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1. ABSTRACT 
 
Drug designing is one of the major thrust area of research these days as it deals with discovery of 
inhibitors or leads for proteins or targets responsible for various medical conditions. In quest of 
search for new leads for targets- in sillico drug designing has emerged as very efficient system. 
Molecular flexibility is one of the well known problems in computer aided drug designing as 
while mimicking biological system using in sillico approach we have to take in consideration 
that the molecules do not act as rigid structures moreover there is fluidity of system also which 
provides some degree of flexibility to the molecules. Up till know many docking softwares have 
been developed which accounts for molecular flexibility but the needed accuracy that is close to 
bound form of protein is achieved in very limited cases. Here we introduce a new approach to 
incorporate ligand flexibility in molecular docking system using monte-carlo metropolis 
simulations. This system produces 100 conformational decoys from a starting structure by 
random translational and rotational moves and deciding on their acceptance using the Metropolis 
criterion. The configurational search space is described using ParDOCK- all atom energy-based 
Monte Carlo, protein-ligand docking algorithm for rigid docking. Structures with most 
appropriate conformations and respective configurations are picked through our system to 
produce results as output. The results produced are further refined by minimization of complex 
using AMBER10 module. Through this approach we are able to capture conformers having 
RMSD < 2 Å as compared to the bound form of complex. 
 
Keywords : molecular docking, monte-carlo simulations, metropolis criterion, ligand flexibility, 
minimization, RMSD.  



 

2. INTRODUCTION 
The number of drug-discovery projects that have a high-resolution crystal structure of the 
receptor available has increased in recent years and is expected to continue to rise because of the 
human genome project and high-throughput crystallography efforts. A common computational 
strategy in such a case is to dock molecules from a physical or virtual database into the receptor 
and to use a suitable scoring function to evaluate the binding affinity. But due to high complexity 
of the biological systems and limitations of the computational power it’s not easy to mimic the 
biological process of  protein and ligand interaction. Ever since the discovery on computer aided 
drug designing (CADD) the main focus is put on the development of efficient and more robust 
docking algorithms. Various methodologies of docking systems are used most common among 
them is rigid docking. But the main problem with rigid docking is that it does not produce 
biologically relevant results in most of the cases. The main reason behind inefficiency of rigid 
docking is ignorance of the flexibility of proteins and ligands in actual biological interactions. 
Here we introduce a different docking methodology- MMCG which takes flexibility of the 
ligand in consideration during molecular docking and also requires relatively less computational 
power.   
MMCG program first pick up the flexible bonds within a ligand then based on monte-carlo 
simulations it produces a large number of decoys but among these decoys the relevant 
conformers are chosen based on metropolis approach. The docking process involves two basic 
steps: prediction of the ligand conformation as well as its position and orientation within these 
sites which is referred as binding pose and assessment of the binding affinity. These two steps 
are related to sampling methods and scoring schemes, respectively. The configurational search 
space is assessed through a rigid protein-ligand docking program-ParDock. The scoring function 
used is - an all atom energy based empirical scoring function comprising electrostatics, van der 
Waals, desolvation and loss of conformational entropy of protein side chains upon ligand 
binding. MMCG produces five possible binding poses and conformations of a protein-ligand 
complex. These resulting complexes are further refined by minimization of the complex using 
AMBER 10 force field methods. MMCG algorithm has been validated on 119 complexes of a 
database and it has been observed that this algorithm can attain nearly 80 percent accuracy in 
producing rmsd<2.0 Å as compared to bound form of the protein present in the database. 
programs run on linux clusters having infiniband network resources which facilitate a high 
through put distribution of the data across the various nodes. On an average, the total time taken 
by the complete docking and scoring protocol ranges from 15-40 minutes depending on the size 
of the protein and the ligand. The above time frames reported correspond to performance on a 32 
processors cluster. The automated version of MMCG runs on atleast 18 processors for a single 
job . Memory consumption and I/O issues are minimal during program execution. The time taken 
also depends on the load on the server. 
 
 



 
 

3. REVIEW OF LITERATURE 
3.1 In-sillico Drug discovery 

Use of computational techniques in drug discovery and development process is rapidly gaining 
in popularity, implementation and appreciation. Different terms are being applied to this area, 
including computer-aided drug design (CADD), computational drug design, computer-aided 
molecular design (CAMD), computer-aided molecular modeling (CAMM), rational drug design, 
in silico drug design, computer-aided rational drug design. Term Computer-Aided Drug 
Discovery and Development (CADDD) will be employed in this overview of the area to cover 
the entire process. Both computational and experimental techniques have important roles in drug 
discovery and development and represent complementary approaches. CADDD entails: 
1. Use of computing power to streamline drug discovery and development process. 
2. Leverage of chemical and biological information about ligands and/or targets to identify  
and optimize new drugs. 
3. Design of in silico filters to eliminate compounds with undesirable properties (poor activity 
and/or poor Absorption, Distribution, Metabolism, Excretion and Toxicity, ADMET) and select 
the most promising candidates.( I.M. Kapetanovic et al., 2006). 
 
The completion of the human genome project has resulted in an increasing number of new 
therapeutic targets for drug discovery. At the same time, high-throughput protein purification, 
crystallography and nuclear magnetic resonance spectroscopy techniques have been developed 
and contributed to many structural details of proteins and protein–ligand complexes. These 
advances allow the computational strategies to permeate all aspects of drug discovery today 
(Jorgensen WL et al., 2004; Bajorath J et al., 2002; Kitchen DB et al., 2004), such as the virtual 
screening (VS) techniques for hit identification and methods for lead optimization. Compared 
with traditional experimental high-throughput screening (HTS), VS is a more direct and rational 
drug discovery approach and has the advantage of low cost and effective screening (Moitessier N 
et al., 2008; Shoichet BK et al., 2002; Bailey D et al., 2001). VS can be classified into ligand-
based and structure-based methods. When a set of active ligand molecules is known and little or 
no structural information is available for targets, the ligand-based methods, such as 
pharmacophore modeling and quantitative structure activity relationship (QSAR) methods can be 
employed. As to structure-based drug design, molecular docking is the most common method 
which has been widely used ever since the early 1980s. (Kuntz ID et al., 1982) 
 
3.2 Molecular Docking  
In the field of molecular modeling, docking is a method which predicts the preferred orientation 
of one molecule to a second when bound to each other to form a stable complex. Knowledge of 
the preferred orientation in turn may be used to predict the strength of association or binding 
affinity between two molecules Different algorithms for structure-based design can be divided 
into roughly two classes: de novo design, which builds ligands tailored to the target, and 



docking, which searches for existing compounds with good complementarity to the target. In 
both these paradigms, the enzyme or receptor has traditionally been treated as a rigid body and 
only one conformation of the enzyme is considered. (Examples of de novo design include Lewis 
(Lewis, 1992) and Miranker (Miranker & Karplus, 1995) and the program LUDI (BoÈhm, 
1992a,b);examples of molecular docking include the works of (Kuntz et al., 1982). 
 
