 6: (A) RMSD trajectory of MTD-Skp2 complex during 10 ns long simulation run (B) Change in the 

position of MTD docked into Skp2 before (green) and after (purple) MD simulation 

 

 

 

 

 

 



 

 

 

 

 

 
 

 

 
 

Figure 7: (A) Skp2 residues involved in hydrogen bonding with MTD after MD simulation (B) Ligplot showing 

dynamically stabilized molecular interactions between MTD and Skp2 

 

 

 



 

MTD, a natural molecule with potential to inhibit PI3Kα 

 

 Huang et al. in 2007 elucidated the structure of human p110α/p85α complex. The 

p110α subunit of PI3Kα has five domains: an N-terminal domain called ABD (adaptor 

binding domain) that binds to p85α, a Ras binding domain (RBD), a domain called C2 that 

has been proposed to bind to cellular membranes, a helical domain of unknown function, and 

a kinase catalytic domain. (Huang et al., 2007). The kinase domain harbors the catalytic site 

of the enzyme. In p110α, the smaller N-terminal domain comprises residues 697 to 851 and 

the larger C-terminal domain residues 852 to 1068. On the basis of the structures of other 

protein kinases, the activation and catalytic loops of p110α were assigned to residues 933 to 

957 and 912 to 920, respectively. The substrate-binding pocket is situated between the N and 

C-terminal lobes of the kinase domain (Huang et al., 2007). 

 

 The explicated information suggests that blocking the cleft between the N and C-

terminal lobes of the kinase domain would depreciate the enzymatic activity of this enzyme. 

MTD was found interacting with PI3Kα by forming hydrogen bonds with Lys 802, Val 851, 

Asp 915, Ser 919, Asn 920 and Asp 933. It was also forming hydrophobic contacts with 

many residues constituting the activation and catalytic loop, including Ser 774, Pro778, Ile 

800, Asp 805, Tyr 836, Ile 848, Glu 849, Val 850, Thr 856, His 917, Ile 932 and His 936 

(Fig. 8(A) and 8(B)). The molecules were found to bind substantially in the substrate binding 

pocket of PI3Kα, a highly conserved domain. Thus, this provides substantial evidence for 

considering this screened natural compound, MTD, as a prospective drug candidate for 

inhibiting PI3Kα function in cancer cases. Docking only reflects the static interactions 

between the protein and the ligand. To get a view about the dynamic behavior of the docked 

complex MD simulations were run for a time period of 10 ns. The RMSD graph (Fig. 9(A)) 

showed that the PI3Kα-MTD complex initially deviated around 2 Å and then was able to 

acquire a stable trajectory which persisted till the end. To identify the changes in the 

conformations before and after MD simulations, both the complexes were superimposed as 

shown in Fig. 9(B). An average structure computed from the most stable time frame (4-10 

ns), was further analyzed for its interaction pattern and the interactions are shown in Fig. 

10(A) and 10(B). Many hydrogen bonds were lost during the MD simulation but the one with 

Val 851 was stable from the entire trajectory. Hydrophobic contacts were found with Met 

772, Ser 774, Lys 776, Glu 849, Val 850, Thr 856, Ser 919, Asn 920, Met 922, Phe 930, Ile 

932, Asn 933 and His 936. Most of the interactions remained conserved, while only the 

nature of interaction got changed. The ligand, MTD was still occupying the same cavity of 

PI3Kα, thereby indicating a stable interaction with the protein. 

 

 Therefore inhibition of enzymatic activity of PI3Kα by MTD can greatly effect the 

cancer cell growth, survival, motility, and metabolism. 

 

 

 

 

 



 

 

 

 

 
 

 
 

Figure 8: (A) Hydrogen bond interaction between MTD and residues lining the active cleft of PI3Kα (B) 

Ligplot showing the hydrogen bonds and hydrophobic interactions between MTD and PI3Kα 

 

 



 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 9: (A) RMSD trajectory of MTD-PI3Kα complex during 10 ns long simulation run (B) Change in the 

position of MTD docked into PI3Kα before (green) and after (pink) MD simulation 

 

 

 

 



 

 

 

 

 

 
 

 

 
 

Figure 10: (A) PI3Kα residues involved in hydrogen bonding with MTD after MD simulation (B) Ligplot 

showing dynamically stabilized molecular interactions between MTD and PI3Kα 



 

CONCLUSION 

 

  As discussed, drugs with multiple targets have a better chance of affecting the 

complex equilibrium of whole cellular networks than drugs that act on a single target. 

