
1

De-novo Assembly and Annotation of mitochondrial

genome of Mulberry (Morus indica L.) using NGS data

A Major Project dissertation submitted

in partial fulfilment of the requirement for the degree of

Master of Technology

In

Bioinformatics

Submitted by

 Harrisham Kaur

 (2K11/BIO/06)

Delhi Technological University, Delhi, India

 Under the supervision of

Dr. Asmita Das

Department of Biotechnology

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road,

Delhi-110042, INDIA

2

CERTIFICATE

This is to certify that the M. Tech. dissertation entitled “De-novo Assembly

and Annotation of Mitochondrial Genome of Mulberry (Morus indica L.)

using NGS data.”, submitted by HARRISHAM KAUR (2K11/BIO/06) in

partial fulfilment of the requirement for the award of the degree of Master of

Engineering, Delhi Technological University (Formerly Delhi College of

Engineering, University of Delhi), is an authentic record of the candidate‟s own

work carried out by him/her under my guidance.

The information and data enclosed in this dissertation is original and has not

been submitted elsewhere for honouring of any other degree.

Date: June 28, 2013

Dr. Asmita Das

Guide name

(Project Mentor)

Department of Bio-Technology

Delhi Technological University

(Formerly Delhi College of Engineering, University of Delhi)

3

DECLARATION

The work presented in this dissertation entitled “De-novo Assembly and

Annotation of mitochondrial genome of Mulberry (Morus indica L.) using

NGS data” is original and has been carried out by me under the supervision of

Dr. Asmita Das, Assistant Professor, Department of Biotechnology, Delhi

Technological University, New Delhi and of Dr. Ramesh K Aggarwal, Chief

Scientist, Centre for Cellular and Molecular Biology, Hyderabad.

I declare that the matter embodied in this thesis has not been submitted by me in

any part for award of any degree/diploma of any other institution or university

previously.

Place: New Delhi

Date:

Harrisham Kaur

(2K11/BIO/06)

4

ACKNOWLEDGEMENT

The success and final outcome of this project required a lot of guidance and assistance from

many people and I am extremely fortunate to have got all this along the completion of my

project work. Whatever I have done is only due to such guidance and assistance and I would

not forget to thank them.

First, of all, I am extremely thankful to Prof P.B Sharma, Vice-Chancellor, Delhi

Technological University, for providing me an opportunity to study in one of the premier

institutes of the country. My warm thanks to Dr. S Maji, Head of Department of

Biotechnology, DTU for his never ending support and constant encouragement.

I take this opportunity to express my profound gratitude and deep regards to my supervisor

Dr. Asmita Das, Assistant Professor, DTU, for her exemplary guidance, monitoring and

constant encouragement throughout the course of this thesis. The motivation, help and

guidance given by her time through time shall carry me a long way in the journey of life on

which I am about to embark.

I also take this opportunity to express a deep sense of gratitude to my external guide, Dr.

Ramesh K Aggarwal, Chief Scientist, Center for Cellular and Molecular Biology,

Hyderabad, for his cordial support, valuable information and guidance, which helped me in

completing this task through various stages.

I am obliged to the faculty and staff members of CCMB, Hyderabad for the valuable

information provided by them in their respective fields. I am grateful to Dr. Shrish Tiwari,

Sr. Scientist, CCMB and Janani Ma’am for correcting me at every stage of the project.

Lastly, I thank God, my parents, sisters and friends for their constant encouragement without

which this assignment would not be possible.

5

List of Figures

SL.NO. FIGURE PAGE NUMBER

1. Morus indica L. 15

2. Area under mulberry

cultivation in different states

16

3. Genome Mapping using NGS

Approach

19

4. Sample Preparation using

454 FLX Platform

20

5. Loading of DNA Samples

onto Beads.

21

6. Pyro-sequencing based 454

derived NGS approach

22

7. Flow-gram generated by

Pyro-sequencing

22

8. Data Processing after

obtaining the sequencing

reads.

23

9. Overview of Genome

Assembly

24

10. typical DNA sequencing

base-call.

29

11. Sequence length distributions

in two random samples.

31

12. Graphical representation

showing Tag sequences

32

13. Contig-Graph (De-Bruijn

Graph)

36

14. Newbler Algorithm 37

15. Methodology 40

16. Number of reads shown in

454 data plate

42

17. 454 Length Distribution of

Reads of both data-sets

43

18. Basic Statistics of

Mulberry_Parent_1 raw sff

file

44

19. Basic Statistics of

Mulberry_Parent_2 raw sff

file

44

20. PRINSEQ Length

Distribution of

mulberry_parent_1

44

21. PRINSEQ Length

Distribution of

mulberry_parent_2

44

6

22. GC distribution of reads in

mulberry_parent_1

46

23. GC distribution of reads in

mulberry_parent_2

47

24. Base Quality Report of

Mulberry_Parent_1 Raw

reads

48

25. Base Quality Distribution for

Mulberry_Parent_2 raw

reads

49

26. Mean Sequence Quality of

Mulberry_Parent_1 raw

reads

51

27. Mean Sequence Quality of

Mulberry_Parent_2 raw

reads

52

28. FATSQC and PRINSEQ

Report for ambiguous bases

in mulberry_parent_1

53

29. FASTQC and PRINSEQ

Report for ambiguous bases

in mulberry_parent_2

54

30. PRINSEQ Report of Poly

A/T tails in

mulberry_parent_1

55

31. PRINSEQ Report of Poly

A/T tails in

mulberry_parent_2

56

32. PRINSEQ report for tag

sequence check in

mulberry_parent_1

56

33. PRINSEQ report for tag

sequence check in

mulberry_parent_2

56

34. PRINSEQ Report for

sequence duplication levels

in Mulberry_Parent_1

56

35. PRINSEQ Report for

sequence duplication levels

in Mulberry_Parent_2

56

36. PRINSEQ Report for

sequence complexity in

mulberry_parent_1

58

37. PRINSEQ Report for

sequence complexity in

mulberry_parent_2

58

38. PRINSEQ Report of input

data information for quality

processed

61

7

Mulberry_Parent_1 data-set

39. PRINSEQ Report of input

data information for quality

processed

Mulberry_Parent_2 data-set

61

40. PRINSEQ Report of Length

Distribution for quality

processed

Mulberry_Parent_1 data-set

62

41. PRINSEQ Report of Length

Distribution for quality

processed

Mulberry_Parent_2 data-set

62

42. PRINSEQ Report of Base-

Quality Distribution for

quality processed

Mulberry_Parent_1 data-set

63

43. PRINSEQ Report of Base-

Quality Distribution for

quality processed

Mulberry_Parent_2 data-set

63

44. PRINSEQ Report of Mean

Quality Distribution for

Processed Mulberry_data-

sets.

64

45. PRINSEQ Report of

Ambiguous bases for

Processed

Mulberry_Parent_1

64

46. PRINSEQ Report of

Ambiguous bases for

Processed

Mulberry_Parent_2

65

47. PRINSEQ Report of Poly

A/T tails for Processed

Mulberry_Parent_1 data-set

65

48. PRINSEQ Report of Poly

A/T tails for Processed

Mulberry_Parent_2 data-set

66

49. Feature-Blocks for Mulberry-

Mit Genome.

73-78

50. De-Bruijn graph of the

Contigs.

81

8

List of Tables

SL.NO. TABLE PAGE

NUMBER

1. Summary of available NGS platforms 18

2. Phred quality scores are logarithmically linked to error probabilities 29

3. Summary of number and length distribution of the data-sets 44

4. Overall statistics of the data of mulberry_parent_1 and

mulberry_parent_2

58

5. Parameters for Quality Trimming of the data-sets 60

6. Comparative Summary Statistics of raw reads and quality processed

reads for Mulberry_Parent_1 and Mulberry_Parent_2.

Mul_Parent_1

66

7. Assembly Statistics of Mulberry_Parent_1 and Mulberry_Parent_2 67

8. Total Mitochondrial like reads in Mulberry_Parent_1 and

Mulberry_Parent_2

68

9. Summary Statistics for Mulberry_mitochondrial_assembly 69

10. High-quality and high read-coverage contigs of three assembled

data-sets with their estimated genome sizes.

69

11. Mitochondrial genome annotation in all the three genomes 70

12. tRNAs as predicted by tRNAscan in

Mulberry_1_2_Pooled_Mit_Assembly.

71

13. General Feature File of Mulberry Mit-Genome. 71-72

14. Annotation of Un-annotated contigs. 79

15. Contig-Connections generated according to the De-Bruihn graph 82

16. Repeats in Mulberry Mit-Genome 83-83

17. Numts and Repeats identified in the Mulberry mit-genome 84

9

List of Abbreviations

1. mtDNA : Mitochondrial DNA.

2. cpDNA : Chloroplast DNA.

3. ncDNA : Nuclear DNA.

4. Mit-Genome : Mitochondrial DNA.

5. NGS : Next Generation Sequencing.

6. CCD Camera: Charged-Coupled Device Camera.

7. SFF : Standard Flow-gram Format File.

8. SNP : Single Nucleotide Polymorphism.

9. BGI : Beijing Genomics Institute

10. BLAST : Basic Local Alignment Search Tool.

11. SD : Standard Deviation.

12. ORF : Open Reading Frame

13. QC : Quality Control

14. MID : MultiPlex Identifier

15. NCBI : National Centre for Biotechnology Information.

16. GSS : Genome Survey Sequence.

17. GFF : General Feature File.

10

TABLE OF CONTENTS

SL.NO. TOPIC PAGE

NUMBER

 List of Figures 1-3

 List of Tables 4

 List of Abbreviations 5

1. Abstract 8-9

2. Introduction 10-12

3. Review of Literature

3.1 Morus

3.1.1 General Description

3.1.2 Uses of Mulberry

3.1.3 Species and varieties under cultivation in India.

3.2 Sequencing and assembling mitochondrial (mt) -genome of

Morus indica L.

3.3 Complexity of plant mt-genomes.

3.4 Next-Generation Sequencing Technology and its advent on mt-

genome assembly and annotation

3.5 Roche derived 454 Next-Generation Sequencing Approach

3.6 Genome Assembly

3.7 Assembly software

3.8 De novo vs. Mapping Assembly

3.9 Judging Genome

3.10 Genome Annotation

13

14

14

14

15

16

17

17

20

24

24

25

26

26

4. Methodology

4.1 Quality Control of the 454 Pyro-sequencing derived raw read

files.

4.1.1 Standard Flow-gram Format (SFF)

4.1.2 Phred Quality Score

4.1.3 Number and length of sequences

4.2 Sequence Assembly

4.2.1 Parameters used in the assembly

4.3 Plant Mitochondrial Database.

28

29

29

29

33

35

37

37

37

11

4.4 Extracting Reads from mt-like contigs

4.5 De-novo Assembly of mt-like reads of both the parents

4.6 Statistical Evaluation of Contigs formed

4.7 Sreening for nuclear DNA (numts) in mitochondrial De-novo

Contigs

4.8 Annotation of Mitochondrial genome

4.9 Scaffolding – Genome Finishing

4.9.1 Establishing Contig-Connections

4.9.2 Aligning the contigs with each other to look for possible

overlaps

38

38

38

39

39

39

39

5. Results and Discussions

5.1 Pre-Processing of raw 454 reads of Mulberry_parent_1 and

Mulberry_Parent_2 obtained by 454 Roche pyro-sequencing run.

5.2 Statistical Report of Quality-Processed Mulberry_Parent_1 and

Mulberry_Parent_2 data-sets.

5.3 Assembly of raw reads of Mulberry_Parent_1 and

Mulberry_Parent_2

5.4 Identification of Mitochondrial like reads from

Mulberry_Parent_1 contigs and Mulberry_Parent_2 contigs.

5.5 Assembly of Mulberry Mitochondrial Genome

5.6 Annotation of Mulberry Mitochondrial Genome

5.7 Mulberry Mitochondrial Genome Finishing

41

42

61

67

67

68

69

80

6. Conclusion 84-85

7. Future Prospects 86-87

8. References 88-92

9. Appendix 93-134

12

CHAPTER #1

ABSTRACT

13

De-novo Assembly and Annotation of Mitochondrial Genome of Mulberry

(Morus indica L.) using NGS data.

Harrisham Kaur

Delhi Technological University, Delhi, India

ABSTRACT

Morus, a genus of flowering plants in the family Moraceae, comprises 10–16 species

of deciduous trees commonly known as mulberries growing wild and under cultivation in

many temperate world regions. Mulberry is a very widespread and important crop for

silkworm feed, fruit and timber as well as being an excellent amenity tree. Morus indica is a

species of mulberry exclusively found in Eastern and Southern Asia and is of great

importance to the Asian silk industry. Its complete sequence of the mitochondrial (mt)

genome could provide clues for the understanding of the evolution of mitochondrial genomes

in plants. In this study we have attempted to assemble and annotate the mitochondrial

genome of Morus indica L using Roche derived 454 Next Generation Sequencing data. The

Morus indica mt-genome was sequenced from total genomic DNA without physical

separation of chloroplast and nuclear DNA. Various Bioinformatics tools and in-house

developed perl and shell scripts were used to assemble and annotate the quality-filtered 454

raw NGS reads. We report the first ever, near complete mt-genome of mulberry in terms of

gene-content in closely related species with 27 high-quality, high read-coverage contigs

comprising of 45 functional protein coding mt-genes, 2 rRNA genes and 25 tRNAs (transfer

RNAs) that recognize 14 different amino-acids. The average coverage of reported mulberry

mt-genome is 66x and the estimated mt-genome size is 380,529 nt. A 454 bp segment from

plastid origin is incorporated in the 380,529 nt of mulberry mit-genome. We also report a

procedure for efficient assembly and annotation of mitochondrial genomes of plants without

physical separation of mitochondria. This procedure can be extended to other platforms with

low coverage genome sequencing, such as the Illumina HiSeq platform for efficient and

straight-forward organellar genome sequencing. The draft Mulberry Mit-genome assembled

by our procedure could be an essential resource to biologists, geneticists, plant scientists, and

plant breeders and can be used as a reference to assemble mt-genomes of closely related

species.

https://en.wikipedia.org/wiki/Genus
https://en.wikipedia.org/wiki/Flowering_plant
https://en.wikipedia.org/wiki/Moraceae
https://en.wikipedia.org/wiki/Deciduous
https://en.wikipedia.org/wiki/Tree
https://en.wikipedia.org/wiki/Temperate

14

CHAPTER #2

INTRODUCTION

15

Usually, a plant cell contains three genomes: plastid, mitochondrial, and nuclear. In a typical

Arabidopsis leaf cell, there are about 100 copies of mitochondrial DNA (mtDNA), about

1,000 copies of chloroplast DNA (cpDNA), and two copies of nuclear DNA (ncDNA) (DC,

2006).

The mitochondrial genome plays fundamental roles in development and metabolism as the

major ATP production centre via oxidative phosphorylation (Mackenzie S et al,1999). The

mitochondrial genetic system in flowering plants exhibit multiple characteristics that

distinguish them from other eukaryotes: large genome size with dispersed genes, an

incomplete set of tRNAs, trans-splicing, and frequent uptake of plastid DNA or of foreign

DNA fragments by horizontal and intracellular gene transfer (Mackenzie S et al,

1999), (Keeling PJ et al, 2008), (Sloan DB et al, 2010), (Alverson AJ et al, 2010). Plant

mtDNAs are a major resource for evolutionary studies, because coding regions evolve

slowly, in contrast to the flexible non-coding DNA. Therefore, the structural evolution and

plasticity of plant mtDNAs make them powerful model for exploring the forces that affect

their divergence and recombination.

With the emergence of next-generation sequencing technologies, the number of completed

plant mitochondrial genomes submitted to GenBank are 78. These are accessible through the

URL(http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organell

e. Accessed 2013 Feb 11). Most are from Chlorophyta (17 of green algae) and seed plants (26

of eudicotyledons) (Wang et al,2012). These Next-Generation Sequencing technologies have

demonstrated the capacity to sequence DNA at unprecedented speed, thereby enabling

previously unimaginable scientific achievements and novel biological applications. But, the

massive data produced by NGS also presents a significant challenge for data storage,

analyses, and management solutions. Therefore advanced bioinformatics tools and careful

scrutiny of the raw data are essential for the successful application of NGS technology (Jun

Zhang et al, 2011).

Morus, a genus of flowering plants in the family Moraceae, comprises 10–16 species

of deciduous trees commonly known as mulberries growing wild and under cultivation in

many temperate world regions. Mulberry is a very widespread and important crop for

silkworm feed, fruit and timber as well as being an excellent amenity tree. Morus indica is a

species of mulberry exclusively found in Eastern and Southern Asia and is of great

importance to the Asian silk industry. Its complete sequence of the mitochondrial (mt)

genome could provide clues for the understanding of the evolution of mt genomes in plant.

This study aims at using Roche derived 454 Pyro-sequencing data to assemble and annotate

Morus indica L. mitochondrial (mt) genome. This is the first ever, De novo mt-genome

assembly of mulberry. We used the raw NGS reads of two parents of a mapping population

of mulberry derived from a single plate run of 454 Pyrosequencing run to assemble a mt-

genome of mulberry. The mitochondria of flowering plants is mostly conserved across

species, so the pooling of sequencing reads of two parents provides a confidence in depth of

read coverage in regions conserved in both the parents and fills in the information missing in

individual parents, thus providing a confident and more informative assembly.

http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organelle
http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organelle
https://en.wikipedia.org/wiki/Genus
https://en.wikipedia.org/wiki/Flowering_plant
https://en.wikipedia.org/wiki/Moraceae
https://en.wikipedia.org/wiki/Deciduous
https://en.wikipedia.org/wiki/Tree
https://en.wikipedia.org/wiki/Temperate

16

With the use of commercially and publically available tools and some in-house developed

perl and shell scripts we present a near complete mt-genome of mulberry Morus indica L. in

terms of gene-content in closely related species. We report 27 high-quality contigs with an

average coverage of 66x, comprising of 41 functional protein coding mt-genes, 3 RNA genes

and 25 tRNAs (transfer RNAs) that recognize 14 different amino-acids. This draft genome

can be an essential resource to biologists, geneticists, plant scientists, and plant breeders and

can be used as a reference to assemble mt-genomes of closely related species.

17

CHAPTER #3

REVIEW OF LITERATURE

18

3.1 Morus

Morus, a genus of flowering plants in the family Moraceae, comprises 10–16 species

of deciduous trees commonly known as mulberries growing wild and under cultivation in

many temperate world regions (JM et al, 2012). The closely related genus Broussonetia is

also commonly known as mulberry, notably the Paper Mulberry, Broussonetia papyrifera.

Mulberries are swift-growing when young, but soon become slow-growing and rarely exceed

10–15 m (33–49 ft) tall. The leaves are alternately arranged, simple, often lobed, more often

lobed on juvenile shoots than on mature trees, and serrated on the margin. Depending on the

species, they can be monoecious or dioecious (JM et al, 2012). The mulberry fruit is

a multiple fruit, 2–3 cm (0.79–1.2 in) long. Immature fruits are white, green, or pale yellow.

In most species, the fruits turn pink then red while ripening, then dark purple or black and

have a sweet flavor when fully ripe. The fruits of the white-fruited cultivar are white when

ripe; the fruit in this cultivar is also sweet but has a very mild flavor compared with the

darker variety.

3.1.1 General Description

Mulberry is a fast growing deciduous woody perennial plant. It has a deep-root system. The

leaves are simple, alternate, stipulate, petiolate, entire or lobed. Number of lobes varies from

1 to 5. Plants are generally dioecious. Inflorescence is catkin with pendent or drooping

peduncle bearing unisexual flowers. Inflorescence is always auxiliary. Male catkins are

usually longer than the female catkins. Male flowers are loosely arranged and after shedding

the pollen, the inflorescence dries and falls off. Number of parianth lobes are 4. Number of

stamens are 4 and implexed in bud. Female inflorescence is usually short and the flowers are

very compactly arranged. Number of parianth lobes are 4 and persistent. Ovary is one-celled

and stigma is bifid. The chief pollinating agent in mulberry is wind. Fruit is a sorosis and the

colour of the fruit is mainly violet black.

Most of the species of the genus Morus and cultivated varieties are diploid having 28

chromosomes. However, triploids (2n=(3x)=42) are also extensively cultivated for their

adaptability, vigorous growth and quality of leaves (Datta, 2012).

3.1.2 Uses of Mulberry

a) Silk Industry: Mulberry leaves, particularly those of the white mulberry, are

ecologically important as the sole food source of the silkworm (Bombyx mori, named

after the mulberry genus Morus), the pupa/cocoon of which is used to make silk

(Ombrello, 2012) (Mulberry Silk, 2012). Other Lepidoptera larvae also sometimes

feed on the plant including common emerald, lime hawk-moth, and sycamore moth.

a) Anthocyanins from mulberry fruit: Anthocyanins are pigments which hold potential

use as dietary modulators of mechanisms for various diseases (DX et al, 2003) and as

natural food colorants. Due to increasing demand for natural food colorants, their

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Flowering_plant
http://en.wikipedia.org/wiki/Moraceae
http://en.wikipedia.org/wiki/Deciduous
http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Temperate
http://en.wikipedia.org/wiki/Broussonetia
http://en.wikipedia.org/wiki/Paper_Mulberry
http://en.wikipedia.org/wiki/Leaf
http://en.wikipedia.org/wiki/Monoecious
http://en.wikipedia.org/wiki/Dioecious
http://en.wikipedia.org/wiki/Fruit
http://en.wikipedia.org/wiki/Multiple_fruit
http://en.wikipedia.org/wiki/Cultivar
http://en.wikipedia.org/wiki/Silkworm
http://en.wikipedia.org/wiki/Bombyx_mori
http://en.wikipedia.org/wiki/Pupa
http://en.wikipedia.org/wiki/Cocoon_(silk)
http://en.wikipedia.org/wiki/Silk
http://en.wikipedia.org/wiki/Lepidoptera
http://en.wikipedia.org/wiki/Larva
http://en.wikipedia.org/wiki/Common_emerald
http://en.wikipedia.org/wiki/Mimas_tiliae
http://en.wikipedia.org/wiki/Sycamore_(moth)
http://en.wikipedia.org/wiki/Anthocyanins

19

significance in the food industry is increasing. Anthocyanins are responsible for the

attractive colors of fresh plant foods, producing colors such as orange, red, purple,

black, and blue. They are water-soluble and easily extractable. A cheap and

industrially feasible method to purify anthocyanins from mulberry fruit which could

be used as a fabric tanning agent or food colorant of high color value (of above 100)

has been established. Scientists found that out of 31 Chinese mulberry cultivars tested,

the total anthocyanin yield varied from 148 mg to 2725 mg per liter of fruit juice (Liu

et al, 2004). Total sugars, total acids, and vitamins remained intact in the residual

juice after removal of anthocyanins and that the residual juice could be fermented to

produce products such as juice, wine, and sauce. Anthocyanin content depends on

climate, area of cultivation, and is particularly higher in sunny climates (Matus et al,

2009).This finding holds promise for tropical sericulture countries to profit from

industrial anthocyanin production from mulberry through anthocyanin recovery.

c) Mulberry is non-toxic natural therapeutic agent shown to possess hypoglycemic,

hypotensive, and diuretic properties (Bondada et al, 2001).