3.3 Docking methodologies 
 
Programs based on different algorithms were developed to perform molecular docking studies, 
which have made docking an increasingly important tool in pharmaceutical research. Molecular 
docking using computational systems incorporates different docking methodologies which are – 
rigid ligand rigid receptor docking, flexible ligand rigid receptor docking and flexible ligand 
flexible receptor docking (Xuan-Yu Meng et al., 2011). 
 
3.3.1 Rigid ligand and rigid receptor docking 
 
 Primitive molecular docking algorithms uses rigid ligand and rigid receptor methodology due to 
limitation of computational power. In this case the search space is very limited, considering only 
three translational and three rotational degrees of freedom. In this case, ligand flexibility could 
be addressed by using a pre-computed a set of ligand conformations, or by allowing for a degree 
of atom–atom overlap between the protein and ligand. DOCK (Kuntz ID et al., 1982) is the first 
automated procedure for docking a molecule into a receptor site and is being continuously 
developed. It characterizes the ligand and receptor as sets of spheres which could be overlaid by 
means of a clique detection procedure (Bron C et al., 1973). Geometrical and chemical matching 
algorithms are used, and the ligand-receptor complexes can be scored by accounting for steric fit, 
chemical complementation or pharmacophore similarity. 
 
3.3.2 Flexible ligand and rigid receptor docking 
 
The main problem in molecular docking arises due to consideration of flexibility of ligands when 
present in biological system. As stated through induced–Fit mechanism (Koshland DE Jr. et 
al.,1963; Hammes GG et al., 2002) the active site of the protein is continually reshaped by 
interactions with the ligands as the ligands interact with the protein. This theory suggests that the 
ligand and receptor should be treated as flexible during docking. However, the computational 
cost is very high when the receptor is also flexible. Thus the common approach, also a trade-off 
between accuracy and computational time, is treating the ligand as flexible while the receptor is 
kept rigid during docking. Almost all the docking programs have adopted this methodology, such 
as Auto Dock (Morris GM et al., 1998), FlexX (Rarey M et al., 1996). AutoDock 3.0 
incorporates Monte Carlo simulated annealing, evolutionary, genetic and Lamarckian genetic 
algorithm methods to model the ligand flexibility while keeping the receptor rigid. The scoring 
function is based on the AMBER force field, including van der Waals, hydrogen bonding, 
electrostatic interactions, conformational entropy and desolvation terms. 
 



 
3.3.3 Flexible ligand and flexible receptor docking 
 
The intrinsic mobility of proteins has been proved to be closely related to ligand binding 
behavior and it has been reviewed. (Teague et al., 2003). Incorporating the receptor flexibility is 
significant challenge in the field of docking. Ideally, using MD simulations could model all the 
degrees of freedom in the ligand-receptor complex. But MD has the problem of inadequate 
sampling that we mentioned earlier. Another hurdle is its high computational expense, which 
prevents this method from being used in the screening of large chemical database. Various 
methods are currently available to implement the receptor flexibility . The simplest one is so-
called “soft-docking” (Jiang F et al., 1991), decreases the van der Waals repulsion energy term in 
the scoring function to allow for a degree of atom-atom overlap between the receptor and ligand. 
 
3.4 Docking algorithms 
 
Various sampling algorithms have been developed and widely used in molecular docking 
software. Matching algorithms (MA) (Brint AT et al., 1987; Fischer D et al., 1993) based on 
molecular shape map a ligand into an active site of a protein in terms of shape features and 
chemical information. The protein and the ligand are represented as pharmacophores. Each 
distance of the pharmacophore within the protein and ligand is calculated for a match; new 
ligand conformations are governed by the distance matrix between the pharmacophore and the 
corresponding ligand atoms. Chemical properties, like hydrogen-bond donors and acceptors, can 
be taken into account during the match. Matching algorithms have the advantage of speed; thus 
they may be used for the enrichment of active compounds from large libraries (Moitessier N et 
al., 2008). Stochastic methods search the conformational space by randomly modifying a ligand 
conformation or a population of ligands. 
 
3.4.1 Incremental construction (IC)  
 
These methods put the ligand into an active site in a fragmental and incremental fashion. The 
ligand is divided into several fragments by breaking its rotatable bonds and then one of these 
fragments is selected to dock into the active site first. This anchor is usually the largest fragment 
or the piece which may have significant functional role or interaction with protein. The 
remaining fragments can be added incrementally. Different orientations are generated to fit in the 
active site, which realizes the flexibility of the ligand. The incremental construction  method has 
been used in DOCK 4.0 (Ewing T.J et al., 2001), FlexX (Rarey M et al., 1996).                                                     
 
3.4.2 Genetic algorithm (GA) 
 
Genetic algorithms (GA) (Morris GM et al., 1998; Jones G et al., 1997; Oshiro CM et al., 1995) 
form a class of well-known stochastic methods. The idea of the GA stems from Darwin’s theory 
of evolution. Degrees of freedom of the ligand are encoded as binary strings called genes. These 
genes make up the ‘chromosome’ which actually represents the pose of the ligand. Mutation and 



crossover are two kinds of genetic operators in GA. Mutation makes random changes to the 
genes; crossover exchanges genes between two chromosomes. When the genetic operators affect 
the genes, the result is a new ligand structure. New structures will be assessed by scoring 
function, and the ones that survived (i.e., exceeded a threshold) can be used for the next 
generation. Genetic algorithms have been used in AutoDock, GOLD (Verdonk ML et al., 2003) 
and DARWIN (Taylor JS et al., 2000).  
 
