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ABSTRACT 

 
 

The differentiator and integrator have many advantagesand are very useful signal processing 

tool which makes them suitable for a wide varieties of applications.Differentiator finds wide 

applications in many areas such as speech systems, image processing, radar and biomedical 

engineering. The integrator has been used extensively in many areas such as correlation estimation, 

waveform shaping and accumulator analysis. So far, the differentiator and integrator are mainly 

implemented in circuits for low-speed applications. Thus the implementation of these circuits for 

high frequency applications has been largely ignored.    

In this thesis, simple and accurate formulations are presented to represent stable and 

optimized discrete-time infinite impulse response processes for both first order differentiators and 

integrator in the Z-domain.These formulations, in conjunction with the representations of 

transmission-line elements in the Z-domain, leads to transmission-line configuration that are 

eligible for wide-band microwave circuits.  

Design simulations for digital differentiator and integrator are performed in Agilent 

SystemVueand MATLAB. In order to translate these circuits for high frequency application, T-

parameter (chain scattering parameter) is employed.A detailed mathematical analysis of each 

design is analysed and corresponding Matlab codehas been generated. The MATLAB simulations 

were compared with Agilent Advanced Design System (ADS) simulations in order to find the 

optimal design parameters required to arrive at an approximate solution.  ADS simulations were 

used to accurate determine the final design. 

The designed models are implemented using non-uniform microstrip lines in Agilent ADS 

and Agilent EMPro. Simulation results shows proposed models as good candidate for wide band 

microwave application.  

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ACKNOWLEDGEMENTS 
 

 

I would like to express my sincere gratitude to my project supervisor, Asst. Professor Dr. Priyanka 

Jain, for her supervision, invaluable guidance, motivation and support throughout the extent of the 

project. I have benefitted immensely from her wealth of knowledge. 

I would also like to thank Dr. AjeetKumar (Physics Department),Prof. Uma Nagiya (EEE 

Department)and Dr. Neeta Pandey (ECE Department) for their precious suggestions, support and 

technical help during the course of this project. 

I am indebted to Prof. Rajiv Kapoor, Head of Department of Electronics and Communication 

Engineering, Delhi Technological University for his support and encouragement in carrying out this 

project. 

I wish to express my heart full thanks to Prof. S.C. Sharma, Head of Department of Applied 

Physics,Delhi Technological University for his support that helped me a lot in successful 

completion of this project. 

I am also grateful to Prof. P. B. Sharma,Vice-Chancellor,Delhi Technological University for 

providing the research environment in the institute. 

My gratitude is extended tomy colleagues and friendswho have not been mentioned here personally 

in making this project a success.  

Last but not least, I take this opportunity to express my deepest thanks to my parents and my 

sister.Without their support, love and encouragement, it would not have been possible to pursue 

M.Tech. degree studies. I sincerely thank them. 

 

 

 

 

 

 

Shafqat Abdullah Khan 

 

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 

 
CERTIFICATE ........................................................................................................................  i 

DECLARATION ....................................................................................................................  ii 

ABSTRACT ..........................................................................................................................  iii 

ACKNOWLEDGEMENTS .................................................................................................... iv 

CONTENTS ............................................................................................................................  v 

LIST OF FIGURES  .............................................................................................................. vii 

LIST OF TABLES  ................................................................................................................ vii 

LIST OF ABBREVIATIONS ...............................................................................................  vii 

CHAPTERS 

I. INTRODUCTION...................................................................................................... 1 

1.1 Overview ...............................................................................................................  1 

1.2 Design Flowchart ..................................................................................................  3 

1.3 Motivation and Problem Statement ......................................................................  4 

1.4 Goals/Scope of present work ................................................................................  4 

1.5 Report Organization ..............................................................................................  4 

II. LITERATURE REVIEW  ........................................................................................ 6 

2.1 Introduction ...........................................................................................................  6 

2.2 Formulation of the Transfer Function in the Z domain ........................................  6 

2.2.1 Digital Differentiator ......................................................................... 15 

2.2.2 Digital Integrator ................................................................................ 15 

2.3 Formulation of the Transfer Function in terms of T-Parameter  ...........................  6 

2.4 Time constant of a differentiator ...........................................................................  6 

2.5 Time constant of an integrator ..............................................................................  6 

2.6 Optimization Techniques ......................................................................................  3 

2.6.1 Stimulated Annealing......................................................................... 15 

2.6.2 Genetic Algorithm ............................................................................. 15 

2.6.3 Pattern Search .................................................................................... 15 

III. DISCRETE TIME DIFFERENTIATORS AND INTEGRATORS ...................... 8 

3.1 Introduction ...................................................................................................... 8 

  3.2 Digital Differentiator ....................................................................................... 8 

3.1.1 Designing of stable digital differentiator ........................................... 15 

3.1.2 Frequency response of digital differentiator using MATLAB .......... 15 

3.1.3 SystemVue simulation of designed digital differentiator .................. 15 

   3.1.4 Frequency response and pole-zero plot in SystemVue ...................... 16 

3.1.5 Impulse response ................................................................................ 16 

3.1.6 Direct form realisation of digital differentiator ................................. 17 

3.3 Digital Differentiator ....................................................................................... 8 

3.1.1 Designing of stable digital differentiator ........................................... 15 

3.1.2 Frequency response of digital differentiator using MATLAB .......... 15 

3.1.3 SystemVue simulation of designed digital differentiator .................. 15 



viii 
 

   3.1.4 Frequency response and pole-zero plot in SystemVue ...................... 16 

3.1.5 Impulse response  ............................................................................... 16 

3.1.6 Direct form realisation of digital differentiator  ................................ 17 

3.4 Digital Differentiator ....................................................................................... 8 

3.1.1 Designing of stable digital differentiator ........................................... 15 

3.1.2 Frequency response of digital differentiator using MATLAB .......... 15 

3.1.3 SystemVue simulation of designed digital differentiator .................. 15 

   3.1.4 Frequency response and pole-zero plot in SystemVue ...................... 16 

3.1.5 Impulse response  ............................................................................... 16 

3.1.6 Direct form realisation of digital differentiator  ................................ 17 

3.5 Digital Differentiator ....................................................................................... 8 

3.1.1 Designing of stable digital differentiator ........................................... 15 

3.1.2 Frequency response of digital differentiator using MATLAB .......... 15 

3.1.3 SystemVue simulation of designed digital differentiator .................. 15 

   3.1.4 Frequency response and pole-zero plot in SystemVue ...................... 16 

3.1.5 Impulse response  ............................................................................... 16 

3.1.6 Direct form realisation of digital differentiator  ................................ 17 

 

IV. DESIGNING OF MICROSTRIP DIFFERENTIATOR .....................................  21 

  4.1 Introduction .................................................................................................... 14 

  4.2 Designing of first order microwave integrator............................................... 14 

4.2.1 Optimization ...................................................................................... 15 

4.2.2 Schematic ........................................................................................... 15 

4.2.3 Substrate ............................................................................................. 15 

   4.2.4 Layout diagram  ................................................................................. 16 

4.2.5 Agilent 3D EMPro Preview  .............................................................. 16 

4.2.6 Magnitude response of ideal and proposed integrator  ...................... 17 

4.2.7 Group delay ........................................................................................ 15 

  4.3 Designing of first order microwave integrator............................................... 14 

4.3.1 Optimization ...................................................................................... 15 

4.3.2 Schematic ........................................................................................... 15 

4.3.3 Substrate ............................................................................................. 15 

   4.3.4 Layout diagram  ................................................................................. 16 

4.3.5 Agilent 3D EMPro Preview  .............................................................. 16 

4.3.6 Magnitude response of ideal and proposed integrator  ...................... 17 

4.3.7 Group delay ........................................................................................ 15 

    

V. DESIGNING OF MICROSTRIP INTEGRATOR ..............................................  21 

  5.1 Introduction .................................................................................................... 14 

  5.2 Designing of first order microwave integrator............................................... 14 

5.2.1 Optimization ...................................................................................... 15 

5.2.2 Schematic ........................................................................................... 15 

5.2.3 Substrate ............................................................................................. 15 

   5.2.4 Layout diagram  ................................................................................. 16 



ix 
 

5.2.5 Agilent 3D EMPro Preview  .............................................................. 16 

5.2.6 Magnitude response of ideal and proposed integrator ....................... 17 

5.2.7 Group delay ........................................................................................ 15 

  5.3 Designing of first order microwave integrator............................................... 14 

5.3.1 Optimization ...................................................................................... 15 

5.3.2 Schematic ........................................................................................... 15 

5.3.3 Substrate ............................................................................................. 15 

   5.3.4 Layout diagram  ................................................................................. 16 

5.3.5 Agilent 3D EMPro Preview  .............................................................. 16 

5.3.6 Magnitude response of ideal and proposed integrator  ...................... 17 

5.3.7 Group delay ........................................................................................ 15 

 

VI. RESULT ...................................................................................................................  22 

 

VII. CONCLUSIONS .....................................................................................................  22 

6.1 Conclusions .................................................................................................... 22 

4.6 Future Scope of Present work ........................................................................ 22 

REFERENCES ....................................................................................................................  23 

 

APPENDICES .....................................................................................................................  23 

 Appendix A  MATLAB Code for TLINE ..............................................................  23 

  A.1 Matlab ....................................................................................................  23 

Appendix B  MATLAB Codes for Optimization ...................................................  23 

 B.1 Matlab.....................................................................................................  23 

Appendix C MATLAB Codes for Optimization ...................................................  23 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

 
FIGURES 

Figure 1.1 Flow chart of designing process for microwave differentiator and integrator............. 4 

Figure 2.1 Magnitude response of the differentiator A and B ....................................................... 4 

Figure 2.2 Magnitude response of proposed integrator with different time constant  .................. 5 

Figure 2.3 Two-port network ........................................................................................................ 9 

Figure 2.4 Open-circuited stub  ..................................................................................................... 9 

Figure 2.5 Transmission-line section  ......................................................................................... 11 

Figure 3.1 Optimization process Err function plot v/s iteration using Pattern search  ................ 14 

Figure 3.2 Optimized variable coefficient best point plot result using Pattern search  ............... 14 

Figure 3.3 Frequency response of proposed digital differentiator and ideal response for 

sampling frequency normalized to π radian ....................................................................................... 15 

Figure 3.4 Schematic of digital differentiator in SystemVue  ..................................................... 15 

Figure 3.5 Frequency and Pole-Zero plot of proposed digital differentiator in SystemVue  ...... 16 

Figure 3.6 Impulse response and step response of designed digital differentiator...................... 16 

Figure 3.7 Direct form 1 and II realization of digital differentiator by MATLAB  .................... 17 

Figure 3.8 Optimization process Err function plot v/s iteration using Pattern search  ................ 14 

Figure 3.9 Optimized variable coefficient best point plot result using Pattern search  ............... 14 

Figure 3.10 Frequency response of proposed digital differentiator and ideal response for 

sampling frequency normalized to π radian ....................................................................................... 15 

Figure 3.11 Schematic of digital differentiator in SystemVue  ..................................................... 15 

Figure 3.12 Frequency and Pole-Zero plot of proposed digital differentiator in SystemVue  ...... 16 

Figure 3.13 Impulse response and step response of designed digital differentiator...................... 16 

Figure 3.14 Direct form 1 and II realization of digital differentiator by MATLAB  .................... 17 

Figure 3.15 Optimization process Err function plot v/s iteration using Pattern search  ................ 14 

Figure 3.16 Optimized variable coefficient best point plot result using Pattern search  ............... 14 

Figure 3.17 Frequency response of proposed digital differentiator and ideal response for 

sampling frequency normalized to π radian ....................................................................................... 15 

Figure 3.18 Schematic of digital differentiator in SystemVue  ..................................................... 15 

Figure 3.19 Frequency and Pole-Zero plot of proposed digital differentiator in SystemVue  ...... 16 

Figure 3.20 Impulse response and step response of designed digital differentiator...................... 16 

Figure 3.21 Direct form 1 and II realization of digital differentiator by MATLAB  .................... 17 

Figure 3.22 Optimization process Err function plot v/s iteration using Pattern search  ................ 14 

Figure 3.23 Optimized variable coefficient best point plot result using Pattern search  ............... 14 



xi 
 

Figure 3.24 Frequency response of proposed digital differentiator and ideal response for 

sampling frequency normalized to π radian ....................................................................................... 15 

Figure 3.25 Schematic of digital differentiator in SystemVue  ..................................................... 15 

Figure 3.26 Frequency and Pole-Zero plot of proposed digital differentiator in SystemVue  ...... 16 

Figure 3.27 Impulse response and step response of designed digital differentiator...................... 16 

Figure 3.28 Direct form 1 and II realization of digital differentiator by MATLAB  .................... 17 

Figure 4.1 Optimization process Err function plot v/s iteration using Pattern search ................. 17 

Figure 4.2 Optimized variable coefficient best point plot result using Pattern search ................ 17 

Figure 4.3 Agilent ADS Line Calc .............................................................................................. 18 

Figure 4.4 Agilent ADS Schematic of 1
st
 Order Differentiator  ................................................. 18 

Figure 4.5 Substrate Definition  .................................................................................................. 18 

Figure 4.6 Layout diagram of 1
st
 order differentiator ................................................................. 19 

Figure 4.7 3D Agilent EMPro Preview ....................................................................................... 20 

Figure 4.8 Frequency Response of 1
st
 order differentiator and ideal differentiator by momentum 

simulation ........................................................................................................................................... 20 

Figure 4.9 ADS simulation plot of group delay versus the frequency in GHz  .......................... 20 

