
tbvar: A Comprehensive Genome Variation

Resource for Mycobacterium tuberculosis

A Major Project dissertation submitted

in partial fulfilment of the requirement for the degree of

Master of Technology

in

Bioinformatics

Submitted by

Heena Dhiman

(2K11/BIO/07)

Delhi Technological University, Delhi, India

Under the supervision of

Dr. Yasha Hasija

Department of Biotechnology

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road,

Delhi-110042, INDIA

CERTIFICATE

This is to certify that the M. Tech. dissertation entitled “tbvar: A

comprehensive genome variation resource for Mycobacterium tuberculosis”,

submitted by HEENA DHIMAN (2K11/BIO/07) in partial fulfilment of the

requirement for the award of the degree of Master of Technology, Delhi

Technological University (Formerly Delhi College of Engineering, University

of Delhi), is an authentic record of the candidate‟s own work carried out by her

under my guidance.

The information and data enclosed in this thesis is original and has not been

submitted elsewhere for honouring of any other degree.

Date:

Dr. Yasha Hasija

(Project Mentor)

Assistant Professor and Associate Head

Department of Biotechnology

Delhi Technological University

(Formerly Delhi College of Engineering, University of Delhi)

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards

to various people who have helped & supported me throughout this project. I

would like to express my greatest appreciation to my guide and project mentor

Dr. Yasha Hasija, for her exemplary guidance, monitoring and constant

encouragement throughout the M. Tech. course. The assignments given by her

from time to time not only made me capable of doing in depth analysis required

to complete this project but has also given me a great experience that shall move

along me in the journey of life on which I am about to embark. I am very

grateful to her for giving me this opportunity to carry out such a novel and

valuable research, providing me continuous support throughout this project and

introducing me to my co-guide Dr. Vinod Scaria (Scientist – CSIR-IGIB).

I wish to express my sincere gratitude to Dr. Vinod Scaria, for the

planning and development of this research work and allowing me to use the

infrastructure of his lab. His willingness to give his time so generously has been

very much appreciated.

I am particularly grateful for the assistance given by Mr. Kandarp Joshi

(PhD Scholar – AcSIR). I am highly indebted to him for his guidance and

constant supervision as well as being patient with my repetitive queries

regarding this project.

My special thanks are extended to my classmates and the other PhD

scholars at IGIB for providing useful critiques of this research work.

Lastly, I would like to thank my family members for their constant

encouragement without which this assignment would not have been possible.

CONTENTS

 TOPIC Pg. No.

 LIST OF FIGURES i

 LIST OF TABLES iii

 LIST OF ABBREVIATIONS iv

1. ABSTRACT 1

2. INTRODUCTION

2

3. REVIEW OF LITERATURE 4

 3.1 Tuberculosis 4

 3.1.1 Latent TB Infection 4

 3.1.2 TB Disease 4

 3.1.3 Growth of tuberculosis 5

 3.1.4 Molecular mechanisms of drug resistance 5

 3.1.5 MTB Genomics 7

 3.1.6 MTB Variomics 8

 3.2 Next Generation Sequencing Technologies 10

 3.2.1 Second generation HT-NGS platforms 12

 3.2.2 Third generation HT-NGS platforms 14

 3.2.3 Cost, Throughput, Accuracy and Completeness 16

 3.2.4 Next Generation Sequencing – Promises and Challenges 18

 3.3 Next Generation Sequencing Data and Analysis 19

 3.3.1 Data Format 19

 3.3.2 Data Assessment 20

 3.3.3 Alignment Tools 21

 3.3.4 Annotation tools 28

 3.3.5 Existing Databases

36

4. METHODOLOGY 40

 4.1 Datasets and Methods 40

 4.2 Read Mapping and variant calling 41

 4.3 Variant comparison 41

 4.4 Variant annotation 42

 4.5 Mapping Genes onto the Variants 42

 4.6 Functional analyses of variations 43

 4.7 Mapping of variants to regulatory regions 43

 4.8 Mapping of variants to ncRNA 43

 4.9 Mapping of variants to Sample information 44

 4.10 Mapping of variants to information related to Drug Resistance 45

 4.11 Mapping of variants to those available in existing databases 45

 4.12 Database construction 46

 4.13 Embedding JBrowse in the interface

50

5. RESULTS 51

 5.1 Data Compilation 51

 5.2 Database statistics 52

 5.3 Genomic variations tend to saturation 54

 5.4 Database features and navigation 55

 5.4.1 Home Page 55

 5.4.2 tbVar 56

 5.4.3 Application of tbVAR: annoTB 61

 5.4.4 Help Manual 65

 5.4.5 Contact Page

66

6. DISCUSSION

67

7. CONCLUSION AND FUTURE PERSPECTIVE

69

8. REFERENCES

70

9. APPENDIX 76

LIST OF FIGURES

Fig. No. Description Page No.

1. Molecular Mechanism of Drug Resistance 5

2. Genome Map of Mycobacterium tuberculosis 8

3. Automated Sanger Sequencing 10

4. 454 GS FLX Pyrosequencing 12

5. Solexa GA Sequencing 12

6. SOLiD Schema for Sequencing 12

7. Three Leading Second Generation HT-NGS Platforms and Their

Features

13

8. Description of Fastq File Format 19

9. General Mechanism for Deciphering Polymorphism 21

10. Home Page of dbSNP 36

11. Home Page of TBDB 37

12. Search Page of MTCID 38

13. Home Page of TBDReaMDB 39

14. Downloading Mtb Gene Table from UCSC Table Browser 42

15. Exporting ChIP-Seq Peaks Data from TBDB 43

16. Downloading ncRNA Data from UCSC Table Browser 44

17. Extracting Strain Information from Sequence Read Archive 44

18. Extracting the Drug Resistance Data from TBDReamDB 45

19. Constructing a Database on MySQL Workbench 46

20. Developing a Table with Required Columns on MySQL

Workbench

47

21. Information Retrieval from Database by Web Browser Using CGI 48

22. Summary of the Datasets and Methodology Used in Creating the

Resource

49

23. Comparison of the Variations in M. tuberculosis with respect to

Other Variation Resources.

52

24. Graphical Representation Showing Distribution of SNPs in Various

Loci of the M. tuberculosis Genome

53

25. Variations Plotted Across Subset of the Genomes. 54

26. Home Page of the Web-Interface for tbvar 55

27. Screenshot Showing Result Table and Information About Each

Section of the Database

56

28. Information Provided Under „Genomic Variations‟ Tab 57

29. Information Provided Under „Gene Annotation‟ Tab 57

30. Information Provided Under „Functional Effects‟ Tab 58

31. Information Provided Under „Regulatory Variations‟ Tab 58

32. Information Provided Under „Strain Information‟ Tab 59

33. Information Provided Under „Drug Resistance‟ Tab 59

34. Information Provided Under „ncRNA Loci‟ Tab 60

35. Information Provided Under „Genome Browser‟ Tab 61

36. Description of the annoTB Web-Page 62

37. Information Provided Under annoTB Report Summary 62

38. Information Related to „Drug Resistant Variations‟ Provided Under

annoTB Report

63

39. Information Related to „Deleterious Variations‟ Provided Under

annoTB Report

63

40. Information Related to „Syn/Non-Syn Variations‟ Provided Under

annoTB Report

63

41. Information Related to „Regulatory Variations‟ Provided under

annoTB Report

64

42. Information Related to „Novel Variations‟ Provided Under annoTB

Report

64

43. Submission Form for Submitting Variant File that has been Loaded

By the User in annoTB

64

44. Screenshot of Web-Interface for the Reference Manual 65

45. Screenshot of Web-Interface for the Contact Us Form 66

LIST OF TABLES

Table. No. Description Page No.