Complex diseases like cancer thus need multi-target attack. Here in we have reported a small 

molecule natural compound, MTD with capability to inhibit three of the important targets 

involved in cancer initiation, progression and survival- Fatty acid synthase, 

Phosphatidylinositol 3-kinase (p110α) and SCF E3 Ubiquitin Ligase. The molecule showed 

considerable binding affinity for all the protein molecules, interacting with their key residues 

essential for their enzymatic activity. The study provides evidences for consideration of these 

compounds as prospective small ligand molecules for the treatment of cancer. The present 

information could be of high value for the development of non-covalent type multi target 

inhibitory drugs with low toxicity to normal cells.  
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Small molecule based NK cell activation for defense against cancer 

 



 

INTRODUCTION 

 

 The response of body’s immune system can be modified to fight against cancer. 

Attempts are being made to investigate the immunology associated with cancerous state and 

design more specific and effective cancer treatment. Cytotoxic T lymphocytes (CTLs) and 

natural killer (NK) cells are key effector cells of cellular immunity which play an important 

role in the antitumor defense mechanism.  

 

Natural-killer (NK) cells, key players of the innate immune system, are white blood 

lymphocytes of which perform diverse biological functions like recognition and destruction 

of bacterial and viral infections and neoplasms. Approximately 15% of circulating 

lymphocytes comprise of NK cells. They are also found in peripheral tissues- the liver, 

peritoneal cavity and placenta. NK cells circulating in the blood are in resting state which 

upon activation by certain cytokines extravasate and infiltrate into pathogen-infected tissues 

or transformed self cells (Biron, 1997; Fogler et al., 1996; Wiltrout et al., 1984). NK cells are 

a crucial part of the innate immune system as they mediate the spontaneous killing of various 

tumor cells. NK cells were first shown to effectively eliminate tumor cells from the 

circulation of mice (Riccardi et al., 1980) and rats (Barlozzari et al., 1983). Shortly thereafter, 

NK cells were shown to spontaneously kill MHC class-I-deficient tumor cells in vitro 

(Ljunggren and Kärre, 1985) and in vivo (Ljunggren and Kärre, 1985). More recent studies 

have confirmed that NK-cell-mediated cytotoxicity is important for responses against the 

initiation and metastasis of MHC class-I-deficient tumors in vivo (Smyth et al., 1998; Smyth 

et al., 1999; van den Broek et al., 1995) as tumor cells are believed to alter their expression of 

MHC class I molecules to evade T-cell responses. 

 

The functions of NK cells are regulated by a balance between their inhibitory and 

activatory receptors (Bottino et al., 2004). There are several inhibitory receptors with 

different molecular structures and specificities for different alleles of class I molecules 

(Bottino et al., 2004; Braud et al., 1998). The lack of even a single MHC-I allele, a frequent 

event in cancer cells, sensitizes them to NK cell cytotoxicity. In the absence of inhibitory 

signals, however, NK cell cytotoxicity gets activated by a set of triggering receptors (Bottino 

et al., 2004; Trinchieri, 1989). In general NK cells can be activated by various stimuli such as 

contact with dendritic cells (DC), MHC-I-negative cells, binding of IgG immunocomplexes, 

direct engagement of NKR by stress-induced tumor-associated molecules or pathogen-

derived products, and several cytokines such as IL-1, IL-2, IL-12, IL-15, IL-18, IL-21, and 

type I IFNs (Brady et al., 2004; Carson et al., 1994; Parrish-Novak et al., 2000; Trinchieri, 

2003). In particular, viral and bacterial products can trigger NK cell responses directly 

binding to surface TLR3 and TLR9 (Moretta et al., 2006; Sivori et al., 2006).  