Figure 4.10 Optimization process Err function plot v/s iteration using Pattern search ................. 17 

Figure 4.11 Optimized variable coefficient best point plot result using Pattern search ................ 17 

Figure 4.12 Agilent ADS Schematic of 1
st
 Order Differentiator  ................................................. 18 

Figure 4.13 Substrate Definition  .................................................................................................. 18 

Figure 4.14 Layout diagram of 1
st
 order differentiator ................................................................. 19 

Figure 4.15 3D Agilent EMPro Preview  ...................................................................................... 20 

Figure 4.16 Frequency Response of 1
st
 order differentiator and ideal differentiator by momentum 

simulation ........................................................................................................................................... 20 

Figure 4.17 ADS simulation plot of group delay versus the frequency in GHz  .......................... 20 

Figure 4.18 Optimization process Err function plot v/s iteration using Pattern search ................. 17 

Figure 4.19 Optimized variable coefficient best point plot result using Pattern search ................ 17 

Figure 4.20 Agilent ADS Schematic of 1
st
 Order Differentiator  ................................................. 18 

Figure 4.21 Substrate Definition  .................................................................................................. 18 

Figure 4.22 Layout diagram of 1
st
 order differentiator ................................................................. 19 

Figure 4.23 3D Agilent EMPro Preview  ...................................................................................... 20 

Figure 4.24 Frequency Response of 1
st
 order differentiator and ideal differentiator by momentum 

simulation ........................................................................................................................................... 20 

Figure 4.25 ADS simulation plot of group delay versus the frequency in GHz  .......................... 20 

Figure 4.26 Optimization process Err function plot v/s iteration using Pattern search ................. 17 

Figure 4.27 Optimized variable coefficient best point plot result using Pattern search ................ 17 



xii 
 

Figure 4.28 Agilent ADS Schematic of 1
st
 Order Differentiator  ................................................. 18 

Figure 4.29 Substrate Definition  .................................................................................................. 18 

Figure 4.30 Layout diagram of 1
st
 order differentiator ................................................................. 19 

Figure 4.31 3D Agilent EMPro Preview  ...................................................................................... 20 

Figure 4.32 Frequency Response of 1
st
 order differentiator and ideal differentiator by momentum 

simulation ........................................................................................................................................... 20 

Figure 4.33 ADS simulation plot of group delay versus the frequency in GHz  .......................... 20 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

LIST OF TABLES 

 
TABLES 

Table 1.1 Basic Transmission-Line Element‟s Chain Scattering-Parameter Matrices  ............... 7 

Table 3.1 Optimized coefficient value of first order differentiator  ........................................... 11 

Table 3.2 Optimized coefficient value of first order differentiator ............................................ 13 

Table 3.3 Optimized coefficient value of first order integrator ................................................. 13 

Table 3.4 Optimized coefficient value of first order integrator ................................................. 13 

Table 4.1 Optimized value of design variables obtained using pattern search algorithm ......... 13 

Table 4.2 Serial Transmission Line parameter from Line Calc Optimized coefficient value of 

first order differentiator ..................................................................................................................... 13 

Table 4.3 Optimized value of design variables obtained using pattern search algorithm  ........ 13 

Table 4.4 Serial Transmission Line parameter from Line Calc Optimized coefficient value of 

first order differentiator ..................................................................................................................... 13 

Table 5.1 Optimized values of design variables obtained using pattern search algorithm  ....... 13 

Table 5.2 Serial Transmission Line parameter from Line Calc Optimized coefficient value of 

first order differentiator ..................................................................................................................... 13 

Table 5.3 Optimized value of design variables obtained using pattern search algorithm  ........ 13 

Table 5.4 Serial Transmission Line parameter from Line Calc Optimized coefficient value 

offirst order differentiator  ................................................................................................................. 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

LIST OF ABBREVIATIONS 

 

ADS : Advanced Design System 

c : Speed of light 

DSP  : Digital Signal Processing 

εreff : Effective relative permittivity 

EDA  : Electronics Design Automation 

EMPro :  Electromagnetic Professional 

Err  :  Error  

f : Frequency 

fs : Sampling frequency 

FEM :  Finite element method 

FIR  : Finite Impulse Response 

h : Height of dielectric substrate 

H(z) : Discrete time System function 

IIR : Infinite Impulse Response 

K :  Gain 

l : Length of microstrip 

λ : Wavelength 

OCS : Open circuit Stub 

Ω : Normalized frequency 

S : Scattering Parameter 

SCS : Short circuit Stub 

STL :  Serial Transmission Line 

tanδ : Loss tangent of dielectric or dissipation factor 

t : Thickness 

τ : Time constant 

T  : Sampling Time interval 

Γ :  Reflection coefficient 

TLS :  Transmission line section 

w : Width of microstrip 

z
-1

 :  unit sample delay 

ZN : Characteristic impedance of Nth Section of microstrip line 

Zo : Characteristic impedance of microstrip line 50 Ohms 



   

1 
 

Chapter 1 
 

 

Introduction 
 

1.1 Overview 

he differentiator and integrator have many advantages and are very useful signal processing 

tools which makes them suitable for a wide variety of applications. The differentiator is 

designed to determine and estimate time derivatives of a signal.Ithas been used extensively in many 

areas, such as image processing, speech systems, radar, sonar and many more. The velocity and 

acceleration can be computed from the position measurements using differentiator‟s digital control 

[1]. In applications such as biomedical engineering requires higher-order derivatives of biomedical 

data, especially at low-frequency range. 

The integrator is an instrumental tool to estimate the time integral of measured signals. It has 

been used widely in many areas such as coherent detection, correlation estimation, accumulator 

analysis, and waveform shaping [2]. The integrator can also be employed to measure the delay 

times of microwave transistors [3] or it can be used to implement high-frequency active filters [4]. 

In other words, the integrator not only plays an important role in determining the inter-relation 

among various signals, but also detects the history of the signal itself. In the Fourier spectral 

analysis, the spectral of a measured signal is the output of an integrator that takes the time 

integration of the multiplication of the measured signal by harmonic signals [2]. 

Various Integrators and differentiator has been proposed [2, 5-8] inthe study of discrete-time 

signal processing(DSP), however their magnitude response can only approximate that of ideal 

response for a fraction of full band nyquist frequency range. Among various techniques, trapezoidal 

rule and Simpson‟s rule in the Z-domain are two popular methods used for integrators. The 

trapezoidal-rule integrator produces a zero at the normalized frequency [2], while the Simpson-rule 

integrator yields a quasi-zero lying between dc and the normalizing frequency. 

The existence of zeros causes the performance of these two integrator largely deviates from 

that of the ideal integrator. Therefore, both trapezoidal and Simpsons rule integrator are not 

adequate to be employed as a wide band integrator.  To overcome the limitation, we proposed a 

new discrete-time integrator whose transfer function fits well with that of an ideal integrator. 

The design procedure for integrator and differentiator asshown in flow chart figure 1.1 

involves first obtaining a multivariable system function prototype and then optimizing its transfer 

function with reference to ideal, to obtain the wideband stable integrator and differentiator. 

T 
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In this thesis, simple and accurate formulations are employed to represent stable and optimized 

discrete-time infinite impulse response processes for both first order differentiators and integrator in 

the Z-domain. These formulations, in conjunction with the representations of transmission-line 

elements in the Z-domain, leads to transmission-line configuration that are eligible for wide-band 

microwave circuits. In particular, many Z domain formats of transfer functions have been obtained 

to represent the characteristics of a differentiator and integrator. 

The transmission line configuration can emulate the characteristics of the differentiator and 

integrator developed in a DSP study, meanwhile the operating frequency band of a differentiator 

and integrator is, thus, extended further into the microwave range. Both first order differentiators 

and integrator are implemented with microstrip transmission lines, of which the operating 

frequency is determined by the physical length of each line section. It is, therefore, plausible to 

design differentiators and integrator having operating frequencies larger than 10 GHz. 

Computers are powerful tools for the microwave designers in performing arduous and error-

prone calculations. Computers can be used as a tool to design many circuits and components faster 

and cheaper than conventional methods. To get high reliability standards, precisely characterised 

and less error to the designing circuits, Computer-Aided Design
1
 (CAD) becomes a better simulator 

in microwave technology, and it is cannot be separated. By CAD, user will eliminate trial and error, 

laborious mathematical calculations and delaying in drafting. CAD also allows rapid evaluation of 

many existing circuits, safe a time and cost saving.  

The design simulations for digital differentiator and integrator are performed in CAD 

software Agilent SystemVue and optimization is performed under MATLAB environment. A 

detailed mathematical analysis of each design was performed. Matlab code for optimization of 

design prototype was written. The designed models are implemented using non-uniform microstrip 

lines in Agilent ADS
2
 and Agilent EMPro. Simulation results shows proposed models as good 

candidate for wide band microwave application.  

The theory required for the design and implementation of the Microwave differentiator and 

integrator has been gathered from IEEE journals, relevant books
3
, and internet. The main constraint 

on the project has been time. This report describes the design simulation and implementation of 1
st
 

order microwave differentiator and integrator using microstrip transmission line.  

 

 

                                                           
1
Gupta, K. C., et al. (1981). Computer-Aided Design of Microwave Circuits, Artech. 

2
qthelp://ads.2011.10.app/doc/examples/S-Parameters_of_2-Port_Terminated_with_Other_Networks.html 

3
M. Radmanesh, Radio Frequency and Microwave Electronics, Prentice Hall, 2001 
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1.2 Design Flowchart 

To be more systematic in designing process, the flow diagram must be obtained.The flow 

diagram can be used as a guide to the designer to obtained their strategy and getting a good result as 

required. The figure 1.1 depicts the design flow strategies used for obtaining optimized microwave 

differentiator and integrator circuits from discrete-time system function prototype.  

 
 

Figure.1.1: Flow chart of designing process for microwave differentiator and integrator 

Define  Specification 

Define Initial discrete System Function 
Prototype 

Optimization Algorithm for Digital 
Differentiator/Integrator 

Meet design spec? 

Yes 

 Define  chain scattering matrix 
Prototype 

Optimization the Tmatrix to match 
Digital system function 

Meet design spec? 

Yes 

Final Tuning in Agilent ADS 

Final Microstrip 
Differentiator/Integrator 

N 

NO 

N 

NO 
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1.3 Motivation and Problem Statement 

The motivation for project came while under taking course on DSP techniques. The circuit theory 

for differentiator, integrator and filter is very well developed in DSP. These devices are mainly 

implemented in circuits for low frequency application. Thus, so far the implementation of 

differentiator and integrator for high frequency application has been largely ignored. So an idea 

came to relate the DSP and microwave techniques by representations of transmission-line elements 

in the Z-domain for higher frequency circuit designing i.e. for microwave device implementation. 

 

1.4 Goals/Scope of present work 

The main goals of this project are to get acquainted with microwave circuit designing using CAD 

tool like Agilent Advanced Design System, SystemVue
4
 and EMPro

5
 software and the basics of 

DSP techniques. The present work consists of designing of 1
st
 order microwave differentiator and 

integrator using microstrip transmission line technology. The scope of this project lies on designing 

and implementation of other microwave device components like differentiator and integrator with 

different time constant and microwave filters etc. 

The next section describes the organization of chapters in the thesis. 

 

1.5 Report Organization 

The thesis report is divided into seven chapters, each having ample information for comprehending 

the concepts of this project. 

Chapter 1: presents introduction to project, design flow chart, discusses the motivation and problem 

statement, goal and scope of present work. 

Chapter 2: literature review and the theory involved in the research work of this project have been 

presented in this chapter.Here detail formulation of transfer function in Z-domainhas been given 

which will be used in the rest of the thesis.In particular, many Z domain formats of the stable and 

optimized transfer functions have been obtained to represent the characteristics of a differentiator 

and integrator. The chain scattering parameter or T-parameter for serial transmission line, short stub 

and open stub are derived. The concept of time-constant is introduced. Finally, description of 

various types of optimization algorithm is introduced.   

                                                           
4
qthelp://systemvue32.2011.10/doc/algorithm/Filter.html 

5
qthelp://empro.2011.07/doc/exportads/Exporting_ADS_Layouts_to_EMPro.html 
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Chapter 3: the detailed designing of stable and optimized digital differentiator and integrator 

system functions have been explained in this chapter. Here, the basic equations governing 

differentiators and integrators are derived from optimization algorithm. The designed system 

function is analysed in software tool like Agilent SystemVue. Implementation of direct form I and 

direct form II using MATLAB are realised. 

Chapter 4: illustratesthe thorough designing of microwave differentiators. Upon using the system 

functions designed in Chapter 3 corresponding microstrip line configuration is obtained and 

optimized to derive the characteristic impedance of microstrip sections. Software Simulation 

performed in Agilent ADS followed by exporting the designed prototype model to Agilent EMPro 

and optimization is performed in MATLAB environment. Finally, Plotting of magnitude response 

and group delay of final tuned differentiator are presented. 

Chapter 5: describesthe designing methodology of microwave integrator. Based on the digital 

integrator obtained in Chapter 3 the designing of optimized microwave integrators are presented. 

The designed integrator models are also analysed in Agilent EMPro. Lastly, magnitude response 

and group delay characteristic of designed integrators are presented. 

Chapter 6: summarizes detailed results of simulation analysis. 