1. Comparative Representation of the Specifications of the Next

Generation Technologies

13

2. Comparison Among the Various Applications of the Next

Generation Sequencing Technologies

17

3. Description of HTML Scripts Used to Develop the Web

Interface of tbvar

48

4. Description of Perl-CGI Scripts Used to Develop the Web

Interface of tbvar

48

5. Description of the Columns that have been Included While

Compiling the Database

51

LIST OF ABBREVIATIONS

MTB Mycobacterium tuberculosis

MTBC Mycobacterium tuberculosis Complex

NGS Next Generation Sequencing

SNP Single Nucleotide Polymorphism

SIFT Sorting Intolerant From Tolerant

MDR Multi Drug Resistance

XDR Extensive Drug Resistance

WHO World Health Organization

INH Isoniazid

RIF Rifampin

PZA Pyrazinamide

EMB Ethambutol

Q Phred Quality

MAQ Mapping and Assembly with Qualities

BWT Burrows–Wheeler Transform

BWA Burrows–Wheeler Aligner

AAS Amino Acid Substitution

SRA Sequence Read Archive

ncRNA Non-coding RNA

tbvar: A comprehensive genome variation resource for

Mycobacterium tuberculosis

Heena Dhiman

Delhi Technological University, Delhi, India

1. ABSTRACT

Tuberculosis (TB) is the second highest cause of mortality after HIV/AIDS and is one of the

leading public health problems in the developing world, caused by the fastidious pathogen

Mycobacterium tuberculosis (MTB). The increasing resistance to anti-TB drugs and the

recalcitrant nature of tenacious infections give rise to arduous challenges for the treatment of

TB. Although, the advent of Next Generation Sequencing (NGS) has led to the discovery of

thousands of Single Nucleotide Polymorphisms (SNPs) in clinical isolates of Mycobacterium

tuberculosis complex (MTBC), this genetic variability amongst different isolates is poorly

understood. MTBC strain variation is known to play a role in the outcome of TB infection

and disease and can also affect the bacterial phenotype including drug resistance.

This work is aimed towards the analysis of high coverage resequencing datasets available in

public domain. A data analysis pipeline was designed and used to reassemble, annotate and

catalogue the SNPs in each of the datasets from over 400 different isolates. All the

deciphered information was used to compile a comprehensive, well-curated and user-friendly

database dedicated to the SNP data, along-with an interface for quick annotation of

variations. Our analysis revealed a broad repertoire of more than 29,000 variations in MTB,

in comparison to the H37Rv reference genome. 21,616 variations were found to be novel,

significantly adding to the ensemble of known SNPs in MTB and 5,394 were predicted to be

potentially deleterious in 2,407 genes as predicted by SIFT.

To the best of our knowledge tbvar is the largest and most comprehensive genome variation

resource for M. tuberculosis. It not only offers a user friendly interface for annotating SNPs

but also provides a starting point towards clinical application of variant information. The

database is available as a free online resource at http://genome.igib.res.in/tbvar/

http://genome.igib.res.in/tbvar/

2. INTRODUCTION

Tuberculosis (TB), caused by the sole infectious agent Mycobacterium tuberculosis (MTB), is

the second greatest killer worldwide next to HIV/AIDS. Fact Sheet, 2012 by World Health

Organization reports that 8.7 million people became ill and 1.4 million died from TB in 2011.

The standard 6 month course for TB treatment includes the prescription of four antimicrobial

drugs –rifampin, pyrazinamide, isoniazid and ethambutol. However, the emergence of multi

drug resistance (MDR) and extensive drug resistance (XDR) toward standard tuberculosis

treatment has resulted in increasing severity of the disease.

The pronouncement of tuberculosis (TB) as a global public health emergency in 1993 (WHO,

2011)

resulted in renewed efforts towards the analysis of the biology of the Mycobacterium

tuberculosis complex (MTBC). Since long, the main research focus was on individual genes

and proteins, but with the completion of the first M. tuberculosis genome sequence in

1998(Cole et. al., 1998)

the doors for more comprehensive approaches opened up. In

particular, comparative genomics studies have catered to develop a better insight into the

genetic diversity in MTBC (Brosch et. al., 2002; Mostowy et. al., 2002; Comas et. al., 2010)

while Systems Biology tries to understand complex biological systems by integrating data

from various disciplines (Breitling et. al., 2010;Kirschner et. al., 2010).

There is increasing

confirmation to the fact that, along-with human genetics and environmental factors, strain

variation in MTBC also plays a role in the outcome of TB infection and disease (Coscolla and

Gagneux, 2010). Hence, the need-of-the-hour is to better understand the global diversity of

MTBC, and determine whether it has relevance for global TB control and if so, find out ways

of doing it (Gagneux and Small, 2007; Comas and Gagneux, 2009).

The advent of next-generation DNA sequencing (NGS) methods is likely to facilitate this task

by providing a new avenue to investigate pathogens in clinical settings. The recent years have

seen sequencing of a large number of bacterial pathogens, including several strains of M.

tuberculosis together with those sequenced in clinical settings (Wellcome Trust Sanger

Institute, 2012). More than 3800 raw genome sequences of MTBC strains have already been

deposited on public sequence read archives, and it is safe to assume that this number will

continue to grow rapidly as sequencing costs keep decreasing (Stein, 2010; Wetterstrand,

2012).

In contrast to the relative ease with which DNA sequencing data can be generated

today, extracting useful information and compiling it in a user-friendly manner is less

straightforward. Moreover, lack of a systematically curated resource for variations in the M.

tuberculosis genome has significantly compromised the systematic comparison and

interpretation of genomic variations in this organism. Clinical interpretation of the variations

encoded by the genome has been one of the challenges, and necessitates systematic curation

of genetic variations towards interpreting potential functional effects of these variations.

Several TB-specific databases have been created over the past few years, including genome

browsers, genotyping- and drug resistance databases, (Sharma and Surolia, 2011) but the

necessity of a centralized and comprehensive repository for data on strain-specific genetic

variation in MTBC and roadblocks towards systematically assembling and annotating

file:///G:/thesis_draft1.docx%23_ENREF_10
file:///G:/thesis_draft1.docx%23_ENREF_9
file:///G:/thesis_draft1.docx%23_ENREF_37
file:///G:/thesis_draft1.docx%23_ENREF_11
file:///G:/thesis_draft1.docx%23_ENREF_26
file:///G:/thesis_draft1.docx%23_ENREF_13
file:///G:/thesis_draft1.docx%23_ENREF_13
file:///G:/thesis_draft1.docx%23_ENREF_20
file:///G:/thesis_draft1.docx%23_ENREF_12
file:///G:/thesis_draft1.docx%23_ENREF_58
file:///G:/thesis_draft1.docx%23_ENREF_55

genomes on a common and comparable platform has been discussed in detail recently (Stucki

and Gagneux, 2013).