3.4.3 Monte Carlo methods (MCM) 
 
Experimental studies have demonstrated that a protein is not a static structure but instead 
undergoes fluctuations. Based on photo dissociation studies of carbon monoxide bound to 
myoglobin, it has been suggested that a protein can exist in a large number of conformational 
substrates separated by barriers, with transitions among substrates constituting equilibrium 
fluctuations (Goodsell DS et al., 1993). A recent molecular dynamics study of myoglobin (Hart 
TN et al., 1992) reported the existence of many minima in the vicinity of the native protein; 
these corresponded to relative reorientations of the a-helices coupled with rearrangements of the 
side chains, as a consequence of the internal dynamics of the protein. It follows, as a necessary 
condition that a structure be stable, that the native conformation of a protein must be stable not 
only against small disturbances but also against larger-scale thermal fluctuations; i.e., the native 
structure must be able to recover from any thermal impulse, even though the latter may 
(temporarily) lead to a different local minimum-energy even during docking complex formation. 
Monte Carlo (MC) (Goodsell DS et al., 1993) methods generate poses of the ligand through 
bond rotation, rigid-body translation or rotation. The conformation obtained by this 
transformation is tested with an energy- based selection criterion. If it passes the criterion, it will 
be saved and further modified to generate next conformation. The iterations will proceed until 
the predefined quantity of conformations is collected. The main advantage of MC is that the 
change can be quite large allowing the ligand to cross the energy barriers on the potential energy 
surface, a point that isn’t achieved easily by molecular dynamics based simulation methods. 
Examples of applying the Monte Carlo methods include an earlier version of Auto Dock 
(Goodsell DS et al. 1993), ICM (Abagyan R et al., 1994) 
 
3.5 Metropolis criterion 
 
This criterion generates configurations according to the desired statistical-mechanics distribution. 
There is no time; the method cannot be used to study evolution of the system. Equilibrium 
properties can be studied. The Monte Carlo metropolis criterion is used to test the acceptance of 
generated conformer so that it doesn’t get struck in local minima instead of reaching global 
minima. 
 



 
 

Fig.1 : Energy Funnel depicting descend of structures to local minima and global minima 

The steps performed leads us to minimum energy structure but there is a much higher possibility 
that instead of attaining global minima the structure get strucked in local minima. To eradicate 
this problem an improved monte-carlo simulations method is used which uses metropolis 
criterion to solve this local minima problem. Statistical mechanics tells us that the probability pi 
of finding a system at constant number N, volume V and temperature T in a microstate i with 
total energy Ei is proportional to 

 

 
 
 
where the inverse temperature β = 1/kBT, and kB is Boltzmann's constant. The partition function 
Q(N, V, T) is defined as the sum over all states: 
 

 
the method we employ is actually a modified Monte Carlo scheme, where, instead of choosing 
configurations randomly, then weighing them with exp(-E/kT), we choose configurations with a 
probability exp(-E/kT) and weight them evenly. 
 
 



3.5.1 Monte Carlo metropolis algorithm 
 
The algorithm works on the basis of making move from one point to another and acceptance of 
that move is done through it. (Metropolis et al., 1953) 

 
Fig. 2 : Monte Carlo moves m and n depicts the move of object from one point to another in a 
consecutive manner 
 
1. Choose the initial configuration, calculate energy  
 
2. Make a “move” (e.g., pick a random displacement).  Calculate the energy for new “trail” 
configuration. 
 
3. Decide whether to accept the move: if Unm = Un–Um < 0, then accept the new configuration, 

 
Where, U is internal energy of the system, k is standard gas constant and T is temp at 273 k. 
 
if Unm = Un–Um > 0, then calculate draw a random number R from 0 to 1. if W(m→n) > R then 
accept the new configuration, otherwise, stay at the same place. 
 
4. Repeat from step 2, accumulating sums for averages  (if atom is retained at its old position, the 
old  configuration is recounted as a new state in the random walk). 

 
Fig.3 : Acceptance and rejection of new move on the basis of calculation of exponential value 



 
 
3.6 Configurational search 

Searching for the correct binding mode (pose prediction) of a molecule is typically carried out by 
performing a number of trials and keeping those poses that are energetically  best. It involves 
finding the correct orientation and, as most  ligand molecules are flexible, the correct 
conformation of the docked molecule. This implies that the degrees of freedom to  be searched 
include translational and rotational degrees of freedom of the ligand as a whole, as well as its 
internal degrees of freedom, i.e., predominantly the rotatable bonds.  The search stops once a 
certain number of trials have been carried out and/or a sufficient number of poses have been 
found for a molecule. In order to explore a large search space, algorithms have been developed 
that keep track of previously discovered minima and guide the search into new regions. The 
decision to keep a trial pose is based on the computed ligand–receptor interaction energy (score) 
of that pose. To identify and rank-order many different poses of a molecule during the search in a 
reasonable time, several programs calculate a ‘dock score’ (a crude score based on a simple 
energy function such as a force field with an electrostatic term and repulsive and attractive Van-
der-Waals terms), which can be evaluated very rapidly during the docking process, while a more 
sophisticated function is used to  calculate the final ‘affinity score’ for that molecule.  
 
For the purpose of generation of effective docking system the search for correct binding pose is 
an essential step. an all atom energy based Monte Carlo docking protocol christened ‘ParDOCK’ 
(parallel dock) (B. jayaram et al., 2007) implemented in a fully automated, parallel processing 
mode. In this the Monte Carlo method in six dimensional space is implemented to generate a 
large number of random configurations of the ligand in search of optimal location in the binding 
pocket of the target macromolecule. A combination of an all atom energy based scoring with a 
Monte Carlo search technique appears to provide a reliable method for protein ligand structure 
optimization and binding affinity prediction as the results indicate. 
 