The Finalchapter of the thesis (Chapter 7) presents the conclusions and future aspects of this 

project. The significance and contribution of this work is summarized.   
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Chapter 2 
 

 

Literature Review 
 

2.1 Introduction 

This chapter reviews several basic but important concepts that are necessary to comprehend 

the contents of this report. Here general formulation of transfer function in Z domain and at 

microwave frequency in terms of T-parameter (chain scattering) is discussed and equations are 

formed to link both techniques. The concept of time constant for differentiator and integrator is 

introduced. 

 

2.2 Formulation of the Transfer Function in the Z domain 

A DSP system (digital integrator and differentiator)can be defined with sets of recursive difference 

equations of the form(2.1) 

 

0 1 1 1 2[ ] [ ] [ 1] ... [ ( 1)] [ 1] [ 2] ... [ ]M Ny n a x n a x n a x n M b y n b y n b y n N             
 

2.1 

where,x(n) is the digital input and y(n) is the digital output of the filter. The parameters 

specify H(z), the Z-transform of an impulse response h(n). The output of IIR is the convolution of 

the inputx(n) with h(n). 

The system function for linear, time-invariant, causal digital filter can be expressed in the Z-domain 

in the form [9]: 

1 2

0 0 1 2 1

1 2

1 2
1

1

( )
   B(z)

( )
( ) 1     1 ( )

N

N i iN
ii N i

NNj
Mjj i

N

i

z z
b z b b z b z b z

H z K
A z a z a z a za z z p

   

 

  






  

   
   



 
 

2.2 

The coefficients of the polynomial are aiand bi. The zeros and poles of the factored form are zi and 

pi, respectively. The gain factor K is necessary for equivalence between the polynomial and 

factored forms. The order of H(z) is determined by N. 

Not all filters defined by H(z) are feasible or implementable. Two properties of H(z) of concern 

to this thesis are 
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 A causal, linear, time invariant (LTI) system with system function H(z) is bounded input 

bounded output (BIBO) stable if and only if all the poles of H(z) lie inside the unit 

circle.(|𝑝𝑖| < 1) 

 A causal, stable, LTI system with system function H(z) is real if and only if all complex 

poles and zeros of H(z) have complex conjugate pairs or exist singularly on the real axis. 

These properties should be enforced during the design and optimization process of an IIR filter. 

For optimize digital IIR filters, a method for mapping a filter transfer functionHn(z) to an element x-

nis needed. Two straightforward methods for doing this include mapping either the coefficients of 

the polynomial form of Hn(z) or the roots and gain of the factored form of Hn(z) to the vectors of xn. 

While both of these options are mathematically equivalent, polynomial coefficients bi and aican 

have several orders of magnitude of dynamic range necessitating a verylarge search space S. 

However, this is not the case for the factored version, therebyprompting its selection.Filter stability 

requires that all poles pi of Hn(z) are inside the unit circle, thus, limiting the search space S for pi . 

Placement of the zeros zi, although not dictated by stability, can be restricted to the same region by 

imposing a minimum-phase requirement. Minimum-phase is accomplished by having all poles and 

zeros of Hn(z) inside the unit circle. This has the drawback of greatly restricting the possible phase 

response that can be achieved by the optimization algorithm, but this does not matter here since 

magnitude response is the only factor of optimization considered in this thesis. 

Several design algorithms exist for finite-impulse-response (FIR) filters that enable 

relatively simple use of the filters in common practice. For example, the frequency weighted least 

squares (FWLS) technique enables an FIR filter of a given order to be designed according to a 

desired frequency response [10]. The resulting design equation has a closed form solution resulting 

in a very fast, accurate, and precise result. The design of infinite-impulse-response (IIR) filters, on 

the other hand, has shown to be more difficult. IIR filters are often preferred to FIR filters because 

of excellent magnitude response characteristics, especially when high attenuation or sharp transition 

bands are desired [11]. IIR filters typically meet a given set of specifications with a much lower 

filter order than a corresponding FIR filter and preserves impulse response and shape of frequency 

response, if there is no aliasing. The final digital filter design is independent of the sampling 

interval parameter T. The digital IIR filter design task can be approached like any other 

optimization problem. 

 

2.2.1 Discrete-Time Differentiator 
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It is well known that the operation of a time derivative of a signal is represented by a 

complex-frequency variable sin the Laplace transform representation. Neglecting the loss factor, the 

complex-frequency variable s is equal to jω, i.e. s = jω, where,ωis the signal angular frequency. As 

a result, a differentiator is a high-pass filter and the amplitude of its system function increases 

linearly as the signal frequency increases. 

The frequency response of an ideal differentiator is given by 

HDiff(ω)=Kd(jω)     2.3 

where,  √ 1, Kdis the proportional constant of differentiator and ω is the angular frequency in 

radians. 

Various methods had been developed to design discrete finite impulsive response (FIR) and 

infinite impulsive response (IIR) differentiators [12]–[16]. Al-Alaoui [6] used Simpson‟s rule to 

develop a stablesecond-order recursive differentiator. Al-Alaoui [12] used interpolation method to 

develop a stable, minimum-phase digital differentiator. Pei and Shyu [15] used the eigenapproach 

to design high order digital differentiators. In order to obtain low relative error, Kumar and Ohba 

[16] employed optimal method to develop digital differentiators which are maximally accurate at 

low frequencies.In order to develop a wide-band differentiator, Khan and Ohba [8] employed the 

central difference approximations of the derivative of a function to obtain a maximally linear 

differentiator. An important aspect of the previous investigation is that the exploration focused on 

the improvement of linearity over a wide frequency band. 

2.2.2 Discrete-Time Integrator 

The operation of a time integral of a signal is represented by aninverse of complex-

frequency variable in the Laplace transform representation. Neglecting the loss factor, transfer 

function is equal to 1/ jω, where, ω is the signal angular frequency. As a result, an integrator is a 

low-pass filter and the amplitude of its system function is inversely proportional to signal frequency 

increases. 

The frequency response of an ideal integrator is given by 

HInt(ω)=Ki/jω     2.4 

where,  √ 1, Kiis the proportional constant of integrator and ω is the angular frequency in 

radians. 

Almost all the classical integrators are derived by taking Z-transform of the class of 

Newton-cotes interpolation formulas [17-18]. Newton-cotes interpolation formula is basically a 

technique of calculating a definite integral/curve by replacing that curve by a more integrable and 
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simpler curve, thus introducing some error in the equation, but still approximating the result to a 

great degree. 

Few of the classical integrators that are worth mentioning are Trapezoidal Integrator, 

Simpson 1/3 Integrator, Simpson 3/8 Integratorand Bool‟s Integrator. 

A new set of integrators has been developed in the recent past known as Recursive digital 

integrators. Several methods have been used for their design. This include putting different values 

of m and n for Newton-Cotes digital integrators, which is essentially arrived at by applying Z-

transform to closed form Newton-Cotes integration formula[19], use of linear interpolation between 

the magnitude responses of the classical rectangular, trapezoidal and Simpson digital integrators 

[12]-[20] and use of linear programming approach in the design [21]. Every design has its own 

advantages and limitations. Newton-Cotes digital integrators [19], although applicable over a 

wideband and a maximum error margin of 6.5% compared to ideal analog integrators, are fit for use 

in higher frequency ranges. On the other hand, two integrator designs proposed by Al-Alaoui based 

on linear interpolation between magnitude responses of basic integrators [12]-[20] have lower error 

than Newton-Cotes Integrators but also have a lower operational bandwidth where the error margin 

is negligible. The design proposed by Papamarkos and Chamzas[21] based on the linear 

optimization techniques again suffer from a narrow bandwidth problem. 

However none of the above stated integrators and differentiatorare near the ideal integrator 

as far as the magnitude response is concerned. Chapter 3 introduces new designs of integrators and 

differentiator. 

2.3 Time Constant of a Differentiator 

A differentiator formed by an inverted operational amplifier and a serial capacitor–resistor circuit, 

where Vi(ω) and Vo(ω) are the input and output of the circuit, respectively. The transfer gain H(jω) 

of the differentiator in the frequency domain is defined as the ratio of Vo(ω)to Vi(ω) and is given as 

follows. 

( )
( )

( )

o

o

V
H j j RC

V


 


        (2.17) 

where ω is the signal angular frequency, R the resistor and C the capacitor. Note that the transfer 

gain is linearly proportional to the angular frequency of the signal. In particular, the multiplication 

of C by R is the time constant of the circuit. As a result, the amplitude of transfer gain of a 

differentiator is equal to the multiplication of angular frequency by time constant. Therefore, we 

define the time constant of a differentiator as the ratio of transfer gain to signal angular frequency 

[22], which is expressed as follows 
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( )Diff

d d

H j
K





        (2.18) 

( )j

Diff

d d

H e
K



 


 

The time constant determines the transient behaviour of an actual differentiator in the time domain 

consideration. As a consequence, it affects the frequency response of the differentiator.The  

frequency  responses  of  the  differentiator  and  integrator, formed  by  an  operational  amplifier  

and  a  resistor-capacitor (R-C) circuit given by (2.17).  Equation (2) is valid also for microwave 

differentiators implemented by using transmission lines.  

 

Figure.2.4 Magnitude response of the differentiator A and B 

 

Figure.2.4 shows transfer functions H(jω) of two postulated A and B as a function of 

frequency, where the operation frequency bands of differentiators A and B are from DC to fA and fB, 

respectively, with fA>fB. Of course, an ideal differentiator has the operating frequency range 

extending from DC to infinity. Here, we limit our discussion to differentiators with finite frequency 

bands. We assume that the maximum value of transfer functions is unity. The selection of unity is 

due to the fact that the maximum transfer gain of transmission-line network is unity. The transfer 
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function of differentiator A increases linearly from DC to fA and it reaches unity at fA. The transfer 

function of differentiator B increases linearly from DC to fBand remains at unity for fB<f <fA. For a 

signal having a spectral lying between fB and fA, differentiator B has no effect of signal 

differentiation on it. In fact, differentiator B behaves as an all-pass device for the signal. As a result, 

for a signal with a spectral extending from DC to fA, the effect of differentiator B on such a signal is 

a combination of differentiation and all-pass processes. As is shown, the change rate of transfer 

function of differentiator B is greater than that of differentiator A for 0 ≤ f ≤ fB. On the other hand, 

differentiator A has a wider operating frequency band than differentiator B. To examine the physical 

significance of these two differentiators, we take a close look at points A and B, where two points 

are inter-section points caused by a constant frequency line fc and transfer functions of 

differentiators A and B. Because the transfer gains of differentiator B is larger than that of 

differentiator A, (2) reveals that the time constant of differentiator B is larger than that of 

differentiator A. This indicates that differentiator B has a slower response than differentiator A in 

the time-domain consideration. However, since the transfer gain of differentiator B at the frequency 

fc is larger than that of differentiator A, differentiator B produces larger output (in magnitude) than 

differentiator A. For the extremity that fA approaches infinity, the time constant of the differentiator 

approximates zero. On the other hand, if fBapproaches zero, the differentiator behaves like an all-

pass device. Both the time constant and amplitude response dictate the circuit behaviour of a 

microwave differentiator. 

2.4 Time Constant of an Integrator 

An integrator formed by an inverted operational amplifier and a serial resistor capacitor circuit, 

where Vi(ω) and Vo(ω)  are the input and output of the circuit, respectively, and ω is the signal 

angular frequency. The transfer function of the integrator in the frequency domain is defined as the 

ratio of Vo(ω) to Vi(ω) and is given as follows: 

( ) 1
( )

( )

o

o

V
H j

V j RC




 
        2.19 

Notice that the transfer function is inversely proportional to the angular frequency ω of the signal. 

As a result, an integrator is treated as a low pass filter. 

We define the time constant of an integrator as follows: 

1 1

( )
i

i IntK H j


 
       2.20 
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1 1

( )
i j

i Int
K H e




 


 

 

Figure.2.5 Magnitude response of proposed integrator with different time constant  

The  time-constant  combined  with  the magnitude  response  describes  the  system  behaviour  of  

a digital integrator and differentiator.The time constant determines the transient behaviour of an 

integrator in the time-domain consideration. Equation (2) indicates that the multiplication of the 

transfer function by angular frequency of an integrator is a constant value. Therefore, in order to 

vary the time constant of the integrator, it is required to change its transfer function. 

Such  type  of  designs  may  be  more  powerful  to design  more  accurate  digital  

Proportional-Derivative  (PD), Proportional-Integral  (PI)  and  Proportional-Integral-Derivative 

(PID)  controllers  in  control  systems.  Sometimes, it is alsopossible that the few designs of non-

unity proportional constant may be more accurate compared to the existing designs of unity 

proportional constant.  Therefore,  the  more  accurate  design  of recursive  digital  differentiator  

and  integrator  for  unity proportional  constants  may  be  derived  by  using  the  non-unity 

proportional  constant  design  with  a  constant  multiplier.   
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2.5 Formulation of the Transfer Function in terms of T-Parameter 

The S matrix is a very convenient way to describe an n-port in terms of waves. It is very 

well adapted to measurements and simulations
6
. However, it is not well suited to for characterizing 

the response of a number of cascaded 2-ports. A very straightforward manner for the problem is 

possible with the T matrix (transfer matrix), which directly relates the waves on the input and on 

the output. 

The transfer function of a cascaded network can be found by multiplying the chain 

scattering matrices of the components composing the network. The chain scattering parameters 

   ,m, n = 1,2 of a two-port network are defined by assuming the waves   
  and   

 at port 1 in Fig. 