In this report, we describe a comprehensive, well curated and user-friendly resource which

stores systematically analyzed re-sequencing datasets of M. tuberculosis from various

laboratories in public domain. This dataset encompasses over 29,000 variations from more

than 450 strains that make it the most comprehensive compendium of genomic variations in

M. tuberculosis as of now. We have been able to characterize potential genomic variations

with functional consequences as well as their association with drug resistance using a

systematic computational data analysis pipeline. The resource not only provides a near-

comprehensive repertoire of common genomic variations in the organism but can also be

potentially used for clinical applications. To the best of our knowledge tbvar is the largest and

most comprehensive genome variation resources for M. tuberculosis. This resource is

available for free access at http://genome.igib.res.in/tbvar/

file:///G:/thesis_draft1.docx%23_ENREF_59
file:///G:/thesis_draft1.docx%23_ENREF_59
http://genome.igib.res.in/cgi-bin/tbvar/

3. REVIEW OF LITERATURE

3.1 Tuberculosis:

Tuberculosis, or TB, is an infectious bacterial disease caused by Mycobacterium tuberculosis,

which most commonly affects the lungs. Infection with M. tuberculosis causes enormous

worldwide morbidity and mortality. In 2011, there were an estimated 8.7 million new cases

of TB (13% co-infected with HIV) and 1.4 million people died from TB, including almost

one million deaths among HIV-negative individuals and 430 000 among people who were

HIV-positive. TB is one of the top killers of women, with 300 000 deaths among HIV-

negative women and 200 000 deaths among HIV-positive women in 2011. Geographically,

the burden of TB is highest in Asia and Africa. India and China together account for almost

40% of the world‟s TB cases. About 60% of cases are in the South-East Asia and Western

Pacific regions. The African Region has 24% of the world‟s cases and the highest rates of

cases and deaths per capita. Worldwide, 3.7% of new cases and 20% of previously treated

cases were estimated to have MDR-TB. There were an estimated 0.5 million cases and 64

000 deaths among children in 2011 (WHO-Fact Sheets, 2012).

Not everyone infected with MTB becomes sick. As a result, two TB-related conditions exist:

latent TB infection and TB disease. Both latent TB infection and TB disease are preventable

and treatable.

3.1.1 Latent TB Infection:

People with latent TB are infected with Mycobacterium tuberculosis, but they don‟t fall sick

because the bacteria are not active. Latent TB infection has no symptoms, and they cannot

spread the bacteria to others. However, if the bacteria become active in the body and

multiply, the person will go from having latent TB infection to being sick with TB disease.

For this reason, people with latent TB infection are often prescribed treatment to prevent

them from developing TB disease. Four regimens are approved for the treatment of latent TB

infection that includes:

 Isoniazid (INH)

 Rifampin (RIF)

 Rifapentine (RPT)

3.1.2 TB Disease:

The causative agent, M. tuberculosis, become active (multiplying in the body) if the immune

system can't stop them from growing giving rise to TB disease. This is when the disease

becomes infectious and takes several drugs for 6 to 9 months for treatent. There are 10 drugs

currently approved by the U.S. Food and Drug Administration (FDA) for treating TB. Of the

approved drugs, the first-line anti-TB agents that form the core of treatment regimens

include:

 Isoniazid (INH)

 Rifampin (RIF)

 Ethambutol (EMB)

 Pyrazinamide (PZA)

http://www.cdc.gov/tb/topic/basics/default.htm#ltbi2

Regimens for treating TB disease have an initial phase of 2 months, followed by a choice of

several options for the continuation phase of either 4 or 7 months (total of 6 to 9 months for

treatment). It is very important that people who have TB disease finish the medicine, taking

the drugs exactly as prescribed. If they stop taking the drugs too soon, they can become sick

again; if they do not take the drugs correctly, the TB bacteria that are still alive may become

resistant to those drugs. TB that is resistant to drugs is harder and more expensive to

treat(Kochi et. al., 1993).

3.1.3 Growth of tuberculosis:

Among the factors that contribute to the continued growth of tuberculosis as a global health

problem are the efficiency of human-to-human transmission by the aerosol route, the ability

of the causal agent M. tuberculosis to persist and to progress despite development of host

immune responses and the absence of a vaccine with reliable efficacy in preventing

transmission of the infection. Moreover, although attempts to control tuberculosis through

improved identification and treatment of infectious cases have been successful in some

settings; similar approaches in other contexts have resulted in increasing rates of resistance to

available anti-tuberculosis drugs.

3.1.4 Molecular mechanisms of drug resistance:

The emergence of Multi-Drug Resistant (MDR) and Extensively Drug Resistant (XDR) MTB

has hampered the control of the disease. In order to control the drug resistance epidemic it is

necessary to gain insight into how M. tuberculosis develops drug resistance. This knowledge

will help us to understand how to prevent the occurrence of drug resistance as well as

identifying genes associated with drug resistance of new drugs. The development of clinical

drug resistance in TB is classified as acquired resistance when drug resistant mutants are

selected as a result of ineffective treatment or as primary resistance when a patient is infected

with a resistant strain (Jarlier and Nikaido, 1994; Blanchard, 1996).

Fig. 1: Molecular mechanism of drug resistance

Mutations in the genome of M. tuberculosis that can confer resistance to anti-TB drugs occur

spontaneously with an estimated frequency of 3.5 × 10
–6

 for INH and 3.1 × 10
–8

 for RIF.

Easily curable with antibiotics for

6-9 months.

If interrupted bacteria mutates

into tougher strain and can then

be no longer killed by same drugs.

Resistant to most kinds of

prescribed drugs.

Requires salvage treatment,

which involves surgery or

drugs never tried before.

Resistant to second line drugs.

Treatment involves high dose

drug injections.

Has severe side – effects.

file:///G:/thesis_draft1.docx%23_ENREF_27
file:///G:/thesis_draft1.docx%23_ENREF_24
file:///G:/thesis_draft1.docx%23_ENREF_8

Because the chromosomal loci responsible for resistance to various drugs are not linked, the

risk of a double spontaneous mutation is extremely low: 9 × 10–14 for both INH and RIF.

MDR TB is resistance of MTB to the first-line drugs, Rifampin and Isoniazid, while XDR TB

is resistance to Isoniazid and Rifampin, Fluoroquinolone and at least one of three injectable

second-line drugs (i.e., Streptomycin, Amikacin, Kanamycin, or Capreomycin) (De Rossi et.

al., 2006).

First line drugs:

Any drug used in the anti-TB regiment is supposed to have an effective sterilizing activity

that is capable of shortening the duration of treatment. Currently, a four-drug regimen is used

consisting of INH, RIF, PZA and EMB. Resistance to first line anti-TB drugs has been linked

to mutations in at least 10 genes; katG, inhA, ahpC, kasA and ndh for INH resistance; rpoB

for RIF resistance, embB for EMB resistance, pncA for PZA resistance and rpsL and rrs for

STR resistance.