3.1.3 Species and varieties under cultivation in India

There are about 68 species of the genus Morus, the majority of them occur in Asia, especially

in China (24 species) and Japan (19). Continental America is also rich in its Morus species.

The genus is poorly represented in Africa, Europe and Middle East, and it is not present in

Australia.

In India, there are many species of Morus, of which Morus alba, M. indica.

M. serrata and M. laevigata grow wild in the Himalayas. Several varieties have been

introduced belonging to M. multicaulis, M. nigra,M. sinensis and M. phillippinensis. Most of

the Indian varieties of mulberry belong to M. indica (Datta, 2012).

Though mulberry cultivation is practiced in various climates, the major area is in tropical

zone covering Karnataka, Andhra Pradesh and Tamil Nadu states, with about 90%. In the

sub-tropical zone, West Bengal, Himachal Pradesh and north-eastern states have major areas

under mulberry cultivation.

http://en.wikipedia.org/wiki/Tanning
http://en.wikipedia.org/wiki/Sericulture

20

Figure #1 Morus indica L. (adopted from www.crfg.org)

Figure #2 Area under mulberry cultivation in different states (Datta, 2012)

3.2 Sequencing and assembling mitochondrial (mt) -genome of Morus

indica L.

The complete mt-genome of mulberry has not been reported, so sequencing and assembling

the mulberry mt-genome will provide a great leap to the plant genomic resources. Besides

that plant mitochondrial genomes, encoding necessary proteins are involved in the system of

energy production, and play an important role in the development and reproduction of the

plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts (Cui

et al, 2009). Hence the assembly of mitochondria can be imperative in unravelling the

21

evolutionary mechanism manifesting themselves in plant families. The mt-genome can be an

essential resource to biologists, geneticists, plant scientists, and plant breeders and can be

used as a reference to assemble mt-genomes of closely related species.

3.3 Complexity of plant mt-genomes.

Plant mitochondrial genomes are complex because they encode significantly more genes than

do their fungal and animal counterparts. Investigations of the mitochondrial genome

sequences of at least 13 angiosperm species, including Arabidopsis thaliana, Beta

vulgaris, Oryza sativa, Brassica napus, Zea mays , Nicotiana tabacum, Triticum aestivum,

Vitis vinifera, Citrullus lanatus and Cucurbita pepo, and Vigna radiata, together with

physical mapping , have showed several properties of plant mitochondrial genomes, such as

large size (200-2400 kb), slow rates of evolutionary change, incorporation of foreign DNA, a

multipartite structure, and specific modes of gene expression (e.g. cis and trans splicing,

RNA editing), etc (Schuster et al, 1994).

To date, 78 mitochondrial genomes in plants have been fully sequenced and analysed

http://www.ncbi.nlm.nih.gov/Genomes/. These mitochondrial genomes are extremely

variable in size, ranging from 221 kb (Brassica napus) to 2,740 kb (Cucumis melo). Sequence

analysis revealed that the most abundant portion of the mitochondrial genomes is non-

coding (Kubo et al, 2008), which includes “promiscuous” DNA of plastid and nuclear

origin (Kubo et al, 2007), as well as sequences of horizontal origin from foreign genomes

(Richardson et al, 2007) (Archibald et al, 2010). Structural analysis, through use of Southern

hybridization or paired-end data, revealed a high frequency of intra- and intermolecular

recombination due to accumulation of repetitive sequences. This process has generated a

structurally dynamic assemblage of genome configurations within a species (Ogihara et al,

2005) (Chang et al, 2011) and a scrambling of gene order within closely related

species (Alverson AJ W. X., 2010). This dynamic organization of the plant mitochondrial

genome provides a powerful model for the study of genome structure and evolution. In

addition, the increasing availability of plant organelle and nuclear genome sequence data

provides an understanding of the mechanisms driving plant genome evolution. Indeed, there

is a strong structural and functional interaction among plastid, mitochondrial, and nuclear

genomes (Woodson et al, 2008). Transfer of DNA among these three compartments in higher

plants has been reported, with exception of transfer into the plastid genome (Kleine T et al,

2009).

3.4 Next-Generation Sequencing Technology and its advent on mt-genome

assembly and annotation:

Despite the importance of mt-genome assembly and annotation, the technical obstacles of

DNA isolation and sequence assembly limit the sequencing of mitochondrial genomes.

Conventional approaches to mitochondrial genome sequencing involve extraction and

enrichment of mitochondrial DNA, cloning, and sequencing. Large repeats and the dynamic

mitochondrial genome organization complicate sequence assembly. The development of next

http://www.ncbi.nlm.nih.gov/Genomes/

22

generation sequencing technologies (NGS), such as the Roche and Illumina platforms,

provides a new opportunity for rapid characterization of mitochondrial genomes.

Next-Generation Sequencing(NGS) or massively parallel sequencing- For the past 15 years,

Sanger sequencing and fluorescence based electrophoresis technologies have been

extensively used in somatic and germline genetic studies. Improvements in instrumentation

coupled with the development of high performance computing and bioinformatics have

reduced the cost of sequencing. However, increases in the throughput of Sanger DNA

sequencing are achieved by the use of additional sequencers in parallel, owing to the

requirement of gel electrophoresis or additional wells for the capillary sequencing of each

reaction. Using different approaches, massively parallel sequencing methods overcome the

limited scalability of traditional Sanger sequencing by either creating micro-reactors and/or

attaching the DNA molecules to be sequenced to solid surfaces or beads, allowing for

millions of sequencing reactions to happen in parallel. At present, there are four technologies

commercially available and several other promising approaches are in various stages of

development and implementation (Table 1) (Pettersson E, 2009). The current generation of

massively parallel sequencers has led to a quantum leap in our ability to sequence genomes,

so much so that 10-fold coverage of the human genome (30 Gb DNA sequence) can be

obtained in a single run for no more than US$15,000 toUS$20,000. (Note that the Human

Genome Sequencing Consortium generated 3 Gb at the cost of approximately US$3 billion

and took 13 years!) (Reis-Filho et al, 2009).

Next-generation sequencing (also known as massively parallel sequencing) technologies are

revolutionising our ability to characterise cancers at the genomic, transcriptomic and

epigenetic levels. Cataloguing all mutations, copy number aberrations and somatic

rearrangements in an entire cancer genome at base pair resolution can now be performed in a

matter of weeks. Furthermore, massively parallel sequencing can be used as a means for

unbiased transcriptomic analysis of mRNAs, small RNAs and noncoding RNAs, genome-

wide methylation assays and high-throughput chromatin immunoprecipitation assays (Reis-

Filho et al, 2009).

23

Table #1: Summary of available NGS platforms

Figure #3 Genome Mapping using NGS Approach

Advent of NGS on mitochondrial genome assembly: The development of next generation

sequencing technologies (NGS), such as the Roche and Illumina platforms, provides a new

24

opportunity for rapid characterization of mitochondrial genomes. Non-enriched whole

genome DNA libraries, both shotgun and paired-end, include plastid and mitochondrial DNA

that is sequenced along with the nuclear DNA during the sequencing run thus eliminating the

need for tedious organellar DNA isolation and characterization. NGS technologies have

already been used for sequencing the small mitochondrial genome of nematodes (Jex et al,

2010), human (Gunnarsdóttir et al, 2011) and fish (Cui et al, 2009) with no library

enrichment. Recently, sequencing data from non-enriched libraries has been successfully

used to assemble plastid genomes of wild and domesticated rice, mung bean, date palm, and

milkweed (Yang et al, 2010). The major limitations for use of this approach on de-

novo assembly of mitochondrial genomes are the ability to overcome assembly problems

related to large repeat regions, presence of promiscuous DNA, and sequence ambiguity due

to sequencing technologies. The aim of this study was to demonstrate how next generation

sequence (particulary Roche derived 454 NGS data from total genomic DNA can be used

to de-novo assemble the mitochondrial genome of mulberry (Morus indica L.).

3.5 Roche derived 454 Next-Generation Sequencing Approach:

Sequencing Background- How is genome sequencing done?

Using 454 Sequencing on the Genome Sequencer FLX System, DNA from a genome is

converted into sequence data through four primary steps:

Step One – DNA sample preparation;

Step Two – Proprietary process to load DNA sample onto beads;

Step Three – Sequencing DNA on Genome Sequencer FLX instrument; and

Step Four –Analysis of the genome.

Step 1: Sample Preparation

Starting with whole genome DNA or targeted gene fragments, the initial step in the process

employed by 454 Sequencing System is a universal library preparation for any sample. One

library preparation is sufficient for sequencing any DNA sample from a virus to a bacteria to

a human. The first step is to break the double-helix DNA ladder into shorter double-stranded

fragments of approximately 400 to 600 base pairs. The next step is to attach adapters to the

DNA fragments. Finally, the double-stranded DNA fragments are separated into single

strands (Sciences).

25

Figure #4 Sample Preparation using 454 FLX Platform

Step 2: Loading DNA Sample onto Beads

Through the process of emulsion-based clonal amplification, or emPCR, the DNA library

fragments are put onto micron-sized beads. As a result of the amplification of the DNA

fragments, the signals produced during the sequencing step are easily detectable. This process

takes approximately eight hours. Using the conventional Sanger method of cloning DNA in

bacteria, the amplification process currently takes approximately three weeks and also

introduces bias in the DNA samples (T et al, 2002). In the initial phase of the amplification

process, the DNA library fragments along with capture beads and enzyme reagents in a water

mixture, are injected into small, cylindrical plastic containers containing a synthetic oil. The

combination of these materials and vigorous shaking causes the water mixture to form

droplets around the beads, called an emulsion. Typically, most droplets that contain DNA

will contain only one DNA fragment. The water mixture includes an enzyme that causes the

single and isolated DNA fragment in each droplet to be amplified into millions of copies of

DNA. This reaction is also known as a polymerase chain reaction, or PCR. Through this

reaction, a single DNA fragment is amplified into approximately ten million identical copies

that are immobilized on the capture beads. When the PCR reaction is complete, the beads are

screened from the oil and cleaned. Those beads that do not hold DNA are eliminated. Those

beads that hold more than one type of DNA fragment are readily filtered out during

sequencing signal processing (Sciences) (T et al, 2002).

Figure #5: Loading of DNA Samples onto Beads.

26

Step 3: Sequencing

The 454 Sequencing process uses sequencing by synthesis approach to generate sequence

data. In sequencing by synthesis, a single-stranded DNA fragment is copied with the use of

an enzyme making the fragment double stranded. Starting at one end of the DNA fragment,

the enzyme sequentially adds a single nucleotide that is the match of the nucleotide on the

single strand. Nucleotides are paired one by one as the enzyme moves down the single

stranded fragment to extend the double-helix ladder structure (Legkari, 2010).

Following the separation and amplification of DNA strands with the library preparation and

emPCR kits, the DNA-capture beads are placed on our Pico Titer Plate for sequencing. The

Pico Titer Plate is a major technological advancement because it enables the miniaturization

of sequencing with our technology. One side of the Pico Titer Plate is polished and the other

side of the plate contains wells that are 75 picoliters in volume. Each Pico Titer Plate

comprises 1.6 million wells. The diameter of the wells is designed so that only a single

capture bead will fit into each well (Sciences).

How the 454 Sequencing process works?

a) Bases (TACG) are flown sequentially and always in the same order (100 times for a

large FLX run) across the PicoTiterPlate during a sequencing run.

b) A nucleotide complementary to the template strand generates a light signal

 c) The light signal is recorded by the CCD camera

 d) The signal strength is proportional to the number of nucleotides being incorporated.

Figure #6: Pyrosequencing based 454 derived NGS approach

The chemi-luminescent signal produced in this reaction is detected by the CCD camera

assembly included in the instrument. A CCD camera uses a small, rectangular piece of silicon

27

rather than a piece of film to receive incoming light. This is a special piece of silicon called a

charge-coupled device, or CCD. The intensity of light generated during the flow of a single

nucleotide varies proportionately with the consecutive number of complementary nucleotides

on the single-stranded DNA fragment being analyzed. For example, if there are three

consecutive A‟s in the single-stranded fragment, the amount of light generated would be three

times that of a single A in the fragment. The signals created in the sequencing process are

then analyzed by the 454 Sequencing System‟s software to generate millions of sequenced

bases per hour from a single run (Legkari, 2010).

Figure #7: Flow-gram generated by Pyro-sequencing. This Flow-gram is created based upon the
chemi-luminescent signal. It’s a bar-graph of light intensities for each well contained on
PicoTitrePlate. The signal strength is proportional to the number of nucleotides incorporated.

Step 4: Analysis of the Genome

Data generated by 454 Sequencing on the Genome Sequencer FLX has the unique advantage

of high throughput combined with longer read length to create a more complete picture of the

human genome. By eliminating bias from sample preparation known to exist from traditional

sequencing technologies and speeding up the time, quality and depth of sequencing results

per run, one is able to now tackle the analysis of an entire individuals‟ genome. Results of

each GS FLX run (a multitude of flowgrams) are collected and compared to the reference

genome, such as that generated from the Human Genome Project, to detect regions of exact

match and differences (Sciences).

28

Figure #8: Data Processing after obtaining the sequencing reads.

3.6 Genome Assembly

Genome Assembly: Genome assembly refers to the process of taking a large number of

short DNA sequences and putting them back together to create a representation of the

original chromosomes from which the DNA originated.

In a shotgun sequencing project, all the DNA from a source (usually a single organism,

anything from a bacterium to a mammal) is first fractured/sheared into millions of small

pieces. These pieces are then read by automated sequencing machines, which can read up to

1000 nucleotides or bases at a time. A genome assembly algorithm works by taking all the

pieces and aligning them to one another, and detecting all places where two of the short

sequences called reads, overlap. These overlapping reads can be merged, and the process

continues (Krasileva et al, 2013).

Genome assembly is a very difficult computational problem, made more difficult because

many genomes contain large numbers of identical sequences, known as repeats. These repeats

can be thousands of nucleotides long, and some occur in thousands of different locations,

especially in the large genomes of plants and animals.

The resulting (draft) genome sequence is produced by combining the information

sequenced contigs and then employing linking information to create scaffolds. Scaffolds are

positioned along the physical map of the chromosomes creating a "golden path" (Yang et al,

2013).

3.7 Assembly software

Originally, most large-scale DNA sequencing centres developed their own software for

assembling the sequences that they produced. However, this scenario has changed as the

software has grown more complex and as the number of sequencing centres has increased.

An example of such tailor-made assembler is Short Oligonucleotide Analysis

Package developed by BGI for de novo assembly of human-sized genomes,

alignment, SNP detection, re-sequencing, indel finding, and structural variation analysis (Li

et al, 2010). To assemble a genome, computer programs typically use data consisting of

http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Contig
http://en.wikipedia.org/wiki/Physical_map
http://en.wikipedia.org/wiki/Beijing_Genomics_Institute
http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

29

single and paired reads. Single reads are simply the short sequenced fragments themselves;

which can be joined up through overlapping regions into a continuous sequence known as a

'contig'. Repetitive sequences, polymorphisms, missing data and mistakes eventually limit the

length of the contigs that assemblers can build.

Paired reads typically are about the same length as single reads, but they come from either

end of DNA fragments that are too long to be sequenced straight through. Depending on the

library preparation technique, the distance between the paired reads can be as short as 200

base pairs or as large as several tens of kilobases (Eren et al, 2013). Since the paired reads are

generated from the same piece of DNA, they can help link contigs into 'scaffolds', which are

ordered assemblies of contigs with gaps in between. Paired-read data can also indicate the

size of repetitive regions and the distance between the two contigs (Eren et al, 2013).

Figure #9 Overview of Genome Assembly

3.8 De novo vs. Mapping Assembly

In sequence assembly, two different types can be distinguished:

1. De-novo: assembling short reads to create full-length novel sequences.

2. Mapping: assembling reads against an existing backbone sequence, building a

sequence that is similar but not necessarily identical to the backbone sequence

In terms of complexity and time requirements, de-novo assemblies are orders of magnitude

slower and more memory intensive than mapping assemblies. This is mostly due to the fact

that the assembly algorithm needs to compare every read with every other read (an operation

that has a complexity of O(n
2
) but can be reduced to O(n log(n)) (Góngora et al, 2013).

30

3.9 Judging Genome

In the absence of a high-quality reference genome, new genome assemblies are often

evaluated on the basis of the number of scaffolds and contigs required to represent the

genome, the proportion of reads that can be assembled, the absolute length of contigs and

scaffolds, and the length of contigs and scaffolds relative to the size of the genome. The most

commonly used metric is N50, the smallest scaffold or contig above which 50% of an

assembly would be represented. But this metric may not accurately reflect the quality of an

assembly (Baker, 2012). An early assembly of the sea squirt Ciona intestinalis had an N50 of

234 kilobases. A subsequent assembly extended the N50 more than tenfold, but a recent

analysis showed that this assembly lacked several conserved genes, perhaps because

algorithms discarded repetitive sequences (Korf et al, 2012). This is not an isolated example:

the same analysis found that an assembly of the chicken genome lacks 36 genes that are

conserved across yeast, plants and other organisms. But these genes seem to be missing from

the assembly rather than the organism. The focused re-analysis of the raw data found most of

these genes in sequences that had not been included in the assembly (Korf et al, 2012).

3.10 Genome Annotation

Genome annotation is the process of attaching biological information to sequences (Stein et

al, 2001). It consists of three main steps:

1. Identifying portions of the genome that do not code for proteins.

2. Identifying elements on the genome, a process called gene prediction, and

3. Attaching biological information to these elements.

Automatic annotation tools try to perform all this by computer analysis, as opposed to manual

annotation (a.k.a. curation) which involves human expertise. Ideally, these approaches co-

exist and complement each other in the same annotation pipeline.

The basic level of annotation is using BLAST for finding similarities, and then annotating

genomes based on that (Pevsner et al, 2009). However, nowadays more and more additional

information is added to the annotation platform. The additional information allows manual

annotators to de-convolute discrepancies between genes that are given the same annotation.

Some databases use genome context information, similarity scores, experimental data, and

integrations of other resources to provide genome annotations through their Subsystems

approach. Other databases (e.g. Ensembl) rely on both curated data sources as well as a range

of different software tools in their automated genome annotation pipeline.

Structural annotation consists of the identification of genomic elements.

 ORFs and their localisation

 Gene structure

 Coding regions

 Location of regulatory motifs

http://en.wikipedia.org/wiki/Pipeline_(computing)

31

Functional annotation consists of attaching biological information to genomic elements.

 Biochemical function

 Biological function

 Involved regulation and interactions

 Expression

Various biological Experiments are required to accomplish these steps. Proteo-

genomics based approaches utilize information from expressed proteins, often derived

from mass spectrometry, to improve genomics annotations. (Gupta et al, 2009)

32

CHAPTER #4

METHODOLOGY

33

4.1 Quality Control of the 454 Pyro-sequencing derived raw read files.

Sequencing technologies are not perfect and the quality control (QC) is an essential step to

ensure that the data used for downstream analysis is not compromised of low-quality

sequences, sequence artefacts, or sequence contamination that might lead to erroneous

conclusions.

4.1.1 Standard Flow-gram Format (SFF)

The raw reads files obtained from the 454 Pyro-sequencing experiment is called a Standard

Flow-gram Format file (SFF file). Standard flow-gram format (SFF) is a binary file format

used to encode results of pyro-sequencing from the 454 Life Sciences platform for high-

throughput sequencing. These files hold the information about:

a) The Flow-gram,

b) The called sequence,

c) The quality of the called sequence.

d) And the recommended quality and adaptor clippings.

These recommended clippings are given by the 454 sequencer. The Roche software takes into

account the quality and the adaptor sequence to recommend a clipping for each sequence.

This is done based upon initial library preparation protocol. Binary Format files cannot be

accessible by usual text editors and special programs are designed to view and edit the raw

reads before assembling. There are several tools to extract the sequences and to convert them

to a more usable format. Roche provides some executable files to perform this task.

Alternatively we can use the sff_extract tool to obtain a fasta file. sff_extract extracts the

reads from the sff files and stores them into fasta and xml or caf text files.

Tools which comes with 454 machine helps in extracting FASTA and QUALITY (QUAL)

files from raw reads sff files like sffinfo. The QUAL files are files containing the Phred

quality scores of each base in the raw read file.

Parameters to be kept in mind for Quality Control are as follows:

4.1.2 Phred Quality Score

Phred quality scores „Q‟ are defined as a property which is logarithmically related to the

base-calling error probabilities „P‟ (Ewing B, 1998).

Q = -10 log10 P

For example, if Phred assigns a quality score of 30 to a base, the chances that this base is

called incorrectly are 1 in 1000. The most commonly used method is to count the bases with a

quality score of 20 and above. The high accuracy of Phred quality scores make them an ideal

parameter to assess the quality of sequences.

http://en.wikipedia.org/wiki/Binary_file
http://en.wikipedia.org/wiki/Pyrosequencing
http://en.wikipedia.org/wiki/454_Life_Sciences
http://en.wikipedia.org/wiki/DNA_sequencing#High-throughput_sequencing
http://en.wikipedia.org/wiki/DNA_sequencing#High-throughput_sequencing
http://bioinf.comav.upv.es/sff_extract/index.html

34

Table #2 Phred quality scores are logarithmically linked to error probabilities

Figure #10 DNA sequence traced according to Phred scores (grey bars) in a typical DNA

sequencing base-call.

4.1.3 Number and Length of Sequences

The length distribution of sequence reads can be used as quality measure for the sequencing

run. Best data-set usually follow a normal distribution. However, most sequencing results

show a slowly increasing and then a steep falling distribution which is quite expected as the

sequence distribution will increase as the length of the read increases.

35

Figure #11 Example of Sequence length distributions in two random samples.

Both distributions have the highest number of sequences around 500 bp, but for the first

dataset the mean of the sequence lengths is higher and the standard deviation is lower. A

certain number of shorter reads might be expected, but if the sample contained mainly longer

fragments, it should be low. Assuming that both samples contained enough fragments of at

least 500 bp and all fragments were sequenced with the same number of cycles (sequencing

flows), we would expect that the majority of the sequences would have approximately the

same length. The higher amount of shorter reads in the second dataset suggests that those

reads might have been of lower quality and were trimmed during the signal processing. If the

sample contained many short fragments, the shorter reads might be from those fragments and

not of lower quality.