2.2 are dependent variables, and the waves and at port 2 are independent variables[23].The T matrix 

(transfer matrix), which directly relates the waves on the input and on the output, is defined as: 

11 121 2

21 221 2

T TV V

T TV V

 

 

    
    
    

    2.5 

 

 

Figure.2.1. Two-port network 

 

As the transmission matrix (T matrix) simply links the in and outgoing waves in a way different 

from the S matrix, one may convert the matrix elements mutually. The chain scattering matrix can 

be found from the scattering matrix in the following way [24-26]: 

22

21 2111 12

21 22 11 11 22
21

21 21

1 S

S ST T

T T S S S
S

S S

 
 

 
  
    
 

   2.6 

Let the length of all stubs and transmission-line sections be l = λo/4, whereλo is the wavelength of 

the lines at the normalizing angular frequency ωo. In other words, the electrical length of all 

components is 90
o
 at the normalizing frequency.  

                                                           
6
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Figure.2.2 Open-circuited stub 

 

Given the impedance of an open-circuited stub to be Z1, shown in Fig. 2, we find that its 

chain scattering parameters are as follows: 

0 0

1 111 12

21 22 0 0. .

1 1

1 tan( ) tan( )
2 2

tan( ) 1 tan( )
2 2

O C

Z Z
j l j l

Z ZT T

T T Z Z
j l j l

Z Z

 

 

 
 

 
  
     
 

  2.7 

where, Zo is the reference characteristic impedance and is the propagation constant. The reference 

planes for both ports are at the intersection of the stub and the reference transmission line.  

Let   be the angular frequency and be the propagation delay caused by the length. All the 

terms     (  )      (  )can be represented in a new form by using D
-1 

= e
-jωτ

, which can be 

considered as a unit of delay, i.e., 

1

1
tan( )

j j

j j

e e D D
j

e e D D

 

 


 

 

 
 

     
 2.18 

 

Consequently, we have 

2 2
11 12

2 2 2
21 22 . .

(1 ) (1 )1

1 (1 ) (1 )
O C

T T a a D a aD

T T D a aD a a D

 

  

     
   

        
   2.9 

 

Where,           

If the stub is short circuited, its chain scattering parameters can be expressed as follows: 

2 2
11 12

2 2 2
21 22 . .

(1 ) (1 )1

1 (1 ) (1 )
S C

T T a a D a aD

T T D a aD a a D

 

  

     
   

        
   2.10 
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Figure.2.3. Transmission-line section 

 

By the same token, the chain scattering parameters of a transmission line section with impedance 

Z2, shown in Fig. 2.3, can be converted to functions in the Z domain as follows: 

2 2 2
11 12

1 2 2 2 2
21 22 . . .

1 ( )1

(1 )
T L S

T T D D

T T D D D

 
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    
   

      
   2.12 

 

where, 2 1

2 1

m

Z Z

Z Z


 


. The reference planes for both ports are at two connecting points between Z2 

and Z0. 

By cascading open-circuited/short-circuited stubs and transmission line sections to form a network, 

the overall chain scattering matrix of the network can be found by the multiplications of the chain 

scattering matrix of each component, i.e., 

12

21 22

1111 12

121 22

i i
N

i i
iNetwork

T TT T

T T T T

  
   

    
     2.12 

 

where, N is the number of the components, and   
𝑖 ,   

𝑖 ,   
𝑖 ,    

𝑖 and are the matrix elements 

representing the ithcomponent. 

Assume the network is composed of L open-circuited stubs, K short-circuited stubs, and M 

transmission-line sections. The fact that the numerators of all the matrix elements in (7) - (9) have 

the form of αo+ α1D
-2

(αo and α1are real numbers) leads to the following: 

2

0
11

2 2 1 2

1 1 1
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

  
   2.13 
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where all   i‟s are real numbers and can be determined by the characteristic impedances of both 

stubs and transmission-line sections. In addition, the term (1 + D
-2

) comes from each open circuited 

stub, the term (1 - D
-2

) comes from each short-circuited stub, and D
-1

(1    
 ) comes from the mth 

transmission- line section.  

When the output port of the network uses matched termination, we have   
    in Fig. 1. 

The transfer function, denoted as T(D), can then be obtained by the inverse of T11(D), i.e., 

2

2 2 1 2

1 1 12

21 110

0
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1

( )
( )

K L M

m

k l m

N
i

V
i

i

D D D
V

T D
V T D

D

  



  








  
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  


 2.14 

 

To make (12) in a form proper for the design purpose, we set z = D
-2

, which corresponds a scaling 

by two on the frequency axis. The transfer function is then modified as follows: 

 

2

/2 1 1
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where,
1 2

1

( (1 ))

i
i M

m

m

A

D










are functions of the characteristic impedances of both stubs and 

transmission-line sections. Equation (13) reveals that T(z) has zeros at z = -1 (or the normalizing 

frequency ωo), which are contributed by the open-circuited stubs, and zeros at dc, which are 

contributed by the short-circuited stubs. If the zeros contributed from the stubs are removed from 

T(z) , the remaining part of the transfer function is recognized as an AR process multiplied by a 

term of z
-M/2

 corresponding to some delay. We express the AR process with the function and we get 

0

1
( )AR N

i

i

i

T z

A z






  

   2.16 

Since the frequency response of the AR process is uniquely determined by the coefficients Ai and 

these coefficients are determined by the characteristic impedances of both stubs and transmission-

line sections, we could adjust the impedances of these components so that TAR(z) approximates a 

proposed AR process. 
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Transmission line 

Configuration 

T- parameter 

Serial Transmission 

line 

2 1 1

1/2 2 1 2 1

1 ( )1

(1 )

z z

z z z

 

  
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 

     
where, 2 1
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m

Z Z
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
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Shunt-Short stub 1 1

1 1 1

(1 ) (1 ) )1

1 (1 ) (1 )

a a z a az

z a az a a z
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  
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 
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  where, 0
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Z
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Shunt-Open stub 1 1
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(1 ) (1 ) )1

1 (1 ) (1 )
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z a az a a z

 

  

    
 

      
  where, 0
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Z
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Z
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Table I: Basic Transmission-Line Element’s Chain Scattering-Parameter Matrices 

 

2.6 Optimization Techniques 

 

Optimization techniques
7
 are used to find a set of design parameters, x = {x1, x2,...,xn},that can in 

some way be defined as optimal. In a simple case this might be the minimization or maximization 

of some system characteristic that is dependent on x. In a more advanced formulation the objective 

function, f(x),to be minimized or maximized, might be subject to constraints in the form of equality 

constraints, Gi(x) = 0 (i = 1,...,m); inequality constraints, Gi(x)≤0 (i = me + 1,...,m); and/or 

parameter bounds, xl, xu. 

A General Problem (GP) description is stated as 

  ,
x

min f x  

subject to  

( ) 0iG x  1,... ei m  

( ) 0iG x  1... ;ei m m   

where x is the vector of length n design parameters, f(x) is the objective function, which returns a 

scalar value, and the vector function G(x)returns a vector of length m containing the values of the 

equality and inequality constraints evaluated at x. 

 

There are a number of optimization techniques present. Selection of an optimization algorithm 

depends upon type of problem. The non-traditional techniques are:  

2.6.1 Stimulated Annealing 
                                                           
7
http://www.mathworks.com/help/optim/ug/optimization-theory-overview.html 
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Simulated annealing is a generic probabilistic metaheuristic for the global optimization problem of 

locating a good approximation to the global optimum of a given function in a large search space. It 

is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For 

certain problems, simulated annealing may be more efficient than exhaustive enumeration provided 

that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the 

best possible solution [27]. 

2.6.2 Genetic algorithm 

The genetic algorithm is a method for solving both constrained and unconstrained optimization 

problems that is based on natural selection, the process that drives biological evolution. The genetic 

algorithm repeatedly modifies a population of individual solutions. At each step, the genetic 

algorithm selects individuals at random from the current population to be parents and uses them to 

produce the children for the next generation. Over successive generations, the population "evolves" 

toward an optimal solution. You can apply the genetic algorithm to solve a variety of optimization 

problems that are not well suited for standard optimization algorithms, including problems in which 

the objective function is discontinuous, non-differentiable, stochastic, or highly nonlinear. The 

genetic algorithm can address problems of mixed integer programming, where some components 

are restricted to be integer-valued [28]. 

2.6.3 Pattern Search 

A pattern is a set of vectors {vi} that the pattern search algorithm uses to determine which points to 

search at each iteration. The set {vi} is defined by the number of independent variables in the 

objective function, N, and the positive basis set. Two commonly used positive basis sets in pattern 

search algorithms are the maximal basis, with 2N vectors, and the minimal basis, with N+1vectors. 

.[29] Pattern search (PS) is a family of numerical optimization methods that do not require the 

gradient of the problem to be optimized. Hence PS can be used on functions that are not continuous 

or differentiable. 

In this thesis, we have used pattern search optimization due to its fast convergence. 

The next chapter describes the details of designing and analysis of stable and optimized 

discrete-time differentiators and integrators. 
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Chapter 3 
 

 

Designing of Discrete TimeDifferentiators and Integrators 

 

The focus of this chapter is the designing of digital differentiator and integrator. Here, the basic 

equations governing differentiators and integrators are derived from optimization algorithm. The 

designed system function is analysed in software tool like Agilent SystemVue. Implementation of 

direct form I and direct form II using MATLAB are realised. 
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3.1 Introduction 

A digital IIR filter can be defined with sets of recursive difference equations of the form  

0 1 1 1 2[ ] [ ] [ 1] ... [ ( 1)] [ 1] [ 2] ... [ ]M Ny n a x n a x n a x n M b y n b y n b y n N             
 

3.1 

 

where x[n] is the digital input and y[n] is the digital output of the filter. The parameters 

specify H(z), the Z-transform of an impulse response h(n). The output of IIR is the convolution of 

the input with h(n). 

The system function for linear, time-invariant, causal digital filter can be expressed in the Z-domain 

in the form: 
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The coefficients of the polynomial are aiand bi. The zeros and poles of the factored form are zi and 

pi, respectively.  

For optimization of the discrete time system functionprototype, an error function is definedas: 

 

2

0

( ( ) ( ))Ideal NewErr Min H z H z d

 
   

 
    3.3 

 

Error function is basically an objective function for optimization algorithm, which is calculated by 

integrating the error between ideal response and proposed system function response. Sampling 

period „T‟ of the filter is normalised to unity (i.e. T = 1) for the frequency plots and Nyquist 

frequency is taken as π radians.The integration is performed over normalized frequency (frequency 

vector) Ω over the range of 0 to π. 

3.1 Digital Differentiator 

3.1.1 Design of Stable Digital Differentiator: 

An Infinite impulse response system function is selected for designing first order discrete time 

differentiator. The proposed digital differentiator prototype is given as: 
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The defined system function (3.3) has a zero at z = 1 i.e. at DC value. The zero location is selected 

in order to correlate the discrete time system function with transfer function of microstrip. The 

poles of system function are variables determined by multivariable optimization algorithm 

scheme
8
.The pole location is selected between the range of 0 ≤ z ≤ 1. So that system function 

obtainedafter optimization is stable. 

 

The analysis software is inserted into an optimisation loop and used to calculate responses for 

successive sets of parameters, which are then compared to the desired response until the designs are 

met it requirements. Upon using optimization algorithmusing objective function defined as (3);the 

error between ideal and proposed differentiator is given by:Err =1.7x10
-4

. 

 

 

Figure3.1:Optimization process Err function plot v/s iteration using Pattern search 
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Figure3.2:Optimized variable coefficientbest point plot result using Pattern search 

The optimized value of system function coefficient obtained by pattern search optimization 

is tabulated in Table 3.1. 

First order discrete time differentiator 

S.No. Coefficient Value 

1 x1 2.687 

2 x2 0.429 

3 x3 -0.134 

 

Table.3.1: Optimized coefficient value of first order differentiator 

System function obtained for differentiator obtained after substituting the optimized 

coefficient is given by: 

1

_ 1 2

1
( )

2.687  0.429 0.1340  
Diff New

z
H z

z z



 





   3.5 

 

3.1.2 Frequency Response of Digital Differentiator Using Matlab:  

Frequency response of discrete time differentiator can be obtained by substituting in (3.4) with the 

following relation: 

z = e 
jΩ

     3.6 

where, Ω is the frequency angel and 0 ≤ Ω ≤ π. 
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Figure.3.3: Frequency response of proposed digital differentiator and ideal response for sampling 

frequency normalised to π radian 

The ideal differentiator is assumed to have precisely linear amplitude response for all frequency as 

shown in figure3.3.The proposed differentiator (3.5) is proper to be adopted as the system function 

of a wide-band differentiator  

 

3.1.3 SystemVue Simulation of Designed Digital Differentiator: 

For extensive analysis of given filter function under other design criteria such as stability, impulse 

response, step response and group delay is also carried out in Agilent SystemVue.     
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Figure.3.4: Schematic of digital differentiator in SystemVue 

3.1.4 Frequency and Pole Zero plot in SystemVue: 

The frequency response obtain from SystemVue are found to be in agreement with MATLAB 

response. The pole zero plot is shown in figure.3.5. The poles obtained are p1 = 0.1573 and p2= -

0.3170 which shows the stability of designed discrete time filter. 

 

Figure.3.5: Frequency and stable Pole zero plot of proposed digital differentiator in SystemVue 

 

3.1.5 Impulse Response: 

The impulse response and step response to proposed differentiator is shown in figure 3.6 

Designing is data type floating point filter that can be used for HDL code generation for 

implementation in a FPGA  
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Figure.3.6: Impulse response and step response of designed digital differentiator 

3.1.6 Implementation Direct form realization of digital differentiator: 

The filter (differentiator) obtained can be realised in either the direct form I or direct form II. We 

prefer to realize a circuit that would require a minimum number of unit delays that is equal to the 

order of the filter. A realization that contains the minimum number of delays is defined as canonical 

realization. 