 Second line drugs used in TB treatment:

According to the WHO the following drugs can be classified as second line drugs:

aminoglycosides (kanamycin and amikacin) polypeptides (capreomycin, viomycin and

enviomycin), fluoroquinolones (ofloxacin, ciprofloxacin, and gatifloxacin), D-cycloserine

and thionamides (ethionamide and prothionamide). Unfortunately, second-line drugs are

inherently more toxic and less effective than first-line drugs.

Isoniazid, a prodrug, on activation interferes with the synthesis of essential mycolic acids by

inhibiting NADH dependent enoyl-ACP reductase, which is encoded by inhA. Mutations in

katG and inhA, or more often, in its promoter region, is considered to be the main cause for

Isoniazid resistance (Ramaswamy et. al., 2003). Rifampin targets the b-subunit of RNA

polymerase of MTB, where it binds and inhibits the elongation of messenger RNA.

Mutations

in the gene rpoB, that encode the b-subunit of RNA polymerase, are shown to be responsible

for the resistance in clinical isolates of MTB (Telenti et. al., 1993). Pyrazinoic acid, the active

moiety of Pyrazinamide, disrupts bacterial membrane energetics and inhibits membrane

transport. Mutations in pncA are the main mechanisms for pyrazinamide resistance in MTB.

Similarly, the genetic basis of resistance to Streptomycin, in MTB, is mostly due to mutations

in rrs or rpsL, which produce alterations in the streptomycin binding site, which is more than

50% of the strains studied to date. The only target for Fluoroquinolone activity in MTB is

Type II topoisomerase (DNA gyrase). Resistance to fluoroquinolones was the result of amino

acid substitutions in the putative fluoroquinolone binding region in gyrA or gyrB (Takiff et.

al., 1994; Silva et. al., 2003; Aubry et. al., 2004).

Disease caused by resistant bacteria fails to respond to conventional, first-line treatment.

MDR-TB is treatable and curable by using second-line drugs, but second-line treatment

options are limited and recommended medicines are not always available. The extensive

chemotherapy required (up to two years of treatment) is more costly and can produce severe

adverse drug reactions in patients. Around 650,000 cases of MDR-TB have been reported to

file:///G:/thesis_draft1.docx%23_ENREF_14
file:///G:/thesis_draft1.docx%23_ENREF_14
file:///G:/thesis_draft1.docx%23_ENREF_47
file:///G:/thesis_draft1.docx%23_ENREF_62
file:///G:/thesis_draft1.docx%23_ENREF_60
file:///G:/thesis_draft1.docx%23_ENREF_60
file:///G:/thesis_draft1.docx%23_ENREF_57
file:///G:/thesis_draft1.docx%23_ENREF_3

be present in the world in 2010, about 9% of which had XDR-TB. Annually, about 440 000

fell ill with MDR-TB and 150,000 die due to this form of tuberculosis (Morris et. al., 2005).

Therefore, new approaches to controlling tuberculosis are essential and would greatly benefit

from an improved understanding of the biology of the bacteria and their interactions with

their human hosts. In particular, understanding the factors that drive the evolution of M.

tuberculosis and allow it to evade host defences may suggest unique opportunities to develop

novel strategies against tuberculosis.

3.1.5 MTB Genomics:

MTB is a member of the M. tuberculosis Complex (MTBC), a closely related group of slow-

growing pathogenic mycobacteria that includes M. tuberculosis, Mycobacterium africanum,

Mycobacterium bovis, Mycobacterium microti and Mycobacterium pinnipedii (Comas et. al.,

2010). The decade following the genome sequencing of M. tuberculosis genome has

witnessed tremendous advances in the field of genomics. These changes have been propelled

by significant improvements in scale, throughput and consequent drastic reduction in the cost

of genome sequencing. Present genome sequencing technologies have provided a new avenue

to investigate pathogens in clinical settings, which poses new challenges in comprehending

the biology and the variations encoded by the pathogen.

Studies related to MTBC evolution have revealed that the M. tuberculosis genome appears to

be a composite genome created by frequent horizontal gene transfer events in a broad,

genetically diverse, progenitor species prior to an evolutionary bottleneck or selective sweep

around 35,000 years ago (Gillespie, 2002). This recent clonal expansion with the concurrent

absence of horizontal gene transfer explains the relatively high degree of genetic

homogeneity (99.9%) observed between MTBC members despite differences in their

phenotypic characteristics and host ranges. Whole genome sequencing of several M.

tuberculosis strains has confirmed this genetic homogeneity and revealed many other

interesting biological aspects. (Fleischmann et. al., 2002; Bentley, 2006; Pellin et. al., 2012)

file:///G:/thesis_draft1.docx%23_ENREF_36
file:///G:/thesis_draft1.docx%23_ENREF_21
file:///G:/thesis_draft1.docx%23_ENREF_17
file:///G:/thesis_draft1.docx%23_ENREF_4
file:///G:/thesis_draft1.docx%23_ENREF_43

Fig. 2: Genome Map of Mycobacterium tuberculosis (Fleishland et. al., 2002)

3.1.6 MTB Variomics:

Virulence and immunity are poorly understood in Mycobacterium tuberculosis. The genomic

variability in M. tuberculosis has been majorly revealed through sequencing of multiple

strains. A recent report (Ford et. al., 2012) characterized the global diversity, circulating

strain diversity and the evolution of M. tuberculosis through whole genome re-sequencing.

Similarly the rate of mutations in active and latent infection of M. tuberculosis has been

recently characterized by whole genome sequencing (Ford CB, 2011). The genome

organization and evolution of the pathogen, especially in relation to its antigenic repertoire

has also been characterized by sequencing multiple strains (Sassetti and Rubin, 2010).

Furthermore, the variation between the H37Rv isolates maintained at multiple laboratories

has also been characterized through a recent re-sequencing effort (Ioerger, Feng et. al. 2010).

Genome sequencing of M. tuberculosis has also been recently applied extensively,

unravelling the genome diversity of M. tuberculosis clinical isolates derived from a variety of

geographical regions (Qi, Käser et. al., 2009). In addition, genome sequencing of

M. tuberculosis

44, 11,529

file:///G:/thesis_draft1.docx%23_ENREF_18
file:///G:/thesis_draft1.docx%23_ENREF_19
file:///G:/thesis_draft1.docx%23_ENREF_54
file:///G:/thesis_draft1.docx%23_ENREF_23
file:///G:/thesis_draft1.docx%23_ENREF_45

paleontological samples has also been extensively used to trace genome evolution (Qi, Käser

et. al., 2009) significantly adding to the spectrum of diversity information available from

whole genome sequences of M. tuberculosis. Moreover, a number of strains associated to

distinct phenotypes including drug resistance and mechanisms of evolution of drug resistance

has also been extensively studied with respect to their genome sequence (Niemann, Köser et.

al., 2009).