 

Toll-like receptors (TLRs) recognize conserved molecular patterns in invading 

pathogens and trigger innate immune responses. TLRs are type I integral membrane 

glycoproteins, consisting of pathogen-binding ectodomains (ECD) and cytoplasmic signaling 

domains, known as Toll IL-1 receptor (TIR) domains, joined by a single transmembrane helix 



 

(Bell et al., 2003). TLR3 recognizes dsRNA, a molecular signature of most viruses via its 

ectodomain (ECD). TLR3 ectodomains (ECD) dimerize on oligonucleotides of at least 40–50 

bp in length, the minimal length required for signal transduction. Each TLR3-ECD binds 

dsRNA at two sites located at opposite ends of the TLR3 “horseshoe”, and an intermolecular 

contact between the two TLR3-ECD C-terminal domains coordinates and stabilizes the 

dimer. This juxtaposition mediates downstream signaling by dimerizing the cytoplasmic Toll 

IL-1 Receptor (TIR) domains. The overall shape of the TLR3-ECD does not change upon 

binding to dsRNA (Liu et al., 2008c). 

 

In the work presented here we have reported small molecule chemical compounds of 

natural origin which could dimerize the TLR3 ectodomain in a manner similar to the dsRNA 

of viruses. These compounds also show interaction with all the residues which have been 

reported to be essential for signal transduction upon recognition with the dsRNA of pathogen. 

 

REVIEW OF LITERATURE 

 

The high worldwide prevalence rate of cancer has led researchers to put in a hard 

effort to investigate the immunology associated with cancerous state and design more specific 

and effective cancer treatment. Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells 

are main effector cells of cellular immunity which play an important role in the antitumor 

defense mechanism. Tumor antigens (TAs) are often used as targets for therapeutic 

approaches against cancer. TAs can be categorized into three types; (a) TA peptides that are 

presented by HLA class I molecules on the tumor cell surface and are capable of evoking 

cellular immunity, especially cytotoxic T lymphocytes (CTLs), by being presented on HLA 

class II molecules of antigen-presenting cells such as macrophages and dendritic cells; (b) 

target molecules or ligands recognized by natural killer (NK) cell receptors; and (c) TAs that 

are directly expressed on the tumor cell surface and are identified by auto-antibodies or 

hetero-antibodies, i.e., by humoral immunity (Groen, 1987; Kuroki et al., 2001).  

 

T cell based therapy and its limitations 

 

One of the effector cells that mediate the rejection of solid tumors in pre-clinical 

animal models is the Cytotoxic T Lymphocyte (CTL). Each CTL expresses a clonotypically 

unique T-cell-antigen receptor (TCR) that confers specificity for a particular target antigen. 

The antigens recognized by CTLs consist of peptide fragments, which are bound within the 

major clefts of MHC-Class-I molecules on the cell surface. Cells are exposed to immune-

system scrutiny by loading peptide fragments of newly synthesized cellular proteins onto 

MHC-class-I molecules, which are then transported to the cell surface (Shastri et al., 2002). 

As in normal cells, the surfaces of tumor cells contain MHC–peptide antigens that reflect 

their expressed ‘proteome’. T-cell lines can be generated that specifically recognize the HLA 

restricted antigens that are expressed by tumor cells and can be used for T cell based 

immunotherapy. Thus, adoptive CTL transfer (ACT) using ex vivo manipulated T 



 

lymphocytes emerged as an important advancement in cancer immunotherapy, allowing for 

re-education and re-setting of the host immune system.  

 

Limitations of T-Cell based therapy  

 

1. Emergence of antigen-loss variants 

 

In a study conducted to demonstrate the ability of T-cells to provide long-term 

protection against tumor expressing the target antigen, in a dose-dependent manner it was 

observed that even in what appeared to be an idealized experimental situation, responses were 

incomplete and nondurable. This was attributed to the emergence of antigen-loss variants 

(Bathe Oliver and Nava).  It has also been shown that, in general, cancer cells are typically 

genetically unstable. Accumulated of thousands of mutations was observed in the adenoma-

colorectal cancer sequence (Boland and Ricciardiello, 1999; Cho and Vogelstein, 1992; 

Stoler et al., 1999). Therefore antigens are expected to be heterogeneous in any given tumor. 

 

2. Down regulation of MHC-I on the surface of tumor cells 

 

According to the immune surveillance theory, cancer arises when the immune system 

is unable to recognize individual cancer cells, enabling them to escape detection. Indeed, 

tumor cells escape by a number of mechanisms. As tumor evolves, the immune system 

sequentially and consecutively eliminates cells expressing certain antigens in order of degree 

of immune-dominance and diminishing tumor immunogenicity. MHC down regulation is 

particularly detrimental to the antitumor immune response, as it results in permanent escape 

from immune detection (Dudley and Roopenian, 1996; Jäger et al., 1996; Seung et al., 1993; 

Urban et al., 1986). 