3.7 Structural Minimization 

A protein structure is flexible. Atoms in a protein have a certain amount of freedom and are 
moving constantly with respect to each other. The simple forces of nature are also valid for these 
atoms. For example, "atoms that are very close will repulse each other, but atoms that are further 
away will attract each other" and "positive and negative charges will attract each other, while 
equal charges repulse each other".  Using this knowledge and a whole bunch of other rules we 
can calculate the energy of all atoms, and thus of the total protein. A protein in its most 
favourable situation has the lowest possible energy.  Computer programs can be used to find this 
lowest energy conformation. Every atom is moved in very small steps and following each step 
the total energy is calculated. So, during the energy minimization process a protein is moved 
towards its lowest energy conformation which is most favourable conformation. For this purpose 
AMBER program module is used. Amber is the collective name for a suite of programs that 
allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of 



the individual programs carries this name, but the various parts work reasonably well together, 
and provide a powerful framework for many common calculations. (Pearlman D.A et al    , 1995; 
Case D.A et al    , 2005). The term amber is also sometimes used to refer to the empirical force 
fields that are implemented here. (Ponder J.A, 2003; Cheatham T.E, 2005) It should be 
recognized however, that the code and force field are separate: several other computer packages 
have implemented the amber force fields, and other force fields can be implemented with the 
amber programs. Further, the force fields are in the public domain, whereas the codes are 
distributed under a license agreement. The Amber 10 programs mainly use dynamic memory 
allocation, and do not generally need to be compiled for any specific size of problem. Some sizes 
related to NMR refinements are pre-defined in the files, you may need to edit them, then 
recompile. If you get a "Killed" (or similar) message immediately upon starting a program 
(particularly if this happens with no arguments), you may not have enough memory to run the 
program. The "size" command will show you the size of the executable. Also check the limits of 
your shell; you may need to increase these (especially stacksize, which is sometimes set to quite 
small values).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. METHODOLOGY 
MMCG system uses a hierarchical setup comprising of various steps, starting from searching 
flexible bonds in the ligand to docking the ligand of appropriate conformer in right binding pose 
or configuration. Whole MMCG program works on a Linux based server utilizing at least 18 
processors per job. All the codes are written using C-platform and shell scripting which makes 
program easy to progress step by step with high processing speed. 

 

Fig.4 :  Flow chart for the flexible ligand docking using MMCG 



 

4.1 Preparation of proteins and ligand for docking 

The complexes chosen for study are adapted from RCSB and prepared in a force field 
compatible manner. Initially the crystallographic water molecules are removed and the ligand 
coordinates are extracted from the protein-ligand complex. Hydrogen atoms are added keeping 
the ionization states of  the atoms in the ligand as specified in the literature. The ligand is then 
geometry optimized through AM1 procedure followed by calculation of partial charges of the 
ligand by AM1-BCC procedure (Arazjakalian et al., 2000). GAFF force field (Wang J. et 
al.,2004)  is used to assign atom types (Cornell W.D. et al., 1995), bond angle, dihedral and van 
der Waals parameters for the ligand. 
 
4.2 Flexible bond recognition 

The first and most important step in introduction of flexibility in molecular docking is to pick all 
the flexible bonds present in the ligand structure accurately. As the flexibility of whole ligand 
structure depends on number of rotatable bonds present in the structure. This is step is also 
important for further Monte Carlo simulations of ligands to generate conformers as if didn’t pick 
right flexible bonds than the conformers generated will have distorted structures which is not-
acceptable.  

 

Fig.5:  A drug molecule. Sphere represents atoms and bonds connecting them are represented by 
sticks. Curved arrows represent the rotatable degrees of freedom around bonds. 

For this purpose MMCG uses a set of programs which recognises the bond interactions present 
within the ligand structure and accordingly picks up the bonds as rotatable or non- rotatable. The 
flexible bond recognition program first reads the PDB file of input ligand structure. It translates 
the PDB file to define the bond types and bonding patterns that is connect information of all the 
elements present in the ligand. It first checks for all the ring structures as these are most 
prominently seen in ligands and there are no rotatable bonds in the ringed structure. After 
checking for the number of rings present in the ligand structure, program defines the interaction 



pattern of the ligand elements. It is generally considered that all the single bonds allow a 
considerable amount of flexibility in the structure making them as rotatable bonds whereas all 
the double and triple bonds incorporates rigidity in the structure such bonds are marked as non-
rotatable. 

 

4.3 Monte Carlo simulations 

The Monte Carlo simulations has proven to be much efficient approach to search a high 
dimensional conformational space rather than discreet states. This system stimulates the natural 
thermodynamic process by taking in account both random fluctuation and energetic 
considerations, it is well applicable in molecular docking systems also. Monte Carlo (MC) 
methods generate poses of the ligand through bond rotation, rigid-body translation or rotation.  
MMCG system contains a monte-carlo simulation program to generate a decoy library among 
which the appropriate conformers are selected.  
For this purpose MMCG takes in account all the flexible or rotatable bonds identified by flexible 
bond recognition program. Now for monte - carlo simulations a random flexible bond is picked 
by the system and this random bond is than rotated to a random dihedral angle of  
(-30° ≤ θ ≤ 30°) and the energy of conformer is calculated by a program of AMBER 10 module. 
These steps are repeated several times , the low energy conformer is to be accepted and a high 
energy conformation is rejected. But with this approach there is a higher possibility that instead 
of reaching global minima the structure get struck in local minima that’s why the conformation 
obtained by this transformation is tested with an energy- based selection criterion. If it passes the 
criterion, it will be saved and further modified to generate next conformation. The iterations will 
proceed until the predefined quantities of conformations are generated.  
The criterion used by MMCG system is  Metropolis criterion which simulates natural thermal 
processes, by taking into account both random fluctuations and energetic considerations, it might 
be applicable to protein folding. The successful application of the simulated annealing method 
which is essentially a Metropolis Monte Carlo simulation technique with an artificial 
"temperature," to the computationally difficult problem considering presence of multiple local 
minima. This local minimum is examined by the Metropolis criterion to compare it with the 
previously accepted local minimum to update the current conformation. As a consequence, the 
transition probabilities of the series of local minima generated in the Monte Carlo simulations 
satisfy the Boltzmann distribution (Abagyan R et al., 1994). is repeated to continue the iteration 
process, which generates a Markov sequence with Boltzmann probabilities.  