One of the surprises emerging from the analysis of the first sequenced M. tuberculosis

genome (the laboratory strain H37Rv) was the discovery of two large gene families,

designated pe and ppe, that in H37Rv comprise 99 and 69 members respectively and together

account for around 10% of the organism‟s genomic coding potential. pe genes are

characterised by the presence of a proline-glutamic acid (PE) motif at positions 8 and 9

within a highly conserved N-terminal domain consisting of around 110 amino acids.

Similarly, ppe genes contain a proline-proline- glutamic acid (ppe) at positions 7–9 in a

highly conserved N-terminal domain of approximately 180 amino acids. The C-terminal

domains of both pe and ppe protein families are highly variable in both size and sequence and

often contain repetitive DNA sequences that differ in copy number between genes (McEvoy

et. al., 2012).

The presence of considerable sequence diversity in M. tuberculosis would provide a basis for

comprehending pathogenesis, immune mechanisms, and bacterial evolution. Polymorphic

genes are considered to be good candidates for virulence and immune determinants, since

proteins that interact directly with the host are known to possess elevated divergence.

Polymorphic sequences also serve as markers for phylogenetic and evolutionary studies. Such

studies are currently limited by a paucity of known genetic markers (Fleishmann et. al.,

2002).

SNPs carry functional information in addition to being valuable phylogenetic markers. The

best-characterized “SNPs” in MTBC are drug resistance-conferring mutations. Drug

resistance in MTBC is largely caused by single nucleotide mutations (Musser, 1995; Telenti,

1997; Ramaswamy and Musser 1998; Riska et. al., 2000). In summary, thousands of SNPs

are being identified in MTBC next-generation sequencing technologies. These SNPs may be

a useful resource for phylogenetic and population genetic analyses and to study drug

resistance.

file:///G:/thesis_draft1.docx%23_ENREF_45
file:///G:/thesis_draft1.docx%23_ENREF_45
file:///G:/thesis_draft1.docx%23_ENREF_40
file:///G:/thesis_draft1.docx%23_ENREF_40
file:///G:/thesis_draft1.docx%23_ENREF_33
file:///G:/thesis_draft1.docx%23_ENREF_33
file:///G:/thesis_draft1.docx%23_ENREF_38
file:///G:/thesis_draft1.docx%23_ENREF_61
file:///G:/thesis_draft1.docx%23_ENREF_61
file:///G:/thesis_draft1.docx%23_ENREF_46
file:///G:/thesis_draft1.docx%23_ENREF_49

3.2 Next Generation Sequencing Technologies

Genomic information has always been the focal point for genome-wide studies, but before the

advent of Next Generation Sequencing (NGS) technology limitations in speed, resolution,

scalability and throughput precluded researchers from the access to the immediate noesis of

the genomic data. The commencement of NGS has not only reduced sequencing cost by

orders of magnitude but has also catered to the other limitations, providing genome-scale

sequence data with exquisite accuracy and resolution, thereby enabling to decode a number of

human diseases. This could have been possible since the technology permitted the sequencing

of whole genomes for obtaining global genomic information.

The year 1975 marks a landmark in biological sciences, especially clinical genomics, when

Sanger and Coulson introduced a rapid technique for determining DNA sequences by primed

synthesis with DNA polymerase. Since then several emerging technologies have turned up

showing endeavor of providing solutions for fast and affordable genome sequencing. The

modern DNA sequencing era began with the completion of the first human genome draft in

June, 2000. In the following years, efforts were put in for improvising the rough draft in

terms of coverage, number of gaps and the error rate, until the declaration of the essentially

finished version of the human genome sequence by the International Human Genome

Sequencing Consortium in April, 2003. From then on struggle has been going on to develop

technologies capable of sequencing an entire human genome for $1000. Several commercial

ventures are racing towards this target with innovative highly developed strategies of “High-

Throughput Next Generation Sequencing” (HT-NGS).

Figure 3: Automated Sanger Sequencing

The „First Generation technology‟ employed Automated Sanger method while the newer

techniques or the „NGS Technology‟ makes use of different combination of strategies for

template preparation, sequencing, imaging and genome alignment and assembly methods.

Principle of HT-NGS involves sequencing DNA molecules in a flow-cell in massively

parallel fashion in a step-wise iterative process or in a continuous real time manner (Mardis,

2008; Metzker, 2010). In 2005, two new sequencing technologies were brought forward, both

based on sequencing by synthesis, with an assurance to enhance traditional sequencing

methods, the 454 system using pyrosequencing technology (Margulies et. al., 2005), and the

Solexa system, which detects fluorescence signals (Porreca et. al., 2007).

HT-NGS platforms since 2005 has provided large numbers of low-cost reads thereby aiding

in whole genome resequencing, RNA Sequencing, detection of genomic variants, genome-

wide profiling of chromatin structure and epigenetic marks using methyl–seq, DNase–seq and

ChIP–seq as well as Personal Genomics (Pareek et. al., 2011). NGS can also be used to detect

rare and unknown variants in genomic regions of interest in a cost-efficient way, and in a

larger number of samples. With the advancement of modern bioinformatics tools and the

ongoing progress of high throughput sequencing platforms at unparalleled swiftness, the

target of sequencing individual genomes at a cost of $1,000 each seems realistically viable in

the near future.

The key steps of a sequencing project remain the same and include primarily preparation and

amplification of template DNA, distribution of templates on a solid support, sequencing and

imaging, base calling, quality control and data analysis. Sequencing depth and Breadth

(Coverage) are the two major criterion and common measures for the amount of sequence

data generated in a project. Sequencing depth, or coverage, is the average number of times

each base in the genome is sequenced. Sequencing breadth, sometimes also referred to as

genome coverage, is the percentage of the genome that is covered by sequence reads.

file:///G:/thesis_draft1.docx%23_ENREF_31
file:///G:/thesis_draft1.docx%23_ENREF_31
file:///G:/thesis_draft1.docx%23_ENREF_34
file:///G:/thesis_draft1.docx%23_ENREF_32
file:///G:/thesis_draft1.docx%23_ENREF_44
file:///G:/thesis_draft1.docx%23_ENREF_42

3.2.1 Second generation HT-NGS platforms

These include the three major NGS systems that are routinely used in many laboratories

today:

1. Genome Sequencer from 454 Life Sciences (Launched in 2005).

Fig. 4: 454 GS FLX pyrosequencing

2. Genome Analyzer, first conceived by Solexa and later further developed by Illumina

(Launched in 2006).