Minimum and maximum read length

Sequences in the SFF files can be as short as 40 bp (shorter sequences are filtered during

signal processing). For multiplexed samples, the MID trimmed sequences can be as short at

28 bp (assuming a 12 bp MID tag). Such short sequences can cause problems during, for

example, database searches to find similar sequences. Short sequences are more likely to

match at a random position by chance than longer sequences and may therefore result in false

positive functional or taxonomical assignments. In some cases, sequences can be much longer

than several standard deviations above the mean length (e.g. 1,500+ bp for a 500 bp mean

length with a 100 bp standard deviation). Those sequences should be used with caution as

they likely contain long stretches of homopolymer runs as in the following example below.

Homopolymers are a known issue of pyro-sequencing technologies such as 454/Roche.

36

aactttaaccttttaaaacccccttaaaaaaactttaaaccccgtaaaccccccgggttt

ttttttaaaaaaccgttttttacgggggtttaccccgttttaccggggttttgggggttt

taaaaaaaacgggttttaaacgggttaacccccgggttttccgggggtttaaaaagtttt

tttaaacgggggttttcccgtaaaaaaaaaaccccgtttaaaaaaaggggttaaaaaaaa

aaggggttaaccccccggggtttaaaaaaaaccttttttttttttaaaaaaaacgttttt

tttttttaaaaggggttttttttacgggggtaaacgggggggttaaaaaaaaaccccccc

cggggggttttaaaaaaaaaacccccggttttaaaaaaccccgttttaacccctttaaaa

aaaaaacgggggggttttaaaaaaaaaagggggttttttttttttaaaaacccgttttta

aaaaccccccgttttttaacccgggttaaaccccccccgggggggtaaaacccccccccc

ggggtaaccccctttttttaaaacccccccccgttttttacccgggggtttttacccccg

gggggggtaaaaaaacggggggtttttttttttttaaaaccggggttttttttttttaaa

ccccggtttttaaaaaccggtttttaccccggggggttttacccccgggggggggttttt

aaaacccccggtttaaaactttaaaaacccgggtaaccccggggttttaaaaaaaaaaaa

aaaaccccccccgttaaaaaaaaaaaacccgttttttttttaaaaaaaacccccccccgg

ttttaaaaccccccccgggggtttttaccccggggttttaaaaaaaacccgtttaaaaaa

accgggttttttaaaggggttttaaacccccccccc

The above sequence represents homopolymer ends which has to be handled with care.

In genomics, a homopolymer is a sequence of identical bases, like AAAA or TTTTTTTT.

Homopolymers appear as subsequences in larger sequences; in this case the size of the

homopolymer is referred to as the homopolymer length (Beuf et al, 2012).

Very long homopolymers form repeats and are difficult to sequence. They are fortunately

very rare, though they do appear in genomes more often than statistical randomness would

suggest, especially in junk DNA.

Homopolymers in 454 Sequencing

The 454 sequencing method does not call bases directly. Instead it calls flows, which are

indicated by a light signal. Each flow represents a homopolymer, and the brightness of the

light indicates the length of the homopolymer. Hence the sequence TAAAAA would appear

as a small light to mark the T, followed by a much brighter light to mark the 5 A's. The

danger in this process is that the brightness of the light is easy to mis-calibrate, especially for

long homopolymers. As a result, 454 reads often contain homopolymer-length sequencing

errors, such as calling AAAAA as AAAAAA or vice versa.

GC content

The GC content distribution of most samples should follow a normal distribution. In some

cases, a bi-modal distribution can be observed, especially for meta-genomic data sets. The

GC content plot in PRINSEQ marks the mean GC content (M) and the GC content for one

and two standard deviations (1SD and 2SD). This can help to decide where to set the GC

content thresholds, if a GC content filter will be applied. The plot can also be used to find the

thresholds or range to select sequences from a bi-modal distribution.

Poly-A/T tails

Poly-A/T tails are considered repeats of As or Ts at the sequence ends. In PRINSEQ, the

minimum length of a tail is 5 bp and sequences that contain only As or Ts are counted for

both ends. A small number of tails can occur even after trimming poly-A/T tails. For

http://www.broadinstitute.org/crd/wiki/index.php/454
http://www.broadinstitute.org/crd/wiki/index.php/Sequencing_method
http://www.broadinstitute.org/crd/wiki/index.php?title=Flow&action=edit
http://www.broadinstitute.org/crd/wiki/index.php/454_reads
http://www.broadinstitute.org/crd/wiki/index.php/Sequencing_error
http://www.broadinstitute.org/crd/wiki/index.php/Sequencing_error

37

example, a sequence that ends with AAAAATTTTT and that has been trimmed for the poly-

T will contain the Poly A. Trimming poly-A/T tails can reduce the number of false positives

during database searches, as long tails tend to align well to sequences with low complexity or

sequences with tails (e.g. viral sequences) in the database.

Sequence duplications

Assuming a random sampling of the genomic material in an environment such as in

metagenomic studies, reads should not start at the same position and have the same errors (at

least not in the numbers that they have been observed in most metagenomes). Recent Study

(Gomez-Alvarez et al, 2010) investigated the problem in more detail and did not find a

specific pattern or location on the sequencing plate that could explain the duplications.

Duplicates can arise when there are too few fragments present at any stage prior to

sequencing, especially during any PCR step. Furthermore, the theoretical idea of one micro-

reactor containing one bead for 454/Roche sequencing does not always translate into practice

where many beads can be found in a single micro-reactor. Unfortunately, artificial duplicates

are difficult to distinguish from exactly overlapping reads that naturally occur within deep

sequence samples. The number of expected sequence duplicates highly depends on the depth

of the library, the type of library being sequenced (whole genome, transcriptome, 16S,

metagenome,), and the sequencing technology used. The sequence duplicates can be defined

using different methods. Exact duplicates are identical sequence copies, whereas 5' or 3'

duplicates are sequences that are identical with the 5' or 3' end of a longer sequence.

Considering the double-stranded nature of DNA, duplicates could also be considered

sequences that are identical with the reverse complement of another sequence.

Depending on the dataset and downstream analysis, it should be considered to filter sequence

duplicates. The main purpose of removing duplicates is to mitigate the effects of PCR

amplification bias introduced during library construction. In addition, removing duplicates

can result in computational benefits by reducing the number of sequences that need to be

processed and by lowering the memory requirements. Sequence duplicates can also impact

abundance or expression measures and can result in false variant (SNP) calling.

Sequence complexity

Genome sequences can exhibit intervals with low-complexity, which may be part of the

sequence dataset when using random sampling techniques. Low-complexity sequences are

defined as having commonly found stretches of nucleotides with limited information content

(e.g. the dinucleotide repeat CACACACACA). Such sequences can produce a large number

of high-scoring but biologically insignificant results in database searches.

Tag sequences

Tag sequences are artifacts at the ends of sequence reads such as multiplex identifiers,

adapters, and primer sequences that were introduced during pre-amplification with primer-

based methods. The base frequencies across the reads present an easy way to check for tag

sequences. If the distribution seems uneven (high frequencies for certain bases over several

positions), it could indicate some residual tag sequences.

38

Figure #12 Graphical representation showing sequences with tags.

Assembly quality measures

The Nxx contig size is a weighted median that is defined as the length of the smallest contig

C in the sorted list of all contigs where the cumulative length from the largest contig to contig

C is at least xx% of the total length (sum of contig lengths). Replace xx by the preferred

value such as 90 to get the N90 contig size. The higher the Nxx value, the higher the rate of

longer contigs and the better the dataset. If the dataset does not contain contigs or scaffolds,

this information can be ignored.

PrinSeq

PRINSEQ is a tool that generates summary statistics of sequence and quality data and that is

used to filter, reformat and trim next-generation sequence data. It is particular designed

for 454/Roche data, but can also be used for other types of sequence data. PRINSEQ is

available through a user-friendly web interface or as standalone version. The standalone

version is primarily designed for data preprocessing and does not generate summary statistics

in graphical form. This tools first generates a summary report of the raw data and the

provides an option for processing the input data according to the summary generated.

PrinSeq was used for Quality Control of the input sff file. It takes into account

a) Number and Length Distribution of the data.

http://www.454.com/

39

b) Phred Quality Scores

c) Sequence Contamination

d) Sequence Complexity

e) Homopolymer trimming

f) GC Content

g) Poly A/T Tails

A web server and a standalone version of the tool is available (Schmieder, 2011).

4.2 Sequence Assembly

For assembling the raw reads into contigs and scaffolds gsAssembler or newbler was used.

Newbler is a 454 platform specific software is used to assemble 454 Pyrosequencing reads.

While assembling Newbler generates a file called 454NewblerProgress.txt which explains the

step-by-step assembly algorithm followed by Newbler. Newbler like most assembly

softwares works on the principle of de-bruijn graph. In graph theory, an n-dimensional De

Bruijn graph of m symbols is a directed graph representing overlaps between sequences of

symbols. Applying De Bruijn graph to genome assembly each read is represented by a node

and overlap between reads is represented by an arrow (called a directed-edge) between the

two reads. For instance, two nodes representing reads may be connected with a directed edge

if the reads overlap by at least five nucleotides (Phillip et al, 2011). While assembling the

454NewblerProgress.txt the first message is indexing reads. During indexing, newbler scans

the input file, performs some checks and trims the reads (sometimes more than the base-

calling software already did). One of the checks is for possible 3′ and 5′ primers: if a certain

percentage of reads contains the same sequence on either the 3′ or 5′ end, this is

mentioned. The next phase is to find overlap between the reads. Newbler splits this phase

into one for long reads (this goes very fast) and shorter reads (can take quite some time). As

aligning all reads against each other would take too long time, newbler (and many other

programs) actually make seeds, 16-mers of each read, where each seed starts 12 bases

upstream of the previous one. These seed length and step sizes can be changed if you want .

When two different reads have identical seeds the program tries to extend the overlap

between the reads until the minimum overlap (default 40 bp) with the minimum alignment

percentage default 90%) has been reached. After long overlap follows short overlap. Last

stage is checkpointing. Basically, checkpointing means writing the intermediate results to

disc, so that in the case of a crash, you could continue the assembly from the last

„checkpoint‟. At this point, newbler, as many other assemblers, has created a contig graph.

Aligned reads form the „nodes‟, reads going from one contig to another form the „edges‟. For

example, a small part of the graph could like like this:

40

Figure #13 Contig-Graph (Equivalent to De-Bruijn Graph)

After aligning all the reads, the contig graph potentially has many nodes and edges. The size

and complexity of the graph depend on the size of the genome and the repeat structure. The

„real‟ genome is a path through the graph visiting all nodes (Flxlex, 2010).

 Figure #14 Newbler’s Algorithm.

41

4.2.1 Parameters used in the assembly

The assembly of quality-filtered reads was done using Newbler with the following parametrs:

a) Trimming Database: A Primer sequence database used in library preparation before

sequencing was trimmed before assembly into contigs.

b) Screening Database: Before Assembly reads were screened with a local Plant

Chloroplast database accessible at NCBI.

c) Seed Step = 12

d) Seed Length = 16

e) Minimum Overlap Length = 40

f) Minimum Overlap Identity = 90

The work focussed on combining the raw sequence data of two mulberry parents of the

mapping population to increase the read coverage in the pooled data set and to include the

regions which were not sequenced in either of the parents. Hence, the assembly of raw reads

from both the parents was carried out using the above parameters. This generated two

454Contigs.fna and 454Contigs.qual files for both the parents

4.3 Plant Mitochondrial Genome Database:

The published mitochondrial genomes of plants were downloaded from

http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organelle. A

local database was made by makeblastdb (make blast database) by ncbi toolkit. This was used

to find mt-like contigs in assembled contigs files generated by gsAssembler run by local

BLAST.

4.4 Extracting Reads from mt-like contigs

Contigs from 454Contigs.fna (FASTA file of contigs) files from both the parents which

showed best hit in blast results were extracted. The reads which formed these contigs were

extracted from 454ReadStatus.txt file of both the parents by in-house developed shell script.

The mt-like reads (reads forming mt-like contigs) were used to make a new SFF file (raw

read file) for the Newbler‟s De-novo Assembly. This was executed by the Newbler‟s inbuilt

command called sfffile. By running this command on the linux-shell, one can make a raw

Standard Flowgram Format file from FASTA file or from the QUAL file of the reads.

The mitochondrial like reads in both the parents could be identified by simply blasting the

FASTA files of raw reads with the local plant mitochondrial database. This appears quite

uncomplicated but it can increase the artifacts produced during the assembly, and may

produce false-negatives. Contigs from pre-assembled raw read files would take care of the

false-negatives, as contigs are large sequences formed by high quality overlapping reads.

http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organelle

42

4.5 De-novo Assembly of mt-like reads of both the parents

The raw mt-like reads SFF files were fed into the assembly program with the parameters

stated in the previous assembly. The assembly was carried out for individual parents as well

as the pooled data set (combining the mt-like SFFs of both the parents into a new

joint_mt_like_sff file). The merging of the two mt-like SFF files was done by sfffile

command of Newbler.

The joint mitochondrial assembly was done to increase the coverage (read-depth) of the

regions common in both the parents and to include the regions being missed out while

sequencing in either of the parents. This was possible because the mitochondrial genomes of

plants are conserved in terms of gene-content. Hence, pooling the data would validate the

genes found in both the parents and may also find genes missing in either of the parents

(Lima J et al, 2012).

4.6 Statistical Evaluation of Contigs formed

The number and length of reads, the quality score, the N50 value and the average read

coverage for each contigs was evaluated. The contigs passing this filter were further selected

for annotation.

4.7 Sreening for nuclear DNA (numts) in mitochondrial De-novo Contigs

Plant Mitochondrial genome has some copies of numts which are usually pseudogenes. These

need to be screened before annotation of mitochondria. Read Coverage (number of reads

overlapping to form a contig) is an effective stat which was used to initially estimate the

nuclear copies in mitochondria. Newbler estimates the read coverage for each contig in

454ContigGraph.txt file which is generated after the assembly process. Ideally the read

coverage of a nuclear copy would be low as compared to the organellar copies of a particular

genomic DNA. This is attributed to the fact that a nucleus contains many copies of

mitochondria. So a portion of DNA which is present in both the nucleus as well as in the

mitochondria should be represented in many numbers in the mitochondrial genome. Hence,

the contigs assembled by the joint_mt_like_sff file were checked for their read coverage to

remove nuclear counterfacts. The read coverage of 30 or above was chosen to be coming

from mitochondria and the contigs with the read coverage <10 were attributed to be the

nuclear copies (Michalovova et al, 2013).

The predicted nuclear copies were further validated by blasting the sequence of those contigs

against NCBI‟s non-redundant nt (translated) database to check for the presence of putative

conserved domains. The putative domains, if found by the BLAST search were then fed into

ORFPredictor to find a functional gene. No ORF / CDS validated the presence of

pseudogenes and hence numts.

43

4.8 Annotation of Mitochondrial genome

Annotation of mitochondrial genome was done by MITOFY (Alverson, 2010) and

tRNAScan-SE. The High-quality, high read-coverage were checked for the presence of

known ORFs, mitochondrial genes, tRNA genes and RNA genes. Some perl scripts were also

written for orfprediction and formatting the contigs before before MITOFY annotation.

4.9. Scaffolding – Genome Finishing

4.9.1 Establishing Contig-Connections

For Connections or nodes between de-novo contigs a perl script bb.454contignet.pl

developed by Simon Lab was used. This is a Perl program that will take an assembly of

Roche 454 sequences generated by the Roche newbler/gsAssembler, and use the connection

information to link generated contigs into a graphical map (Massimo Iorizzo et al, 2012). A

large amount of information about connections between various contigs in the gsAssembler

assembly is contained in the 454ContigGraph.txt file generated by gsAssembler. It‟s this

information which is exploited by the perl script to generate contig connections graph.

4.9.2 Aligning the contigs with each other to look for possible overlaps

All the contigs were aligned to each other by CodonCode Aligner. Parameters used were 90

% identity with the minimum overlap of 40 with Large-gap alignment option for CodonCode

Aligner.

The neat connections in between the contigs shown by the contig connection graph were

tested by aligning them together in CodonCode. Alignment of contigs with each other

provided information about repeats in the genome.

44

Figure #15 Methodology of Mulberry Mitochondrial Genome Assembly and Annotation.

45

CHAPTER #5

RESULTS AND DISCUSSIONS

46

5.1 Pre-Processing of raw 454 reads of Mulberry_parent_1 and

Mulberry_Parent_2 obtained by 454 Roche pyro-sequencing run

Quality Control of NGS reads is essential to ensure that the assembled data is free from

sequence artifacts and sequence contamination that may lead to erroneous downstream

results. The easiest way to look at quality of the raw data is to generate the summary statistics

of the data. The statistical report of the both parents of mulberry was generated using

PRINSEQ and FASTQC. The input file used to generate summary statistics was FASTQ

format (a file containing FASTA sequences-text format and Phred Quality score of raw

reads) (Cock et al, 2009) which was generated using Newbler‟s inbuilt sffinfo command.

Statistical Report of Standard Flow-gram Format (SFF) files:

a) Number and Length of sequences:

Figure #16 and #17 shows the number and length distribution of reads as generated

by gsRunBrowser (Newbler). Region 1 is parent 1 of mulberry mapping population

and region 2 is parent 2 of mulberry mapping population.

47

FASTQC REPORT PRINSEQ REPORT

Figure #18 Basic Statistics of Mulberry_Parent_1 raw sff file.

FASTQC REPORT PRINSEQ REPORT

Figure #19 Basic Statistics of Mulberry_Parent_2 raw sff file.

48

Figure #20 showing Length Distribution of mulberry_parent_1 raw reads generated by 454

Roche Pyro-sequencing NGS run.

Figure #21 showing Length Distribution of mulberry_parent_2 raw reads generated by 454

Roche Pyro-sequencing NGS run.

49

The graphs of the Length-Distribution are generated by binning graph method. Binning

means grouping so if a particular character say length of entities (here reads generated from a

454 run) is plotted on x axis, then a bin size of 50 means grouping the length of reads in bins

or groups of 50 say 50-100,100-150 and so on. On the y axis, the other attribute say number

of sequences would be plotted.

The FASTQC and PRINSEQ report for the number and length of sequences generated by 454

run for both mulberry_parent_1 and mulberry_parent_2 is in accordance with the

manufacturer statistics for the 454 run.

Table #3 Summary of number and length distribution of the data generated by

manufacturer 454BaseCalling statistics, PRINSEQ and FASTQC

In general, during assembly process reads less than 60 bases (accounting to 20 amino acids)

are discarded. The length for reads used in the assembly process should range from 60 to

twice the mean length of the reads (Balzer et al, 2010).

50

b) GC content distribution

 The GC content distribution in most samples should follow a normal bell-shaped distribution

(Shedko et al, 2013).

Mulberry_Parent_1

Figure #22 shows GC distribution of reads in mulberry_parent_1 generated by FASTQC and

PRINSEQ. The distribution is normal with a mean of 36.74%.

51

Mulberry_Parent_2

Figure #23 shows GC distribution of reads in mulberry_parent_2 generated by FASTQC

and PRINSEQ. The distribution is normal with a mean of 36.48%.

52

c) Base Quality Distribution

The Phred base Quality determines the quality of the base incorporated during the base

call. The acceptable Phred quality threshold is from 15-25 (PRINSEQ).

Mulberry_parent_1

FASTQC per base sequence quality for mulberry_parent_1

PRINSEQ per base sequence quality for mulberry_parent_1

Figure #24 Base Quality Report of Mulberry_Parent_1 Raw reads

53

The box-whisker plot showing per base sequence quality of mulberry_parent_1 raw 454 NGS

reads shows that the base quality is deteriorating in reads longer than 700 bp.

Mulberry_Parent_2

FASTQC per base sequence quality for mulberry_parent_2

PRINSEQ per base sequence quality for mulberry_parent_2

Figure #25 Base Quality Distribution for Mulberry_Parent_2 raw reads

54

The box-whisker plot showing per base sequence quality of mulberry_parent_2 raw 454 NGS

reads shows that the base quality is deteriorating in reads longer than 700 bp. The low Phred

base quality in longer reads is the most common sequencing error of 454 Pyro-sequencing

reactions. This is called homo-polymer error which results from the flow calls rather than

base calls from the 454 run. The 454 Sequencing method doesn‟t calls bases rather it calls

flows. Each flow represents a homo-polymer, and the brightness of the light indicates the

length of the homo-polymer. Hence the sequence TAAAAA would appear as a small light to

mark the T, followed by a much brighter light to mark the 5 A's. The danger in this process is

that the brightness of the light is easy to mis-calibrate, especially for long homo-polymers.

Thus the longer the reads, the more is the chance of low quality homo-polymer errors. The

Phred base quality also deteriorates towards the 3-prime ends of the reads (Balzer, 2010).

Hence, the quality trimming in 454 data should be done based upon the following criteria:

Phred Base Quality Score threshold of 15-25 towards 3-prime end of the reads.

The longer homo-polymer reads should be trimmed towards the 3-prime end only based upon

the Phred Quality threshold. The trimming of complete homopolymer long reads may result

in more false negatives in the downstream processing of the data.

FASTQC Report of mean sequence quality of mulberry_parent_1

55

PRINSEQ Report of mean sequence quality of mulberry_parent_1

Figure #26 Mean Sequence Quality of Mulberry_Parent_1 raw reads

FASTQC Report of mean sequence quality of mulberry_parent_2

56

PRINSEQ Report of mean sequence quality of mulberry_parent_2

Figure #27 Mean Sequence Quality of Mulberry_Parent_2 raw reads

The mean sequence quality of both the parents is as follows:

Mulberry_Parent_1 : 30

Mulberry_Parent_2 : 30

Occurrence of N:

Sequences can contain the ambiguous base N for positions that could not be identified as a

particular base. A high number of Ns can be a sign for a low quality sequence or even dataset.

If no quality scores are available, the sequence quality can be inferred from the percent of Ns

found in a sequence or dataset. A recent study found that the presence of any ambiguous base

calls was a sign for overall poor sequence quality (Huse et al, 2007). The amount of

ambiguous bases being present in the sequences should account to just 1 %.

57

Figure #28 FATSQC and PRINSEQ Report for ambiguous bases in mulberry_parent_1

58

Figure #29 FASTQC and PRINSEQ Report for ambiguous bases in mulberry_parent_2

The occurrence of sequences with „N‟ in parent_1 is 18% and in parent_2 is 15%.

d) Poly A/T tails:

Poly-A/T tails are considered repeats of As or Ts with a minimum length of 5 bp. Sequences

that contain only As or Ts are counted for both ends. These repeats can bind to low

complexity regions in database searches or can with regions having stretches of Poly A/T

tails (Huse et al, 2007).

Figure #30 PRINSEQ Report of Poly A/T tails in mulberry_parent_1

59

Figure #31 PRINSEQ Report of Poly A/T tails in mulberry_parent_2

PRINSEQ reports for both parents shows that Poly A/T tails for most of the sequences are

5bp long.

e) Tag Sequence Check

The tags in raw reads include the adaptors/primers used for construction of the library

prepared for the sequencing run. The base frequency in a sequence determines whether a

sequence is tagged or not. A uniform base frequency represents an un-tagged sequence, while

a non-uniform base frequency calls for adaptor/primer/tag trimming before assembly and

annotation (Huse et al,2007).