 
 
 
Fig.6 : Implementation methodology of metropolis criterion with Monte Carlo simulations. 
 
 
 

 
 

 

 

 



 

4.4 Docking and scoring 

The docking module of MMCG comprises of  ParDOCK: An All Atom Energy Based Monte 
Carlo Docking Protocol for Protein-Ligand Complexes. Here the Monte Carlo method in six 
dimensional space is implemented to generate a large number of random configurations of the 
ligand in search of optimal location in the binding pocket of the target macromolecule. A 
combination of an all atom energy based scoring with a Monte Carlo search technique appears to 
provide a reliable method for protein ligand structure optimization and binding affinity 
prediction as the results indicate. The module requires a reference protein-ligand complex (target 
protein bound to a reference ligand at its binding site) as an input along with the candidate 
molecule to be docked.  The ParDOCK protocol consists of four main steps:  
 
(a) Identification of the best possible grid/ translational points in radius of 3Å around the 
reference point (centre of mass) 
(b) Generation of protein grid and preparation of energy grid in and around the active site of the 
protein to pre-calculate the energy of each atom in the candidate ligand 
 (c) Monte Carlo docking and intensive configurational search of the ligand inside the active site 
 (d) Identification of the best docked structures on an energy criterion and prediction of the 
binding free energy of the complex. 
 
The algorithm docks the ligand molecule to the reference protein and outputs five docked 
structures representing different poses of ligand molecule along with the predicted binding free 
energies of the docked poses using a unique scoring function. The ligand configurations 
generated are ranked based on an all atom energy function, which calculates non-bonded 
interactions of protein-ligand complexes as described (Jain, T et al., 2005) in equation. 
 

 
 
E is the total non-bonded energy, Eel is the electrostatic contribution to the energy, Evdw is the 
van der Waals term, Ehpb is the hydrophobic term and the summation runs over all the atoms of 
the protein-ligand complex. Electrostatic contribution is calculated by Coulomb’s law with 
sigmoidal dielectric function, van der Waals term is computed using a (Inbal et al., 2002; 
Lengauer et al.,1996) Lennard-Jones potential (Ajay et al., 1995) between the atoms of protein 
and ligand and hydrophobic interactions are calculated by Gurney parameter approach 
(Ramanathan P.S. et al., 1971; Friedman,H.L et al., 1973)  
 
 
 
 



 
 
 
 
 
4.5 Translation of conformers in binding poses 
 
Conformers generated through monte-carlo simulations are selected on the basis of least binding 
energies . The calculation of the energies of conformers is done using AMBER 10 force field 
module. Selected conformers are translated on the binding poses as  derived through rigid 
docking system using a translational program. This program now incorporates the energetically 
appropriate conformers in to the binding pose resulting in a new complex which would represent 
the flexible docking phenomenon produced by MMCG system. Translation of each selected 
conformer is done on all the feasible configurations generated by ParDOCK system producing a 
large set of generated structures. Among this set the configurationally appropriate conformers 
top 5 complex structures are selected on the basis of translational energy calculated through 
translational program of MMCG system.  

 
4.6 Energy minimization of docked structures and protein- ligand binding free energy 
estimations 
 
The selected docked complexes are energy minimized in vacuum by AMBER (Pearlman, D.A et 
al., 1995). For vacuum minimizations, 1000 steps of steepest descent and 1500 steps of 
conjugate gradient are carried out. The minimization procedure was repeated using explicit 
solvent, without much difference in the calculated energetics. Hence the vacuum minimization 
protocol was retained due to its expeditious nature. The energy minimized structure is employed 
in computing the binding affinity by a scoring function, BAPPL (Jain, T. et al., 2005) developed 
in ScfBio IIT, Delhi. The energy function employed in BAPPL includes contributions of 
electrostatics, van der Waals, hydrophobicity and loss of conformational entropy of protein side 
chains upon ligand binding. 



 
Fig.7:  Methodology flow chart for energy minimization of structures 

 
 For the minimization of structure through AMBER following parameters are used as for in 
vacuo minimization. 
Maxcyc The maximum number of cycles of minimization. Default = 1 but for our program 

we used 1000 
ncyc   If NTMIN is 1 then the method of minimization will be switched from 

steepest descent to conjugate gradient after NCYC cycles. Default 10. But for 
minimization of whole complex 250 cyc is used. 

ntmin   Flag for the method of minimization. 
= 0 Full conjugate gradient minimization. The first 4 cycles are steepest 
descent at the start of the run and after every nonbonded pairlist update. 
= 1 For NCYC cycles the steepest descent method is used then conjugate  
Gradient is switched on (default). 
= 2 Only the steepest descent method is used. 

dx0   The initial step length. If the initial step length is too big then will give a huge  
energy; however the minimizer is smart enough to adjust itself. Default 0.01. 

drms   The convergence criterion for the energy gradient: minimization will halt   
when the root-mean-square of the Cartesian elements of the gradient is less

 than DRMS. Default 1.0E-4 kcal/mole-A 
 
The Minimization and scoring function produces five flexibly docked complexes as final output 
of the MMCG system.  



 

5. RESULTS 
The MMCG program runs on a linux based server using shell scripts. A single job requires 18 
processors to complete the docking process in nearly 30 min. This program is validated on 122 
protein ligand complexes of ParDOCK database through self docking that is, the ligands were 
separated from the complexes and each ligand was randomly displaced in space and docked to  
respective target protein. The accuracy of the results is based on the Root Mean Square 
Deviations of docked structure as compared with that of experimental or native bound form. It is 
observed that the flexible ligand docking is much effective approach in attaining protein-ligand 
structure close to its native state.  