Fig. 5: Solexa GA Sequencing

3. SOLiD system from Applied Biosystems (Launched in 2007). (Torres et. al., 2008)

Fig. 6: SOLiD schema for sequencing

Light

Picolitre well

DNA polymerase and

enzymes on beads

DNA immobilized on

bead and amplified in

water-oil emulsion

Adapters ligated

 to DNA

Single-stranded

 DNA

A
 T

C

G

A

T
C`

G
A

A

 T

C
G

A
DNA polymerase

Terminator dNTP

Amplified DNA

Spots
Immobilized on

Substrate

Single-stranded

 DNA

Adapters ligated

 to DNA

Random Oligonucleotides with

known 3‟ dinucleotide

Known base from Adapter

according to Coding Scheme

Primer to Adapter

Adapter Sequence

Single-stranded

 DNA

Adapters ligated

 to DNA

file:///G:/thesis_draft1.docx%23_ENREF_63

Fig. 7: Three leading second generation HT-NGS platforms and their features [Chandra et. al., 2011]

Roche can generate about five hundred million bases of raw sequencing data while Illumina

and Solid can produce billions of bases in a single run. Their methodologies are based on

parallel, cyclic interrogation of sequences from spatially separated clonal amplicons. Roche:

pyrosequencing chemistry makes use of 26 μm oil-aqueous emulsion bead, SOLiD:

sequencing by sequential ligation of oligonucleotide probes uses 1 μm clonal bead and

Illumina: sequencing by reversible dye terminators uses clonal bridge for carrying out their

technology (Pareek et. al., 2011). So, the underlying principle is amplification of DNA

fragments using emulsion PCR, to make the light signal strong enough for reliable base

detection by the CCD cameras.

Table I. Comparative representation of the specifications of the next generation technologies (Black M.

and Print C., 2010)

Technology Reads/run
Average read

length

Estimated Time

per run

Data output per

run

Roche GS-FLX (454) 1.3 million

400 bp 10 hours 500 MB

Roche GS-Junior 10,000 400 bp 10 hours 35 MB(filltered)

Illumina 1G (solexa) 250 million 100 bp X 2 5 days 25 GB

Illumina HiSeq 2000 1 billion 100 bp X 2 8 days 200 GB

SOLiD (ABI) 1.4 million 50 bp X 2 4-6 days 100 GB

file:///G:/thesis_draft1.docx%23_ENREF_42

3.2.2 Third generation HT-NGS platforms

These platforms are based on sequencing from a single DNA molecule. Since PCR

amplification may introduce base sequence errors, favor certain sequences over others,

thereby changing the abundance and relative frequency of various DNA fragments that were

present before amplification. Thus, it is required that the sequence should be determined

directly from a single DNA molecule, without the need for PCR amplification and its ability

for alteration of abundance levels.

3.2.2.1 Heliscope™ single molecule sequencer

It was the first commercial single molecule sequencing system licensed by Helicos

Biosciences in 2007. It is based on the true Single Molecule Sequencing (tSMS) technology

that begins with DNA library preparation through DNA shearing and addition of poli-(A) tail

to fragmented DNA. This is followed by hybridization of DNA fragments to poly-(T)

oligonucleotides and sequencing in parallel. It is capable of sequencing 28 Gb in a single

sequencing run with read length of 55 bases in about 8 days (Ozsolak et. al., 2010).

3.2.2.2 Single molecule real time (SMRT™) sequencer

It is designed by the Pacific Biosciences, based on single molecule real time sequencing by

synthesis method provided on the sequencing chip containing thousands of zero-mode

waveguides (ZMWs). During the sequencing reaction, the DNA fragment is elongated by a

single DNA polymerase, which is attached to the bottom of each ZMW, with dNTP‟s that are

fluorescently labeled at the terminal phosphate moiety. CCD array is used for determining the

DNA sequence based on fluorescence nucleotide detection. SMRT analyzer is capable of

obtaining 100 Gb in an hour with reads longer than 1000bp in a single run.

3.2.2.3 RNAP Sequencer

This is another single molecule DNA sequencing approach, wherein RNA Polymerase

(RNAP) is attached to a polystyrene bead and the distal end of the DNA fragment is attached

to another bead. When RNAP interacts with the DNA fragment inside an optical trap, the

length of DNA between the two beads gets altered. This causes displacement of the beads

that is registered by the instrument. The sequence information can be deduced by aligning

four displacement records produced in the same way like primers used in Sanger Sequencing.

Calibration is done using the known sequences flanking to the unknown sequenced fragment

(Greenleaf and Block, 2006).

3.2.2.4 Nanopore DNA Sequencer

Unlike other methods DNA sequencing here is free from nucleotide labelling and detection.

DNA translocation studies from number of different artificial nanopores, forms the basis of

this method. Modulation of the ionic current as DNA molecule traverses the pore reveals the

file:///G:/thesis_draft1.docx%23_ENREF_41
file:///G:/thesis_draft1.docx%23_ENREF_22

characteristics and parameters like length, diameter and conformation of the molecule. The

time period for which the current is blocked by the nucleotide is characteristic for each base

and enables the DNA sequence to be determined (Astier et. al., 2006; Rusk, 2009).

3.2.2.5 Real Time Single Molecule DNA Sequencer

Specially engineered DNA Polymerase by the VisiGen Biotechnologies acts as a real-time

sensor for nucleotides modified with a donor fluorescent dye. Each of the four nucleotides to

be integrated is modified with different acceptor dye. During synthesis correct nucleotide

found enters the active site of the enzyme making the donor dye come in close contact with

the acceptor dye on the nucleotides, thus transferring energy from donor to acceptor dye

giving rise to FRET signal. Base sequences are determined according to the variation in

signal frequency. This technology could generate around 4GB of data per day.

2.2.2.6 Multiplex Polony technology

This technology is run by Personal Genome Project under the lead of Prof. G Church‟s

research group. It employs parallel sequencing of hundreds of sequencing templates

deposited onto thin agarose layers. It is capable of generating 10-35Gbp per module in a run

of 2.5 days. This is achievable at a 10-fold lower cost with large reduction of reaction

volumes and lesser amount of reagents (Mitra et. al., 2003; Shendure et. al., 2005).

3.2.2.7 Ion Torrent Sequencing Technology

The technology makes use of chemical and digital information collectively, thus enabling

faster, simpler and massively scalable sequencing. Release of hydrogen ion as a by-product

during incorporation of a nucleotide into a DNA strand by a polymerase, forms the basis of

this technology. Different DNA templates are kept in different micro machined wells, below

which is an ion sensitive layer. Charge from the released hydrogen ion changes the pH of the

solution that can be detected directly by the ion sensor. It allows multiplexing amplicons,

sequencing transcriptome, small RNA, CHIP-Seq paired end reads and methylation reads

(Rothberg et. al., 2011).

file:///G:/thesis_draft1.docx%23_ENREF_2
file:///G:/thesis_draft1.docx%23_ENREF_51
file:///G:/thesis_draft1.docx%23_ENREF_35
file:///G:/thesis_draft1.docx%23_ENREF_56
file:///G:/thesis_draft1.docx%23_ENREF_50

3.2.3 Cost, Throughput, Accuracy and Completeness

Cost, throughput, accuracy and completeness are interrelated, and efforts to decrease project

cost or to increase throughput have sometimes been accompanied by a reduction in accuracy

or completeness. The challenge for new technologies is to achieve massive improvement in

one or more of these components without compromising the others (Bentley, 2006).

Cost

The single most effective constraint that modifies cost is massive parallelisation. Sequencing

by synthesis on arrays has already achieved a parallelization of 105–107 reactions, in contrast

to capillary systems (96 or 384 channel). Such methods can support in excess of 108

reactions per experiment, although with shorter read lengths and hence fewer bases of

sequence per reaction.