 

3. Suppression of immune system by tumor microenvironment 

  

Even when tumor cells are recognized by effectors, a number of processes may 

interfere with their clearance. Induction of apoptosis of potentially hostile lymphocytes by 

tumor is one such mechanism (Hahne et al., 1996; Ungefroren et al., 1999; Zaks et al., 1999). 

Thus, in addition to escape from detection by the immune system, tumor may directly 

influence immune effector function. For example, melanomas secrete many cytokines 

including IL-10 and TGF-β which cease the CTL activity. Suppression of the immune system 

by TGF-β facilitates tumor cell expansion (Liu et al., 2007). 

 

4. Single antigen important for survival of tumor cell 

 

Targeting a single antigen is not likely to succeed unless that antigen is necessary for 

the function and survival of the cancer cell. This situation is rare, although one example is 

BCR-ABL, a constitutively activated tyrosine kinase that causes chronic myeloid leukemia 

(CML). Targeting such a protein has provided therapeutic success (Druker et al., 2001). 

Unfortunately, few such targets have so far been identified and so other strategies are 



 

required to overcome the problem of emergence of antigen loss variants. One of the potential 

solutions is the concomitant utilization of approaches with more bystander effect. For 

example, MHC non-restricted effectors such as NK or LAK cells may be helpful (Lafreniere 

and Rosenberg, 1985; Yasumura et al., 1994), particularly in tumors where loss of MHC 

expression has occurred. The problem of emergence of antigen loss variants is therefore not 

insurmountable. 

 

Role of NK cells in defense against tumors 

 

Natural-killer (NK) cells are white blood lymphocytes of the innate immune system 

that have diverse biological functions, including recognition and destruction of certain 

microbial infections and neoplasms. As discussed above, resting NK cells circulate in the 

blood, but, following activation by cytokines, they are capable of extravasation and 

infiltration into most tissues that contain pathogen-infected or malignant cells. NK-cell-

mediated cytotoxicity is more important for responses against MHC class-I-deficient tumors 

in vivo that evade T-cell responses for their survival. 

 

The functions of NK cells are regulated by a balance between their inhibitory and 

activatory receptors (Bottino et al., 2004). In the absence of inhibitory signals, however, NK 

cell cytotoxicity must be activated by a set of triggering receptors.  

 

Activation of NK cells for immunotherapeutic strategies against cancer 

 

1. Use of IL-2 activated NK cells 

 

Early 1980s clinical trials started introducing IL-2-activated NK cells in the treatment 

of heavily tumor-burdened patients with solid primary or metastasized cancers. Subcutaneous 

injections of NK-stimulating doses of IL-2 or administration of pre-activated NK cells 

(adoptive transfer of LAK cells) showed a 15–30% positive effect in patients with advanced 

renal cell carcinoma (RCC) or melanoma (MEL). Unfortunately, IL-2 treatment is associated 

with life-threatening toxicity, essentially represented by capillary leak syndrome (Fehniger et 

al., 2002). Another limitation of this approach is the fact that IL-2, but not IL-15, activated 

NK cells increase their sensitivity to apoptosis when in contact with vascular endothelium 

(Rodella et al., 2001), likely causing a decrease in NK cell migration toward the cancer area. 

 

2. IL-15 mediated NK cell expansion 

 

 IL-15 appears to be more efficient than IL-2 in expanding the NK cell compartment 

because it promotes the survival of NK cells and protects NK cells from AICD (Rodella et 

al., 2001; Waldmann, 2002). Unfortunately, extremely high doses of IL-15 are necessary to 

observe meaningful antitumor effects in vivo; thus recently, strategies favoring IL-15 trans-

presentation to NK cells have been proposed (Kobayashi et al., 2005). 

 

 



 

3. IL-12 mainly enhances NK cell-mediated IFN-γ production 

 

Differently from IL-2 and IL-15, IL-12 mainly enhances NK cell-mediated IFN-γ 

production, and IL-1 and IL-18 potentiate the effect of IL-12 by up-regulating the IL-12Rs 

expression on NK cells (Ferlazzo and Münz, 2004; Hamerman et al., 2005). IFN-γ has been 

shown to suppress tumor angiogenesis and to induce TRAIL and FasL mediated cellular 

susceptibility to apoptosis in a variety of tumor cells (Smyth et al., 2003) Sarkar et al., 2003).  