Filter Realizations 

Once we have obtained the transfer function of an FIR or IIR filter that approximates the desired 

specifications in the frequency domain or the time domain, our next step is to investigate as many 

filter structures as possible, before we decide on the optimal or suboptimal algorithm for actual 

implementation or application. A given transfer function can be realized by several structures or 

what we will call “circuits,” and they are all equivalent in the sense that they realize the same 

transfer function under the assumption that the coefficients of the transfer function have infinite 

precision. But in reality, the algorithms for implementing the transfer function in hardware depend 

on the filter structure chosen to realize the transfer function. We must also remember that the real 

hardware has a finite number of bits representing the coefficients of the filter as well as the values 

of the input signal at the input. The internal signals at the input of multipliers and the signals at the 

output of the multipliers and adders also are represented by a finite number of bits. The effect of 

rounding or truncation in the addition and multiplications of signal values depends on, for example, 

the type of representation of binary numbers, whether they are in fixed form or floating form, or 

whether they are in sign magnitude or two-complementary form. The effects of all these finite 
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values for the number of bits used in hardware implementation is commonly called “finite word 

length effects,”  

It is true that a real hardware can be programmed to implement a large number of algorithms, by 

storing the data that represent the input signals and coefficients of the filter in a memory. But 

remember that it can implement an algorithm only in the time domain, whereas programming it to 

find the frequency response is only a simulation. Three algorithms in the time domain that are the 

recursive algorithm, convolution sum, and the FFT algorithm. It is the difference equations 

describing these algorithms that have to be implemented by real digital hardware.[30] 

But when the two algorithms have to be programmed and implemented by hardware devices, the 

results would be very different and the accuracy of the resulting output, the speed of the execution, 

and the throughput, and other factors would depend not only on the finite word length but also on 

so many other factors, including the architecture of the DSP chip, program instructions per cycle, 

and dynamic range of the input signal. 

 

Figure.3.7 Direct form 1 realization of digital differentiator by MATLAB 
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Figure.3.8 Direct form II realization of digital differentiator by MATLAB 

The above differentiator can be implemented on hardware but there is practical limitation of these 

circuits. In order to make differentiator to work in microwave frequency.Microstrip is suitable 

candidate for these frequency applications.  

3.2 Designing of Different Time Constant  Differentiator 

An Infinite impulse response system function is selected for designing first order discrete time 

differentiator. The proposed digital differentiator prototype is given as: 

2 3 4 5

1

1 2 3 4

1

)(1
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 +
Diff

z
H z

x x z x z x z x z



   




     
 3.7 

This System function has a zero at z = 1 i.e. at DC value.The zero location is selected in order to 

correlate the discrete time system function with transfer function of microstrip. The poles of system 

function are variables determined by multivariable optimization algorithm scheme. The pole 

location is selected between the range of 0 ≤ z ≤ 1. So that system function obtained after 

optimization is stable.  

Upon using optimization, the Error between Ideal and Proposed Differentiator is given asErr 

=6.7x10
-7 

 

Figure.3.11: Optimization process Err function plot v/s iteration using Pattern search 
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Figure.3.12: Optimized variable coefficient best point plot result using Pattern search 

The optimized value of system function array coefficient obtained by pattern search 

optimization is tabulated in Table 3.1. 

First order discrete time differentiator 

S. No. Coefficient Value 

1 x1 2.289 

2 x2 0.391 

3 x3 -0.056 

4 x4 0.02 

5 x5 -0.07 

Table.3.2: Optimized coefficient value of first order differentiator 

 

System function obtained for differentiator obtained after substituting the optimized 

coefficient is given by: 

1

_ 1 2 3 4

1
( )

2.289  0.391 0.056 0.02 0.07  +
Diff New

z
H z

z z z z
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



  3.8 

 

3.2.2 Frequency Response of Digital Differentiator Using Matlab:  
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Figure.3.13:  Frequency response of proposed differentiator for sampling frequency normalised to 

π radian 

If a differentiator is implemented by using transmission line, the maximum value of the 

transfer function Hint(z) as 1 for the frequency range         . The rest part of the transfer 

function in the range          satisfies equation 3.8. Under such circumstance, the circuit thus 

obtained behaves as a differentiator over the frequency range        . 

 

3.1.3 SystemVue Simulation of Designed Digital Differentiator 

For extensive analysis of given filter function under other design criteria such as stability, impulse 

response, step response and group delay is also carried out in Agilent SystemVue.     
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Figure.3.15: Schematic of digital differentiator in SystemVue 

3.2.4 Frequency and Pole Zero plot in SystemVue 

The frequency response obtain from SystemVue are found to be in agreement with MATLAB 

response. The pole zero plot is shown in figure.3.5. The poles obtained are p1 = - 0.4998p2= 0.3820, 

p3 = - 0.0265 + 0.3994jand p4 = - 0.0265 - 0.3994j which shows the stability of designed discrete 

time filter. 

 

Figure3.16: (a) Frequency response of proposed digital integrator, (b) Pole-Zero Plot using 

SystemVue 

 

3.1.5 Impulse Response: 

The impulse response and step response to proposed differentiator is shown in figure 3.6 
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Figure.3.6: Impulse response and step response of designed digital differentiator 

 

3.1.6 Implementation Direct form realization of digital differentiator: 

 

Figure.3.17: Direct form 1 realization of digital integrator by MATLAB 

 

Figure.3.18: Direct form II realization of digital differentiator by MATLAB 

 

3.2 Digital Integrator 

An Infinite impulse response system function is selected for designing first order discrete time 

integrator. The proposed digital integrator prototype is given as: 

2 3 4
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This System function has a zero at z = 1 i.e. at DC value.The poles of system function are variables 

determined by multivariable optimization algorithm scheme. The pole location is selected between 

the range of 0 ≤ z ≤ 1. So that system function obtained after optimization is stable. 

 

Upon using optimization, the Error between Ideal and Proposed integrator is given by: Err = 

6.18x10
-6

. 

 

Figure.3.11: Optimization process Err function plot v/s iteration using Pattern search 

 

Figure.3.12: Optimized variable coefficient best point plot result using Pattern search 

The optimized value of system function coefficient obtained by pattern search optimization 

is tabulated in Table 3.3. 

First order discrete time differentiator 

S. No. Coefficient Value 

1 x1 2.378 
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2 x2 -2.221 

3 x3 0.524 

4 x4 -0.156 

5 x5 0.123 

6 x6 -0.036 

7 x7 0.036 

 

Table.3.3: Optimized coefficient value of first order differentiator 

System function obtained for integrator obtained after substituting the optimized coefficient 

is given by: 

1 2 3 4 5 6

1
( )

2.378 2.221 .0.524 0 0.123 0 0.0156 .036  36
IntH z

z z z z z z         



 3.10 

 

3.1.2 Frequency Response of Digital Integrator Using Matlab 

The ideal integrator is assumed to have amplitude response inversely proportional to all frequency 

as shown in figure3.13.The proposed integrator (3.10) is proper to be adopted as the system 

function of a wide-band integrator 
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Figure.3.13:  Frequency response of proposed integrator for sampling frequency normalised to π 

radian 

If an integrator is implemented by using transmission line, the maximum value of the 

transfer function Hint(z) as 1 for the frequency range         . The rest part of the transfer 

function in the range          satisfies equation 3.10. Under such circumstance, the circuit 

thus obtained behaves as an integrator over the frequency range        . 

 

3.1.3 SystemVue Simulation of Designed Digital Integrator 

For extensive analysis of given filter function under other design criteria such as stability, impulse 

response, step response and group delay is also carried out in Agilent SystemVue.     
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Figure.3.15: Schematic of digital integrator in SystemVue 

3.2.4 Frequency and Pole Zero plot in SystemVue 

The frequency response obtain from SystemVue are found to be in agreement with MATLAB 

response. The pole zero plot is shown in figure.3.5. The poles obtained are p1 = 0.6416 + 

0.1870j,p2= 0.6416 - 0.1870j,p3 = -0.2974 + 0.3109i, p4= -0.2974 - 0.3109i, p5 = 0.1226 + 

0.4099jand p6= 0.1226 - 0.4099j which shows the stability of designed discrete time filter. 

 

Figure3.16: (a) Frequency response of proposed digital integrator, (b) Pole-Zero Plot using 

SystemVue 

 

3.1.5 Impulse Response: 

The impulse response and step response to proposed integrator is shown in figure 3.6 
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Figure.3.6: Impulse response and step response of designed digital integrator 

 

3.1.6 Implementation Direct form realization of digital integrator: 

 

Figure.3.17: Direct form 1 realization of digital integrator by MATLAB 
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Figure.3.18: Direct form II realization of digital integrator by MATLAB 

 

3.2 Digital Integrator: Eight Section 

An Infinite impulse response system function is selected for designing first order discrete time 

integrator. The proposed digital integrator prototype is given as: 
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This System function has a zero at z = 1 i.e. at DC value.The poles of system function are variables 

determined by multivariable optimization algorithm scheme. The pole location is selected between 

the range of 0 ≤ z ≤ 1. So that system function obtained after optimization is stable.

 

Upon using optimization, the Error between Ideal and Proposed integrator is given by: Err = 

2.94x10
-6
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Figure.3.11: Optimization process Err function plot v/s iteration using Pattern search 

 

Figure.3.12: Optimized variable coefficient best point plot result using Pattern search 

The optimized value of system function coefficient obtained by pattern search optimization is 

tabulated in Table 3.4. 

First order discrete time integrator 

S. No. Coefficient Value 

1 x1 3.273 

2 x2 -3.044 

3 x3 0.721 

4 x4 -0.195 

5 x5 0.17 

6 x6 -0.033 

7 x7 0.072 

8 x8 -0.014 

9 x9 0.033 



   

39 
 

 

Table.3.1: Optimized coefficient value of first order integrator 

 

1 2 3 4 5 6 7 80.721 0 0.

1
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 3.12 

 

3.1.2 Frequency Response of Digital Integrator Using Matlab:  

 

Figure.3.13:  Frequency response of proposed integrator for sampling frequency normalised to π 

radian 

If an integrator is implemented by using transmission line, the maximum value of the 

transfer function Hint(z) as 1 for the frequency range       1  . The rest part of the transfer 

function in the range   1       satisfies equation 3.4. Under such circumstance, the circuit 

thus obtained behaves as an integrator over the frequency range  1      . 

 

3.1.3 SystemVue Simulation of Designed Digital Integrator 
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For extensive analysis of given filter function under other design criteria such as stability, impulse 

response, step response and group delay is also carried out in Agilent SystemVue.     

 

Figure.3.15: Schematic of digital integrator in SystemVue 

3.2.4 Frequency and Pole Zero plot in SystemVue 

The frequency response obtain from SystemVue are found to be in agreement with MATLAB 

response. The pole zero plot is shown in figure.3.5. The poles obtained are p1 = 0.7111 + 

0.2314j,p2=0.7111 - 0.2314j,p3=0.2826 + 0.4477j, p4=0.2826 - 0.4477j, p5= -0.4289 + 0.2705i, p6= 

-0.4289 - 0.2705i, p7= -0.0999 + 0.4900i and p8= -0.0999 + 0.4900iwhich shows the stability of 

designed discrete time filter. 

 

Figure3.16: (a) Frequency response of proposed digital integrator, (b) Pole-Zero Plot using 

SystemVue 

3.1.5 Impulse Response: 

The impulse response and step response to proposed integrator is shown in figure 3.6 
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Figure.3.6: Impulse response and step response of designed digital integrator 

3.1.6 Implementation Direct form realization of digital integrator: 

 

Figure.3.18: Direct form II realization of digital integrator by MATLAB 

The designed digital differentiators and integrators in this chapter are used as reference for 

designing of microwave differentiator and integrator in the consecutive chapters 4 and 5. 
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Chapter 4 
 

 

Designing of Microstrip Differentiators 

4.1 Introduction  

 In this chapter designing methodology of microwave differentiator is discussed. Based on 

the digital differentiator transfer functions obtained in Chapter 3 the designing of optimized 

microwave differentiators are presented. Here, two different differentiator models with different 

time constant have been designed. In particular, the time constant is proposed to characterize the 

performance of the differentiator and it serves as an important factor that determines the magnitude 

response of adifferentiator. The designed differentiator models are also analysed in Agilent EMPro 

software tool. Lastly, performance characteristic such as magnitude response and group delay 

characteristic of designed differentiator are presented.  

4.2First Order Microwave Differentiator 

For designing a differentiator that have the operating frequencies up to 10GHz using 

microstrip configuration, a network consist of a short stub and a serial transmission lines is used. It 

has been shown (Table 1) that zero occurring on the unit circle | |  1 can be implemented by 

using shunted transmission-line elements.The number of sections and configuration of microstrip is 

determined by the optimization process that involves the curve fitting of transfer function of 

transmission line to the amplitude response of the digital differentiator (3.5) which represents a 

good approximation of an ideal differentiator in Z-domain. 

For obtaining the transfer function of the T(z) of the network (2.15) MATLAB program 

[Appendix 1] is used. 

The system function obtained using MATLAB is given as: 

 

   ( )  
(    

 )(     )

             
  (          

     
 )    (    

       
       )   
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(     )

(     )
     4.2 

Where, a1 andΓ2 are constant and reflection coefficient respectively, are the design variables to be 

optimized. 
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The system function (4.1) obtained for transmission line network is optimized with respect to 

digital differentiator system function obtained in (4). The optimization gives the value of optimized  

a1and Γ2 coefficients. 