Figure #32 PRINSEQ report for tag sequence check in mulberry_parent_1

60

Figure #33 PRINSEQ report for tag sequence check in mulberry_parent_2

The frequency v/s position graph is skewed towards the start of sequences and is nearly

uniform towards the end. Hence, the reports suggest the presence of tags/adaptors/primers at

the 5-prime ends of certain percentage of reads in both the parents.

f) Sequence Duplication

Figure #34 PRINSEQ Report for sequence duplication levels in

Mulberry_Parent_1

Figure #35 PRINSEQ Report for sequence duplication levels in

Mulberry_Parent_2

61

Duplicates can arise when there are too few fragments present at any stage prior to

sequencing, especially during any PCR step. Furthermore, the theoretical idea of one micro-

reactor containing one bead for 454/Roche sequencing does not always translate into practice

where many beads can be found in a single micro-reactor. Unfortunately, artificial duplicates

are difficult to distinguish from exactly overlapping reads (real dupliactes) that naturally

occur within deep sequence or high coverage samples (Gomez-Alvarez et al, 2009).

Fortunately Newbler (454 Platform specific assembler) treats exact duplicate reads as a single

read before assembly, if otherwise specified by changing the default settings. This is true for

many assemblers. Further, one needs to be cautious while working with data-sets having high

sequence duplication levels. Assembling reads without duplicate reads removal might lead to

false coverage values.

g) Sequence Complexity:

Genome sequences can exhibit intervals with low-complexity, which may be part of your

sequence dataset when using random sampling techniques. Low-complexity sequences are

defined as having commonly found stretches of nucleotides with limited information content

(e.g. the dinucleotide repeat CACACACACA). Such sequences can produce a large number

of high-scoring but biologically insignificant results in database searches. The complexity of

a sequence can be estimated using many different approaches. The charts below are generated

using the DUST and Entropy approaches as they present two commonly used examples.

The DUST approach is adapted from the algorithm used to mask low-complexity regions

during BLAST search preprocessing. The scores are computed based on how often different

trinucleotides occur and are scaled from 0 to 100. Higher scores imply lower complexity

and complexity scores above 7 may be considered low-complexity. A sequence of

homopolymer repeats (e.g. TTTTTTTTT) has a score of 100, of dinucleotide repeats (e.g.

TATATATATA) has a score around 49, and of trinucleotide repeats (e.g.

TAGTAGTAGTAG) has a score of around 32.

The Entropy approach evaluates the entropy of trinucleotides in a sequence. The entropy

values are scaled from 0 to 100 and lower entropy values imply lower complexity. A

sequence of homopolymer repeats (e.g. TTTTTTTTT) has an entropy value of 0, of

dinucleotide repeats (e.g. TATATATATA) has a value around 16, and of trinucleotide

repeats (e.g. TAGTAGTAGTAG) has a value around 26. Sequences with an entropy value

below 70 may be considered low-complexity (Balzer et al, 2010).

62

Figure #36 PRINSEQ Report for sequence complexity in mulberry_parent_1

Figure #37 PRINSEQ Report for sequence complexity in mulberry_parent_2

63

The Statistics obtained from PRINSEQ for sequence complexity are as follows:

 DUST Score for parent_1 : 2 (acceptable)

 DUST Score for parent_2 : 2 (acceptable)

 Entropy for parent_1 : 82 (acceptable)

 Entropy for parent_2 : 82 (acceptable)

This means that the sequences from NGS sequencing run are free from LCRs.

Table #4 shows the overall statistics of the data of mulberry_parent_1 and

mulberry_parent_2

The Quality Pre-Processing of the data-sets of both the parents should be done based upon

the statistical summary of the data-sets as represented in table # 4.

Based upon the statistical measures the parameters for quality pre-processing are as follows:

 Filter_by_Quality: The reads with quality threshold less than 15 should be filtered

out. This was done using PRINSEQ and a perl script by SeqCrumbs –

filter_by_quality.pl. The quality trimming was mostly done for longer reads especially

at 3-prime ends. This was done to ensure mitigation of homo-polymer errors.

 Filter_by_Length: The length of reads should fall between 60 to more than twice the

mean read length. Trimming entire reads more than twice the mean length (700) may

result in loss of information, hence the maximum read length was set to 1000. For

longer reads Phred base quality threshold at 3-prime end was kept as 15. PRINSEQ

64

and a perl script by SeqCrumbs filter_by_length.pl was used to filter sequences by

length.

 Ambiguous Bases: The maximum allowed rate of N was kept as 1 %. Reads having

more than 1 % of N were trimmed. This was done using PRINSEQ.

 Poly A/T Tails: A threshold of 5bp was set for the removal of both 5-prime and 3-

prime Poly A/T Tails in the data-sets. This means that reads having a minimum of 5

bp repeats of As and Ts were trimmed.

 Sequence Complexity: To remove the LCRs, a DUST threshold of 7 was used. Reads

falling above this threshold were discarded.

 Homo-polymer reads need to be manually checked as certain long reads might not be

a result of 454 homo-polymer errors. Only those long reads with long homo-polymer

strecthes at the 3-prime end should be trimmed from the start of a homo-polymer

stretch to its end. For example, in a 1000 bp read with a homo-polymer stretch starting

from 900 base position in the read, the bases of only the homo-polymer stretch should

be discarded. This was done by an in-house perl script trim_homopolymers.pl. This

script takes FASTQ file as an input, identifies reads > 700 bp and trims the homo-

polymer stretch in the long reads based upon its sequence and low Phred Quality

score at the 3-prime end of long reads.

Parameters used for Data Processing Tools/Scripts

Sequence Length Range – 60 to 1000

bp

PRINSEQ, Filter_by_length.pl (perl

script by SeqCrumbs)

Base Quality Threshold – 15 PRINSEQ, Filter_by_Quality.pl (perl

script by SeqCrumbs)

Low Complexity Regions DUST approach by PRINSEQ

Ambiguous Bases (%) – 1% PRINSEQ

Poly A/T removal threshold – 5 bp PRINSEQ

Homo-polymer trimming Trim_homopolymer.pl (in-house perl

script)

Table #5 Parameters for Quality Trimming of the data-sets

65

5.2 Statistical Report of Processed Mulberry_Parent_1 and

Mulberry_Parent_2 data-sets according to the parameters defined for

quality-processing.

Significant improvement in read length, quality, ambiguous bases, Poly A/T tails was

observed after processing of the data-sets by PRINSEQ and the above mentioned perl scripts.

The improved statistics are as follows:

a) Number and Length of Sequences:

Figure #38 PRINSEQ Report of input data information for quality processed Mulberry_Parent_1

data-set

Figure #39 PRINSEQ Report of input data information for quality processed Mulberry_Parent_2

data-set

66

Figure #40 PRINSEQ Report of Length Distribution for quality processed Mulberry_Parent_1 data-

set

Figure #41 PRINSEQ Report of Length Distribution for quality processed Mulberry_Parent_2 data-

set

67

The total number of reads in both the data-sets reduced as a consequence of removal of low-

quality, ambiguous reads, longer reads with low quality at 3-prime end and reads with Poly

A/T tails. The range of length for reads of both the data-sets after quality pre-processing of

the data changed from 40-1130 bp to 60-823 bp. The mean sequence length became 417bp

and 419bp for Mulberry_Parent_1 and for Mulberry_Parent_2 respectively.

b) Base-Quality Distribution:

The Phred Quality Score for processed data-sets improved drastically with the quality score

threshold of 15.

Figure #42 PRINSEQ Report of Base-Quality Distribution for quality processed

Mulberry_Parent_1 data-set

Figure #43 PRINSEQ Report of Base-Quality Distribution for quality processed

Mulberry_Parent_2 data-set

68

Mulberry_Parent_1 Mulberry_Parent_2

Figure #44 PRINSEQ Report of Mean Quality Distribution for Processed Mulberry_data-

sets.

The mean quality of both the data-sets improved from 30 to 33 Phred quality score.

c) Ambiguous Bases:

The number of reads with ambiguous bases (bases other than A/T/G/C) reduced in quality

processed data-sets.

Figure #45 PRINSEQ Report of Ambiguous bases for Processed Mulberry_Parent_1

69

Figure #46 PRINSEQ Report of Ambiguous bases for Processed Mulberry_Parent_2

d) Poly A/T tails:

Figure #47 PRINSEQ Report of Poly A/T tails for Processed Mulberry_Parent_1 data-set

70

Figure #48 PRINSEQ Report of Poly A/T tails for Processed Mulberry_Parent_2 data-set

The reads with Poly A/T tails reduced to 0.02 % and 0.01 % for parent_1 and parent_2

respectively.

Table #6 provides a comparative statistical summary for the two data-sets before and after

quality pre-processing.

 Mul_Parent_1 Mul_P1_QP Mul_Parent_2 Mul_P2_QP

No. of Reads 574,312 200,187 591,507 209,584

Min_Read_len 40 60 40 60

Max_Read_len 1120 823 1131 807

Mean_Read_len 398.65 419.58 402.53 417.05

Percentage_N 13.46%(77319) 7.26%(14529) 13.11%(77561) 6.95%(14561)

Quality Avg 30 33 30 33

Poly A/T reads 2.76% (15842) 0.02% (42) 2.81% (16622) 0.01% (25)

Table #6 Comparative Summary Statistics of raw reads and quality processed reads for

Mulberry_Parent_1 and Mulberry_Parent_2. Mul_Parent_1: Mulberry_Parent_1,

Mul_P1_QP: Mulberry_Parent_1_Quality_Processed_data_set, Mul_Parent_2:

Mulberry_Parent_2, Mul_P2_QP: Mulberry_Parent_2_Quality_Processed_data_set,

Percentage_N: Percentage of Ambiguous bases, Quality Avg: Phred Base Quality Average

of all the reads.

71

5.3 Assembly of raw reads of Mulberry_Parent_1 and Mulberry_Parent_2

Genome Assembly of raw reads was done by Newbler. Newbler uses De-Bruijn graph to

assemble overlapping raw reads in contigs and unique reads into singletons.

Table #7 Assembly Statistics of Mulberry_Parent_1 and Mulberry_Parent_2 generated by

Newbler’s from 454NewblerMetrics.txt by script called 454NewblerMetrics.pl

The reads assembled into 18109 and 18530 contigs of mulberry_parent_1 and

mulberry_parent_2 respectively. There is approximately 10Kb difference between largest

contigs of both the sets. This maybe due to the data coming different cultivars or due to the

fact that reads overlapping to form the largest contig maybe from different regions of the

genome of the two parents. The N50 contig size are 805 and 825 in mulberry_parent_1 and

mulberry_parent_2 respectively. This indicates that in mulberry_parent_1 50% of all the

contigs have length greater or equal to 805 and in mulberry_parent_2 50 % of all the contigs

have length greater than 829. Theoretically, the longer the N50 value, the better the assembly.

The overall assembly is moderately reliable. The data obtained from Roche 454 run was from

low coverage single-end library. This means that while library preparation for 454 pyro-

sequencing, the genomic DNA was sheared randomly and was sequenced from single end.

The high number of contigs and singletons (unique reads with overlaps) provide an evidence

that during the library preparation the genomic DNA was highly sheared and reads specific to

different genomic regions have thus been obtained. Although, the reads for organellar

genomes should be present in higher proportions than nuclear counterparts, a fact which was

further explored for mitochondrial genome assembly of mulberry (Wang et al, 2013).

5.4 Identification of Mitochondrial like reads from Mulberry_Parent_1

contigs and Mulberry_Parent_2 contigs.

Mitochondrial like reads in the two data-sets were identified by blasting (BLAST) a local

database of 78 sequenced plant mitochondrial genomes with contigs of both the data-aets.

This local database was created by the command makeblastdb (ncbi_blast_toolkit). The

database for plant mitochondrial genome was downloaded from the following URL.

http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organelle.

 The plant mitochondrial genome was blasted with contigs rather than with raw reads of both

the parents because contigs provide information about a contiguous stretch of genome, hence

http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=33090&opt=organelle

72

contigs similar to mitochondrial genomes of plants will provide basis for identification of

mitochondrial genome of mulberry. Reads assembling into mitochondrial like contigs

identified by BLAST search were extracted from the raw read files of both the parents from

an in-house developed shell script extract_reads_from_mt_like_contigs.sh. The script

identified a total of 23,600 mitochondrial like reads in Mulberry_Parent_1 and 21,548

mitochondrial like reads in Mulberry_Parent_2. The script also created Standard Flow-gram

format (sff) files of the mitochondrial like reads for both the data-sets-

mul_1_mt_like_reads.sff and mul_2_mt_like_reads.sff.

 Total Reads Mt-like Reads

Mulberry_Parent_1 200,187 23,600

Mulberry_Parent_2 209,584 21,548

Table #8 Total Mitochondrial like reads in Mulberry_Parent_1 and

Mulberry_Parent_2

5.5 Assembly of Mulberry Mitochondrial Genome

For assembling the mulberry mitochondrial genome, the sff files of both the data-sets were

assembled individually by a 454 Roche specific assembler Newbler (gsAssembler). Besides

that, a third assembly, by pooling the data of the two sff files was done. The raw sff files,

mul_1_mt_like_reads.sff and mul_2_mt_like_reads.sff were joined by a command called

sfffile. This command is in-built command of Newbler.

The new sff file created by joining the mul_1_mt_like_reads.sff and mul_2_mt_like_reads.sff

was named mul_1_2_mt_like_reads.sff. This file was further used for the third pooled

assembly. As the mitochondrial genome is conserved across different species of plants,

pooled assembly should provide information which has been missed during genome

sequencing in both the data-sets and should provide confidence about the regions being

sequenced commonly in both the data-sets. Mitochondria of most higher plants are prone to

house sequences of plastid and nuclear origin. This occurs due to a phenomenon called

horizontal gene transfer (Mackenzie et al, 1999). To prevent reads of plastid origin from

being assembled along with mitochondrial genome of mulberry, a screening database of plant

chloroplast genomes was provided.

Newbler v 2.8 with stringent parameters (percent identity 98% and minimum overlap 40) was

used for assembly.

Table #9 Summary Statistics for Mulberry_mitochondrial_assembly.

73

Table #9 shows summary statistics for mulberry_mitochondrial_assembly. As expected, the

assembly for pooled set is better than the assembly for individual data-sets of mulberry. This

is evident by the size of largest contig formed in the assembly of pooled data-set, the total

number of contigs and the Q40 Plus bases. The total number of contigs decreased as

compared to Mulberry_Parent_1 which suggests that reads common to both the data-sets are

overlapping to form a single contig rather than forming different contigs in individual

assemblies. The N50 contig size increased in the pooled assembly suggesting that the pooled

assembly is better than the individual assemblies. The largest contig size also increased

owing to more available information for that particular contig in the pooled read data-set.

Increased percentage of Q40 bases (bases having Phred Quality score of 40 or above) in the

pooled assembly suggests that better quality of bases are being used in the assembly.

The contigs obtained in the three assembled data-sets were then screened for the contigs of

nuclear origin in the mitochondrial genome. The reads coming from nuclear genomic regions

should ideally be present in lower numbers as compared to their organellar counterparts.The

fact that a cell contains many copies of organelles was exploited for the screening of contigs

of nuclear origin. This led to the identification of read-coverage of all the contigs present in

the three data-sets. Read-coverage is the number of overlapping reads resulting in the

formation of contigs. So, contigs of nuclear origin would have lower read-coverage as

compared to the mitochondrial contigs. Simply put, all things being equal, sequence with

more coverage will be represented in larger contigs of higher quality than sequence with a

lower degree of coverage (Elaine et al, 2002). The following table depicts the total number of

high-quality, long (>2KB), high-coverage contigs and the estimated size of mitochondrial

genome of mulberry_parent_1, of mulberry_parent_2 and of the pooled data-set.

 High-quality, High-coverage

Contigs (>2KB)

Estimated Size of Mt-

Genome (bp)

Mulberry_Parent_1 26 376,145

Mulberry_Parent_2 28 369,949

Mulberry_1_2_Pooled 27 380,529

Table #10 High-quality and high read-coverage contigs of three assembled data-sets with

their estimated genome sizes.

The pooled assembly was definitely more informative as evident by the increased genome

size. In the high-quality pooled set of contigs, we don‟t expect the presence of over-

represented sequences. This fact has been further validated by the annotation of all three

assemblies. We find better gene coverage in the overlapping/pooled data-set.

74

5.6 Annotation of Mulberry Mitochondrial Genome

The annotation of the high-coverage, high-quality contigs was done by a standalone software

Mitofy and a in-built perl script separate_contigs_for_mitofy.pl. Mitofy is perl based program

which identifies the functional Open Reading Frame (ORF) and the functional gene

associated with it. The Contigs from all three data-sets were used for annotation. This was

done to substantiate the fact that the pooled assembly of the data is better than the individual

assemblies. By annotating the 3 genomes, we were able to recover nearly complete

mitochondrial genome of mulberry in terms of functional gene-content.

Table #11 shows the mitochondrial genome annotation in all the three genomes.

A total of 70 genes were found by mitofy software which is 93 % of the functional

mitochondrial genome of plants. Rps10 and rpl10 was not found in Mulberry_Parent_2 but

was found in Mulberry_Parent_1 and the pooled data-set. Since these genes are found in

pooled data-set, these are the true-positives found in the data-set. The gene nad3 spans two

contigs in the two individual assemblies – Contig 4,5 in Mulberry_Parent_1 and Contig 10,11

in Mulberry_Parent_2 but is present in a single Contig 6 in the pooled assembly. This means

the two connected contigs in the individual assemblies are being assembled into a single

contig in pooled assembly. Similarly, cox2 and cox1 are spanning two contigs in individual

assemblies and are also spanning two contigs in pooled assembly. This shows a connection

between two between two contigs: Contig 18,19 and Contig 19,20. The Contig connections

need to be further validated by designing primers and doing some wet-lab experiments. A

tRNA gene „Leu-cp‟ was not found in individual assemblies but was found while annotating

the pooled mt-genome assembly. Hence, the pooled assembly was able to provide missing

information (genes) and substantiate some contig connections found by the genes spanning

two or more contigs in the individual assemblies.

A total of 25 tRNAs were found using tRNAscan program, which are shown in the Table #

12.

Table #12 tRNAs as predicted by tRNAscan in Mulberry_1_2_Pooled_Mit_Assembly.

75

Ctg:Contig, tRNA Begin: Start Coordinate of tRNA sequence on the Contig, tRNA Bounds

End: Stop Coordinate of tRNA sequence on the Contig.

Contig 23 has tRNAs which are intron bound.

A gff (General Feature File) for the pooled assembly covering the genes and tRNAs is

presented below:

76

Table #13 General Feature File of Mulberry Mit-Genome

According to the gff file of Mulberry mit-genome, Feature Blocks of all the Contigs were

Constructed using DNAPlotter. Feature Blocks are blocks of gene fragments, tRNA and

Introns spanning a particular Contig.

77

The Feature Blocks of Mulberry Mit-Genome are as follows:

Contig 1

Contig 2

78

Contig 3

Contig 4

Contig 5

79

Contig 6

Contig 7

Contig 8

80

Contig 9

Contig 12

Contig 13

Contig 14

81

Contig 17

Contig 18

Contig 19

Contig 20

82

Contig 22

Contig 23

Contig 24

Contig 26

83

Figure #49 Feature-Blocks for Mulberry-Mit Genome. Color Code : Blue – Genes in

forward strand, Red – Genes in Reverse Strand, Green – tRNAs, Fluorescent Green -

Introns

No putative conserved domain was found in Contig 10, Contig 11, Contig 15, Contig 16,

Contig 21, Contig 25, and Contig 27. NCBI‟s BLAST (Basic Local Alignment Tool blastn

and blastx) was used to annotate the un-annotated contigs.

SeqName Genomic Feature (identified

by BLAST)

Co-ordinates on Sequence

Contig 10 ATP synthase F0 subunit 9
10234..10380 (Plus)

Contig 11 hypothetical protein

(mitochondrion)

7076..5574 (Minus)

Contig 15 hypothetical chloroplast

RF2

3..488 (Plus)

Contig 16 cytochrome c maturation

protein CcmC

4611..6397 (Plus)

Contig 21 hypothetical protein

MTR_5g050970

3007..2300 (Minus)

Contig 25 repeat_type=inverted

475..751 (Plus)

Contig 27 uncharacterized RNA-

binding protein C660

1761..2225 (Plus)

Table #14 Annotation of Un-annotated contigs revealing the presence of nuclear copies of

mitochondrial DNA, and DNA from plastid origin.

Annotation of Contig 15 revealed a non-funtional 454 bp fragment of plastid origin. Repeats

and non-functional genes were also identified.

84

5.6 Mulberry Mitochondrial Genome Finishing

Genome finishing is a process in which contiguous segments of sequence are ordered and

linked to one another and any ambiguities or discrepancies among the individual reads are

resolved (Elaine et al, 2002). A finishing stage is critical to the usefulness of the final data.

Genome Finishing refers to the proper contig order and the forward and reverse strand

information. This was deciphered by a perl script called bb.454ContigNet.pl which derives

information from 454ContigGraph.txt file and joins the contigs together with the help of

overlapping reads between them. It basically gives a De-bruijn graph of the contigs. The

contigs are the nodes and the overlapping reads between them act as edges for the nodes. The

De-Bruijn Graph of the Contigs derived from bb.454ContigNet.pl gives the Contig

Connection and thus the Contig Order.

85

86

Table #15 Contig-Connections generated according to the De-Bruihn graph. These

Connections are neat and are to be validated further by designing primers and PCR

experiments.

The De-Bruijn Graph for the Contigs is provided in the Figure #50. Some Connections

between the contigs are quite clean. According to 454NewblerMetrices.txt file, 11.3 % of the

contigs are neatly connected to other contigs. As evident in table # 15 the number of

overlapping reads between two connecting contigs are mostly >30 . So the neat connections

between two contigs are strong. Some edges are ambiguous (a node having more than two

edges). These ambiguous edges could be repeats. For resolving these repeats, CodonCode

aligner was used to align contigs with each other. If a sequence or a contig is a repeat in the

genome, it will align with its repetitive counter-part. Codon-code aligner identified 4 pairs of

repetitive contigs in the assembly. The Coordinates of the repetitive contigs were blasted

against NCBI nr/nt database and the genomic features present as repeats in the mitochondrial

genome were identifed.