To achieve high data-density miniaturisation is a significant contributor to cost reduction,

assuming comparable rates of throughput between systems. The potential increase in data

density has a positive impact on reagent cost, while reagent volumes are significantly

reduced, whereas it may be assumed that the instrument costs and concentrations of reagents

in polymerase reactions are generally comparable, with less than tenfold variance between

platforms.

Throughput

The intrinsic throughput of a sequencing system depends on speed of detection and degree of

parallelisation. A capillary sequence reads 0.17 bases per second per channel, thus for 96

channels the total throughput in continuous operation comes out to be 17 bases per second,

limited by the rate of electrophoresis only. Sequencing by synthesis on arrays has a much

slower cycle time since reaction chemistry is carried out in-between read-outs at each cycle.

This time penalty is compensated for by the degree of parallelisation, making the total

throughput in continuous operation of current systems between 1400 and 4000 bases per

second.

Accuracy

Accuracy of raw sequence data generated from capillary sequencing over most of the length

of each read is measured using Phred algorithm (Ewing et. al., 1998). The numerical score or

the quality value provides an estimate of the error probability for each base-call in a raw read

(Ewing and Green, 1998).

Multiple reads from the same sample can be aligned and used to obtain a consensus base-call

at each position. Consensus depth provides high confidence base-calling, and the quality

score of 15 may be considered sufficient (International Human Genome Sequencing

Consortium, 2004). Aligned reads, and consensus and individual base-quality values can also

file:///G:/thesis_draft1.docx%23_ENREF_4
file:///G:/thesis_draft1.docx%23_ENREF_16
file:///G:/thesis_draft1.docx%23_ENREF_15

be used for calling SNP alleles. By contrast, if single reads are used to call a SNP with high

confidence, a much higher threshold is applied in selecting the raw data that is used to

support the base-call (The International SNP Map Working Group, 2001).

Similarly, consensus scoring and quality values can be used to call SNPs from base-by base

sequencing and pyrosequencing data as well which can further be used to derive quality

metrics. For all methods, it is necessary to calibrate quality values empirically, by generating

large amounts of sequence data from a known template, measuring the frequency of incorrect

base-calls and assessing the validity of various quantitative parameters in the raw data in

correlation with observed error rates. More work is required in this area to assess the

accuracy of each sequencing method, to look for loss of accuracy in particular sequence

contexts for each method, and to enable assembly of sequence data obtained using more than

one technology.

Completeness

Long reads of high accuracy provide a very high level of completeness in most sequencing

projects. The completeness of the reference human genome (The International SNP Map

Working Group, 2001) demonstrates the utility of long reads generated by Sanger

sequencing. The availability of a reference genome sequence renders short reads very

powerful as a means to obtain re-sequencing data. A short read is required to be long enough

and sufficiently accurate, so as to align to the correct position in the reference uniquely. From

simulations (Whiteford et. al., 2005), reads of length 25–30 bases can be aligned uniquely to

cover 80% of the human genome sequence. For 1 Mb human genomes or 4 Mb bacterial

genomes, reads can be aligned uniquely to 95–99% of all positions in the sequence. 25–30

base reads can potentially be used for de novo assembly. The use of short reads is not

supposed to compromise the degree of completeness that can be obtained so greatly. The

concept of a random shotgun phase proved to be very successful in producing „finished‟

sequence of much better quality and utility than „unfinished‟ or „draft‟ sequence

(International Human Genome Sequencing Consortium, 2004).

Table II. Comparison among the various applications of the Next generation sequencing technologies

Sequencers 454 Illumina SOLiD

Resequencing Yes Yes

De novo Yes Yes

Cancer Yes Yes Yes

Array Yes Yes Yes

High GC sample Yes Yes Yes

Bacterial Yes Yes Yes

Large genome Yes Yes

Mutation Detection Yes Yes Yes

file:///G:/thesis_draft1.docx%23_ENREF_66

3.2.4 Next Generation Sequencing – Promises and Challenges

In spite of the advantages next generation sequencing offers, there are a few limitations to

this technology:

1. Shorter read lengths compared to the Sanger method – This is a major drawback of this

technology over Sanger sequencing. De novo assembly of genome is difficult; hence this

technology better serves as a genome “re-sequencing” tool.

2. Repetitive DNA – Almost 50% of the human genome has repetitive DNA. Owing to

shorter read lengths, ambiguities in alignment and assembly arise in the areas of repeats.

3. Data crunch – Large volumes of data are generated and analyses is time consuming and

expensive. Data analyses may represent the rate-limiting step in next generation sequencing.

“Anybody can go out and buy an instrument. And the protocols of sequencing are fairly well

worked out, although it requires a lot of training. However, it‟s the handling of that

information, of analyzing and distilling it, that‟s still very challenging,” said Metzker.

4. Non-uniform representation of genomic regions - Random generation of sequencing

reads because of intervening and unavoidable factors such as platform biases, sample

handling, variations per run, etc makes the genomic data highly non-uniform. Thus, a certain

amount and type of input data, along with a specified reference sequence is usually required

in order to comprehend what proportion of the whole genome can be correctly ascertained

(Ajay et. al., 2011).

5. Difference in accuracy and precision - Genome Sequencing techniques shows difference

in accuracy and precision depending on the variations in sequencing chemistry, coverage

(read-length and insert size), alignment and variant-calling algorithms of different platforms.

Since each platform has its own strength and weakness, data from different platforms when

merged, improves the overall accuracy. It has been shown that CG is less uniform in

coverage than Illumina (Metzker, 2010; Kim et. al., 2013).

6. Cancer research - Sequencing accuracy may depend on the quality of DNA from

Formalin Fixed Paraffin Embedded (FFPE) tissues, which can be highly variable. Moreover

the ability of NGS to distinguish sequence artifacts from low frequency mutations from FFPE

samples deserves further validation (Debora and Christos, 2013).

7. Mapping Studies and Comparative Genomics - Mapping studies and comparative

genome assembly require anchoring, as one of the important steps in comparison of

assembled genomes that are evolutionarily related. However, the sheer numbers of fragments

being produced through sequencing as well as the increasing size of the reference sequence

have resulted in a computational bottleneck, necessitating the development of techniques to

resolve this issue (Ajay et. al., 2011).

Despite these limitations, the next generation sequencing has revolutionized the fields of

research and medicine. It has made possible large-scale studies such as the Encyclopedia of

DNA Elements (ENCODE) project that aims to decipher functional elements encoded in the

human genome.

file:///G:/thesis_draft1.docx%23_ENREF_1
file:///G:/thesis_draft1.docx%23_ENREF_34
file:///G:/thesis_draft1.docx%23_ENREF_25
file:///G:/thesis_draft1.docx%23_ENREF_1

3.3 Next Generation Sequencing Data and Analysis

In the coming years, all previous genotyping methods for MTBC are expected to get at least

partially replaced by whole genome sequencing. Whole-genome resequencing is an essential

research tool to characterize genetic variation in context of complex disease, pathogenicity,

evolution and individuality.

3.3.1 Data Format

The FASTQ format allows the storage of both sequence and quality information for the

sequencing reads. This is a compact text-based format that has become the de facto standard

for storing data from next generation sequencing experiments, especially for Sanger Institute.