4.2.1 Optimization in MATLAB 

The error function to be minimized using pattern search optimization is defined using (3.2). Upon 

using optimization algorithm,the error between ideal and proposed differentiator is equals to Err = 

1.7x10
-4

.  

 

Figure.4.1: Optimization process Err function plot v/s iteration using Pattern search 

 

Figure.4.2: Optimized variable coefficient best point plot result using Pattern search 

The value of designed variable of system function (5.1) obtained by pattern search 

optimization algorithm using MATLAB is tabulated in Table 4.1. 

S. No. Design variables Value 

1 a1 1.049 

2 Γ2 0.043 

Table 4.1 Optimized value of design variables obtained using pattern search algorithm 



   

44 
 

4.2.2 Agilent Line Calc: 

 

Figure.4.1 Agilent ADS LineCalc 

Corresponding to designing variablesa1 and Γ2 values as mentioned in table 4.1, the value of 

characteristic impedance of each sections of transmission line is calculated using (4.2)and the 

values of width and length of each section of microstrip is obtained from Agilent Line calc tool as 

shown in figure 4.1. The RT/duroid® 5870 is used as dielectric substrate having a thickness of 

30mil (0.762mm) and relative dielectric constant of ε = 2.4. Table 4.2 tabulates the dimensions of 

each transmission line section. 

First order discrete time differentiator 

S.No. Coefficient Value Width(mm) Length(mm) 

1 Z1 47.62Ω 2.402 4.773 

2 Z2 54.54Ω 1.952 2.713 

3 Zo 50 Ω 2.249 4.17 

 

Table.4.2: Serial Transmission Line parameter from Line CalcOptimized coefficient value of first 

order differentiator 

 

4.2.3Schematic of microwave differentiator using Agilent ADS: 
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Figure 4.4 represents the schematic for microwave differentiator using Agilent ADS
9
. To 

implement the shunt transmission-line stub having a characteristic impedance of 23.81 Ω, a parallel 

configuration i.e., the equivalent microstrips are placed symmetrically as shown in figure 4.4 is 

used. The transmission line TL2 and TL5 represents short stub and TL6 represents serial 

transmission line. The microstrip line named as TL3 and TL4 represents the 50Ω characteristic 

impedance transmission line. S_Parameter palette is used for S parameter analysis of proposed 

differentiator.The simulation is performed with linear sweep of frequency from DC to 10GHz. 

 

 

Figure.4.4:Agilent ADS Schematic of 1
st
 Order Differentiator 

4.1.3 Substrate definition of microstrip : 

A substrate in EM simulation describes the media where a circuit exists. To demonstrate the 

proposed design methodology, the microwave differentiator is simulated using microstrip line build 

on a RT/duroid® 5870 substrate with a thickness of 30mil (0.762mm) and relative dielectric 

constant of ε = 2.4. The figure 4.5 shows substrate for microstrip in Agilent ADS software. 

 

                                                           
9
www.ads.2011.10.gs/doc/adstour/ADS_Design_Environment.html#ADSDesignEnvironmentADSMainWindow 
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Figure.4.5: Substrate Definition 

4.1.4 Layout diagram of differentiator in ADS: 

Based on the schematic diagram (section 5.2.2) the layout for differentiator is generated in Agilent 

ADS. For characterization of designed differentiator meshing is performed and analysis is done in 

FEM solver. To generate an electromagnetic field solution from which S-parameters can be 

computed, FEM Simulator employs the finite element method. In general, the finite element 

method divides the full problem space into thousands of smaller regions and represents the field in 

each sub-region (element) with a local function.In FEM Simulator, the geometric model is 

automatically divided into a large number of tetrahedra, where a single tetrahedron is formed by 

four equilateral triangles. Figure 4.6 shows the layout structure of microstrip differentiator after 

meshing operation. 

 

Figure.4.6: Layout diagram of 1
st
 order differentiator 
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4.1.5 3D EMPro layout: 

Figure 4.7 represents the final two section microstrip differentiator prototype build in Agilent 

EMPro software.  

 

Figure.4.7: 3D Agilent EMPro Preview 

4.1.6 Magnitude Response of Ideal and Proposed Differentiator: 

For characterization of designed differentiator, reflection coefficient S11 and transmission 

coefficient S21 parameters have been plotted together with ideal differentiator response to show to 

good degree of agreement between proposed and ideal differentiator. In can be seen that the 

designed microwave differentiatorfollow well the ideal differentiator characteristic between the 

frequency range DC to 9.2 GHz.  
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Figure.4.8: Frequency Response of 1
st
 order differentiator and ideal differentiator by momentum 

simulation  

4.1.7 Group Delay: 

Group delay is a measure of the time delay of the amplitude envelopes of the various sinusoidal 

components of a signal through a device under test, and is a function of frequency for each 

component.The non-linear phase delay results in a non-constant group delay, for different 

frequencies it will be different propagation time as show in figure 4.9.It has a constant Group delay. 

The time constant of designed integrator is xyz sec. 
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Figure.4.9:ADS simulation plot of group delay versus the frequency in GHz 

 

 

4.2 First order Differentiator  with different time constant 

For designing a differentiator that have the operating frequencies up to 10GHz using 

microstrip configuration, a network consist of a short stub and a serial transmission lines is used. It 

has been shown (Table 1) that zero occurring on the unit circle | |  1 can be implemented by 

using shunted transmission-line elements. The number of sections of integrators is determined by 

the optimization process that involves the curve fitting of transfer function of transmission line to 

the amplitude response of the digital differentiator (3.8) which represents a good approximation of 

an ideal differentiator. 

For obtaining the transfer function of the T(z) of the network (3.12) MATLAB program 

[Appendix 1] is used. 

The system function obtained using MATLAB is given as:  

    
(    

 )(     )

   (  )    (  )    (  )    (  )   
   4.3 

2 2 2 2 2 2 2 2 2 2 2 2

2 3 4 3 4 2 3 2 4 2 3 41Num               

2 2 2 2 2

1 1 2 3 3 4 1 2 1 2 3 1 3 4 1 2 3 2 3 4 1 2 3 4 1 2 3 4 1 2 3 41 C C C C C C C C                                  
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2 2 2 2 2 2

2 1 2 3 2 4 3 4 1 2 1 3 1 4 2 3 4 1 3 1 2 3 1 2 41 3 3C C C C C C C                             

2 2 2 2 2 2 2 2 2

1 3 4 1 2 3 1 2 4 1 4 2 1 4 3 2 4 3 2 3 4 2 3 4 1 2 3 4 1 2 3 43 2C C C C C C C                                

 

2 2 2

1 2 3 4 1 2 4 3 1 3 4 2C C C             

Where, a1, Γ2, Γ3 and Γ4 are constant and reflection coefficient defined in table(2) respectively, are 

the design variables to be optimized. 

The system function (4.3) obtained for transmission line network is optimized with respect to 

digital differentiator system function obtained in (3.8). The optimization gives the value of 

optimized a1,Γ2,Γ3 and Γ4 coefficients. 

4.2.1 Optimization in MATLAB 

The error function to be minimized using pattern search optimization is defined using (3.3). Upon 

using optimization algorithm the error between ideal and proposed differentiator is given as Err = 

6.0x10
-3

. The figure 4.10 presents the progress of error function minimization with respect to 

increasing iteration. The optimized values of design variables i.e. a1,Γ2,Γ3 and Γ4 are plotted in 

figure 4.11. 

 

Figure.4.10: Optimization process Err function plot v/s iteration using Pattern search 
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Figure.4.11: Optimized variable coefficient best point plot result using Pattern search 

The optimized value of design variables of system function obtained by pattern search optimization 

algorithm using MATLAB is tabulated in Table 4.3. 

S.No. Design variables Value 

1 a1 1.450 

2 Γ2 0.164 

3 Γ3 -0.062 

4 Γ4 0.015 

Table 4.3 Optimized value of reflection coefficients obtained using pattern search algorithm 

Corresponding to reflection coefficients values as mentioned in table 4.3, the values of 

characteristic impedance of each section of transmission line can be calculated using (5.4).For 

implementation of microstrip integrator, RT/duroid® 5870 is used as dielectric substrate having a 

thickness of 30mil (0.762mm) and relative dielectric constant of ε = 2.4.The resultant value of the 

value of width and length of each section of microstrip is tabulated in table 4.4.   

Serial Transmission Line 

S.No. Configuration Characteristic 

Impedance 

Value(Ω) Width(mm) 

w 

Length(mm) 

l 

1 SCL Z1 34.323 3.813 5.712 

2 STL Z2 69.716 1.2964 2.080 

3 STL Z3 44.135 2.6488 2.3176 

4 STL Z4 51.534 2.1325 3.7113 

5 TL Zo 50.000 2.249 4.170 

Table.4.4: Serial Transmission Line parameter from Line Calc Optimized coefficient value of first 

order differentiator 

 

4.2.2 Schematic of microwave differentiator using Agilent ADS 

Figure 4.12 represents the schematic for microwave differentiator using Agilent ADS. To 

implement the shunt transmission-line stub having a characteristic impedance of 17.16 Ω, a parallel 

configuration i.e., the equivalent microstrips are placed symmetrically. The transmission line TL2 

and TL5 represents short stub and TL6, TL7and TL8 represents serial transmission line. The 
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microstrip line named as TL3 and TL4 represents the 50Ω characteristic impedance transmission 

line. S_Parameter palette is used for S parameter analysis of proposed differentiator.The simulation 

is performed with linear sweep of frequency from DC to 10GHz. 

 

Figure.4.12Schematic of 1
st
 Order Differentiator with time constant() 

 

4.2.3 Substrate: 

A substrate in EM simulation describes the media where a circuit exists. To demonstrate the 

proposed design methodology, the microwave  integrator is simulated using  microstripe line is 

build on a RT/duroid® 5870 substrate with a thickness of 30mil (0.762mm) and relative dielectric 

constant of ε = 2.4. The below diagram shows substrate defining in Agilent ADS software. 

 

 

Figure.4.13:RT/duroid® 5870 Substrate  

4.2.4 Layout diagram of differentiator in ADS:  

Based on the schematic diagram (section 4.2.2) the layout of differentiator is generated as shown in 

figure 4.14. For characterization of designed differentiator meshing is performed and analysis is 

done in FEM solver. To generate an electromagnetic field solution from which S-parameters can be 
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computed, FEM Simulator employs the finite element method.In general, the finite element method 

divides the full problem space into thousands of smaller regions and represents the field in each 

sub-region (element) with a local function. 

 

Figure.4.14: Layout diagram of 1
st
 order differentiator 

 

4.2.5Agilent EMPro layout: 

Figure 4.15 represents the final microstrip differentiator prototype build in Agilent EMPro 

software.  

 

Figure.4.15: Agilent EMPRo Layout diagram of first order differentiator 
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4.2.6 Magnitude Response of Ideal and Proposed Differentiator: 

For characterization of designed differentiator, S11 and S21 parameters have been plotted together 

with ideal differentiator response to show to good degree of agreement between proposed and ideal 

differentiator. In can be seen that the designed microwave differentiatorfollow well the ideal 

differentiator characteristic between the frequency range DC to 8 GHz. The time constant of 

designed integrator is xyz sec. 

 

 

Figure.4.16: Frequency Response of the proposed 1
st
 order differentiator and ideal differentiator 

4.2.7 Group Delay time for designed differentiator 

Group delay is a measure of phase distortion. Group delay is the actual transit time of a signal 

through a device under test as a function of frequency. From figure 4.17 it can be seen that group 

delay time vary slightly under acceptable range of tolerance. The value of group delay time from 

port 1 to port 2 is 1.05 x 10
-10

 sec. The time constant of designed integrator is xyz 
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Figure4.17:  ADS simulation plot of group delay versus the frequency in GHz 
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Chapter 5 
 

 

Designing of Microstrip Integrator 

5.1  Introduction 

This chapter illustrates the synthesis methodology of microwave integrator. Based on the digital 

integrator system functions obtained in Chapter 3 the designing of optimized microwave integrators 

are presented.Here, two different integrators models with different time constant have been 

designed. In particular, the time constant is proposed to characterize the performance of the 

integrator and it serves as an important factor that determines the amplitude response of an 

integrator. The designed integrator models are also analysed in Agilent EMPro software tool. 

Lastly, performance characteristic such as magnitude response and group delay characteristic of 

designed integrators are presented. 

5.2First Order Microwave Integrator 

For designing an integrator that have the operating frequencies up to 10GHz using microstrip 

configuration, a network consist of six sections of serial transmission linesis used. It is to be noted 

that if a network obtained by cascading four section of serial transmission line, there is practical 

limitation of a maximum frequency operation of 5GHz. The number of sections or device lengthof 

microstrip network determines the time constant and frequency response of an integrator.The 

number of sections of integrators is determined by the optimization process that involves the curve 

fitting of transfer function of transmission line to the amplitude response of the digital 

integrator(3.5) which represents a good approximation of an ideal integrator. 

For obtaining the transfer function of the T(z) of the network (2.15)MATLAB program 

[Appendix 1] is used. 

The system function obtained using MATLAB is given as 

 

11 1 2 3 4 5 6

1 2 3 4 5 6 7

T
z z z z z z



           


     
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0

0
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n
n
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Z Z
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where, α1, α2,α3,α4,α5,α6, and α7 coefficients are functions of reflection coefficient of each serial 

transmission lines given byΓ1,  Γ2, Γ3, Γ4, Γ5 and Γ6respectively. The design variables Γ1, Γ2, Γ3, 

Γ4,Γ5 and Γ6to be optimized. The system function (5.1) obtained for six sections transmission line 

network is optimized with respect to digital integrator system function obtained in (3.5).  