  

4. IL-21, another promising cytokine for NK cell therapy 

 

IL-21, a promising cytokine able to build up NK cell antitumor activity (Nakano et 

al., 2006), has been found to promote both the expression of genes associated with type I 

response and the terminal differentiation of the highly cytotoxic CD56dim/CD16+NK cell 

subset, which can potentially direct ADCC against tumor cells via CD16-Fc ligation (Brady 

et al., 2004; Parrish-Novak et al., 2000; Strengell et al., 2002). NK cell mediated ADCC 

response against tumor targets can be promoted by administration of mAbs to tumor-

associated Ags (Caligiuri et al., 2004; Clynes et al., 2000). Despite the lack of true specificity 

and the limited efficacy, this approach has a unique mechanism of action that does not 

produce cross-resistance or overlapping toxicities with conventional agents (Caligiuri et al., 

2004) and that can therefore be combined with cytokine-based immunotherapies.   

 

5. Early acting growth factors for NK cell differentiation 

 

 Growth factors acting on early stages of NK cell differentiation (such as Flt3-L and 

SCF but also IL-7) in synergy with NK activatory cytokines have been proposed (Fehniger et 

al., 2002). As Flt3-L induces an increase in the number of both immature and mature NK 

cells, treatment with Flt3-L (plus IL-7) followed by cytokines (or recombinant mAb-cytokine 

fusion protein) able to induce both differentiation of immature NK cells and activation of 

mature NK cells (like IL-21) and TLR agonists might provide a powerful strategy for NK 

cell-based therapies. Thus, Flt3-L, SCF, and IL-7 can be used to enhance NK cell numbers. 

Flt3-L induces an expansion not only of mature non-activated NK cells but also of DC 

(Maraskovsky et al., 1996; Shaw et al., 1998). 

 

6. Direct activation of NK Cells using Toll like Receptors 

 

 NK cells can be activated by the direct engagement of surface TLR3 and TLR9, and 

synthetic molecules able to mimic the immunostimulatory activity of viral and bacterial 

products via TLRs have been developed and tested against tumor cells in combination with 

cytokines (Moretta et al., 2006; Sivori et al., 2006). 

 

7. Blocking NK inhibitory interactions with MHC-I on tumor cells 

 

To mimic the antitumor effect of KIR-mismatched NK cells, Abs to block NK 

inhibitory interactions with MHC-I on tumor cells have been tested in vivo. Mouse models of 



 

leukemia have demonstrated efficacy of anti-KIR-blocking Abs without adverse effects on 

normal cells, indicating the feasibility of treatments with Ab fragments to prevent 

KIR/NKG2A-MHC-I interactions in cancer therapy (Koh et al., 2001). 

 

Limitations of cytokine mediated activation of NK cells 

 

 Toxicity of systemic cytokine administration and cytokine activated NK cell apoptosis 

are two important limitations of cytokine-mediated (and NK adoptive) immunotherapies for 

cancer treatment. 

 

 Hence, we have used the strategy of NK cell activation by TLR3 receptor for 

proposing NK cell based immunotherapy for cancer treatment. 

 

MATERIALS AND METHODS 

 

X-ray analysis of TLR3-ECD: dsRNA has shown that each TLR3-ECD of a dimer 

binds dsRNA at two sites located at opposite ends of the TLR3 “horseshoe”. Intermolecular 

contacts between the C-terminal domains of two TLR3-ECDs stabilizes the dimer and 

positions the C-terminal residues within 20–25Å of each other, which is thought to be 

essential for transducing a signal across the plasma membrane in intact TLR3 molecules. But 

it has been studied that interaction between the residues at N terminal of eachTLR3-ECD and 

dsRNA are also important as reflected by site directed mutagenesis experiments (Botos et al., 

2009). Hence we have identified two compounds interacting at C and N terminal 

respectively. 