Repetitive Regions Co-ordinates Strand Genomic Feature

Contig 14 (func)

Contig 26 (repeat)

4464..4638

107..281

Plus

Minus

Gene: atp6

87

Contig 5 (func)

Contig 25 (repeat)

11751..12058

1757..2036

Minus

Minus

tRNA: Gly

Contig 1 (repeat)

Contig 12 (func)

1053..1649

7669..7073

Plus

Minus

Gene: atp4

Contig 8 (repeat)

Contig 17 (func)

5781..6186

5415..5820

Plus

Minus

Gene: nad9

Table #16 Repeats in Mulberry Mit-Genome.

The repeats in the mit-genome assembly are false links/forks present in assembly graph and

they normally belong to different genomes. The mitochondrial genome of higher plants is

loaded with genes of nuclear origin. These regions are called numts (nuclear mitochondrial

DNA) . Numts are products of horizontal gene-transfer and are usually non-functional in the

mitochondrial genome (Mishmar D et al, 2004). Our procedure found 4 pairs of repetitive

regions in the assembled mit-genome of mulberry. Three numts were identified owing to their

non-functionality or lack of functional ORF. Some more numts were found from BLAST

results of initially un-annotated contigs.

NuMts

Coordinates on the mit-

genome

Genomic Feature

Contig 1 1053..1649 Atp 4

Contig 26 107..281 Atp 6

Contig 8 5781..6186 Nad 9

Contig 10 10234..10380 Atp 9

Contig 16 4611..6397 ccmC

Contig 25 475..751 repeat_type=inverted

Table #17 Numts and Repeats identified in the Mulberry Mit-genome.

88

CHAPTER #6

CONCLUSION

89

The Mulberry Mitochondrial genome assembly using 454 Roche NGS data provides a mit-

genome of 380,529 bp with 45 (functional) genes, 25tRNA genes, 2 rRNA genes, 3 numts

and a read-coverage of 66x. A 454 bp fragment of plastid DNA was also incorporated in the

Mulberry Mit-genome. A General feature file (gff) and Feature-Blocks for all the contigs

were created. We were able to retreive near complete mit-genome of Mulberry in terms of

functional gene content. Only one functional genes, rps11 was found missing in the mit-

genome of mulberry.

We thus report the first-ever highly annotated mitochondrial genome of Morus indica L.

which can act as a reference for the assembling other closely related plant mitochondrial

genomes. The assembled Mulberry mit-genome‟s sequence dataset can be a pivotal resource

for plant molecular breeders, biologists, geneticists and plant scientists.

We also provide a new, rapid procedure for plant mitochondrial genome sequencing and

assembly using the Roche/454 GS FLX platform. Plant cells can contain multiple copies of

the organellar genomes, and there is a significant correlation between the depth of sequence

reads in contigs and the number of copies of the genome. Without isolating organellar DNA

from the mixture of nuclear and organellar DNA for sequencing, we retrospectively extracted

assembled contigs of mitochondrial sequences from the whole genome Roche 454

data. Moreover, the contig connection graph property of Newbler (a platform-specific

sequence assembler) ensures an efficient final assembly. Using this procedure, we assembled

a near complete draft mitochondrial genome Morus indica, with high fidelity.

 The copy number difference between organellar and nuclear DNA is independent of the

sequencing platform. Therefore, this procedure can be extended to other platforms with low

coverage genome sequencing, such as the Illumina HiSeq platform.

In addition, our strategy is also very useful for plant sequencing projects when an adequate

coverage has not been reached, but a data quality assessment is required. For example, our

procedure could be extended to cost-efficient 454 sequencing data from a single lane or less.

The methodology used will provide an unambiguous way to assemble

mitochondria/choloroplast genome from a single lane 454 data which is rich in organelles.

This will significantly reduce the cost of data-acquisition for the assembly of organellar

genomes. Therefore, we are confident that our efficient and direct procedure will prove useful

for further organellar genome sequencing and assembly.

90

CHAPTER #7

FUTURE PROSPECTS

91

We present the near-complete draft mitochondrial genome of mulberry Morus indica L. The

sequencing data was single-end 2 lane data of mulberry_parent_1 and mulberry_parent_2

derived from 454 GS FLX Platform. The 27 Contigs assembled from the pooled_Mulberry

data-set are not ordered or linked to form a contiguous scaffold. The genome-finishing of the

draft mit-genome of mulberry can be done by designing primers for the contigs which are

neatly connected to each other in the De-Bruijn graph. Primers can also be designed for

Contigs connected by spanning gene-features. The validated contig connection will provide

contiguous contigs or the scaffolds. The scaffolds could be used as a reference for completing

the master circle of mulberry mitochondrial genome.

To validate the final assembly we need to incorporate other types of data or experiments to

ensure contig connections among the contigs. Scaffolding can be made easier, if we add

mate-pair NGS data from the same or different platform. Once, the mate-pair data is

available, it can be reassembled into scaffolds and PCR reactions can be done to fill the gaps

between the scaffolds. The Contigs initially assembled by our approach can act as a reference

sequence for the re-assembling of the mate-pair NGS data of mulberry. Since a reference

draft mit-genome has been produced by our procedure, the mate-pair sequencing of mulberry

doesn‟t require the isolation of mitocchondrial genome. The mitochondrial scaffolds can be

assembled with the help of reference mitochondrial contigs available. Closure of gaps can be

followed by PCR and a master circle of mulberry mitochondrial genome can be obtained.

The feature-blocks of the reference contigs contain information about the gene-content, tRNA

and junk DNA present in the contigs. These can serve as minimal genome survey sequences

(GSS) for the detection of SNP and SSR markers. Once, the contig order is known, the

feature-blocks could be used to estimate the functional gene order in the mit-genome of

mulberry.

92

CHAPTER #8

REFERENCES

93

Mulberry Silk. (2012, October). Retrieved from Central Silk Board-Govt of India:

http://www.csb.gov.in/

Alverson. (2010). Insights into the evolution of mitochondrial genome size. Molecular Biology

Evolution, 27, 1436-1448.

Alverson AJ, W. X. (2010). Insights into the evolution of mitochondrial genome size from complete

sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biological

Evolution, 27: 1436–1448.

Alverson AJ, W. X. (2010). Insights into the Evolution of Mitochondrial Genome Size from Complete

Sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology

Evolution, 27:1436-1448.

Archibald J, R. T. (2010). Gene transfer: anything goes in plant mitochondria. BMC Biology, 8:147.

Baker, M. (2012). De novo genome assembly: what every biologist should know. Nature Methods, 9,

333–337.

Balzer, S. (2010). Characteristics of 454 pyrosequencing data—enabling realistic simulation with

flowsim. Bioinformatics, 26 (18): i420-i425.

Beuf KD, S. J. (2012). Improved base-calling and quality scores for 454 sequencing based on a Hurdle

Poisson model. BMC Bioinformatics, 13:303.

Bondada Andallua, V. S. (2001). Effect of mulberry (Morus indica L.) therapy on plasma and

erythrocyte membrane lipids in patients with type 2 diabetes. Clinica Chimica Acta, 314: 47-

53.

Chang S, Y. T. (2011). Mitochondrial genome sequencing helps show the evolutionary mechanism of

mitochondrial genome formation in Brassica. BMC Genomics, 12:497.

Cock, P. J. (2009). The Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic Acid Research, 38(6): 1767–1771.

Cui P, L. H. (2009). A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese

Yumai), and fast evolving mitochondrial genes in higher plants. Journal of Genetics,

88(3):299-307.

Cui Z, L. Y. (2009). The complete mitochondrial genome of the large yellow croaker, Larimichthys

crocea (Perciformes, Sciaenidae): Unusual features of its control region and the phylogenetic

position of the Sciaenidae. Gene, 432:33-43.

Datta, R. (2012). Mulberry cultivation and utilization in India. Srirampura, Mysore, India.

DC, L. (2006). The mitochondrial compartment. Journal of Experimental Botany, 57: 1225–1243.

DX, H. (2003). Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular

medicine, 3 (2):149–59.

94

Elaine Mardis, J. M. (2002). What is Finished, and Why Does it Matter. Genome Research, 12: 669-

671.

Eren AM, V. J. (2013). A Filtering Method to Generate High Quality Short Reads Using Illumina

Paired-End Technology. Plos One, 8(6):e66643.

Ewing B, G. P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities.

Genome Research, 8 (3): 186–194.

Flxlex. (2010). How Newbler works. Retrieved from wordpress.com:

http://contig.wordpress.com/2010/02/09/how-newbler-works/

Gomez-Alvarez V, T. T. (2009). Systematic artifacts in metagenomes from complex microbial

communities. International Society for microbial ecology, 3:1314-1317.

Góngora-Castillo E, B. C. (2013). Bioinformatics challenges in de novo transcriptome assembly using

short read sequences in the absence of a reference genome sequence. Nature Product

Reports, 30(4):490-500.

Gunnarsdóttir ED, L. M. (2011). High-throughput sequencing of complete human mtDNA genomes

from the Philippines. Genome Research, 21:1-11.

Gupta, N., & Stephen Tanner, N. J. (2009). "Whole proteome analysis of post-translational

modifications: applications of mass-spectrometry for proteogenomic annotation". Genome

Research, 17 (9): 1362–1377.

Jex AR, H. R. (2010). An integrated pipeline for next-generation sequencing and annotation of

mitochondrial genomes. Nucleic Acid Research, 38:522-533.

JM, S. (2012). Morus alba L. . Plant Protection and Production , 33: 67-72.

Jun Zhang, R. C. (2011). The impact of next-generation sequencing on genomics. Journal of Genetics

and Genomics, 38(3): 95–109.

Keeling PJ, P. J. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Review Genetics, 9:

605–618.

Kleine T, M. U. (2009). DNA transfer from organelles to the nucleus: the idiosyncratic genetics of

endosymbiosis. Annual Review Plant Biology, 60:115-138.

Krasileva KV, B. V. (2013). Separating homeologs by phasing in the tetraploid wheat transcriptome.

Genome Biology, 14(6):R66.

Kubo T, M. T. (2007). Organization and variation of angiosperm mitochondrial genome. Physiology

Plantarum, 129:6-13.

Kubo T, N. K. (2008). Angiosperm mitochondrial genomes and mutations. Mitochondrion, 8:5-14.

Legkari. (2010). Next Generation Sequencing Technologies: 454 Pyro-Sequencing. Biotech Articles,

30:11.

95

Li, R., & Hongmei Zhu, J. R. (2010). De novo assembly of human genomes with massively parallel

short read sequencing. Genome Research, 20 (2): 265–272.

Lima J, C. L. (2012). A Scheduling Algorithm for Computational Grids that Minimizes Centralized

Processing in Genome Assembly of Next-Generation Sequencing Data. Frontiers in Genetics,

10.3389.

Liu X, X. G. (2004). Quantification and Purification of Mulberry Anthocyanins with Macroporous

Resins. Journal of Biomedicine and Biotechnology, 5: 326-331.

Mackenzie S, M. L. (1999). Higher plant mitochondria. Plant Cell, 11: 571–586.

Massimo Iorizzo, D. S. (2012). De novo assembly of the carrot mitochondrial genome using next

generation sequencing of whole genomic DNA provides first evidence of DNA transfer into

an angiosperm plastid genome. BMC Plant Biology, 12:61.

Matus JT, L. R. (2009). Post-veraison sunlight exposure induces MYB-mediated transcriptional

regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of

experimental botany, 60 (3): 853–67.

Michalovova M, V. B. (2013). Analysis of plastid and mitochondrial DNA insertions in the nucleus

(NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization.

Heredity, 10:67-72.

Ogihara Y, Y. Y. (2005). Structural dynamics of cereal mitochondrial genomes as revealed by

complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acid Research,

33:6235-6250.

Ombrello. (2012). The mulberry tree and its silkworm connection. Cranford, NJ: Department of

Biology, Union County College.

Pettersson E, L. J. (2009). Generations of Sequencing Technologies. Genomics, 93:105-111.

Pevsner, J. (2009). Bioinformatics and functional genomics. NJ: Wiley-Blackwell.

Phillip E C Compeau, P. A. (2011). How to apply de Bruijn graphs to genome assembly. Nature

Biotechnology, 28(11): 45-59.

Reis-Filho, J. S. (2009). Next Generation Sequencing. Breast Cancer Research, 11(Suppl 3):S12.

Richardson AO, P. J. (2007). Horizontal gene transfer in plants. Journal of Experimental Biology, 58:1-

9.

S, H. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology,

8:R143.

Schmieder, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics

Advance Access, 23(1): 5-7.

96

Schuster W, B. A. (1994). The Plant Mitochondrial Genome - Physical Structure, Information-Content,

RNA Editing, and Gene Migration to the Nucleus. Annual Review Plant Physiology and Plant

Molecular Biology, 45:61-78.

Sciences, 4. L. (n.d.). How is Genome Sequencing done? Branford, CT: 454 Life Sciences Corporation.

Shedko SV, M. I. (2013). Complete mitochondrial genome of the endangered Sakhalin taimen

Parahucho perryi (Salmoniformes, Salmonidae). Mitochondrial DNA.

Sloan DB, A. A. (2010). Extensive loss of translational genes in the structurally dynamic mitochondrial

genome of the angiosperm Silene latifolia. BMC Evolutionary Biology, 10: 274.

Stein, L. (2001). Genome Annotation: From Sequence to Biology. Nature Reviews Genetics., 2 (7):

493–503.

T, L. (2002). A review of DNA sequencing techniques. Quarterly Reviews of Biophysics, 169-200.

Wang XC, Z. Q. (2013). Global transcriptome profiles of Camellia sinensis during cold acclimation.

BMC Genomics, 14(1):415.

Wang, W. (2012). The Mitochondrial Genome of an Aquatic Plant, Spirodela polyrhiza. Plos One, 7:

10-18.

Woodson JD, C. J. (2008). Coordination of gene expression between organellar and nuclear

genomes. Nature Reviews Genetics, 9:383-395.

Yang H, T. Y. (2013). Draft Genome Sequence, and a Sequence-Defined Genetic Linkage Map of the

Legume Crop Species Lupinus angustifolius L. Plos One, 8(5):e64799.

Yang M, Z. X.-M. (2010). The complete chloroplast genome sequence of date palm (Phoenix

dactylifera L.). Plos One, 5:e12762.

97

CHAPTER #9

APPENDIX

Fasta_qual_fastq.pl: A perl script which combines FASTA file and QUAL file of raw

reads to make a file of FASTQ file.

#!/usr/bin/perl

use warnings;

use strict;

use File::Basename;

my $inFasta = $ARGV[0];

98

my $baseName = basename($inFasta, qw/.fasta .fna/);

my $inQual = $baseName . ".qual";

my $outFastq = $baseName . ".fastq";

my %seqs;

$/ = ">";

open (FASTA, "<$inFasta");

my $junk = (<FASTA>);

while (my $frecord = <FASTA>) {

 chomp $frecord;

 my ($fdef, @seqLines) = split /\n/, $frecord;

 my $seq = join '', @seqLines;

 $seqs{$fdef} = $seq;

}

close FASTA;

open (QUAL, "<$inQual");

$junk = <QUAL>;

open (FASTQ, ">$outFastq");

while (my $qrecord = <QUAL>) {

 chomp $qrecord;

 my ($qdef, @qualLines) = split /\n/, $qrecord;

 my $qualString = join ' ', @qualLines;

 my @quals = split / /, $qualString;

 print FASTQ "@","$qdef\n";

 print FASTQ "$seqs{$qdef}\n";

 print FASTQ "+\n";

 foreach my $qual (@quals) {

 print FASTQ chr($qual + 33);

 }

 print FASTQ "\n";

}

close QUAL;

close FASTQ;

Trim_homopolymer.pl: An in-house perl script to trim homo-polymer errors.

#!/usr/bin/perl

use warnings;

use strict;

use File::Basename;

99

open(input_file,”>>mul_1.fasta”); /Open the FASTA file to be processed

qx (awk '/^>/{$0=(NR>1)?RS $0:$0;ORS=RS}!/>/{ORS=""}END{printf "\n"}1' input_file);

/ A shell command to remove new_lines from FASTA sequences/

Open(output_file,”>>processed_file.fna”);

qx(awk „{if(length>=700) print}‟ input_file > output_file);

qx(sed -n '/AAAAAAA/!p'|sed -n '/TTTTTTTTT/!p'|sed -n '/CCCCCCCCC/!p'|sed -n

'/GGGGGGG/!p'|sed -n '/NNNNNNNN/!p' output_file);

NewblerMetrices.pl: A perl script for extracting metrices of Newbler Assembly Run

#! /usr/bin/perl

Makes a tab-separated file from

the 454NewblerMetrics.txt file

from a newbler assembly

tested on newbler v 2.3 and 2.5.3

on both shotgun, shotgun + paired end and transcriptome assemblies

by Lex Nederbragt, lex.nederbragt@bio.uio.no

100

Release notes:

version 1, May 2011

first release

Version 1.1, September 2011

fixed change from pairDistanceAvg to computedPairDistanceAvg in newbler 2.6

current version:

version 1.2, September 2012

fixed a small erroneous tab in the output

run as

newblermetrics.pl 454Newblermetrics.txt

newblermetrics.pl /path/to/454Newblermetrics.txt

or

perl newblermetrics.pl 454Newblermetrics.txt

perl newblermetrics.pl /path/to/454Newblermetrics.txt

use strict;

use warnings;

###############################

variables

###############################

my $metrics; # holds the entire 454NewblerMetrics.txt file

my $section = ""; # section of the file, e.g. rundata

my $level2; # all lines with a single tab

my $level3; # all lines with two tabs

my %metrics = (); # hash with extracted results

my @lib_names; # names for paired end libraries

###############################

test inputfile

###############################

file given?

if (!$ARGV[0]){

 print STDERR "Please add a 454Newblermetrics.txt file on the command line...\n";

 exit[0];

}

file exists and is a file?

unless (-e $ARGV[0] && -f $ARGV[0]){

 print STDERR "File '$ARGV[0]' does not exist or is not a file...\n";

 exit[0];

}

101

file can be opened?

open METRICS , "<$ARGV[0]" or die "File '$ARGV[0]' can't be opened:\n$!";

read in the file

$/=undef; # set the record to 'slurp' the file

$metrics = <METRICS>;

correct file type?

unless ($metrics =~ /454 Life Sciences Corporation/ && $metrics =~ /Newbler Metrics

Results/){

 print STDERR "File '$ARGV[0]' does not appear to be a 454NewblerMetrics

file...\n";

 exit[0];

}

if ($metrics =~ /Date of Mapping: /){

 print STDERR "The script currently only works on 454NewblerMetrics.txt files

from newbler assemblies,

not from mappings (gsMapper, runmapping)...\n";

 exit[0];

}

###############################

process inputfile

###############################

foreach (split /\n/, $metrics){

 $section = $_ if /^\w/;

 # runData/pairedReadData

 if ($section eq "runData" || $section eq "pairedReadData"){

 if(/(numberOf.+) = (\d+), (\d+);/){

 $metrics{'reads'}{"$1Raw"}+=$2;

 $metrics{'reads'}{"$1Trimmed"}+=$3;

 }

 next;

 }

 # consensusResults section

 if ($section eq "consensusResults"){

 # type of metric/status is on level 2

 $level2 = $1 if /^\t(\w+)/;

 # pairedReadStatus

 # have to take care of both

 # newbler 2.5.3: pairDistanceAvg (or ...Dev)

 # newbler 2.6: computedPairDistanceAvg (or ...Dev)

 push @lib_names, $1 if/libraryName\s+= "(.+)";/;

102

 $metrics{$lib_names[-1]}{$1}=$2 if /(airDistance...)\s+= ([0-9\.]+);/;

 # other metrics

 $metrics{$level2}{$1}=$2 if /^\t\t(\w+)\s+= ([0-9\.]+)/;

 next;

 }

}

$/="\n"; # reset the record separator

###############################

between versions fixes

###############################

fix spelling mistake 'bug' from newbler 2.3

if ($metrics{'isotigMetrics'}{'numberWithOneConitg'}){

 $metrics{'isotigMetrics'}{'numberWithOneContig'} =

$metrics{'isotigMetrics'}{'numberWithOneConitg'}

}

###############################

output

###############################

print "Input\n";

print "Number of reads\t", $metrics{'reads'}{'numberOfReadsRaw'}, "\n";

print "Number of bases\t", $metrics{'reads'}{'numberOfBasesRaw'}, "\n";

print "Number of reads trimmed\t", $metrics{'reads'}{'numberOfReadsTrimmed'}, "\t",

 sprintf ("%.1f", 100*$metrics{'reads'}{'numberOfReadsTrimmed'}/

 $metrics{'reads'}{'numberOfReadsRaw'}),

"%\n";

print "Number of bases trimmed\t", $metrics{'reads'}{'numberOfBasesTrimmed'}, "\t",

 sprintf ("%.1f", 100*$metrics{'reads'}{'numberOfBasesTrimmed'}/

 $metrics{'reads'}{'numberOfBasesRaw'}),

"%\n";

print "\n";

print "Consensus results\n";

print "Number of reads assembled\t", $metrics{'readStatus'}{'numberAssembled'},"\t",

 (sprintf "%.1f", 100*$metrics{'readStatus'}{'numberAssembled'}/

 $metrics{'reads'}{'numberOfReadsTrimmed'})."%\n";

print "Number partial\t", $metrics{'readStatus'}{'numberPartial'},"\t",

 (sprintf "%.1f", 100*$metrics{'readStatus'}{'numberPartial'}/

 $metrics{'reads'}{'numberOfReadsTrimmed'})."%\n";

print "Number singleton\t", $metrics{'readStatus'}{'numberSingleton'},"\t",

 (sprintf "%.1f", 100*$metrics{'readStatus'}{'numberSingleton'}/

 $metrics{'reads'}{'numberOfReadsTrimmed'})."%\n";

103

print "Number repeat\t", $metrics{'readStatus'}{'numberRepeat'},"\t",

 (sprintf "%.1f", 100*$metrics{'readStatus'}{'numberRepeat'}/

 $metrics{'reads'}{'numberOfReadsTrimmed'})."%\n";

print "Number outlier\t", $metrics{'readStatus'}{'numberOutlier'},"\t",

 (sprintf "%.1f", 100*$metrics{'readStatus'}{'numberOutlier'}/

 $metrics{'reads'}{'numberOfReadsTrimmed'})."%\n";

print "Number too short\t", $metrics{'readStatus'}{'numberTooShort'},"\t",

 (sprintf "%.1f", 100*$metrics{'readStatus'}{'numberTooShort'}/

 $metrics{'reads'}{'numberOfReadsTrimmed'})."%\n";

print "\n";

if (exists $metrics{'scaffoldMetrics'}{'numberOfScaffolds'}){

 print "Scaffold Metrics\n";

 print "Number of scaffolds\t", $metrics{'scaffoldMetrics'}{'numberOfScaffolds'},

"\n";

 print "Number of bases\t", $metrics{'scaffoldMetrics'}{'numberOfBases'}, "\n";

 print "Average scaffold size\t", $metrics{'scaffoldMetrics'}{'avgScaffoldSize'}, "\n";

 print "N50 scaffold size\t", $metrics{'scaffoldMetrics'}{'N50ScaffoldSize'}, "\n";

 print "Largest scaffold size\t", $metrics{'scaffoldMetrics'}{'largestScaffoldSize'},