5.2.1 Optimization in MATLAB 

The error function(3.3) to be minimized is performed using pattern search optimization. Upon using 

optimization algorithm,the error between ideal and proposed integrator is given as Err =2.2x10
-3

.  

The figure 5.1 presents the progress of error function minimization with respect to increasing 

iteration. The optimized values of design variables i.e. Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6 are plotted in figure 

5.2. 

 

Figure.5.1: Optimization process error function plot versus iteration using Pattern search 

 

 

Figure.5.2: Optimized variable coefficient best point plot results using Pattern search 

The value of designed variables of system function (5.1) obtained by pattern search 

optimization algorithm using MATLAB is tabulated in Table5.1. 
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S.No. Reflection coefficient Value 

1 Γ1 -0.700 

2 Γ2 -0.321 

3 Γ3 0.365 

4 Γ4 0.022 

5 Γ5 0.039 

6 Γ6 -0.021 

Table 5.1 Optimized values of reflection coefficients obtained using pattern search algorithm 

Corresponding to reflection coefficients values as mentioned in table 5.1, the value of 

characteristic impedance of each sections of transmission line can be calculated using (5.2). For 

implementation of microstrip integrator, RT/duroid® 5870 is used as dielectric substrate having a 

thickness of 30mil (0.762mm) and relative dielectric constant of ε = 2.4. The resultantvalue of 

width and length of each sections of microstrip is calculated using Line Calc tool of Agilent ADS 

andare tabulated in table 5.2. 

Serial Transmission Line 

S.No. Characteristic 

ImpedanceZN 

Value(Ω) Width(mm) 

w 

Length(mm) 

l 

1 Z1 8.807 19.474 3.446 

2 Z2 25.657 5.564 2.520 

3 Z3 107.464 0.530 4.900 

4 Z4 52.212 2.090 2.660 

5 Z5 54.147 1.975 7.751 

6 Z6 47.913 2.381 5.245 

7 Z0 50.000 2.238 5.237 

Table.5.2: Serial Transmission Line parameter from Line CalcOptimized coefficient value of first 

order integrator 

 

5.2.2 Schematic of microwave integrator using Agilent ADS: 
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Figure 5.3 represents the schematic for microwave integrator using Agilent ADS. Six 

sections of microstrip transmission line named as TL1 through TL6 are used to design integrator. 

The microstrip line named as TL8 and TL9 represents the 50Ω characteristic impedance 

transmission line. Microstrip substrate properties are defined under MSUB palette. S_Parameter 

palette is used for S-parameter analysis of proposed wideband microwave integrator.The simulation 

is performed with linear sweep of frequency from DC to 10GHz. 

 

 

Figure.5.3:Agilent ADS Schematic of six element transmission line 1
st
 Order Integrator 

5.2.3 Substrate definition of microstrip: 

A substrate in EM simulation describes the media where a circuit exists. To demonstrate the 

proposed design methodology, the microwave  integrator is simulated using microstrip line build on 

a RT/duroid® 5870 substrate with a thickness of 30mil (0.762mm), loss tangent of 0.0025 and 

relative dielectric constant of ε = 2.4. The figure 5.6represents the substrate definition for microstrip 

under Agilent ADS software. 

 

Figure.5.6: RT/duroid® 5870 Substrate 

5.2.4Layout diagram of six element integrator in ADS: 
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Based on the schematic diagram (section 5.2.2) the layout for six element integrator is generated in 

Agilent ADS. For characterization of designed integrator meshing is performed and analysis is done 

in FEM simulation.An FEM simulation mesh is a part of the entire 3D problem domain, which is 

divided into a set of tetrahedra (or cells). The pattern of cells is based on the geometry of a layout 

so each layout has a unique mesh calculated for it. The mesh is then applied to the geometry to 

compute the electric fields within each cell. It also helps to identify any coupling effects in the 

layout during simulation. From these calculations, S-parameters are then calculated for the layout. 

 

Figure.5.4: Layout diagram of 1
st
 order integrator with six sections 

5.2.5Agilent EMPro layout: 

 

Figure.5.5:Agilent EMProlayout of first order integrator 

Figure 5.5 represents the final six section microstrip integrator prototype build in Agilent EMPro 

software. 
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5.2.6 Magnitude Response of Ideal and Proposed Integrator: 

For characterization of designed integrator,reflection coefficient S11and transmission coefficient 

S21parametershave been plotted together with ideal integrator response to show to good degree of 

agreement between proposed and ideal integrator. In can be seen that the designed microwave 

integrator follows well the ideal integrator characteristic between the frequency range 2.5GHz to 

10GHz. 

 

Figure.5.7: Frequency Response of the proposed 1
st
 order integrator and ideal integrator 

5.2.7 Group delay time for designed integrator  

Group delay is a measure of phase distortion. Group delay is the actual transit time of a signal 

through a device under test as a function of frequency. From figure 5.8 it can be seen that group 

delay time vary slightly under acceptable range of tolerance. The value of group delay time from 

port 1 to port 2 is found to be equals to 1.63 x 10
-10

 sec.The time constant of designed integrator is 

xyz sec. 
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Figure.5.8:  ADS simulation plot of group delay versus the frequency in GHz 

 

 

5.3 Integrator with different time constant  

For designing integrator that have the operating frequencies up to 10GHz using microstrip 

configuration, a network consist of eight sections of serial transmission lines is used. The number 

of sections of integrators is determined by the optimization process that involves the curve fitting of 

transfer function of transmission line to the amplitude response of the digital integrator which 

represents a good approximation of an ideal integrator.  

For obtaining the transfer function of the T(z) of the network (3.12) MATLAB program 

[Appendix 1] is used. 

The system function obtained using MATLAB is given as:  
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Where, α1, α2,α3,α4,α5,α6,α7,α8 and α9 coefficients are functions of  reflection coefficient of each 

serial transmission line given by Γ1, Γ2, Γ3, Γ4, Γ5, Γ6,Γ7,Γ8and Γ9respectively, The design variables 
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Γ1, Γ2, Γ3, Γ4, Γ5, Γ6,Γ7,Γ8 and Γ9 to be optimized.The system function (5.3) obtained for 

transmission line network is optimized with respect to digital integrator system function obtained in 

(3.12).  

5.3.1 Optimization in MATLAB 

The error function to be minimized using pattern search optimization is defined using (3.3). Upon 

using optimization algorithm, the error between ideal and proposed integrator is given as Err 

=6.8x10
-3

. The figure 5.1 presents the progress of error function minimization with respect to 

increasing iteration. The optimized values of design variables i.e. Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6 are 

plotted in figure 5.2. 

 

Figure.5.9: Optimization process Err function plot v/s iteration using Pattern search 

 

Figure.5.10: Optimized variable coefficient best point plot result using Pattern search 

The value of designed variables of system function (5.3) obtained by pattern search 

optimization algorithm using MATLAB is tabulated in Table5.3. 

 

S. No. Reflection coefficient Value 
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1 Γ1 -0.757 

2 Γ 2 -0.300 

3 Γ 3 0.380 

4 Γ 4 0.021 

5 Γ 5 0.039 

6 Γ 6 -0.001 

7 Γ 7 -0.001 

8 Γ 8 -0.001 

Table 5.3 Optimized values of reflection coefficients obtained using pattern search algorithm 

Corresponding to reflection coefficients values as mentioned in table 5.3, the values of 

characteristic impedance of each section of transmission line can be calculated using (5.4). For 

implementation of microstrip integrator, RT/duroid® 5870 is used as dielectric substrate having a 

thickness of 30mil (0.762mm) and relative dielectric constant of ε = 2.4.The resultant value of 

width and length of each sections of microstrip is calculated using Line Calc tool of Agilent ADS 

and are  tabulated in table 5.4.   

Serial Transmission Line 

S.No. Characteristic 

Impedance 

Value(Ω) Width(mm) 

w 

Length(mm) 

l 

1 Z1 6.903 25.400 3.446 

2 Z2 26.888 5.244 2.520 

3 Z3 109.636 0.505 4.900 

4 Z4 52.212 2.090 2.660 

5 Z5 54.147 1.975 7.751 

6 Z6 49.900 2.381 5.245 

7 Z7 49.900 2.381 5.245 

8 Z8 49.900 2.381 5.245 

9 Z0 50.000 2.238 5.237 

Table.5.4: Serial Transmission Line parameter from Line Calc Optimized coefficient value of first 

order integrator 

5.3.2 Schematic of microwave integrator using Agilent ADS: 
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Figure 5.11 represents the schematic for microwave integrator using Agilent ADS. Eight 

sections of microstrip transmission line named as TL1 through TL8 are used to design integrator. 

The microstrip line named as TL9 and TL10 represents the 50Ω characteristic impedance 

transmission line. S_Parameter palette is used for S parameter analysis of proposed integrator.The 

simulation is performed with linear sweep of frequency from DC to 10GHz. 

 

Figure.5.11:Agilent ADS Schematic of eight sections 1
st
 Order Integrator 

5.3.3 Substrate definition of microstrip: 

A substrate in EM simulation describes the media where a circuit exists. To demonstrate the 

proposed design methodology, the microwave  integrator is simulated using  microstripe line is 

build on a RT/duroid® 5870 substrate with a thickness of 30mil (0.762mm) and relative dielectric 

constant of ε = 2.4. The below diagram shows substrate defining in Agilent ADS software. 

 

Figure.5.6:RT/duroid® 5870 Substrate  

 

5.3.4Layout diagram of eight element integrator in ADS: 

Based on the schematic diagram (section 5.3.2) the layout of eight element integrator is generated 

as shown in figure 5.12. For characterization of designed integrator meshing is performed and 

analysis is done in FEM solver. To generate an electromagnetic field solution from which S-
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parameters can be computed, FEM Simulator employs the finite element method.In general, the 

finite element method divides the full problem space into thousands of smaller regions and 

represents the field in each sub-region (element) with a local function. 

 

Figure.5.12: Layout diagram of 1
st
 order differentiator with eight sections 

 

5.3.5 Agilent EMPro layout 

 

Figure.5.13Agilent EMPro layout of first order integrator 

Figure 5.13 represents the final eight section microstrip integrator prototype build in Agilent 

EMPro software.  
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5.3.6Magnitude Response of Ideal and Proposed Differentiator 

For characterization of designed integrator, S11 and S21 parameters have been plotted together with 

ideal integrator response to show to good degree of agreement between proposed and ideal 

integrator. In can be seen that the designed microwave integrator follow well the ideal integrator 

characteristic between the frequency range 2GHz to 10GHz. The time constant of designed 

integrator is xyz sec. 

 

Figure.5.15 Frequency Response of the proposed 1
st
 order integratorand ideal integrator 

5.3.7 Group delay time for designed integrator 

Group delay is a measure of phase distortion. Group delay is the actual transit time of a signal 

through a device under test as a function of frequency. From figure 5.16 it can be seen that group 

delay time vary slightly under acceptable range of tolerance. The value of group delay time from 

port 1 to port 2 is 2.17 x 10
-10

 sec.The time constant of designed integrator is xyz sec. 
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Figure.5.16:  ADS simulation plot of group delay versus the frequency in GHz 
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Chapter 6 
 

 

Results  

 
 The design of accurate digital integrator and differentiator has been presented. Thus the 

designed Integrator and differentiator are of high accuracy with an error of order 10
-5

. The 

low order of the differentiator makes it suitable for real-time applications. It approximates 

an ideal differentiator in the passband region with accuracy comparable to that obtained by 

higher order filters. The proposed method is fast and eases the design complexity of 

wideband digital integrator and differentiator 

 It has been shown that zeros occurring on the unit circle | |  1 can be implemented by 

using shunted transmission-line elements. 

 From fig. , we came across conclusion that better linearity in amplitude response comes 

when d = 0.166. The relative error is less than 1% (or -40dB) when 0  Ω    8  . The 

bilinear transformation, when is one, has a good linearity when the normalized frequency is 

less than 0.3π. So, bilinear transformation is improper to be adopted as the system function 

of a wide-band differentiator. 

 The magnitude response of simulated differentiator extends good linearity agreement till 0.8 

of full band normalised frequency, which corresponds to 10GHz. 

 For designed integrator, is a good candidate for integration operation up to the maximum 

operating frequency of 10GHz. Except for the lower frequency band, amplitude response 

are in good agreement with the ideal response.   

 

 For 4 elements frequency response is till 5 GHz so length also increases frequency response. 
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Chapter 7 
 

 

Conclusions 

 

 

6.1 Conclusions 

The objective of this work has been to 

 Simple and accurate formulations have been employed to represent both first and second-

order differentiators in the Z-domain.  

 In particular, the Z-domain representations of scattering characteristics of equal length non-

uniform transmission lines facilitate the implementation of discrete domain differentiators in 

the microwave frequency range. These differentiators have been implemented by using 

microstrip transmission lines.  

 It is possible that many other circuits developed in DSP studies can also be implemented by 

using transmission lines for microwave applications. 

 The mathematical analysis was done for each design and verifed by writing a MATLAB 

code. The effects due to conductor and dielectric losses were ignored in the code. ADS was 

used to accurately arrive at the final design. 