 

Protein preparation and dataset 

 

 Since the structure of human TLR3 in complex with dsRNA was not available, the 

crystal structure of TLR3 ectodomain of mouse origin was downloaded for Protein Data 

Bank [PDB ID: 3CIY] (Liu et al., 2008b). Crystal water molecules and all non-bonded 

heteroatoms including the docked ligand were removed from the protein structure using 

Accelerys Viewerlite 5.0 (Viewerlite_5.0). The protein was prepared using Schrödinger’s 

protein preparation wizard (Schrödinger, 2009). Hydrogen bonds were added and optimized 

to the structure. Other preparation steps involved removal of bad contacts, optimization of 

bond lengths, creation of disulfide bonds, capping of protein terminals and conversion of 

selenomethionine to methionine. The missing residues were fixed manually. 

 

A data set consisting of 1,69,109 natural compounds by 10 different suppliers was 

downloaded from ZINC database in SMILES format (Irwin and Shoichet, 2005). This dataset 

was then prepared using LigPrep’s ligand preparation protocol. It generates different 

tautomeric, stereochemical and ionization variants of the small molecules along with energy 

minimization and flexible filtering. This prepared protein and small molecule dataset was 

then used further for virtual screening and docking studies. 



 

High throughput virtual screening and docking studies 

  

 A grid was generated around the important residues (as reported in the literature) of 

the prepared protein structure using the Glide docking module of Schrödinger. Prepared data-

set of natural compounds was then virtually screened against the prepared protein at desired 

grid coordinates using Glide model’s HTVS docking protocols. The compounds above the 

threshold of 6.00 HTVS docking score were then selected and again subjected to docking 

using Glide’s XP protocol for docking score refinement. The top scoring compounds were 

then inspected through MD simulations. All Glide docking studies were performed on Intel ® 

Xeon (R) CPU X3450 @ 2.67GHz of hp origin with 6.00 GB RAM. Schrödinger 9 Maestro 

interface was compiled and run under Ubuntu 64 bits operating system. 

 

Molecular Dynamics Simulations of ligand-bound complex 

 

 Desmond Molecular Dynamic System with Optimized Potentials for Liquid 

Simulations (OPLS) all-atom force field 2005 was used to inspect the top scoring compounds 

through MD simulations. The protein-ligand complex obtained from Glide’s XP docking 

protocol was prepared using Desmond set-up wizard. Missing residues were corrected 

manually. The prepared system was solvated in a triclinical periodic box of SPC water and 

then neutralized using an appropriate number of counter-ions. The distance between box wall 

and protein-ligand complex was set to more than 10Å to avoid direct interaction with its own 

periodic image. Energy minimization of the prepared system was done up to a maximum 10 

steps using steepest descent method until a gradient threshold (25 kcal/mol/Å) is reached. 

Default protocol of Desmond was used to equilibrate the system. Further MD simulations 

were carried out on this equilibrated system for a time period of 10 ns at a constant 

temperature of 300K and constant pressure of 1 atm with a time step of 2 fs. During the 

simulations process, smooth particle Mesh-Ewald method was used to calculate long range 

electrostatic interactions. A 9 Å radius cut-off was used for coulombic short range interaction 

cutoff method. Frames of trajectory were captured after every 10 ps time step. 

 

The root mean square deviation (RMSD) of the protein docked with ligand within the 

binding pocket was calculated for the entire simulations trajectory with reference to the first 

frame. The hydrophobic interactions and H-bonds were calculated using Ligplot program 

(Wallace et al., 1995), where the H-bonds were defined as acceptor–donor atom distances of 

< 3.3 Å, hydrogen-acceptor atom distance of maximum 2.7Å, and acceptor-H-donor angle 

greater than 90°.  

 

RESULTS AND DISCUSSION 

 

Virtual screening of 1,69,109 natural compounds downloaded from ZINC database 

 

The library of natural compounds prepared using Schrödinger’s protein preparation 

wizard was screened against the crystal structure of TLR3 at both C and N terminals 



 

respectively using high throughput virtual screening protocol of Glide. Many compounds 

were found having a glide docking score of more than -6.00, indicating a considerable 

binding affinity for the specific sites within the protein molecule. These several hundred 

compounds were further analyzed for their binding affinity with more precision using the XP 

docking protocol of glide. In one of the screenings, the top scoring natural compound, 