Table 1. RMSD Analysis using self docking for 122 Protein-Ligand Complexes database 

S.No.  PDB ID  NAME  STARTING RMSD  MININMUM RMSD  
1  1a4q  Neuraminidase   2.59848  1.44699 

2  1a4w  Alpha Thrombin  2.87077  1.5708 

3  1a9m  HIV‐1 Protease  4.21191  1.9601 

4  1aco  Aconitase   0.6221  0.39592 

5  1ae8  Alpha Thrombin   2.79614  1.258 

6  1ajv  HIV‐1 Protease   3.88118  1.99834 

7  1ajx  HIV‐1 Protease   3.81965  2.11699 

8  1apb 
L‐arabinose  ‐  binding 
protein   0.90965  0.90926 

9  1apt  Penicillopepsin  1.86758  1.56995 

10  1apu  Penicillopepsin  1.82543  1.31082 

11  1apv  Penicillopepsin  2.06575  1.49762 

12  1apw  Penicillopepsin  3.48435  1.46984 

13  1b5g  Thrombin   2.07857  1.57084 

14  1b6j  HIV‐1 Protease  3.50297  1.84161 

15  1b6k  HIV‐1 Protease  3.25006  1.95692 

16  1b6l  HIV‐1 Protease  3.75889  1.7971 

17  1b9s  Neuraminidase  1.75555  0.36924 

18  1b9t  Neuraminidase  1.65375  1.42111 

19  1b9v  Neuraminidase  1.78236  1.4746 

20  1bb0  Thrombin   2.74842  1.92217 

21  1bdr  HIV‐1 Protease  2.7108  1.28931 

22  1bil  Renin  3.9604  1.60684 

23  1bim  Renin  3.67655  1.69247 

24  1bmm  Alpha Thrombin  2.63563  1.73552 

25  1bmn  Alpha Thrombin   3.47591  1.85208 



26  1bv7  HIV‐1 Protease   4.70704  1.92514 

27  1bv9  HIV‐1 Protease   6.25811  1.73738 

28  1c83 
Tyrosine  Phosphatase 
1B  0.78905  0.73899 

29  1c85  Tyrosine Phosphatase   0.8448  0.79548 

30  1c86  Tyrosine Phosphatase   0.3003  0.13832 

31  1c87 
Tyrosine  Phosphatase 
1B  0.29332  0.14272 

32  1c88 
Tyrosine  Phosphatase 
1B  0.76418  0.87621 

33  1c8k 
Glycogen 
Phosphorylase  0.94095  0.78528 

34  1cbs 
Cellular  Retinoic  Acid 
Binding Protein Type II  1.44878  0.72715 

35  1cdg 
Cyclodextrin 
glycosyltransferase   2.23502  1.52641 

36  1cf8  Catalytic Antibody 19A4  2.55738  0.99419 

37  1com  Chorismate Mutase   1.613221  0.46924 

38  1cpi  HIV‐1 Protease   3.76428  2.04865 

39  1cqp  Antigen CD11A  1.83909  1.40799 

40  1ctr  Calmodulin   2.00312  0.86742 

41  1cvu  Cyclooxygenase 2  2.75677  1.19704 

42  1d3h 
Dihydroorate 
Dehydrogenase   1.49874  0.90234 

43  1d3t  Alpha thrombin   2.05184  1.28922 

44  1d4l  HIV‐1 Protease  2.51814  1.85201 

45  1d4p  Alpha Thrombin   2.00322  0.2703 

46  1dg5 
Dihydrofolate 
Reductase  0.70731  0.48963 

47  1dmp  HIV‐1 Protease   3.02656  2.11756 

48  1dog  Glycoamylase 471  1.00532  0.99242 

49  1dr1 
Dihydrofolate 
Reductase  2.08689  1.82419 

50  1dwd  Alpha Thrombin   2.76754  1.59695 

51  1ezq 
Human  coagulation 
factor XA   2.51601  0.88744 

52  1f0t 
Human  coagulation 
factor XA   2.70136  1.50394 

53  1f0u  Trypsin   2.38178  1.16888 

54  1fax  Human  coagulation  3.3962  1.80829 



factor XA  

55  1fkg  FK506 Binding Protein  2.57155  1.08228 

56  1flr  FAB Fragment   0.6551  0.65523 

57  1g2k  HIV‐1 Protease   2.77248  1.46076 

58  1gno  HIV‐1 Protease   3.22546  1.46857 

59  1hbv  HIV‐1 Protease   2.20332  1.9073 

60  1hdc 

3  ‐  alpha,  20  ‐  beta  ‐ 
hydroxysteroid 
dehydrogenase  2.97714  1.9536 

61  1hdt  Alpha Thrombin  3.71053  1.7184 

62  1hew  Lysozyme   2.96518  1.76728 

63  1hgi  Hemagglutinin   2.330047  1.75412 

64  1hgj  Hemagglutinin   1.65603  0.49874 

65  1hih  HIV‐1 Protease  2.30579  1.575 

66  1hii  HIV‐2 Protease   4.0749  1.27079 

67  1hiv  HIV‐1 Protease   3.13621  1.85379 

68  1hos  HIV‐1 Protease   5.5084  1.9339 

69  1hps  HIV‐1 Protease   3.4219  1.76779 

70  1hpv  HIV‐1 Protease   2.92437  1.54537 

71  1hpx  HIV‐1 Protease   3.11089  1.6971 

72  1hri  Human Rhinovirus   2.14947  0.71249 

73  1hrn  Renin   2.75959  1.414332 

74  1hsg  HIV‐1 Protease   3.60659  1.35774 

75  1hsh  HIV‐1 Protease   2.27521  1.63198 

76  1hte  HIV‐1 Protease   2.07956  1.39829 

77  1htf  HIV‐1 Protease   3.42037  1.50573 

78  1htg  HIV‐1 Protease   3.26785  1.8087 

79  1hvi  HIV‐1 Protease   4.09128  2.17234 

80  1hvj  HIV‐1 Protease   2.932205  1.60322 

81  1hvk  HIV‐1 Protease   5.02845  2.25647 

82  1hvr  HIV‐1 Protease   4.29061  3.59035 

83  1hxb  HIV‐1 Protease   2.92984  1.72713 

84  1hxw  HIV‐1 Protease   3.50553  1.85734 

85  1ida  HIV‐2 Protease   3.07585  2.04092 

86  1ivf  Neuraminidase  1.90798  1.51519 

87  1k1n  Trypsin   2.59704  1.34185 

88  1lyb  Cathepsin D  3.36363  1.88526 

89  1mcf  Immunoglobulin  4.90002  1.93893 

90  1mch  Immunoglobulin   4.06081  2.26026 

91  1mcj  Immunoglobulin   2.61608  1.17776 



92  1mrk  Alpha trichosanthin   1.6604  1.35031 

93  1mtw  Trypsin   3.06695  1.52131 

94  1nnb  Neuraminidase   1.61909  1.41591 

95  1nsc  Neuraminidase   1.46101  1.27684 

96  1pgp 
6‐Phosphogluconate 
Dehydrogenase  1.84061  0.97982 

97  1pph 
p‐Hydroxybenzoate 
Hydroxylase   2.7861  1.82474 

98  1qbt  HIV‐1 Protease   4.95517  1.79158 

99  1qbu  HIV‐1 Protease   4.18488  2.13944 

100  1rbp  Retinol Binding Protein  0.92851  0.57349 

101  1rne  Renin   4.29109  1.91633 

102  1sre  Streptavidin   2.1619  2.03844 

103  1tlc  Thymidylate Synthase  2.46638  1.34263 

104  1tng  Trypsin   0.58897  0.57729 

105  1tnh  Trypsin   0.08629  0.02258 

106  1tni  Trypsin   0.90309  0.07175 

107  1tnj  Trypsin   0.45433  0.03362 

108  1tnk  Trypsin   1.31947  0.17191 

109  1tnl  Trypsin   1.10548  0.69652 