"\n";

 print "\n";

}

if (exists $metrics{'isogroupMetrics'}{'numberOfIsogroups'}){

 print "Isogroup Metrics\n";

 print "Number of isogroups\t", $metrics{'isogroupMetrics'}{'numberOfIsogroups'},

"\n";

 print "Average contig count\t", $metrics{'isogroupMetrics'}{'avgContigCnt'}, "\n";

 print "Largest contig count\t", $metrics{'isogroupMetrics'}{'largestContigCnt'}, "\n";

 print "Number with one contig\t",

$metrics{'isogroupMetrics'}{'numberWithOneContig'}, "\n\n";

 print "Average isotig count\t", $metrics{'isogroupMetrics'}{'avgIsotigCnt'}, "\n";

 print "Largest isotig count\t", $metrics{'isogroupMetrics'}{'largestIsotigCnt'}, "\n";

 print "Number with one isotig\t",

$metrics{'isogroupMetrics'}{'numberWithOneIsotig'}, "\n\n";

 print "Isotig Metrics\n";

 print "Number of Isotigs\t", $metrics{'isotigMetrics'}{'numberOfIsotigs'}, "\n";

 print "Average contig count\t", $metrics{'isotigMetrics'}{'avgContigCnt'}, "\n";

 print "Largest contig count\t", $metrics{'isotigMetrics'}{'largestContigCnt'}, "\n";

 print "Number with one contig\t",

$metrics{'isotigMetrics'}{'numberWithOneContig'}, "\n\n";

 print "Number of bases\t", $metrics{'isotigMetrics'}{'numberOfBases'}, "\n";

 print "Average isotig size\t", $metrics{'isotigMetrics'}{'avgIsotigSize'}, "\n";

 print "N50 isotig size\t", $metrics{'isotigMetrics'}{'N50IsotigSize'}, "\n";

104

 print "Largest isotig\t", $metrics{'isotigMetrics'}{'largestIsotigSize'}, "\n\n";

}

print "Large Contig Metrics\n";

print "Number of contigs\t", $metrics{'largeContigMetrics'}{'numberOfContigs'}, "\n";

print "Number of bases\t", $metrics{'largeContigMetrics'}{'numberOfBases'}, "\n";

print "Average contig size\t", $metrics{'largeContigMetrics'}{'avgContigSize'}, "\n";

print "N50 contig size\t", $metrics{'largeContigMetrics'}{'N50ContigSize'}, "\n";

print "Largest contig size\t", $metrics{'largeContigMetrics'}{'largestContigSize'}, "\n";

print "Q40 plus bases\t", $metrics{'largeContigMetrics'}{'Q40PlusBases'}, "\t",

 (sprintf "%.2f", (100*$metrics{'largeContigMetrics'}{'Q40PlusBases'}/

 $metrics{'largeContigMetrics'}{'numberOfBases'})),"%\n";

print "\n";

print "All Contig Metrics\n";

print "Number of contigs\t", $metrics{'allContigMetrics'}{'numberOfContigs'}, "\n";

print "Number of bases\t", $metrics{'allContigMetrics'}{'numberOfBases'}, "\n";

print "Average contig size\t",

 (sprintf "%.0f", $metrics{'allContigMetrics'}{'numberOfBases'}/

 $metrics{'allContigMetrics'}{'numberOfContigs'})."\n";

print "\n";

if (exists $metrics{'scaffoldMetrics'}{'numberOfScaffolds'}){

 print "Library Pair distance average (bp)\n";

 foreach my $lib_name (sort @lib_names){

 print "$lib_name\t",$metrics{$lib_name}{'airDistanceAvg'},"\n";}}

bb.454Contignet.pl: A perl script for establishing Contig-Connections.

#!/usr/bin/perl

#---#

Author: Douglas Senalik dsenalik@wisc.edu #

http://www.vcru.wisc.edu/simonlab/sdata/software/index.html#contignet #

Modified by: Simon Gladman simon.gladman@csiro.au #

2011 #

#---#

"Black Box" program series

=bb

Create a network of all interconnected 454 contigs

=cut bb

use strict;

use warnings;

use Getopt::Long; # for getting command line parameters

1.0.1 - Dec 29, 2010

1.0.2 - Feb 15, 2011 - removed extra line that prevented count of nodes from working

1.0.3 - Mar 12, 2011 - Support paired end data output files, add "@" prefix for list files,

add --nospline and --overlapmode parameters

1.0.3-Simon - May 18, 2011 - Added pseudo-links formed by paired end information

instead of just

newbler links

105

1.0.4 - September 2, 2011

Allow "+" or "-" in contig numbers, but it is ignored

Add parameter to specify output image type

Correct error in --tag help description

Add --label as a synonym for --tag

Fix bug in dead end and recursion limit labeling

1.0.5 - October 18, 2011

Allow keeping graphviz command file

change default overlap mode to "false" (it was "none" before)

to have same default output with newest version of neato

make scaffold connections optional, add --scaffold to use scaffold connections

1.0.6 - November 4, 2011

Filter out null contigs, excludes, etc. from command line

Optional ABySS-Explorer output file added

1.0.7 - May 4, 2012

Text output data file is now sorted by contig number

change the --scaffold parameter to --pairlinks,

since I may use --scaffold in the future for the actual scaffold section

Show paired end links and labels (--pairlinks) in a different color

Add support for flowthrough links (--flowthrough) in a third color

Add support for flowbetween links (--flowbetween) in a fourth color

Add paired end support to ABySS-Explorer ouput, and use exclusively the

new ABySS-Explorer 1.3.0 .dot format

my $version = "1.0.7";

configuration variables

my $bpabbreviation = "nt"; # set to b.p., bp, nt, or even a null string, as you prefer

my $defaultmaxlevel = 2;

my $debuglimit = 1000; # how long print debug messages while extending

my $numdigits = 5; # contig numbers filled out with leading zeroes to this length

my $scalefactor = 0.01; # convert b.p. to graphviz length by multiplying by this value

my $defaultoverlapmode = "false"; # neato overlap mode in graph section, "true" to disable

my $defaultouttype = "png"; # default image type (passed to neato)

my $dotheaderid = "adj"; # ABySS-Explorer .dot file header id

my $contiggraphtxt = "454ContigGraph.txt"; # this is defined by gsAssembler/Newbler

my $allcontigsfna = "454AllContigs.fna"; # this is defined by gsAssembler/Newbler

my $defaultminflowbetween = 1;

default color definitions

my $deadendcolor = "tomato";

my $recursionlimitcolor = "gold";

my $normallinkcolor = ""; # leave blank for the default color of black

my $normalfontcolor = $normallinkcolor;

my $forcedlinkcolor = "red"; # links from --force parameter

my $forcedfontcolor = $forcedlinkcolor;

my $pairedendlinkcolor = "dodgerblue"; # links from paired end information

106

my $pairedendfontcolor = $pairedendlinkcolor;

my $flowbetweenlinkcolor = "purple"; # links from flowthrough "F" information

my $flowbetweenfontcolor = $flowbetweenlinkcolor;

my $flowthroughlinkcolor = "forestgreen"; # links from flowthrough "I" information

my $flowthroughfontcolor = $flowthroughlinkcolor;

my $abyssk = 1; # we don't use kmers, so set this to 1 so coverage will be direct

conversion

my $abyssedge = 0; # negative kmer minus 1, thus zero

my $abyssevalue = 0; # we don't have a value for this, so just use zero always

global variables

my $ansiup = "\033[1A"; # terminal control

(my $prognopath = $0) =~ s/^.*[\/\\]//;

my @contiglen = (); # contig length

my @contigcov = (); # contig average coverage

my %ends = (); # key is contig . "3'" or "5'" or "0'", with optional "p", "f", or "i",

 # values are @[contig, 3'|5', #reads, flag]

my %pairs = (); #used for temporary storage of paired end information until

link ends can be sorted.. [Simon Gladman - 2011]

my %deadends = (); # key is contig, value is # of ends with reads extending (so 1 = dead

end)

my %minrl = (); # key is contig, value is lowest recursion level seen for this contig

my %seen = (); # key is contig, value is >=1 if we already traversed, undefined if not

 # actual value reflects recursion level when seen

my %edgeseen = (); # key is contig 3'or5' contig 3'or5', value = 1 or undefined

my %taghash = (); # key is contig, value is array of tags

my %colorhash = (); # key is contig, value is array of colors

my %excludehash = (); # key is contig, value is 1 to exclude

my %inverthash = (); # key is contig, value is 1 to exclude

my %data = (); # subset of %ends that will end up in graph

my %flowdata = (); # store flow through read data here

my $extensions = 0; # number of auto-extensions so far (for --extend)

my @extarr = (); # extensions will apply only to supplied contigs, not auto-added ones

my $infilename = ""; # 454ContigGraph.txt path and name

my @listofexcl = (); # list of excluded contigs, --listexcluded turns this on

my $deletecmdfile = 1; # becomes 0 if a command file name is explicitly specified

my $returncode = 0; # return code of this program

command line parameters

my $indirname = ""; # input file name

my $outfilename = ""; # output file name

my $outtype = $defaultouttype; # output image file format

107

my $cmdfilename = ""; # graphviz .dot language command file name

my $imgfilename = ""; # image file name

my $outfastaname = ""; # create FASTA file of contigs in output

my $level = $defaultmaxlevel; # maximum number of levels of recursion

my $boldabove = 0;

my @contig = (); # starting contig(s)

my @tag = (); # tag certain contigs

my @color = (); # color certain contigs

my @exclude = (); # never go into these contigs (e.g. repeat regions)

my @invert = (); # contigs to plot backwards

my $len = 1; # neato len parameter

my $listexcluded = 0; # list contigs that have been excluded

my $extend = 0; # auto extend for best contig

my @forcelink = (); # force links where none may exist

my $showbp = 0; # include length in b.p. in graph

my $showcov = 0; # include contig average coverage in graph

my $lowlimit = 0; # ignore links with read limit < this

my $highlimit = 0; # ignore links with read number > this

my $nolabel = 0; # disable dead end and recursion limit labelling

my $overlapmode = $defaultoverlapmode;

my $nospline = 0; # to disable splines

my $scaffold = 0; # to enable scaffold connection information

my $pairlinks = 0; # to enable paired end read connection information

my $flowthrough = 0; # to enable flowthrough connection information

my $flowbetween; # to enable flow between connection information, has optional value

also

my $alllinks = 0; # sets --pairlinks --flowthrough --flowbetween and --scaffold

my $abyssdotfile; # generate file for use with ABySS-Explorer

my $help = 0; # print help and exit

my $quiet = 0; # only show errors

my $debug = 0; # print extra debugging information

GetOptions (

 "indir=s" => \$indirname, # string

 "outfile=s" => \$outfilename, # string

 "type=s" => \$outtype, # string

 "cmdfile=s" => \$cmdfilename, # string

 "imgfile=s" => \$imgfilename, # string

 "fastaout=s" => \$outfastaname, # string

 "abyssexplorer=s"=> \$abyssdotfile, # string

 "level=i" => \$level, # integer

 "boldabove=i" => \$boldabove, # integer

 "contig=s" => \@contig, # string array

 "exclude=s" => \@exclude, # string array

 "invert=s" => \@invert, # string array

 "tag|label=s" => \@tag, # string array

 "color=s" => \@color, # string array

 "forcelink=s" => \@forcelink, # string array

 "len=s" => \$len, # real

 "extend=i" => \$extend, # integer

 "lowlimit=i" => \$lowlimit, # integer

108

 "highlimit=i" => \$highlimit, # integer

 "nolabel" => \$nolabel, # flag

 "nospline" => \$nospline, # flag

 "pairlinks" => \$pairlinks, # flag

 "scaffold" => \$scaffold, # flag

 "flowthrough" => \$flowthrough, # flag

 "flowbetween:s" => \$flowbetween, # flag/string

 "alllinks" => \$alllinks, # flag

 "overlapmode=s" => \$overlapmode, # string

 "listexcluded" => \$listexcluded, # flag

 "showbp|shownt" => \$showbp, # flag

 "showcoverage" => \$showcov, # flag

 "help" => \$help, # flag

 "quiet" => \$quiet, # flag

 "debug" => \$debug); # flag

debug implies not quiet

if ($debug) { $quiet = 0; }

unless (($indirname) and ($outfilename) and (scalar @contig)) { $help = 1; }

changing meaning of --scaffold for future use

if ($scaffold)

 { die "--scaffold has been changed to --pairlinks\n"; }

$flowbetween is a flag with an optional value, set default value if no value was specified

if ((defined $flowbetween) and ($flowbetween eq "")) { $flowbetween =

$defaultminflowbetween; }

if ($alllinks)

 {

 $pairlinks = 1;

 $flowthrough = 1;

 $flowbetween = $defaultminflowbetween;

 $scaffold = 1; # future use

 }

allow specification of only the directory

unless ((-d $indirname) or ($help))

 {

 print "Error, specified input directory \"$indirname\" does not exist or is not a directory\n";

 $help = 1;

 }

$infilename = $indirname;

unless ($infilename =~ m/\/$/) { $infilename .= "/"; }

$infilename .= $contiggraphtxt;

make sure input file exists

unless ((-e $infilename) or ($help))

 {

 print "Error, input file \"$infilename\" does not exist\n";

 $help = 1;

109

 }

if no --imgfile, create name based on --outfile

unless ($imgfilename) { $imgfilename = $outfilename . "." . $outtype; }

if no --cmdfile, create name based on --outfile

if ($cmdfilename)

 { $deletecmdfile = 0; }

else

 { $cmdfilename = $outfilename . ".graphviz"; }

if ($outfilename =~ m/png$/i) { warn "You probably do not want to append a .png extension

on --outfile\n"; }

OBSOLETE

ABySS-Explorer idiosyncracy

#if (($abyssexplorer) and ($abyssexplorer !~ m/-4.adj/))

{ print "WARNING: ABySS-Explorer versions <= 1.0.1 require that the input file name

ends in \"-4.adj\"\n"; }

print help screen

if ($help)

 {

 print "$prognopath version $version

Required parameters:

 --indir=xxx path to 454 assembly directory

 --outfile=xxx output text file of results

 --contig=xxx[,xxx]...

 one or more starting contig numbers,

 separated by comma, or multiple --contig

 parameters may be used. Use just the

 numeric portion of the contig

Optional parameters:

 --type=xxx output file format, default is \"$defaultouttype\"

 (anything besides \"png\" is experimental)

 --cmdfile=xxx graphviz command file in .dot language will be created

 using this name. If not specified, a temporary command

 file will be created, and it will be deleted when done

 --imgfile=xxx graph image file will be created with

 this name. If not specified, will be

 --outfile with .${outtype} extension added

 --fastaout=xxx create a FASTA file of all contigs in

 the output, save in this file

 --abyssexplorer=xxx Generate a .dot file that can be used for

 visualization with ABySS-Explorer 1.3.0,

 http://www.bcgsc.ca/platform/bioinfo/software/abyss-explorer";

for compatibility, the file name must end in \"-4.adj\"

If paired end information is available, and the

110

--pairlinks parameter is used, corresponding

\"-3.dist\" and \"-contigs.fa\" files will also be created

print "

 --flowthrough include connection information derived from

 reads that flow through more than two contigs

 --flowbetween[=x] include connection information derived from

 reads that flow from one contig into another

 by default, if the distance value is zero, it will not be

 shown, the optional value for this parameter is a minimum

 distance, defaulting to $defaultminflowbetween, set to --flowbetween=0 to show

 these links also

 --pairlinks include connection information derived

 from paired end reads, only applicable for assemblies

 containing paired end reads

 --alllinks sets --flowthrough, --flowbetween, and --pairlinks

 --tag=tagname,contig[,contig]...

 list of 1 or more contigs will be given

 this tag. Multiple --tag allowed.

 tagname is a text label that will be shown

 in the final image, e.g. --tag=\"ATP1,14,34\"

 --label a synonym for --tag

 --showbp show length in b.p. in graph

 --shownt a synonym for --showbp

 --showcoverage show average contig read coverage in graph

 --color=colorname,contig[,contig]...

 like --tag, but color the contig.

 for list of valid color names see

 http://www.graphviz.org/doc/info/colors.html

 --forcelink=xxx-5:yyy-3 force a link where none exists

 between specified ends, xxx and yyy are

 contig numbers

 --level=xxx maximum recursion level, default=$level

 --boldabove=xxx lines with read coverage >= this value

 will be drawn in bold. no default value

 --exclude=xxx[,xxx]...

 one or contigs to never traverse past,

 for example a repeated region contig

 --listexcluded print out a list of which excluded contigs

 are being ignored

 --invert=xxx[,xxx]...

 one or more contigs to plot backwards on

 the graph, i.e. 3' to 5' direction

 --extend=xxx auto extension for the single best

 path, value is maximum steps, default=$extend

 --lowlimit=xxx ignore connections < this number of reads

 --highlimit=xxx ignore connections > this number of reads

 --len=xxx len parameter to neato, default=$len

 --nolabel disable highlighting of dead ends, and limit

 of recursion contigs

 --overlapmode neato paramter, default is $overlapmode, one of

111

 none, true, scale

 --nospline disable spline when edges would overlap

 --help print this screen

 --quiet only print error messages

 --debug print extra debugging information

In place of lists of contigs, you can use \@filename to read in

values for that parameter from a file, e.g. --exclude=\@excl.txt

This program requires that the graphviz program \"neato\" be

available in the default PATH. The graphviz web site is

http://www.graphviz.org/

";

 exit 1;

 } # if ($help)

expand --contig lists separated by commas into single array

{

my @tmp = ();

foreach my $acontig (@contig)

 {

 $acontig = expandatprefix ($acontig);

 push (@tmp, split (/\s*[,;]\s*/, $acontig));

 }

cleaning and validation

@contig = ();

foreach my $item (@tmp)

 {

 $item = expandatprefix ($item);

 $item =~ s/^0+//; # remove leading zeroes

 $item =~ s/\s//g; # remove any white space

 $item =~ s/[\+\-]//g; # allow "+" or "-" in contig numbers, but it is ignored

 if ($item =~ m/[^\d]/) { die "Error, non-numeric character used for --contig \"$item\"\n";

}

 unless ($item =~ m/^$/) # skip null items

 { push (@contig, $item); }

 }

debugmsg ("Supplied contig list of ".scalar(@contig)." contigs = \"".join ("\" \"",

@contig)."\"");

}

expand --tag lists separated by commas into hash of arrays

112

{

my $ntags = 0;

foreach my $atag (@tag)

 {

 my @tmp = split (/\s*[,;]\s*/, $atag);

 my $taglabel = shift (@tmp);

 foreach my $item (@tmp)

 {

 $item = expandatprefix ($item);

 $item =~ s/^0+//; # remove leading zeroes

 unless ($item =~ m/^$/) # skip null items

 {

 push (@{$taghash{$item}}, $taglabel);

 $ntags++;

 }

 }

 } # foreach (@tag)

debugmsg ("Stored ".commify($ntags)." tags");

}

expand --color lists separated by commas into hash of arrays

{

my $ncolors = 0;

foreach my $acolor (@color)

 {

 my @tmp = split (/\s*[,;]\s*/, $acolor);

 my $colorlabel = shift (@tmp);

 foreach my $item (@tmp)

 {

 $item = expandatprefix ($item);

 $item =~ s/^0+//; # remove leading zeroes

 $item =~ s/[\-\+]//g; # remove plus or minus - has no meaning, but this is a convenience

to be compatible with bb.fastareorder

 unless ($item =~ m/^$/) # skip null items

 {

 push (@{$colorhash{$item}}, $colorlabel);

 $ncolors++;

 }

 }

 } # foreach (@color)

debugmsg ("Stored ".commify($ncolors)." colors");

}

113

expand --forcelink lists separated by commas into hash of arrays

{

my $nforce = 0;

foreach my $aforce (@forcelink)

 {

 my @tmp = split (/\s*[,;]\s*/, $aforce);

 foreach my $link (@tmp)

 {

 $link = expandatprefix ($link);

 my @parts = split (/\s*[:-]\s*/, $link);

 unless (scalar @parts == 4) { die "Invalid format for --forcelink \"$link\"\n"; }

 foreach (@parts)

 {

 s/^0+//; # remove leading zeroes

 s/'//g; # remove primes (they are optional)

 }

 # add this artificial link to the list

 push (@{$ends{$parts[0].$parts[1]."'"}}, [$parts[2], $parts[3]."'", 0]);

 push (@{$ends{$parts[2].$parts[3]."'"}}, [$parts[0], $parts[1]."'", 0]);

 }

 $nforce++;

 } # foreach (@forcelink)

debugmsg ("Stored ".commify($nforce)." forced links");

}

convert --exclude lists to a simple hash

{

foreach my $aexclude (@exclude)

 {

 foreach my $item (split (/\s*[,;]\s*/, $aexclude))

 {

 $item = expandatprefix ($item);

 # cleaning and validation

 $item =~ s/^0+//; # remove leading zeroes

 $item =~ s/\s//g; # remove any white space

 unless ($item =~ m/^$/) # skip null items

 {

 if ($item =~ m/[^\d]/) { die "Error, non-numeric character used for --exclude

\"$item\"\n"; }

 $excludehash{$item} = 1;

 }

 }

 }

114

debugmsg ("Stored ".commify(scalar keys %excludehash)." exclude contigs");

}

convert --invert lists to a simple hash

{

foreach my $ainvert (@invert)

 {

 $ainvert = expandatprefix ($ainvert);

 foreach my $item (split (/\s*[,;]\s*/, $ainvert))

 {

 $item = expandatprefix ($item);

 # cleaning and validation

 $item =~ s/^0+//; # remove leading zeroes

 $item =~ s/\s//g; # remove any white space

 unless ($item =~ m/^$/) # skip null items

 {

 if ($item =~ m/[^\d]/) { die "Error, non-numeric character used for --invert

\"$item\"\n"; }

 $inverthash{$item} = 1;

 }

 }

 }

debugmsg ("Stored ".commify(scalar keys %inverthash)." invert contigs");

}

parse 454ContigGraph.txt

sample content: refer to this excellent description for more info:

http://contig.wordpress.com/2010/04/13/newbler-output-iii-the-454contiggraph-txt-file

#1 contig00001 588 2.6

#2 contig00002 1072 6.8

#3 contig00003 644 4.1

#...

#C 7 3' 14770 5' 3

#C 12 3' 14824 5' 5

#C 12 3' 52148 5' 4

#...

#S 1 84148 1:+;2:+;gapOneNoEdges:186;3:+;4:+;5:+;6:+

#S 2 17530 7:+

#S 3 25222 8:+;9:-;10:-

;11:+;12:+;14:+;gapMultiEdges:4733;15:+;gapMultiEdges:4241;16:+;17:+;19:+

#...