[(2S,3R,5R,10R,12S,13S,14R,17R)-17-[(1R,4S)-4,5-dihydroxy-1-(hydroxymethyl)-5-

methyl-hexyl]-2,12-dih (Fig. 1(A), referred to as DHM) was having  XP docking score of -

11.43 which indicated a very strong binding affinity for the C terminal residues of TLR3 and 

it was also able to hold two molecules of TLR3 together forming a dimer, an essential 

requirement for initiating the cascade of intracellular signaling. The hunt for molecule that 

could interact with important residues at N-terminal ended with the compound, N-(2-(1H-

imidazol-4-yl)ethyl)-2-((5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy)acetamide 

(referred to as IEH) having an XP docking score of -6.05. Fig. 1(B) illustrates the chemical 

structure of this compound. 

 

 
 

Figure 1: Chemical structure of (A) DHM and (B) IEH 

 

Interaction analysis of DHM at C-terminal of TLR3 dimer 

 

 hTLR3-ECD structure bound to dsRNA was not available, hence we have used the 

mTLR3-ECD dimer for our study. mTLR3-ECD had 78% sequence identity with hTLR3-

ECD and as expected the structures of the two ECDs were also highly homologous (Liu et 

al., 2008b). The structure of the TLR3 signaling complex, consisting of two mTLR3-ECD 

molecules bound to one 46 bp dsRNA oligonucleotide was used to identify multiple 

intermolecular contacts that stabilize this active complex. It was found that dsRNA interacts 

with both an N-terminal and a C-terminal site on the glycan-free surface of each mTLR3-

ECD, which are on opposite sides of the dsRNA with the C-termini (Fig. 2(A)) in contact and 

the N-termini (Fig. 3(A)) outstretched at opposing ends of the linear dsRNA molecule. 

Another important fact was that the overall structure of mTLR3-ECD does not change upon 

binding to dsRNA, supporting a signaling mechanism in which ligand-induced receptor 

dimerization brings the two cytoplasmic TIR domains into contact, thus triggering a 

downstream signaling cascade (Liu et al., 2008b). The dsRNA in the complex retains a 

typical A-DNA-like structure, in which the ribose-phosphate backbone and the position of the 



 

grooves are the major determinants of binding. The mTLR3-ECD interacts with the sugar 

phosphate backbones, but not with individual bases. This explains why TLR3 lacks 

specificity for any particular nucleotide sequence (Alexopoulou et al., 2001; Liu et al., 

2008b).  

  

 The first site of dsRNA:TLR3 interaction is located close to the C-terminus of TLR3. 

In the complex, these binding sites from two mTLR3-ECD monomers face each other across 

the dsRNA. It was elucidated that the residues within contact distance of the RNA include 

Asn515, Asn517, His539, Asn541 and Arg544, which all are found well-conserved in 

vertebrates (Liu et al., 2008b). The screened ligand, DHM was interacting strongly at C 

terminal stabilizing the dimer (Fig. 2(B)). It was found forming hydrogen bonds with Asn 

541, Ser 571, Leu 595 and Asn 597 of chain A and Asn 541, Ser 571, Gly 573 and Asn 597 

of chain B. Hydrophobic contacts included Asn 517, His 539, Asn 540, Asn 572, Gly 573 and 

Asn 596 of chain A along with residues Asn 540, Asn 572, Leu 595 and Asn 596 of chain B 

((Fig. 2(C) and 2(D)). Mutational analysis previously showed that His539 and Asn541 are 

two crucial residues, which upon substitution make the receptor incapable of binding to 

dsRNA, whereas site directed mutations at Asn517 and Arg544 do not alter the activity of the 

receptor, indicating that these latter residues are not that essential for binding (Bell et al., 

2006). The selected natural compound, DHM was interacting with both His539 and Asn541 

thus substantiating our hypothesis. Thus, we can propose DHM as a small molecule of natural 

origin that has the potential for stabilizing the dimerized TLR3 complex bringing the 

intracellular domains closer for the functional activity. 

