Studies on Composite Wound Dressing Materials for Drug Controlled Release

A Major Project Dissertation submitted in partial fulfilment of the requirement for degree of

> Master of Technology In Polymer Technology

> > Submitted by

Poonam Kumari (2K11/PTE/08)

Under the supervision of

Dr. Roli Purwar

Department of Applied Chemistry and Polymer Technology Delhi Technological University (Formerly Delhi College of Engineering)

DELHI TECHNOLOGICAL UNIVERSITY (FORMERLY DELHI COLLEGE OF ENGINEERING) DEPARTMENT OF APPLIED CHEMISTRY AND POLYMER TECHNOLOGY

CERTIFICATE

This is certify that this is a bonafide record of project work based on topic **Studies on Composite Wound Dressing Materials for Drug Controlled Release** by **Poonam Kumari (2K11/PTE/08)** This project was carried under my supervision in year 2012-2013 and being submitted in partial fulfilment for the award of degree of Master of Technology, as major project in Delhi Technology University

Dr. D Kumar Head of the Department Dr. Roli Purwar Supervisor

ABSTRACT

The present study was focused on preparation of fabric supported hydrogel for drug release application. Acrylamide (AAm) and acrylic acid (AAc) hydrogel were grafted on cotton fabric using ammonium per sulphate as chemical initiator and polyethylene glycol as crosslinker .The major factors affecting graft coplymerization of hydrogel were optimized by varying concentration of monomers and initiator. It was observed that maximum grafting of hydrogel was obtained at 5% APS, 15% acrylamide/acrylic acid concentration. The time of grafting was optioned 45 min at 30°C.

Fabric supported hydrogels were characterized by Fourier Transform Infra-Red (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and themogravimetric analysis (TGA).cotton fabric supported hydrogel was loaded with model drug bovine serum albumin (BSA). The release kinetics of drug in different pH were evaluated. It was found that fabric supported hydrogel showed control drug release. The maximum release of drug was found in acidic medium.

ACKNOWLEDGEMENTS

I am grateful to reach one of the milestones of my life! I would like to take this opportunity to thank my supervisor, **Dr Roli Purwar** for her invaluable guidance, encouragement, constructive criticism and support in the period of this study and preparation of the report.

I wish to express my gratitude and indebtedness to **Professor D. Kumar** (Head of Department) for allowing me to use resources during my project work and support in the period of this study.

I am very thankful to Miss Sarita and Mr Chandra Mohan (Research Scholar of the Department) for their support to carry out my research work.

I am greatful to Mr.Aman, Mr.Sandeep Mishra and Mrs.Mohini (Technical Staff of Department) for their invaluable support during work.

Poonam Kumari Roll no. : 2K11/PTE/08

TABLE OF CONTENTS

List of figures viii
List of tables x
Abbrevitions xi
CHAPER 1 INTRODUCTION AND OBJECTIVES 1
1.1 Background1
1.2 Objectives of the project
CHAPTER 2 LITERATURE REVIEWS
2.1 Composite dressing4
2.2 Hydrogel7
2.2.1 Advantages
2.2.2 Disadvantages
2.2.3 Applications
2.3 Hydrogel of poly (acrylamide-co-acrylic acid)17
2.4 Cotton fabric
2.5 Grafting
2.5 Grafting of hydrogel on fabric
CHAPTER 3 EXPERIMENTAL
3.1 Materials
3.2 Methods
3.2.1 Preparation of fabric supported hydrogel wound dressing material26
3.2.1.1 Treatment of cotton fabric with ammonium per sulphate (APS)26
3.2.1.2 Graft polymerization procedure

3.3 Characterization	
3.3.1 Grafting yield (%)27	
3.3.2 Fourier transform infrared spectroscopy (FTIR)	
3.3.3 X-ray diffraction (XRD)	
3.3.4 Termogravimetric Analysis (TGA)	
3.3.5 Scanning Electron Microscopy (SEM)	
3.3.6 Swelling Properties	
3.3.7 Mechanical properties	
3.3.7.1 Tensile strength	
3.3.7.2 Modulus	
3.3.7.3 Elongation	
3.3.8 BSA Drug release studies	
3.3.8.1 BSA Drug loading	
3.3.8.2 BSA Drug release	
CHAPTER 4 RESULTS AND DISCUSSIONS	
4.1 Preparation of fabric supported hydrogel wound dressing material	
4.2 Mechanism of grafting	
4.3 Grafting yield (%)	
4.3.1 Effect of ammonium per sulphate concentration	
4.2.2 Effect of monomer concentration	
4.3.3 Effect of temperature	
4.3.4 Effect of duration of polymerisation	
4.3.4 Effect of duration of polymerisation	