115

#I 7

aCAACaTTATCATTGtATTTatATTCcTGTTtGAGATACGTGTGGACAGAGAATGTTG

GTTTTTTGGACTAGAATCGGATTTATCATTATTATAATGT...

#I 48 AGTTCGTCCTGGACGACTTGAGTT 11:19543-5'..16159-5';6:19543-

5'..60104-5'

#I 50

GGgTAATAGTTGACCGTCTTACGAAATtGGCACATTTTCTTCCAATTAACGAGAAA

TCTTCggtAGACAGACTAGTTCATATGTATGTGCGtGAAATC...

#...

#F 7 - 14770/3/0.0

#F 8 56895/6/0.0;54006/2/231.5 -

#F 12 - 14824/5/0.0;52148/4/0.0

#...

#P 1

10130/2/0.0;33848/3/0.0;34537/2/397.0;25104/2/679.5;15/170/698.4;6/2/1600.0;209/175/235

2.0;9364/2/3929.5;19/89/4351.2;16/128/5345.5;17/25/5380.7;14/15/603...

#P 2 1/284/927.3;20341/2/7324.0;23108/2/8174.5

4/210/2787.7;3/22/3918.7;39/2/4345.5

#P 3 4/183/1037.9;24637/4/6940.0

1/156/3004.0;2/22/3918.7;1675/2/4906.0;29922/3/5867.0;97/2/6139.5;7360/2/7464.0

{

my $lines = 0;

my $clines = 0;

my $ilines = 0;

my $flines = 0;

my $slines = 0;

my $plines = 0;

my $endsstored = 0;

open (my $INF, "<", $infilename) or die ("Error opening input file \"$infilename\": $!\n");

while (my $aline = <$INF>)

 {

 $lines++;

 # progress indicator

 unless ($quiet) { if (($lines % 1000) == 0) { print commify($lines), "\n", $ansiup; } }

 $aline =~ s/[\r\n]//g;

 my @cols = split (/\t/, $aline);

 if ($cols[0] eq "C")

 {

 $clines++;

 # store both orientations in hash

 my $keep = 1;

 if ($cols[5] < $lowlimit) { $keep = 0; }

 if (($highlimit) and ($cols[5] > $highlimit)) { $keep = 0; }

 if ($keep)

 {

116

 # store data from each end, the three columns are [0]=nextcontig

[1]=5'|3'|5'p|3'p|5'f|3'f|5'i... [2]=readnum

 push (@{$ends{$cols[1].$cols[2]}}, [$cols[3], $cols[4], $cols[5]]);

 # and store reciprocal end

 push (@{$ends{$cols[3].$cols[4]}}, [$cols[1], $cols[2], $cols[5]]);

 $endsstored+=2;

 } # if $keep

 if ($endsstored < $debuglimit)

 {

 my $txt = $keep?" Storing":"Not storing";

 debugmsg ("$txt ends: \$ends{$cols[1]$cols[2]} [$cols[3], $cols[4], $cols[5]];");

 debugmsg (" : \$ends{$cols[3]$cols[4]} [$cols[1], $cols[2], $cols[5]];");

 }

 } # "C"

 elsif ($cols[0] eq "I") # flowthrough information

 {

 $ilines++;

 if ($flowthrough)

 {

 # cols[1] is contig number

 # cols[2] is contig sequence (if <= 256 b.p.)

 # cols[3] is the through-flow information, a ";" delimited list of

 # the format 15:1805-3'..207-3'

 # cols[3] will sometimes be null

 if ($cols[3])

 {

 my @parts = split (/;/, $cols[3]);

 foreach my $apart (@parts)

 {

 my @subparts = split (/[:\-\.]/, $apart);

 # @subparts columns become [0]=15 [1]=1805 [2]=3' [3]=null [4]=207 [5]=3'

 push (@{$ends{$cols[1]."0'"."i"}}, [$subparts[1], $subparts[2], $subparts[0]]

);

 push (@{$ends{$cols[1]."0'"."i"}}, [$subparts[3], $subparts[4], $subparts[0]]

);

 } # foreach @leftparts

 } # if ($cols[3])

 } # if ($flowthrough)

 } # "I"

 elsif ($cols[0] eq "F") # flowbetween information

 {

 $flines++;

 if (defined $flowbetween)

 {

 # cols[1] is contig number

 # cols[2] is flow information for reads flowing from the 5' end of the contig

117

 # cols[3] is flow information for reads flowing from the 3' end of the contig

 my @leftparts = split (/;/, $cols[2]);

 my @rightparts = split (/;/, $cols[3]);

 # each part is of the format xx/yy/z.z where xx=contig yy=number of reads

z.z=distance in b.p.

 if ($cols[2] ne "-") # "-" is the indicator for null entry

 {

 foreach my $apart (@leftparts)

 {

 my @subparts = split (/\//, $apart);

 # this, and paired links is the only case where we save a fourth column in

 # the %ends hash, a distance in b.p. value

 # $flowbetween is also used as a minimum distance cutoff for filtering, so

 # filter by this distance value, and ignore if too short

 if ($subparts[2] >= $flowbetween)

 { push (@{$ends{$cols[1]."5'f"}}, [$subparts[0], "0'", $subparts[1],

$subparts[2]]); }

 } # foreach @leftparts

 } # if ne "-"

 if ($cols[3] ne "-") # "-" is the indicator for null entry

 {

 foreach my $apart (@rightparts)

 {

 my @subparts = split (/\//, $apart);

 if ($subparts[2] >= $flowbetween)

 { push (@{$ends{$cols[1]."3'f"}}, [$subparts[0], "0'", $subparts[1],

$subparts[2]]); }

 } # foreach @leftparts

 } # if ne "-"

 } # if (defined $flowbetween)

 } # "F"

 elsif ($cols[0] eq "S")

 {

 $slines++;

 } # "S"

 elsif ($cols[0] eq "P")

 {

 $plines++;

 if ($pairlinks) {

 my $con_number = $cols[1];

 my $fiveprime_connects = $cols[2];

 my $threeprime_connects = $cols[3];

 my @tmp = split ";", $fiveprime_connects;

 foreach my $connection (@tmp){

 #now split up the connection.

 next if $connection eq "-";

118

 my @x = split "/", $connection;

 my $termcontig = $x[0];

 my $num_connects = $x[1];

 my $distance = $x[2];

 if($num_connects >= $lowlimit){

 #store in temp pairs var and search through later for

termcontig details.

 push(@{$pairs{$con_number}}, [$termcontig, "5'",

$num_connects, $distance]);

 $endsstored += 2;

 if ($endsstored < $debuglimit)

 {

 debugmsg ("Storing ends:

\$ends{".$con_number."3'p} [$termcontig, 5', $num_connects];");

 debugmsg (" :

\$ends{".$termcontig."5'p} [$con_number, 3', $num_connects];");

 }

 }

 }

 @tmp = split ";", $threeprime_connects;

 foreach my $connection (@tmp){

 #now split up the connection

 next if $connection eq "-";

 my @x = split "/", $connection;

 my $termcontig = $x[0];

 my $num_connects = $x[1];

 my $distance = $x[2];

 if($num_connects >= $lowlimit){

 #store in temp pairs var and search through later for

termcontig details.

 push(@{$pairs{$con_number}}, [$termcontig, "3'",

$num_connects, $distance]);

 $endsstored += 2;

 if ($endsstored < $debuglimit)

 {

 debugmsg ("Storing ends:

\$ends{".$con_number."3'p} [$termcontig, 5', $num_connects];");

 debugmsg (" :

\$ends{".$termcontig."5'p} [$con_number, 3', $num_connects];");

 }

 }

 }

 } # if ($pairlinks)

 } # "P"

 elsif ($cols[0] =~ m/^\d+$/) # first section of file

 {

 $contiglen[$cols[0]] = $cols[2];

 $contigcov[$cols[0]] = $cols[3];

119

 } # section 1

 else

 {

 die ("Error on line $lines of file \"$infilename\", unknown type of content:\n$aline\n");

 }

 } # while <$INF>

close $INF;

debugmsg (commify($lines) . " lines read from input file \"$infilename\"");

debugmsg (commify($#contiglen) . " contig lengths were stored");

debugmsg (commify($clines) . " \"C\" lines were found");

debugmsg (commify($endsstored) . " ends were stored");

debugmsg (commify($ilines) . " \"I\" lines were found");

debugmsg (commify($flines) . " \"F\" lines were found");

debugmsg (commify($plines) . " \"P\" lines were found");

debugmsg (commify($slines) . " \"S\" lines were found (and ignored)");

}

make paired end information links

Added by Simon Gladman - CSIRO - 2011

Adds paired end links to the link data variable "%ends"

foreach my $key (keys %pairs){

 my @contig = @{$pairs{$key}};

 foreach my $tmp (@contig){

 my @x = @{$tmp};

 my $term_contig = $x[0];

 my @tcontig; # 10/11/2011 is this a bug? occassional not defined state here

 if ($pairs{$term_contig}) { @tcontig = @{$pairs{$term_contig}}; } # end

of fix

 #my @tcontig = @{$pairs{$term_contig}};

 foreach my $ttmp (@tcontig){

 my @y = @{$ttmp};

 if($y[0] == $key){

 push(@{$ends{$key."$x[1]"."p"}}, [$term_contig, "$y[1]",

$x[2], $x[3]]);

 push(@{$ends{$term_contig."$y[1]"."p"}}, [$key, "$x[1]",

$y[2], $y[3]]);

 last;

 }

120

 }

 }

}

sort data

sort data so that higher read coverage links come first

sorting is only needed if we will automatically extend network

if ($extend)

 {

 # extend applies only to command line contigs and not auto-generated ones

 foreach (@contig)

 { push (@extarr, $extend) } # but the $extend value just evaluates to "true" later

 debugmsg ("--extend=$extend, Sorting data");

 foreach my $key (keys %ends)

 {

 @{$ends{$key}} = sort {$b->[2] <=> $a->[2]} @{$ends{$key}};

 } # foreach my $key (keys %ends)

 debugmsg ("Extend contig list of ".scalar(@extarr)." contigs");

 } # if ($extend)

dead end detection

dead ends are contigs which might have reads extending to another contig

from either the 5' or 3' end, but not both. Both ends could be dead ends, too.

%deadends{contigid} is # of ends extending, so 1 = dead end,

2 = continues both ends, 0=isolated contig without any connections

unless ($nolabel)

 {

 debugmsg ("Dead end detection");

 foreach my $key (keys %ends)

 {

 (my $contig = $key) =~ s/[530]'[pfis]?$//; # remove 5' or 3' or 5'p etc at end of string

 # note that this version of $contig does not have leading zeroes

 $deadends{$contig}++;

 @{$ends{$key}} = sort {$b->[2] <=> $a->[2]} @{$ends{$key}};

 } # foreach my $key (keys %ends)

 } # unless ($nolabel)

construct network from starting point(s)

121

my $totalnodes = 0;

my $index = 0;

foreach my $acontig (@contig)

 {

 my $dbgtxt = (defined $extarr[$index])?"user-defined":"auto-extend";

 debugmsg ("Contig #".($index+1)."=$dbgtxt, Recursion starting at \"$acontig\"");

 # when hit end of our specified contigs

 unless (defined $extarr[$index])

 {

 if ($extend) { debugmsg ("At end of specified contigs, turning off extend"); }

 $extend = 0;

 }

 recurse ($acontig, "", "", 0, $extend);

 $index++;

 } # foreach my $acontig (@contig)

unless ($quiet) { print commify($totalnodes), " nodes present in output\n"; }

sub recurse { my ($startcontig, $camefrom, $fromend, $recurselevel, $followlevel) = @_;

 unless ($totalnodes > $debuglimit) { debugmsg ("recurse \"$startcontig\",

camefrom=\"$camefrom\" end=\"$fromend\" recurselevel=$recurselevel"); }

 # data for this contig is in @ { %ends{contig . 5'|3'|5'p|3'p|5'f|3'f|5'i... } } [0]=nextcontig

[1]=5'|3'|5'p|3'p"5'f|3'f|5'i... [2]=readnum

 # store lowest recursion level seen for this contig

 unless ($nolabel)

 {

 if ((! defined $minrl{$startcontig}) or ($recurselevel < $minrl{$startcontig}))

 { $minrl{$startcontig} = $recurselevel; }

 } # unless ($nolabel)

 # here is the limit to recursion

 my $stophere = 0;

 if ($recurselevel > $level)

 {

 unless ($totalnodes > $debuglimit) { debugmsg ("recursion for \"$startcontig\" at limit

level=$level, returning"); }

 $stophere = 1;

 }

 # return if this contig is on the exclude list

 elsif ($excludehash{$startcontig})

 {

 unless ($totalnodes > $debuglimit) { debugmsg ("contig \"$startcontig\" on exclude list,

returning"); }

122

 # save information for list of excluded option

 my @row = ($startcontig, $camefrom, $fromend);

 push (@listofexcl, \@row);

 return 0;

was this wrong? always return if on exclude list $stophere = 1;

 }

 # skip return if follow allows it

 if (($stophere) and ($followlevel < 1)) { return 0; }

 # count nodes

 unless (defined $seen{$startcontig})

 {

 if ($startcontig =~ m/^\s*$/) { die "Error, null contig in sub recurse($startcontig,

$camefrom, $fromend, $recurselevel, $followlevel)\n"; }

 $seen{$startcontig} = 1;

 $totalnodes++;

 }

 foreach my $end ("5'", "3'", "5'p", "3'p", "5'f", "3'f", "5'i", "3'i", "0'")

 {

 my $first = 1;

 foreach my $contigref (@{$ends{$startcontig.$end}})

 {

 unless ($totalnodes > $debuglimit) { debugmsg ("from \"$startcontig\" end \"$end\"

find linked contig ".join(";",@$contigref)); }

 # always skip links back to where we just came from (and don't clear $first flag)

 if ($contigref->[0] eq $camefrom)

 {

 unless ($totalnodes > $debuglimit) { debugmsg ("\"$startcontig\": skipping link

back to source contig \"$camefrom\""); }

 next;

 }

 # skip data storing if this edge was already stored

 unless (defined $edgeseen{$startcontig.$end.$contigref->[0].$contigref->[1]})

 {

 debugmsg ("Storing in \@data at key \"$startcontig$end\": [\"".join ("\", \"",

@$contigref)."\"]");

 push (@{$data{$startcontig.$end}}, $contigref); # $contigref is array reference

 if (($first) and ($followlevel))

 {

 unless ($totalnodes > $debuglimit) { debugmsg ("auto extension following

contig \"$contigref->[0]\", \$extensions=$extensions"); }

 $extensions++;

 $edgeseen{$startcontig.$end.$contigref->[0].$contigref->[1]} = $recurselevel;

 recurse ($contigref->[0], $startcontig, $end, $recurselevel, $followlevel-1);

 } # if

123

 } # unless $edgeseen

 else

 { debugmsg ("Seen, not storing in \@data at key \"$startcontig$end\": [\"".join ("\",

\"", @$contigref)."\"]"); }

 # recurse if edge seen level is higher than current level or not seen before

 if ((! defined $edgeseen{$startcontig.$end.$contigref->[0].$contigref->[1]}) or

 ($edgeseen{$startcontig.$end.$contigref->[0].$contigref->[1]} > $recurselevel))

 {

 $edgeseen{$startcontig.$end.$contigref->[0].$contigref->[1]} = $recurselevel;

 recurse ($contigref->[0], $startcontig, $end, $recurselevel+1, 0);

 }

 $first = 0;

 } # foreach $contigref

 } # foreach $end

} # sub recurse

consolidate pairs of flow between links

collapseflowbetween();

create output table text file

createoutputtable();

generate optional ABySS-Explorer .dot file

if ($abyssdotfile) { createabyssfile(); }

generate optional FASTA file

if ($outfastaname) { createfastafile(); }

124

create graphviz command file (.dot file)

my $savednodes = 0;

my $savededges = 0;

debugmsg ("Creating graphviz command file \"$cmdfilename\"");

open (my $OUTF, ">", $cmdfilename) or die ("Error creating graphviz command file

\"$cmdfilename\": $!\n");

print $OUTF "graph G\n";

print $OUTF " {\n";

print $OUTF " edge [len=$len];\n";

my $splinemode = $nospline?"false":"true";

print $OUTF " graph [overlap=$overlapmode,splines=$splinemode];\n";

print $OUTF " node [shape=plaintext];\n";

table of nodes

print $OUTF "\n // Nodes\n";

foreach my $seencontig (keys %seen)

 {

 my $contigid = sprintf ("%0${numdigits}d", $seencontig);

 # box is proportional to size, except if contig is small,

 # the box is still as large as the labels it contains

 my $scaledcontiglen = sprintf ("%1d", $contiglen[$seencontig] * $scalefactor);

 # define the box representing the contig, implemented as a table in HTML

 print $OUTF " c$contigid [label=< <TABLE BORDER=\"1\" CELLBORDER=\"0\"

CELLSPACING=\"0\" CELLPADDING=\"0\"";

 if ($colorhash{$seencontig}->[0]) { print $OUTF "

BGCOLOR=\"$colorhash{$seencontig}->[0]\""; }

 # top row is always present

 print $OUTF "><TR>";

 if ($inverthash{$seencontig})

 { print $OUTF "<TD PORT=\"R\">3'</TD>"; }

 else

 { print $OUTF "<TD PORT=\"L\">5'</TD>"; }

 print $OUTF "<TD PORT=\"C\" WIDTH=\"$scaledcontiglen\"";

 print $OUTF ">c$contigid</TD>";

 if ($inverthash{$seencontig})

 { print $OUTF "<TD PORT=\"L\">5'</TD>"; }

 else

 { print $OUTF "<TD PORT=\"R\">3'</TD>"; }

 print $OUTF "</TR>";

 # optional table row for contig size

 if ($showbp)

 { print $OUTF "<TR><TD COLSPAN=\"3\">",commify($contiglen[$contigid]),"

$bpabbreviation</TD></TR>"; }

 # optional table row for coverage

125

 if ($showcov)

 { print $OUTF "<TR><TD

COLSPAN=\"3\">cov=",commify($contigcov[$contigid]),"</TD></TR>"; }

 # one or more optional rows for labels specified on the command line

 if ($taghash{$seencontig}->[0])

 {

 foreach my $tag (@{$taghash{$seencontig}})

 { print $OUTF "<TR><TD COLSPAN=\"3\">$tag</TD></TR>"; }

 }

 # optional final rows for dead end contigs, or recursion limit contigs

 unless ($nolabel)

 {

 if ((! defined $deadends{$seencontig}) or ($deadends{$seencontig} <= 1))

 { print $OUTF "<TR><TD COLSPAN=\"3\" BGCOLOR=\"$deadendcolor\">Dead

End</TD></TR>"; }

 if ((defined $minrl{$seencontig}) and ($minrl{$seencontig} >= $level))

 { print $OUTF "<TR><TD COLSPAN=\"3\"

BGCOLOR=\"$recursionlimitcolor\">Recursion limit</TD></TR>"; }

 } # unless ($nolabel)

 # and the end of this huge mess of HTML

 print $OUTF "</TABLE> >];\n";

 } # foreach my $seencontig (keys %seen)

debugmsg ("Saved ".commify($savednodes)." nodes");

table of edges (connections)

print $OUTF "\n // Adjacency Edges\n";

my %alreadydrawn = ();

foreach my $key (keys %data)

 {

 $key =~ m/^(.*)([530]'[pfis]?)$/;

 my $srcend = $2;

 my $srccontig = sprintf ("%0${numdigits}d", $1);

 my $srclr = "C";

 if ($srcend =~ m/5'/) { $srclr = "L"; }

 if ($srcend =~ m/3'/) { $srclr = "R"; }

 unless ($srclr) { die "Error, no valid end at \"$key\"\n"; }

 if ($savededges < $debuglimit) { debugmsg ("Key=\"$key\" Contig=\"$srccontig\"

End=\"$srcend\" Port=\"$srclr\""); }

 foreach my $edgeref (@{$data{$key}}) # edgeref elements: [0]=contig(no leading 0)

[1]=5'|3'|5'p|3'p|5'f|3'f|5'i... [2]=readnumber

 {

 # skip those final edges not leading to a node in the %seen list,

 # or those we have deleted by marking with "X"

 if (($seen{$edgeref->[0]}) and ($edgeref->[1] ne "X"))

 {

126

 if ($savededges < $debuglimit) { debugmsg ("Edge=[\"$edgeref->[0]\" \"$edgeref-

>[1]\" \"$edgeref->[2]\"]"); }

 my $contigid = sprintf ("%0${numdigits}d", $edgeref->[0]); # format for graph has

leading zeroes

 my $lr = "C";

 if ($edgeref->[1] =~ m/5'/) { $lr = "L"; }

 if ($edgeref->[1] =~ m/3'/) { $lr = "R"; }

 unless ($lr) { die "Error no valid end at \"$edgeref->[0]\"\n"; }

 unless ($alreadydrawn{$srccontig.$srclr."-".$contigid.$lr})

 {

 my $linklabel = $edgeref->[2];

 if ($edgeref->[3])

 {

 # if the distance is 10 b.p. or greater, remove the decimal places to eliminate

clutter

 if ($edgeref->[3] >= 10) { $edgeref->[3] =~ s/\..*$//; }

 $linklabel .= "/" . $edgeref->[3] . $bpabbreviation;

 }

 print $OUTF " \"c$srccontig\":$srclr -- \"c$contigid\":$lr [label=\"$linklabel\"";

 # bold for high coverage links

 if (($boldabove) and ($edgeref->[2] >= $boldabove)) { print $OUTF "

style=bold"; }

 # specify colors of lines and labels connecting contigs

 if ($edgeref->[2] == 0) # forced link

 { print $OUTF " color=$forcedlinkcolor fontcolor=$forcedfontcolor"; }

 elsif (($srcend =~ m/p/) or ($edgeref->[1] =~ m/p/)) # paired end link

 { print $OUTF " color=$pairedendlinkcolor fontcolor=$pairedendfontcolor"; }

 elsif (($srcend =~ m/f/) or ($edgeref->[1] =~ m/f/)) # flowbetween link

 { print $OUTF " color=$flowbetweenlinkcolor

fontcolor=$flowbetweenfontcolor"; }

 elsif (($srcend =~ m/i/) or ($edgeref->[1] =~ m/i/)) # flowthrough link

 { print $OUTF " color=$flowthroughlinkcolor fontcolor=$flowthroughfontcolor";

}

 else # if $normallinkcolor is a null string, don't specify any color, use default of

black

 {

 if ($normallinkcolor) { print $OUTF " color=$normallinkcolor"; }

 if ($normalfontcolor) { print $OUTF " fontcolor=$normalfontcolor"; }

 }

 print $OUTF "];\n";

 $alreadydrawn{$contigid.$lr."-".$srccontig.$srclr} = 1; # note we store in reverse

orientation here

 $savededges++;