 

IEH interacting with functionally important residues at N terminal of TLR3 

 

 The second dsRNA:TLR3 interaction site is located on the N-terminal end (of the 

glycan-free surface of TLR3 and is formed by residues His39, His60, Arg64, Phe84, Ser86, 

His108, and Glu110. A striking feature of this site is the presence of three conserved 

residues: His39, His60, and His108. These residues appear to interact with consecutive 

phosphate groups on one dsRNA chain. In addition, less well-conserved residues Arg64, 

Phe84, Ser86 and Glu110 also interact with the ligand. To test the functional importance of 

the three His residues, these residues were mutated to Ala or Glu and the function ability of 

the mutant proteins examined. It was found that His39Ala and His60Ala were inactive, 

indicating their importance for dsRNA binding. In contrast, His108Ala retained the activity, 

but mutation to glutamate resulted in loss of function. These findings implied that His108 is 

not essential for ligand-binding, but due to its close proximity to the negatively-charged 

phosphate groups in the dsRNA, mutation to a negatively-charged glutamate disrupted ligand 

binding via electrostatic repulsion. Hence it was concluded that except for these C and N 

terminal interactions discussed above, no other interactions exist to cause the two ECDs to 

dimerize on the dsRNA (Liu et al., 2008b). 

 

 Interaction of IEH with N terminal of TLR3 (Fig. 3(B)) was studied in detail to check 

whether all the important residues were involved in interaction or not. Ser 86, Glu 110 and 

Ser 134 of receptor molecule were forming Hydrogen bonds with the ligand. Other residues- 



 

His 39, His 60, Asn 61, Gln 62, Phe 84, Asn 85, His 108, Asn 109, Ser 132 and Asn 133 of 

TLR3 were involved in hydrophobic contacts with IEH. These interactions were including all 

the important residues required for dsRNA binding (Fig 3(C)). 

 

 
 

 

Figure 2: (A) Interaction between TLR3 and the dsRNA at C terminal thereby stabilizing the functional 

receptor dimer (B) DHM, natural compound interacting at the C terminal site of TLR3 molecules (C) Hydrogen 

and hydrophobic interactions of DHM with chain A of dimerized TLR3 receptor (D) Molecular interaction 

pattern shown by DHM with chain B of functionally active TLR3 dimer 



 

 

 
 

 

 

Figure 3: (A) Binding of dsRNA at the N terminal of TLR3 (B) IEH, the screened natural compound bound at 

the N terminal region of TLR3 (C) IEH mimicking the interactions between dsRNA and TLR3 N terminal 

 

 



 

CONCLUSION 

 

 The signaling complex structures of the TLRs with their respective ligands illustrate 

the tremendous diversity displayed in recognizing these different pathogen-associated 

molecular patterns. Using this knowledge in relation to TLR3, we studied the conditions 

required for the formation of a functionally active TLR3 complex. The dsRNA comes in 

contact with the C and N terminal residues of two TLR3 molecules, thereby holding them 

together in such a way that their intracellular domains come in close proximity. In this study 

we have reported two small molecules of natural origin that act in a manner similar to dsRNA 

by interacting with C and N terminal residing important residues of TLR3. Thus, these 

compounds have the potential to stimulating the innate immune system by activating NK 

cells in vivo to eliminate cancerous cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FUTURE PROSPECTS 

 

 Cancer being a major global health problem has become an important and highly 

active area of research. Even though the paradigm for cancer treatment has evolved from 

relatively nonspecific cytotoxic agents to selective, mechanism-based therapeutics, not all the 

therapeutic approaches being used so far, are efficacious enough. Thus, it is becoming 

imperative to uncover new paradigms for cancer therapy. Because of the overlapping 

molecular mechanisms there is an urgent need for more work to untangle the signaling 

networks and shed light on their tightly controlled regulation and the process by which they 

influence each other, especially in terms of cellular growth and proliferation. This knowledge 

would further facilitate the development of new approach of target therapies for the treatment 

of cancer. These would have a high specificity towards tumors or cancerous cells, thus 

providing a broader therapeutic window with less toxicity to healthy and rapidly dividing 

cells. More recently, an improved understanding of cancer pathogenesis has given rise to new 

treatment options, including targeted agents and cancer immunotherapy. Targeted approaches 

aim to inhibit molecular pathways that are crucial for tumor growth and maintenance; 

whereas, immunotherapy endeavours to stimulate a host immune response that effectuates 

long-lived tumor destruction. Targeted therapies and cytotoxic agents also modulate immune 

responses, which raises the possibility that these treatment strategies can be effectively 

combined with immunotherapy to improve clinical outcomes. Thus, the drug candidates 

proposed in this study can be used in combination for better clinical results. 
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