4.6 Thermogravimetric analysis (TGA)	42
4.7 Scanning Electron Microscopy (SEM)	44
4.8 Swelling properties	45
4.9 Mechanical properties	47
4.9.1 Tensile strength	47
4.9.2 Modulus	49
4.9.3 Elongation	49
4.10 BSA Drug release studies	50
4.10.1 BSA drug loading	50
4.10.2 BSA drug release	51
CHAPTER 5 GENERAL CONCLUSIONS AND RECOMMENDATIONS	56
5.1 Conclusions	56
5.2 Future scope of the work	56
REFERENCES	57

List of figures

Figure 2-1 A wound dressing functionality	4
Figure 2-2 Hydrogel	8
Figure 2-3 Effect of contact angle on the hydrophilicity of the solid surface	11
Figure 2-4 Drug delivery from typical reservoir device	12
Figure 2-5 Drug delivery from a typical matrix drug delivery system	13
Figure 2-6 Released drug concentrations over time	13
Figure 2-7 <i>In situ</i> formation of a scaffold in tissue engineering	15
Figure 2-8 Schematic diagram showing multidisciplinary approach of tissue engineer	ing16
Figure 2-9 The main steps of gene delivery using a cationic polymer	17
Figure 2-10 Poly(AAm-co-AAc) chain crosslinked by MBAAm	18
Figure 2-11 Chemical Structure of Cotton	20
Figure 2-12 Grafting copolymerization.	21
Figure 2-13 Schematic diagram of (I) grafting to, (II) grafting from	22
Figure 3-1 Chemical structure of used chemicals	26
Figure 4-1 Creation of active site on cellulose and Grafting of AAm and AAc with P	EG31
Figure 4-2 Chemical reactions involve in graft polymerization	
Figure 4-3 Effect of APS concentration on %G	33
Figure 4-4 Effect of monomers concentration on %G	
Figure 4-5 Effect of temperature on %G	35
Figure 4-6 Effect of duration of polymerization on %G	36.
Figure 4-7 Effect of the PEG addition time	37
Figure 4-8 FTIR spectra of cotton fabric	38
Figure 2-9 FTIR spectra of PolyAAm-g-cotton	38
Figure 4-10 FTIR spectra of polyAAc-g-cotton	

Figure 4-11 FTIR spectra of poly (AAm-co-AAc) grafted cotton fabric	39
Figure 4-12 FTIR spectra of poly (AAm-co-AAc-co-PEG) grafted cotton fabric	39
Figure 4-13 XRD pattern of ungrafted cotton fabric	41
Figure 4-14 XRD pattern of hydrogel grafted cotton fabric	42
Figure 4-15 TGA curve of original cotton fabric	43
Figure 4-16 TGA curve of Poly(AAm-co-AAc) with PEG grafted cotton fabric	43
Figure 4-17 a and b Scanning electron micrographs of ungrafted cotton fabric	
c and d scanning electron micrographs of grafted cotton fabric	45
Figure 4-18 Swelling behaviour of PAAm, PAAc, Poly(AAm-co-AAc) and	
Poly(AAm-co-AAc-co-PEG) grafted cotton fabric	46
Figure 4-19 Swelling behaviour of Poly(AAm-co-AAc-co-PEG) grafted cotton	
fabric at different pH	46
Figure 4-20 Tensile strength of original, PAAm grafted, PAAc grafted, Poly	
(AAm-co AAc) and Poly(AAm-co-AAc) with PEG grafted cotton fabric	48
Figure 4-21 Modulus of original, PAAm grafted, PAAc grafted, Poly(AAm-co-AAc)	
and Poly (AAm-co-AAc) with PEG grafted cotton fabric	49
Figure 4-22 Elongation of original, PAAm grafted, PAAc grafted, Poly(AAm-co-AAc)	and
Poly(AAm-co-AAc)with PEG grafted cotton fabric	50
Figure 4-23 BSA Drug loading	51
Figure 4.24 BSA drug releasing	51
Figure 4-25 BSA drug release with time at different pH	52

List of tables

Table 2-1 The cat	tegories of traditional and advanced wound dressings according to	their
design of	or a material	5
Table 2-2 The fun	nctionality of traditional and advanced wound dressings	5
Table 2-3 Natural	l and synthetic monomers that can be used for hydrogel preparatio	n9
Table 2-4 Classifi	ication of Hydrogels	9

Abbreviations

AAm	Acrylamide
AAc	Acrylic acid
APS	Ammonium per sulphate
FAS	Ferrous ammonium sulphate
PEG	Polyethylene glycol
BSA	Bovine serum albumin
FTIR	Fourier transform infrared spectroscopy
XRD	X-ray diffraction
TGA	Thermogravimeric analysis
SEM	Scanning electron microscopy
Wg	total weight of the hydrogel grafted cotton fabric
Wd	dry Weight of the cellulose fabric
Ms	mass of swollen hydrogel grafted cotton fabric
Md	dry hydrogel grafted cotton fabric