I, Punit Grover, hereby certify that the work which is being presented in the Major project entitled **"STUDY OF ALUMINUM OXIDE ABRASIVE ON TEMPERED GLASS IN ABRASIVE JET MACHINING USING TAGUCHI METHOD"**, is submitted, in the partial fulfilment of the requirement for the award of the degree of "MASTERS OF TECHNOLOGY" with specialization in "PRODUCTION ENGINEERING" at Delhi Technological University is an authentic record of my ownwork carried under the supervision of Mr. Sanjay Kumar, Assistant Professor. I have not submitted the matter embodied in this major project for the award of any other degree or diploma also it has not been directly copied from any source without giving its proper reference.

> Punit Grover Production Engineering Roll No. 2K11/PIE/14

CERTIFICATE BY SUPERVISOR

This is certified that the work contained in this major project entitled "STUDY OF ALUMINUM OXIDE ABRASIVE ON TEMPERED GLASS IN ABRASIVE JET MACHINING USING TAGUCHI METHOD" by Punit Grover is the requirement for the partial fulfillment of the degree of "MASTERS OF ENGINEERING" with specialization in "PRODUCTION ENGINEERING" submitted to Delhi Technological University. This work was completed under my direct supervision and guidance. The student has completed the work with utmost sincerity and diligence. The work embodied in this project has not been submitted for the award of any other degree/diploma to the best of my knowledge.

(Supervisor) Mr. Sanjay Kumar Assistant Professor, DTU (Co- Supervisor) Dr. Qasim Murtaza Associate Professor, DTU

Department Of Mechanical Engineering, Delhi Technological University, Delhi -110042 SESSION: 2011-13

ACKNOWLEDGEMENT

At the very first place I thank the Delhi Technological University who funded the entire research work and helped at every turn, whenever the need arose. I make use of the opportunity to acknowledge my obligation to my Guide **Mr. Sanjay Kumar,** Assistant Professor who was like a stick to a blind man. In the new world of AFM I saw many splendid scenes with his help which would otherwise have escaped my vision. At each and every step He provided the necessary wit to identify the potential targets which were camouflaged in confusing matrices of data. When I wandered, He gave accurate directions just like a faithful GPS. At times, when the vast databanks of GoogleTM failed to answer some questions, He was there to suffice my sincere thanks are due for the extraordinary help I received from on each and every day from the conception to delivery of the project, who devoted many sleepless nights with me religiously monitoring the running equipments. I am also grateful to Mr.Tekchandraji, and Mr. Om prakashji, Lab Assistant during the laboratory work in the mechanical engineering deptt.

I especially thank **Dr. Qasim Murtaza,** Associate Professor for his constant and continuous encouragement during my high and low times, and for his tricky persuasions that led me to rediscover many basic facts related to the project, for his patient handling which helped me work with a cool head. A major pie of the thanks is for the entire team at the Mechanical and production Engineering Deptt. who made their time and resources available for my works. Thanks is due for all my friends who endured my night chats and my incoherent queries during the entire period, and my aging parents who managed themselves to ease my load.

Date: 15-07-2013

PUNIT GROVER Roll No. 2K11/PIE/14

ABSTRACT

The abrasive jet machining (AJM) is a non-conventional machining process in which a abrasive particles are made to impinge on the work material at a high velocity. The jet of abrasive particles is carried by carrier gas or air. The high velocity stream of abrasive is generated by converting the pressure energy of the carrier gas or air to its kinetic energy. The high velocity abrasive particles remove the material by micro-cutting action as well as brittle fracture of the work material. Abrasive jet machining is generally good for cutting hard or brittle materials and is usually performed to furnish machining or finishing operation such as cutting, deburring, etching, etc.

This project deals with the fabrication of the Abrasive Jet Machine and machining on tempered glass, calculating the material removal varying various performance parameters like pressure, angle & abrasive grit size so on. Before performing the experiment ,fabrication done on AJM which are also discussed. The different problem faced while machining on tempered glass are also discussed.

Taguchi method and ANOVA is used for analysis of material removal rate .

CONTENTS

TITLE	Page No.
STUDENT'S DECLARATION	i
CERTIFICATE BY SUPERVISOR	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
CONTENTS	v
LIST OF FIGURES	vi
LIST OF TABLES	vii

CHAPTER-1 INTRODUCTION

1.1 The classification of Non Traditional Machining process	2
1.2 Principle of working of energy	3
1.3 Need for Non Traditional Machining	4
1.4 Abrasive Jet Machining	5
1.5 Physics of the AJM Process	9
1.6 Process Parameters of AJM	9
1.7 Process Capability	10
1.8 Advantages and Disadvantages of AJM	10
1.9 Effect of Process Parameters on MRR	12

CHAPTER 2: LITERATURE REVIEW

2.1 AJM methods	16
2.2 Abrasive particle	18

2.3 Process parameters and MRR	18
2.4 Applications	19

CHAPTER 3

3.1 Concept of Design of experiment	21
3.2 Taguchi Methods	24
3.3 Use of Orthogonal Arrays and S/N Ratio	27

CHAPTER 4: EXPERIMENTAL WORK

4.1 Experimental Setup	28
4.2 Problems of already existing Set-up	30
4.3 Improvements in the previous Model of AJM	31
4.4 Experimental Procedure	34

CHAPTER 5: RESULTS AND DISCUSIONS

5.1 Experiments Conducted	37
5.2 Analysis of S/N Ratio	43
5.3 Analysis of Variance(ANOVA)	46
5.4 Regression Analysis	48
5.5 Confirmation Test	48

CHAPTER 6: CONCLUSION 50

52

LIST OF FIGURES

Figure No.	Description of Figure	Page No.
1	Principleof the AJM process	5
2	Schematic layout of AJM	6
3	Effect of Abrasive flow rate on MRR	12
4	Effect of Mixing ratio on MRR	13
5	Effect of Nozzle pressure on MRR	13
6	Effect of Stand off distance on MRR	14
7	AJM setup	28
8	Basic experimental setup	29
9	Abrasive Jet Machine, Metal forming lab Department	30
	of MechanicalEngg. DTU	
10	The working table and Nozzle	31
	of Abrasive Jet Machine	
11	Pressure Gauge and Pressure Regulator	32
	of Abrasive Jet Machine	
12	Compressor used in Abrasive Jet Machine	33
13-21	Workpiece after experiment	37-42
22	Effect of process parameters on MRR	45

LIST OF TABLES

Table No.	Table Description	Page No.
1	Selection of Abrasives	8
2	Taguchi L9 Orthogonal Array table	26
3	Abrasive jet machine characteristics	29
4	Specification of compressor used in AJM	33
5	AJM Process Parameters	35
6	Taguchi L9 OA for Response	36
7	Taguchi L9 OA for MRR	43
8	Response Table for Signal to Noise Ratios	44
9	ANOVA results for metal removal rate	47