 

 

6.2 Future Scope of present work 

 

By using different configuration of serial, short, and open stub Transmission line we can 

implement many other circuits developed in DSP studies. The future extension of this project shall 

be: 

 Implementation of higher order integrators and differentiator, variable time constant 

differentiator, variable time constant differentiator [5-8] and  

 Different types of filters such as Low pass, high pass, bandpass and bandstop filter for high 

frequency application [9]. 
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APPENDIX 

Appendix A 

MATLAB Code for Transfer Function  

A.1 MATLAB Code  

%// Writtenby © Shafqat A. KHAN on 10 march 2013 
%// This Program for T matric solver 
%// To be included in M.Tech. Thesis "Design of Microwave Differentiator and Integrator using DSP Technique" 
%function FinalTcode 
clc 
clearall 
closeall 
%dignum = input('Enter the numcoeff. of Digital filter'); %# Enter [1 2 3 4 5] 
%digden = input('Enter the den coeff. of Digital filter'); 
%disp('Transfer function of Digtial filter is given as:') 
%nu = poly2sym(dignum,z); 
%de = poly2sym(dignum,z); 
%H(z) = nu/de; 
fprintf('\n Written by  © Shafqat A. KHAN on 10 march 2013 \n') 
fprintf('\n This Program calculate Transmission Line System function\n') 
K = input('Enter the number of Open Stub Line K = ') ; 
L = input('Enter the number of Short Stub Line L = ') ; 
M = input('Enter the number of Series Transmission Line M = ') ; 
N = K + L + M; 
fprintf('\nThe Total number of network element N is %d \n',N) 
% Zo = 50; 
Tnetwork = 1; 
%Z = sym('Z%d',[1 N]);%---->>>>>>>>>>>>Undefined variable array 
cvar = sym('C%d',[1 N]); 
Tvar = sym('T%d',[1 N]); 
fprintf('Choose from following : \n 1 --> Open Stub \n 2 --> Short Stub \n 3 --> Serial Tx. Line \n') 
for i=1:N 
fprintf('choose the %dth element --> ',i)  
choice = input(''); 
switch choice 
case 1  
%syms Z1 
%disp('Inside Open stub case') 
%Z(i) = 50 
ahh = cvar(i); 
symscz 
%     Toc = sym(zeros(2,2)); 
        Toc(c, z) = (1/(1+z))*[(1+c)+(1-c)*z c-c*z ; -c+c*z (1-c)+(1+c)*z]; 
        w = subs(Toc,c,ahh); 
        f = collect(w(c,z)); 
case 2 
%   a = Zo/(2*Z(i)); 
bhh = cvar(i); 
symscz 
%    Tsc = sym(zeros(2,2)); 
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Tsc(c, z) = (1/(1-z))*[(1+c)-(1-c)*z c+c*z ; -c-c*z (1-c)-(1+c)*z]; 
        w = subs(Tsc,c,bhh); 
        f = collect(w(c,z)); 
case 3  
% Z(i) = 50 
%   T = (Z(i)-Zo)/(Z(i)+Zo); 
bb = Tvar(i); 
symsTz 
%     Ttls = sym(zeros(2,2)); 
Ttls(T,z) = (1/(1-T^2))*[1-z*T^2 -(T-T*z);(T-T*z) (-T^2 + z)]; 
        w = subs(Ttls,T,bb); 
        f = collect(w(T,z)); 
otherwise 
fprintf(' %d is an invalid value! Select values from 1 or 2 or 3 only \n',choice); 
end 
Tnetwork = Tnetwork*f; 
end 
Qnw = collect(1/Tnetwork(1,1)); 
pretty(Qnw) % gives same result as in num den output 
S(z) = Qnw; 
[numexpr, denexpr] = numden(sym(S));%// 'sym' makes sure that S is symbolic 
%// Extract numerator coefficients 
[numcoef, numpow] = coeffs(expand(numexpr), z); 
num = rot90(sym(sym2poly(sum(numpow))), 2); 
num(num ~= 0) = coeffs(expand(numexpr), z); % repre terms as 1 z^-1 z^-2 form 

 

%// Extract denominator coefficients 
[dencoef, denpow] = coeffs(expand(denexpr), z); 
den = rot90(sym(sym2poly(sum(denpow))), 2); 
den(den ~= 0) = coeffs(expand(denexpr), z); % % repre terms as 1 z^-1 z^-2 form 

 

%% 
symsC1T2; 
%x = [C1 T2]; 
den1(C1,T2) = den(1)/num(1); 
den2(C1,T2) = den(2)/num(1); 
den3(C1,T2) = den(3)/num(1); 
%p = [2.687 0.429 -0.134]; 
%fval = (den1 - p(1))+(den2 - p(2))+(den3 - p(3)); 

 

%% 
%function Err = ObjDiff(x) 
optimization() 

 

%   function fval = optimization(C1,T2)  

 

        [x,fval] = patternsearch(@optimization,[1.5 0.1]); 
% end 
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Appendix 2 

MATLAB Code for objective function 

(1) 

function E = Obj_Diff_Firs_FourTL(x) 
f = @(w)(0.38*w - (abs((1 - exp(-1j*w))./(x(1)+x(2)*exp(-1j*w) + ... 
x(3)*exp(-2j*w) + x(4)*exp(-3j*w)+ x(5)*exp(-4j*w))))).^2; 
E = integral(f,0,pi-0.1); 

(2) 

function Err = optdiffmain(Z) 
C1 = 25./Z(1); 
C3 = 25./Z(3); C4 = 25./Z(4); 
T2 = (Z(2) - 50)./(Z(2) + 50); 
b0 = (C1 + C3 + C4 + C1*C3 + C1*C4 + C1*T2 + C3*T2 + C4*T2 + ... 
    2*C1*C3*T2 + 2*C1*C4*T2 + C1*C3*T2^2 + C1*C4*T2^2 + 1)./T2; 
b1 = (- C1 - C3 - C4 - C1*T2^2 - C3*T2^2 - C4*T2^2 - T2^2 - ... 
    2*C1*T2 - 2*C3*T2 - 2*C4*T2 - 3)./T2; 
b2 = (C1*T2^2 - C3 - C4 - C1 + C3*T2^2 + C4*T2^2 + 3*T2^2 - ... 
    2*C1*C3 - 2*C1*C4 - 4*C1*C3*T2 - 4*C1*C4*T2 - 2*C1*C3*T2^2 - ... 
    2*C1*C4*T2^2 + 3)./T2; 
b3 = (C1 + C3 + C4 + C1*T2^2 + C3*T2^2 + C4*T2^2 - 3*T2^2 + ... 
    2*C1*T2 + 2*C3*T2 + 2*C4*T2 - 1)./T2; 
Err = (5.75 - b0).^2 + (-3.84 - b1).^2 + (-1.7528 - b2).^2 +... 
    (-0.15517 - b3).^2; 
 

(3) 

function E = Obj_Integ_First(x) 
f = @(w)(0.33./w - (abs((1-exp(-1j*w))./(x(1)+x(2)*exp(-1j*w) + x(3)*exp(-2j*w) + x(4)*exp(-3j*w))))).^2; 
%f = @(w) (0.33./w - abs( (1-exp(-1j*w)./((exp(-1j*w)+x(1)).*(exp(-1j*w)+x(2)).*(exp(-1j*w)+x(3)) ) ) ) ); 
E = integral(f,0.314,pi); 

 

 

 

% plotting of Integrator  

clear all 

clc 

w = 0.1:0.05:pi; 

%% Ideal 

Hideal = 1./w; 

plot(w,Hideal); 

axis([0 pi 0 pi]) 

xlabel('Frequency') 

ylabel('Magnitude') 

grid 

hold on 

%% My proposed Pattern search Paper  

S = [3.632 1.22 -0.361 -0.03 -4.799 2.151 1.662]; 

Hmy = abs((S(1)+S(2)*exp(-1j*w)+S(3)*exp(-2j*w)+S(4)*exp(-3j*w))./(1+S(5)*exp(-1j*w)+S(6)*exp(-

2j*w)+S(7)*exp(-3j*w))); 
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plot(w,Hideal,w,Hmy,'r'); 

%% 

%S = [0.8657 0.5895 0.0543 -0.4975 -0.5025]; 

S = [0.866 0.589 0.05 -0.499 -0.501]; 

%S = [0.241 1.247 0.985 -0.316 -1.251] 

Hupad = abs((S(1)+S(2)*exp(-1j*w)+S(3)*exp(-3j*w))./(1+S(4)*exp(-1j*w)+S(5)*exp(-2j*w))); 

plot(w,Hupad,'r'); 

 

%% 

S = [3.632 1.22 -0.361 -0.03 -4.799 2.151 1.662]; 

Hmy = abs((S(1)+S(2)*exp(-1j*w)+S(3)*exp(-2j*w)+S(4)*exp(-3j*w))./(1+S(5)*exp(-1j*w)+S(6)*exp(-

2j*w)+S(7)*exp(-3j*w))); 

plot(w,Hmy,'r'); 

 

%% Menakshi 

Hmmk = abs((0.3815*(exp(1j*w) + 2.285).*(exp(2j*w) - 0.247*exp(1j*w) + 

0.04543))./(exp(2j*w).*(exp(1j*w) - 1))); 

plot(w,Hmmk,'*') 

%% Ngo 

Hngo = abs((exp(1j*w) + 2.368).*(exp(1j*w) - 0.2167*exp(1j*0.9427)).*(exp(1j*w) - 0.2167*exp(-

1j*0.9427))./(2.7925*exp(2j*w).*(exp(1j*w)-1))); 

plot(w,Hngo,'x'); 

 

%% Al-Aloui 

Hal = abs((0.8416*exp(2j*w) + 0.6635*exp(1j*w) + 0.0499 )./(exp(2j*w) - 0.4438*exp(1j*w) -0.5549)); 

plot(w,Hal,'o') 

%% Upadhyay 

Hupad = abs((0.8657*(1 + 0.681*exp(-1j*w) + 0.0628*exp(-2j*w)))./(1 - 0.4975*exp(-1j*w) - 0.5025*exp(-

2j*w))); 

plot(w,Hupad,'+'); 

legend('Ideal','My','MMK','Ngo','Al-Aloui','Upad') 

 

 

%%                                          ERROR Calculation 

%% My proposed Pattern search best  

S = [3.632 1.22 -0.361 -0.03 -4.799 2.151 1.662]; 

Err_My =@(x) 1./x - abs((S(1)+S(2)*exp(-1j*x)+S(3)*exp(-2j*x)+S(4)*exp(-3j*x))./(1+S(5)*exp(-

1j*x)+S(6)*exp(-2j*x)+S(7)*exp(-3j*x))); 

Q = quad(Err_My,0.1,pi) %2.9210e-04(0.1,pi), 2.9210e-04(0.5 to pi) -1.7772e-04(1 to pi) 

 

%% Menakshi 

Err_Menak = @(x) 1./x - abs((0.3815*(exp(1j*x) + 2.285).*(exp(2j*x) - 0.247*exp(1j*x) + 

0.04543))./(exp(2j*x).*(exp(1j*x) - 1))); 

Q = quad(Err_Menak,0.1,pi) % -0.0232(0.1 to pi) -0.0224(0.5 to pi) 
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%% Ngo 

Err_Ngo = @(x) 1./x - abs((exp(1j*x) + 2.368).*(exp(1j*x) - 0.2167*exp(1j*0.9427)).*(exp(1j*x) - 

0.2167*exp(-1j*0.9427))./(2.7925*exp(2j*x).*(exp(1j*x)-1))); 

Q = quad(Err_Ngo,0.1,pi) % 0.1066 

 

%% Al-Aloui 

Err_Al = @(x) 1./x - abs((0.8416*exp(2j*x) + 0.6635*exp(1j*x) + 0.0499 )./(exp(2j*x) - 0.4438*exp(1j*x) -

0.5549)); 

Q = quad(Err_Al,0.1,pi) % 0.0263 

 

%% Upadhayay 

Err_Upad = @(x) 1./x - abs((0.8657*(1 + 0.681*exp(-1j*x) + 0.0628*exp(-2j*x)))./(1 - 0.4975*exp(-1j*x) - 

0.5025*exp(-2j*x))); 

Q = quad(Err_Upad,0.1,pi) 

 

%%                          ERROR PLOT 

%% Error Plot  

%hold off 

Err1 = ((Hideal - Hmy)./Hideal).^2; 

Err2 = ((Hideal - Hmmk)./Hideal).^2; 

Err3 = (Hideal - Hngo); 

Err4 = (Hideal - Hal); 

Err5 = (Hideal - Hupad); 

plot(w,Err1) 

xlabel('Frequency') 

ylabel('Magnitude') 

grid 

hold on 

plot(w,Err2,'r') 

plot(w,Err3,'g') 

plot(w,Err4,'') 

legend('My','MMK','NGO','AL-Aloui') 
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Objective Fuction for First order differentiator Optmization 

function Err = myfirstdiff(S) 
%w = 0:0.2:pi; 
y = @(w) abs(w - abs((1 - exp(-1j*w))./(S(1) + S(2)*exp(-1j*w) ))); 
Err = quad(y,0,pi-0.4); 
 

Appendix 3 

 

Appendix 
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title('The Sine of 0 to 2\pi') 

xlabel('t = 0 to 2\pi') 

ylabel('sin(t)') 

 

text(3*pi/4,sin(3*pi/4),... 

     '\leftarrowsin(t) = .707',... 

     'FontSize',16) 

 

text(pi,sin(pi),'\leftarrowsin(t) = 0',... 

     'FontSize',16) 

 

text(5*pi/4,sin(5*pi/4),'sin(t) = -.707\rightarrow',...  

     'HorizontalAlignment','right',... 

     'FontSize',16) 

 