110  1uvs  Alpha Thrombin   2.5784  1.43256 

111  2cgr  IGG 2B Fab Fragment   2.25109  0.89903 

112  2cmd  Malate Dehydrogenase   1.42855  0.59001 

113  2gbp 
D  ‐  Galactose  D  . 
Glucose binding protein  1.19223  1.14721 

114  2ifb 
Intestinal  Fatty  Acid 
Binding Protein   2.9584  1.04392 

115  2pk4  Human plasminogen  1.63437  0.41044 

116  2r04  Rhinovirus 14   3.52826  1.13534 

117  2sim  Sialidase   1.71567  1.42798 

118  2upj  HIV‐1 Protease   2.96093  1.54408 

119  2wea  Penicillopepsin   3.49859  1.89102 

120  2wec  Penicillopepsin  3.84107  1.62137 

121  4er2  Endothiapepsin   3.5685  1.98213 

122  4est  Elastase   2.9022  1.25102 

 

It was observed that after random displacement of ligand in space for self docking the starting 
RMSD really deviates from the bound form RMSD. After flexible ligand docking using MMCG 



protocol the RMSD of the docked structure changes evidently and the resultant complexes have 
value really close to that of bound form.    
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Fig.8: The initial RMSD of the dataset structures after random displacement as compared to 
bound form 

 

Fig.9: Resultant RMSD of the dataset structures after using MMCG protocol 
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The validation of program shows that out of 122 complexes above 80 percent structures were 
able to attain RMSD > 1.5 Å. The protocol shows that there is a correlation of r = 0.72 in RMSD 
between the docked structure and native bound form.  

 

 

 

Fig. 10: Staring and minimum RMSD comparison of the structures as calculated with reference 
from bound form. 
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5.1 Flexible bonds recognition 

The MMCG system taking protein-complex target and ligand as input first recognises all the 
flexible bonds present in the ligand structure. For the recognition of flexible bonds MMCG 
system reads the PDB format file of ligand and produces connect information of the ligand 
elements and also defines the bond types within the structure. 

 

 

Fig. 11: Connect file generated using AM1 BCC force field parameters 

 

This connect information is generated using AM1 BCC force field parameters. Using this 
information and bond type of the system, the number of flexible bonds i.e single bonded atoms 
within the structure are listed in a separate file. And also describe the candidate atoms with their 
atom types involved in the flexible bond. 



 
Fig.12: Flexible bond recognition result file containing information about the number of flexible 
bonds with their candidate atom types. 

The Flexible bond recognition step is very important as picking of non-rotatable bond as 
rotatable would result in complete distortion of the ligand structure during Monte Carlo 
simulations.  

 

Fig.13 : Flexible bond recognition in 1c86 (Tyrosine phosphatase). The numbers of flexible 
bonds recognised over here are 9. 



 

5.2 Flexible conformer generation 

The input ligand after recognition of flexible bonds is subjected to monte-carlo simulations to 
generate a large set of decoys among which energetically most suitable conformations are 
selected. MMCG system picks up a random flexible bond reading information from the bond 
recognition output file. For the selected bond the dihedral angle (θ) is changed to a random value 
between -30° to +30°. The freedom of rotation is restricted to such a range as keeping in 
consideration that within a biological system also a very large change in the dihedral angles of 
ligand doesn’t take place. The rotation program of MMCG on generating random value of θ 
rotates randomly picked flexible bond and subsequent connected flexible bonds to that value 
resulting in a new generated conformation. 

 

Fig. 14 : Monte-carlo simulation of ligand for the generation of low energy conformers. 

The MMCG system runs these Monte Carlo steps repeatedly to generate 100 conformers for 
input ligands. Each conformer generated is first checked by metropolis criterion for the local 
minima. According to energy based evaluation calculated through AM1 BCC force fields 
parameters the conformers are selected or rejected.  

Pi = exp[Energy2-Energy1/R*T] 
Where Pi is the probability of finding the system at the microstate (i). Energy1 is the energy 
calculated of previous conformer generated and Energy2 is the energy of new generated 
conformer. R is standard gas constant 1.98 at temperature T which is 298 k. A random number Z 
is generated between 0 to 1.  

- If Pi < Z then in this case the new conformation is rejected and the previous structure 
again goes in to Monte Carlo step to generate new conformer. 

- If Pi > Z then in this case the new conformation is accepted and the Monte Carlo steps 
proceeds on this structure for further generation of conformers. 



-  

5.3 Configuration generation and translation of conformers 

After generation of the conformers through montecarlo metropolis approach energetically least 
value conformers are selected and considered to b closest to native state of the ligand docked in 
protein. To search the conformational space ParDOCK system is used. The ParDOCK performs 
an all atom based docking and scoring of the ligand in different configurations. 