 }

 }

127

 } # foreach my $edgeref (@$arrayref)

 } # foreach my $arrayref (keys %data)

debugmsg ("Saved ".commify($savededges)." edges");

print $OUTF " }\n";

close $OUTF;

run graphviz program neato

my $cmd = "neato -T${outtype} -o\"$imgfilename\" \"$cmdfilename\"";

debugmsg ("running command \"$cmd\"");

my $result = system ($cmd);

if ($result)

 {

 print "Problem creating image. Error code $result returned from command \"$cmd\"\n";

 $returncode = $result;

 }

else

 {

 unless ($quiet)

 { print "Success\n"; }

 }

remove graphviz command file

if ($deletecmdfile) { unlink $cmdfilename; }

print out list of excluded contigs

if ($listexcluded)

 {

 print "List of excluded contigs\n";

 print "Contig\tLinked from\tFrom End\n";

 foreach my $rowref (@listofexcl)

 { print join ("\t", @{$rowref}), "\n"; }

 } # if ($listexcluded)

end of program

exit $returncode;

128

sub collapseflowbetween {

flowbetween links do not have a ending end, so are designated 0' there,

but since they come in pairs, we can figure out the ends that way

and consolidate the two links into one to eliminate clutter

global variables (command line parameters) used:

other global variables uses

%data

my %finder;

first step is to create an index

foreach my $key (keys %data)

 {

 next unless ($key =~ m/f/);

 unless ($key =~ m/^(.*)([530]'[pfis]?)$/) { die "Program bug parsing key \"$key\"\n"; }

 my $srcend = $2;

 my $srccontig = $1; #sprintf ("%0${numdigits}d", $1);

 foreach my $edgeref (@{$data{$key}}) # [0]contig(no leading 0)

[1]5'|3'|5'p|3'p|5'f|3'f|5'i... [2]readnumber [3]distance

 {

 if ($edgeref->[1] =~ m/0'/)

 {

 my $bothkey = $srccontig . ":" . $edgeref->[0] . ":" . $edgeref->[3]; # omit source end

in this key

 debugmsg ("Save collapsible reference \"$bothkey\" from key \"$key\"");

 # save the source end as array element [4]

 $edgeref->[4] = $srcend;

 push (@{$finder{$bothkey}}, $edgeref);

 }

 } # foreach $edgeref

 } # foreach my $key (keys %data)

second step is to check the index for unique reciprocal links

foreach my $key (keys %data)

 {

 next unless ($key =~ m/f/);

 unless ($key =~ m/^(.*)([530]'[pfis]?)$/) { die "Program bug parsing key \"$key\"\n"; }

 my $srcend = $2;

 my $srccontig = $1;

 foreach my $edgeref (@{$data{$key}}) # [0]contig(no leading 0)

[1]5'|3'|5'p|3'p|5'f|3'f|5'i... [2]readnumber [3]distance

 {

 my $bothkey = $srccontig . ":" . $edgeref->[0] . ":" . $edgeref->[3];

 my $reversekey = $edgeref->[0] . ":" . $srccontig . ":" . $edgeref->[3];

 if (($finder{$bothkey}) and ($finder{$reversekey}))

 {

129

 # if by chance multiple matches, do not merge links

 if ((scalar @{$finder{$bothkey}} == 1) and (scalar @{$finder{$reversekey}} == 1

))

 {

 debugmsg ("Collapsing link \"$bothkey\" <=> \"$reversekey\"");

 my @parts = split (/:/, $bothkey);

 # look up the correct other end of this link from the other member of the reciprocal

pair

 my $correctotherend = $finder{$reversekey}->[0]->[4];

 # save new link

 push @{$data{$key}}, [$edgeref->[0], $correctotherend, $edgeref->[2], $edgeref-

>[3]];

 # set flag on old links to indicate that they should be ignored later

 # the value from %finder is a reference back to the $edgeref from %data,

 # so here we are modifying the %data hash indirectly

 $finder{$bothkey}->[0]->[1] = "X";

 $finder{$reversekey}->[0]->[1] = "X";

 # finished processing, remove both original links from %finder hash

 # to avoid hitting the same link again in the reverse orientation

 undef ($finder{$bothkey});

 undef ($finder{$reversekey});

 }

 else

 { debugmsg ("Ignoring multiple collapsible links for \"$bothkey\" or

\"$reversekey\""); }

 }

 } # foreach $edgeref

 } # foreach my $key (keys %data)

} # sub collapseflowbetween

sub createoutputtable {

global variables (command line parameters) used:

$outfilename, $pairlinks, $flowthrough, $flowbetween, $scaffold

other global variables uses

%data

my %alreadyprinted = ();

my $printededges = 0;

open (my $OUTF, ">", $outfilename) or die ("Error opening output file \"$outfilename\":

$!\n");

print $OUTF join ("\t", "#contig", "contiglen", "avg.cov.", "5'or3'", "is linked to", "5'or3'",

"by read num", "contiglen", "avg.cov.");

if (($pairlinks) or ($flowthrough) or (defined $flowbetween) or ($scaffold))

 { print $OUTF "\tlink type"; }

print $OUTF "\n";

130

foreach my $key (sort { ($a=~m/^(\d+)[530]'/)[0] <=> ($b=~m/^(\d+)[530]'/)[0] } keys

%data)

 {

 unless ($key =~ m/^(.*)([530]'[pfis]?)$/) { die "Program bug, unparsable key \"$key\"\n";

}

 my $srccontig = $1;

 my $srcend = $2;

 foreach my $edgeref (@{$data{$key}}) # [0]contig(no leading 0)

[1]5'|3'|5'p|3'p|5'f|3'f|5'i... [2]readnumber

 {

 unless (($alreadyprinted{$srccontig.$srcend."-".$edgeref->[0].$edgeref->[1]}) or (

$edgeref->[1] eq "X"))

 {

 print $OUTF join ("\t", $srccontig, $contiglen[$srccontig], $contigcov[$srccontig],

 $srcend, $edgeref->[0], $edgeref->[1], $edgeref->[2],

 $contiglen[$edgeref->[0]], $contigcov[$edgeref->[0]]);

 if (($pairlinks) or ($flowthrough) or (defined $flowbetween) or ($scaffold))

 {

 my $t = "direct";

 if ($srcend =~ m/p/) { $t = "paired-end"; }

 if ($srcend =~ m/f/) { $t = "flowbetween"; }

 if ($srcend =~ m/i/) { $t = "flowthrough"; }

 if ($srcend =~ m/s/) { $t = "scaffold"; }

 print $OUTF "\t", $t;

 }

 print $OUTF "\n";

 $alreadyprinted{$edgeref->[0].$edgeref->[1]."-".$srccontig.$srcend} = 1; # note we

store in reverse orientation here

 $printededges++;

 }

 } # foreach my $edgeref (@{$data{$key}})

 } # foreach my $arrayref (keys %data)

debugmsg ("Printed ".commify($printededges)." edges to output file \"$outfilename\"");

close $OUTF;

} # sub createoutputtable

sub createabyssfile {

 # global variables (command line parameters) used:

 # $abyssdotfile, $pairlinks, $flowthrough, $flowbetween, $scaffold

 # other global variables uses

 # %data

 # collect connection data

 my %aedata; # direct links

 my %aepdata; # paired end links

 foreach my $key (keys %data)

131

 {

 unless ($key =~ m/^(.*)([530]'[pfis]?)$/) { die "Program bug parsing key \"$key\"\n"; }

 my $srccontig = $1;

 my $srcend = $2;

 debugmsg ("AE: key=\"$key\" becomes srccontig=\"$srccontig\" srcend=\"$srcend\"");

 foreach my $edgeref (@{$data{$key}}) # edgeref elements: [0]=contig(no leading 0)

[1]=5'|3'|5'p|3'p|5'i... [2]=readnumber [3]=distance

 {

 if ($edgeref->[1] eq "X") # masked entry, ignore it

 {

 debugmsg ("AE: masked edgeref \"$edgeref->[0]\" \"$edgeref->[1]\" \"$edgeref-

>[2]\"");

 next;

 }

 if ($key !~ m/[pfis]/) # direct connection

 {

 my $nreads = $edgeref->[2];

 my $distance = 0;

 debugmsg ("AE: direct edgeref \"$edgeref->[0]\" \"$edgeref->[1]\" \"$edgeref-

>[2]\"");

 # values assigned here are not currently used, just the state of being defined

 $aedata{$srccontig}->{$srcend}->{$edgeref->[0]}->{$edgeref->[1]} = [

$distance, $nreads]; # $nreads would be zero for forced links

 # if no links otherwise show up, still need a dummy line in the .adj file

 $aedata{$edgeref->[0]}->{used} = 1;

 }

 elsif ($key =~ m/p/) # paired end connection

 {

 my $nreads = $edgeref->[2];

 my $distance = $edgeref->[3];

 debugmsg ("AE: paired-end edgeref \"$edgeref->[0]\" \"$edgeref->[1]\"

\"$edgeref->[2]\" \"$edgeref->[3]\"");

 unless ($distance) { die "Program bug distance = \"$distance\" key $key\n"; }

 $aepdata{$srccontig}->{$srcend}->{$edgeref->[0]}->{$edgeref->[1]} = [

$distance, $nreads];

 $aepdata{$edgeref->[0]}->{used} = 1;

 }

 } # foreach my $edgeref (@{$data{$key}})

 } # foreach my $arrayref (keys %data)

 ##### ABySS-Explorer 1.3.0 .dot output file example lines

 # parts of the example file SRP000220-6.dot

 #digraph adj {

 #graph [k=32]

 #edge [d=-31]

 #"18+" [l=334 C=32002]

 #"18-" [l=334 C=32002]

 #...

 #"1807+" -> "1811-" [d=-706]

 #"1807+" -> "1825+" [d=-706]

132

 #

 # from SRP000220-6.path1.dot

 # "1861+" -> "1863+" [d=35 e=1.6 n=172]

 # "1861+" -> "1886-" [d=-13 e=1.8 n=135]

 # not sure about use of this file, not loadable SRX000430-6.dist.dot

 #digraph dist {

 #graph [k=32 s=100 n=10]

 #"18+" -> "71-" [d=320 e=2.6 n=62]

 debugmsg ("Creating ABySS-Explorer .dot file \"$abyssdotfile\"");

 open (my $OUTF, ">", $abyssdotfile) or die ("Error creating ABySS-Explorer .dot file

\"$abyssdotfile\": $!\n");

 # start of .dot file, the header line, I don't know if other names than "adj" are valid, I didn't

check

 print $OUTF "digraph $dotheaderid \{\n";

 print $OUTF "graph [k=", $abyssk, "]\n"; # this will be 1 because we don't use kmers

 print $OUTF "edge [d=", $abyssedge, "]\n";

 ### Vertices

 {

 my %list; # make a list of just the contig numbers, but from both shotgun and paired end

 foreach my $acontig (keys %aedata)

 {

 if ($aedata{$acontig}->{used})

 #$acontig =~ s/[530]'[pfis]?//;

 { $list{$acontig} = 1; }

 }

 foreach my $acontig (keys %aepdata)

 {

 if ($aepdata{$acontig}->{used})

 { $list{$acontig} = 1; }

 }

 foreach my $acontig (sort { $a <=> $b } keys %list)

 {

 # coverage must be an integer for ABySS-Explorer, so round to nearest integer

 # multiply coverage by length because ABySS-Explorer uses kmer coverage, we need to

simulate that

 my $avgcov = sprintf("%0d", ($contigcov[$acontig] * $contiglen[$acontig]));

 # print contig here

 print $OUTF "\"" . $acontig . "+\" [l=" . $contiglen[$acontig] . " C=" . $avgcov . "]\n";

 print $OUTF "\"" . $acontig . "-\" [l=" . $contiglen[$acontig] . " C=" . $avgcov . "]\n";

 } # foreach my $acontig %data

 }

 ### adj pattern

 foreach my $acontig (sort { $a <=> $b } keys %aedata) # $acontig is just a contig

number

133

 {

 debugmsg ("AE: write adj data for contig \"$acontig\"");

 foreach my $fend (sort keys %{$aedata{$acontig}})

 {

 next if ($fend !~ m/\d/); # i.e., ne 'used'

 foreach my $rcontig (sort { $a <=> $b } keys %{$aedata{$acontig}->{$fend}})

 {

 foreach my $rend (sort keys %{$aedata{$acontig}->{$fend}->{$rcontig}})

 {

 # currently only use defined state, values ignored for direct connections

 # my ($distance, $nreads) = @{$aepdata{$acontig}->{$fend}->{$rcontig}-

>{$rend}};

 # + and - are backwards from what looks natural, so that ABySS-Explorer

 # defaults to showing arrows 5' to 3'

 # 3'->5' = - - 3'->3' = - +

 # 5'->5' = + - 5'->3' = + +

 my $fdir = ($fend=~m/5/)?"+":"-";

 my $rdir = ($rend=~m/3/)?"+":"-";

 # print link here

 print $OUTF "\"${acontig}${fdir}\" -> \"${rcontig}${rdir}\"\n";

 debugmsg ("AE: rcontig=$rcontig pm=$rdir link is \"${acontig}${fdir}\" ->

\"${rcontig}${rdir}\"");

 } # foreach $rend

 } # foreach $rcontig

 } # foreach $fend

 } # foreach my $acontig %aedata

 ### dist pattern

 foreach my $acontig (sort { $a <=> $b } keys %aepdata)

 {

 debugmsg ("AE: write dist data for contig \"$acontig\"");

 foreach my $fend (sort keys %{$aepdata{$acontig}})

 {

 next if ($fend !~ m/\d/); # i.e., ne 'used'

 foreach my $rcontig (sort { $a <=> $b } keys %{$aepdata{$acontig}->{$fend}})

 {

 if ($fend !~ m/p/) { die "Program bug: \%aepdata key for $acontig has no \"p\":

\"$fend\"\n"; }

 foreach my $rend (sort keys %{$aepdata{$acontig}->{$fend}->{$rcontig}})

 {

 my ($distance, $nreads) = @{$aepdata{$acontig}->{$fend}->{$rcontig}-

>{$rend}};

 unless ($distance) { die "Program bug, paired end distance not defined contig

$acontig end $fend to end $rcontig end $rend\n"; }

 # 3'->5' = - - 3'->3' = - +

 # 5'->5' = + - 5'->3' = + +

 my $fdir = ($fend=~m/5/)?"+":"-";

134

 my $rdir = ($rend=~m/3/)?"+":"-";

 # special precise formatting needed by ABySS-Explorer

 $distance = int ($distance + 0.5); # must be integer

 my $e = sprintf ("%0.1f", $abyssevalue); # units are b.p., required 1 decimal

place

 my $n = int($nreads); # n is number of mates, must be integer, here we use the

number of reads, same thing

 # print link here

 print $OUTF "\"${acontig}${fdir}\" -> \"${rcontig}${rdir}\" [d=$distance e=$e

n=$n]\n";

 debugmsg ("AE: write pe link \"${acontig}${fdir}\" -> \"${rcontig}${rdir}\"

[d=$distance e=$e n=$n]");

 } # foreach $rend

 } # foreach $rcontig

 } # foreach $fend

 } # foreach my $acontig %aepdata

 # end of file

 print $OUTF "\}\n";

 close $OUTF;

} # sub createabyssfile

sub createfastafile {

 # global variables (command line parameters) used:

 # $indirname, $outfastaname

 # other global variables uses

 # %seen, $bpabbreviation

 my %fasta = (); # store all contigs in memory

 my $fastainfilename = $indirname;

 unless ($fastainfilename =~ m/\/$/) { $fastainfilename .= "/"; }

 $fastainfilename .= $allcontigsfna;

 my $lines = 0;

 my $sequences = 0;

 my $seqsaved = 0;

 my $bpsaved = 0;

 my $saveflag = 0;

 my $id = "";

 open (my $INF, "<", $fastainfilename) or die ("Error opening input file

\"$fastainfilename\": $!\n");

 while (my $aline = <$INF>)

 {

 $lines++;

 $aline =~ s/[\r\n]//g;

135

 if ($aline =~ m/^>([^\s]*)/)

 {

 $id = $1; # up to first white space

 $id =~ s/contig0*//; # remove "contig" and any leading zeroes

 if ($id =~ m/^\s*$/) { die "Error, null contig name from line $lines of file

\"$fastainfilename\"\n"; }

 $sequences++;

 $saveflag = $seen{$id};

 } # if

 if ($saveflag)

 {

 $fasta{$id} .= $aline . "\n";

 unless ($aline =~ m/^>/)

 {

 $aline =~ s/[^AaCcTtGgMmRrYyKkVvHhDdBb]//g;

 $bpsaved += length ($aline);

 }

 } # if

 } # while

 close $INF;

 unless ($quiet)

 { print "Input FASTA file contained ", commify($lines), " lines and ",

commify($sequences), " sequences\n"; }

 open (my $OUTF, ">", $outfastaname) or die ("Error opening output file

\"$outfastaname\": $!\n");

 foreach my $acontig (sort { $a <=> $b } keys %seen)

 {

 my $seq = exists($fasta{$acontig}) ? $fasta{$acontig} : "";

 if ($seq)

 { print $OUTF $seq; }

 else

 { print "Warning, empty sequence for contig \"$acontig\"\n"; }

 $seqsaved++;

 }

 close $OUTF;

 unless ($quiet)

 { print commify($seqsaved), " sequences, ", commify($bpsaved), " $bpabbreviation

saved in \"$outfastaname\"\n"; }

 } # sub createfastafile

sub debugmsg { my ($text, $noreturn, $nolinenum) = @_;

 if ($debug)

 {

 my ($package, $filename, $line, $sub) = caller(0);

 unless ($nolinenum) { $text = "Line $line: " . $text; }

136

 if (! ($noreturn)) { $text .= "\n"; }

 print $text;

 } # if ($debug)

} # sub debugmsg

sub expandatprefix { my ($string) = @_;

some parameters with contigs can have "@xxx" used instead,

the text following "@" is a filename.

This file contains the parameters, which will be

substituted in. Otherwise return the string unmodified

 if ($string =~ m/^\@(.*)$/)

 {

 my $filename = $1;

 open my $EFILE,"<",$filename or die ("Error opening file \"$filename\": $!\n");

 my @contents = <$EFILE>;

 close $EFILE;

 $string = join (",", @contents);

 $string =~ s/[\r\n\s]//g;

 } # if ($string =~ m/^\@/)

 return $string;

} # sub expandatprefix

sub timestr {

 @_ = localtime(shift || time);

 return(sprintf("%04d/%02d/%02d %02d:%02d", $_[5]+1900, $_[4]+1, $_[3], @_[2,1]));

} # sub timestr

sub commify {

http://perldoc.perl.org/perlfaq5.html#How-can-I-output-my-numbers-with-commas

 local $_ = shift;

 1 while s/^([-+]?\d+)(\d{3})/$1,$2/;

 return $_;

} # commify

eof

=pod sample

137

graph G

 {

 edge [len=1];

 graph [overlap=none,splines=true];

 node [shape=plaintext];

 c12345 [label=< <TABLE BORDER="1" CELLBORDER="0"

CELLSPACING="0"><TR><TD PORT="L">5'</TD><TD WIDTH="200">c12345</TD...

 c23456 [label=< <TABLE BORDER="1" CELLBORDER="0"

CELLSPACING="0"><TR><TD PORT="L">5'</TD><TD WIDTH="10">c23456</TD>...

 c34567 [label=< <TABLE BORDER="1" CELLBORDER="0"

CELLSPACING="0"><TR><TD PORT="L">5'</TD><TD WIDTH="1">c34567</TD><...

 c45678 [label=< <TABLE BORDER="1" CELLBORDER="0"

CELLSPACING="0"><TR><TD PORT="L">5'</TD><TD WIDTH="100">c45678</TD...

 "c23456":L -- "c34567":R [label="31"];

 "c34567":L -- "c45678":R [label="12"];

 "c45678":L -- "c12345":R [label="18"];

 "c34567":L -- "c12345":R [label="1"];

Extract_singlets_from_fasta_sff.sh – In-house Shell Script

echo -e "This is the script to extract singlets/repeats/outlier from the raw sff files used for

assembly \n Run this in the assembly directory of your gsAssembler run \n Make sure to copy

the sff files used by the gsAssembler run in the directory (you can find that by looking in the

sff folder of your gsAssembler run) \n"

#perl

/root/Downloads/Scripts_for_454_data_processing/copy_sff_files_to_current_assembly_dire

ctory.pl

fgrep Singleton 454ReadStatus.txt > singletons.txt

sfffile -o singletons.sff -i singletons.txt *.sff

sffinfo -s singletons.sff > singletons.fna

fgrep Outlier 454ReadStatus.txt > outliers.txt

sfffile -o outliers.sff -i outliers.txt *.sff

sffinfo -s outliers.sff > outliers.fna

ORFFINDER.pl: An in-house Perl script for finding functional ORF in contigs.

open(FILE,"gene.fna");

@file=<FILE>;

$header=splice(@file,0,1);

$file=join(' ',@file);

$file=~s/\n//g;

$file=~s/\s//g;

$DNA=~m/(ATG|GTG|TTG)(...)*(TGA|TAG|TAA)/g;

 while ($file =~ /((ATG|GTG|TTG)(...)*(TGA|TAG|TAA))/g) {

 my $orf_length = length($1);

 my $orf_end = pos($file) - 1;

 my $orf_start = pos($file) - $orf_length;

138

print "orf",$orf_start, "to" ,$orf_end,"\n";

$sub='';

if($sub=index($file,$DNA))

{

$file=~tr/[TTT|TTC][TCT|TCA|TCG|TCC|AGT|AGC][TAT|TAC)(TGT|TGC)(TTA|TTG|CT

T|CTC|CTA|CTG][TGG)][CCA|CCT|CCG|CCC][CAC|CAT][CGT|CGA|CGG|CGC|AGA|A

GG][CAA|CAG][ATT|ATC|ATA][ACA|ACT|ACG|ACC][AAA|AAG][ATG][GCA|GCG|G

CT|GCC][GAT|GAC][GGT|GGA|GGC|GGG][GTT|GTA|GTG|GTC][GAG][AAT|AAC]/[F]

[S][Y][C][L][W][P][H][R][Q][I][T][K][M][A][D][G][V][E][N]/;

print $file;

}

}

Separate_contigs_for_mitofy.pl : A perl script for formatting contigs and generating

input data for MITOFY.

#!/usr/bin/perl

print "USAGE Enter fasta file of contigs to be annotated : ";

$input_file_name=<STDIN>;

open(file,"$input_file_name");

@input_file=<file>;

foreach $input_file(@input_file)

{

if($input_file=~/^>/)

{

@file_name=$input_file;

}

foreach $file_name(@file_name)

{

s/^>//g;

open(new_file,">>$file_name");

do

{

print new_file $input_file;

} while($input_file!=/^>/);}}