 

Fig. 15 :- Based on selected grid points energy grid is prepared at energy of each ligand atom at each 
energy point is pre-calculated. Generation of Monte Carlo configurations considering 6 degrees of 
freedom and best energy structure is selected. 
 
 
 
 
 
 



 
ParDOCK produces fine least energy configurations as output  with the ligand docked to 
respective poses within the complex. MMCG uses information from PDB file of the complex 
and causes translation of the least energy conformers produced from monte-carlo simulations to 
the binding pose of ligand in it. This translation step results in a generation of new docked 
complex which would consist of low energy conformer in to the apt binding pose.  

 
A 

 
B 

Fig.16:- A: 1Com (Chosrimate mutase) B: 1ivf (Neuraminidase) alignment of the MMCG 
translational resultant complex with the structures bound in native form. 



After the translation of conformers on to the binding pose the ligand gets flexibly docked at the 
active of the protein to mimic the native state of bound form. But these resultant complexes still 
are diverging from the native state to some extent. Hence, to refine the structures the energy 
calculation and minimization is done using AMBER module. The final scoring of the flexibly 
docked complex takes place using BAPPL scoring function which produces 5 flexibly docked 
complexes with their energy values and ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.4 Minimization 

The minimization process reduces the energy conflicts in the structure and through validation on 
such a large data set it is observed that it really helps the system to mimic the native bound form 
the complex. For example  if we take case of Neuraminidase (1ivf) after the translation it was 
observed that the RMSD between the formed structure and the native bound form is 1.51519 Å 
though the RMSD value is less than 2 Å but it still deviate from the native structure as can be seen from 
Fig B. So minimization of the complex is done in vacuum using AMBER with max 1000 cycles. 

 

Fig. 17: Alignment of the minimized docked structure of Neuraminidase (1ivf) with the native 
bound form of the complex. 

The minimization process calculates the energy of structure and accordingly minimizes it in step 
by step process. After minimization it was observed that the RMSD between docked structure 
and the native bound form gets reduced to 0.4285 Å that is even less than 0.5 Å which shows 
that the docked structure now resembles the native bound form of the ligand and protein. 

 

 

 

 



 

6. CONCLUSION 
The flexibility of ligands in semi-flexible docking has remained a biggest problem for 
bioinformatics scientists for the purpose of drug designing. As a solution to this problem here we 
have presented MMCG, A Monte Carlo  metropolis approach based docking and scoring system. 
MMCG is observed to be computationally feasible and highly efficient as it is able to attain the 
native bound conformations with RMSD of less than 1.5 Å in nearly 80 percent of  the cases. 
The MMCG system is validated on a highly diverse data set of 122 protein-ligand complexes. 
The success of this system is based on various factors like, pioneer step of flexible bond 
recognition which is very important for incorporation of ligand flexibility. This system uses 
monte-carlo simulations to generate large number of conformers and at each step the conformers 
are accepted on the  basis of metropolis criterion. Metropolis criterion helps system to avoid 
getting strucked in local minima instead of global minima and conformers are selected on the 
basis of energy calculation. Configurational search is performed through an all atom energy 
based program which precalculates the energy of receptor to the binding energy by defining grid 
on whole protein which decreases the computational time. The selected conformers are translated 
to the resultant binding poses of configurational search, this translation results in complex 
formation and incorporate ligand flexibility in the docking procedure. Further refinement of the 
docked complexes is done using minimization process which helps the complex to attain native 
bound form to great extent. Fully automated version of MMCG runs on 18 processors and 
requires very less runtime which is about 30 min. to complete the whole docking process. Leads 
which are searched on the basis of rigid docking may have less RMSD that is around 2Å but 
these structures are biologically less efficient as the flexibility criterion is not considered. With 
the use of MMCG the potential ligands searched would be more appropriate as compared to rigid 
systems and it would really help in decreasing less relevant hit molecules for a protein which is 
an advantage from the point of view of wet lab testing also. This approach of flexible docking 
can act as a milestone in the field of computational drug designing as though this protocol we are 
able to mimic the  actual docking of drugs in biological systems up to much extent using high 
performance computing environment. 

 

 

 

 



 

7. DISCUSSION AND FUTURE PERSPECTIVE 

 
Since the advent of computational drug designing molecular docking has remained its most 
important feature. The idea behind the use of molecular docking for lead invent was to mimic the 
natural system of interaction of drugs with protein. First type of molecular docking which is still 
considered effective one is rigid docking, where both the protein and ligand are considered to be 
rigid. The search space is very limited, considering only three translational and three rotational 
degrees of freedom. In this case, ligand flexibility could be addressed by using a pre-computed a 
set of ligand conformations, or by allowing for a degree of atom–atom overlap between the 
protein and ligand. Taking flexibility of both the ligand and molecule has been a mammoth task 
for the researchers and on the other hand computationally also its way difficult. So as to trade off 
with accuracy and limitations of computational power semi-flexible docking is introduced that 
provides flexibility to the ligands only but the protein molecule is kept rigid. With six degrees of 
translational and rotational freedom as well as the conformational degrees of freedom of both the 
ligand and protein, there are a huge number of possible binding modes between two molecules. 
Unfortunately, it would be too expensive to computationally generate all the possible 
conformations. Various sampling algorithms have been developed and widely used in molecular 
docking software which are matching algorithms, incremental constructions(IC), genetic 
algorithm(GA) but the most widely used in number of docking programs is monte-carlo 
simulations. The Monte Carlo approach used in case of MMCG is an improved algorithm which 
uses meteropolis criterion to keep a check on attaining local minima for the ligand structure 
instead of global minima. The combination of minimum energy conformation generation and all 
atom based configurational search is backbone of MMCG program and the results produced by 
this combination forms a docked complex which is really close to the native bound form. 
The validation of program on such a large and diverse dataset is sufficient to test the efficiency 
of the MMCG system but it’s still not able to capture the structures really close to the bound 
form. To improve the efficiency protein flexibility can also be implemented and this could be 
done through using flexibility of binding pockets only which would require less computational 
time as compared to other online flexible docking tools available 
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