Although Solexa/Illumina read file looks quiet alike, the only difference lies in scaling of the

qualities. In the quality string, presence of any character with ASCII code higher than 90,

depicts Solexa/Illumina format.

Fig.8: Description of fastq file format

The “Seqname” following '+' is optional, but if it appears right after '+', it should be identical

to the sequence following '@'.

The length of “Read sequence” is identical to the length of “Quality”.

Each character in “Quality” represents the Phred quality of the corresponding nucleotide in

“Read sequence”.

If the Phred quality is $Q, which is a non-negative integer, the corresponding quality

character can be calculated with the following Perl code:

$q = chr(($Q<=93? $Q: 93) + 33);

where chr() is the Perl function to convert an integer to a character based on the ASCII table.

Conversely, given a character $q, the corresponding Phred quality can be calculated with:

$Q = ord($q) - 33;

where ord() gives the ASCII code of a character.

The syntax of Solexa/Illumina read format is almost identical to the FASTQ format, but the

qualities are scaled differently. Given a character $sq, the following Perl code gives the Phred

quality $Q:

$Q = 10 * log (1 + 10 ** (ord($sq) - 64) / 10.0)) / log(10);

3.3.2 Data Assessment

Accuracy of raw sequence data generated from capillary sequencing over most of the length

of each read is measured using Phred algorithm (Ewing and Green, 1998). It indicates the

error probability for calling a given base by the sequencer. Historically this algorithm was

used to determine Sanger sequencing accuracy. It indicates the error probability for calling a

given base by the sequencer. While NGS metrics varies from those of Sanger Sequencing, the

Phred Quality scoring scheme still remains the same. Parameters relevant to a particular

sequencing chemistry are analyzed for a large training data set of known accuracy. The

resulting quality score lookup tables are then made in use to assess quality score for de novo

NGS data in Real time on Illumina platforms.

Quality scores or Q scores are logarithmically related to base calling error probabilities (P):

Q= -10log10P

Table II: Quality scores and Base Calling Accuracy

Phred Quality Score Probability of Incorrect Base Calling Base Call Accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1in 1000 99.9%

40 1 in 10000 99.99%

50 1 in 100000 99.999%

A Q score of 30 for a base is equivalent to the probability of an incorrect base being called 1

in 1000 times, for which base call accuracy is 99.9%.

A lower base call accuracy of 99% increases the incorrect base call probability to 1 in 100,

which means every 100bp sequencing read will likely contain an error.

So, when sequencing quality reaches Q30 almost the entire read is supposed to be perfect,

with no errors and ambiguities. Thus, Q30 is considered to be a benchmark to assess quality

in NGS.

Low Q scores can increase false positive variant calls that can cause inaccurate conclusions

and higher costs for validation experiments. The level of accuracy is ideal for a range of

sequencing applications, including clinical research.

file:///G:/thesis_draft1.docx%23_ENREF_15

3.3.3 Alignment Tools

With the advent of Next Generation Sequencing technologies, many programs have come up

in the last few years for aligning short sequencing reads to a reference genome. Most of them

are applicable for short reads (100bp) but inefficient for reads greater than 200bp since the

algorithms are specifically tuned for short queries with low sequencing error rate (Li and

Durbin, 2010). The extensive amount of short reads being generated from the new DNA

sequencing technologies call for development of fast and accurate read alignment programs.

Fig. 9: General mechanism for deciphering polymorphism

MAQ is one of the first generation hash table based methods for accurate, feature rich and

fast alignment of short reads from a single individual. BWA is another alignment package

that is based on backward search with Burrows–Wheeler Transform (BWT), allowing

mismatches and gaps. Bowtie is yet another ultrafast, memory-efficient short read aligner

geared toward quickly aligning large sets of short reads to large genomes, by indexing the

genome with a Burrows-Wheeler index to keep its memory footprint small.

MAQ - Mapping and Assembly with Qualities

MAQ can build assemblies by mapping shotgun short reads to a reference genome, using

quality scores to derive genotype calls of the consensus sequence. It makes full use of mate-

pair information and estimates the error probability of each read alignment. The program

rapidly aligns short reads to the reference genome, call consensus sequences including SNP

and indel variants, simulate diploid genomes and read sequences, and post-process the results

in various ways. Error probabilities are also derived for the final genotype calls, using a

Bayesian statistical model that incorporates the mapping qualities, error probabilities from the

raw sequence quality scores, sampling of the two haplotypes, and an empirical model for

file:///G:/thesis_draft1.docx%23_ENREF_29
file:///G:/thesis_draft1.docx%23_ENREF_29

correlated errors at a site. Both read mapping and genotype calling are evaluated on simulated

data and real data.

Alignment stage: MAQ first searches for the ungapped match with lowest mismatch score,

defined as the sum of qualities at mismatching bases. To speed up the alignment, MAQ only

considers positions that have two or fewer mismatches in the first 28 bp (default parameters).

Sequences, that fail to reach a mismatch score threshold but whose mate pair is mapped, are

searched with a gapped alignment algorithm in the regions defined by the mate pair. To

evaluate the reliability of alignments, MAQ assigns each individual alignment a phred-scaled

quality score (capped at 99), which measures the probability that the true alignment is not the

one found by MAQ. MAQ always reports a single alignment, and if a read can be aligned

equally well to multiple positions, MAQ will randomly pick one position and give it a

mapping quality zero. Because their mapping score is set to zero, reads that are mapped

equally well to multiple positions will not contribute to variant calling. However, they do

give information on copy number of repetitive sequences and on the fraction of reads that can

be aligned to the genome, and can easily be filtered out for downstream analysis if desired.

Mapping quality scores and mapping all reads that match the genome even if repetitive are

where MAQ differs from most other alignment programs. MAQ fully utilizes the mate-pair

information of paired reads. It is able to use this information to correct wrong alignments, to

add confidence to correct alignments, and to accurately map a read to repetitive sequences if

its mate is confidently aligned. With paired-end reads, MAQ also finds short insertions/

deletions (indels) from the gapped alignment described above.

SNP calling stage: MAQ produces a consensus genotype sequence from the alignment. The

consensus sequence is inferred from a Bayesian statistical model, and each consensus

genotype is associated with a phred quality that measures the probability that the consensus

genotype is incorrect. Potential SNPs are detected by comparing the consensus sequence to

the reference and can be further filtered by a set of predefined rules. These rules are designed

to achieve the best performance on deep human resequencing data and aim to compensate for

simplifications and assumptions used in the statistical model (e.g., treating neighbor positions

independently).

Basic Commands:

fasta2bfa: Convert sequences in FASTA format to Maq‟s binary FASTA (BFA) format.

maq fasta2bfa in.ref.fasta out.ref.bfa

fastq2bfq: Convert reads in FASTQ format to Maq‟s BFQ (binary FASTQ) format.

maq fastq2bfq [-n nreads] in.read.fastq out.read.bfq|out.prefix

OPTIONS

-n INT number of reads per file [not specified]

map: Map reads to the reference sequences.

maq map [-n nmis] [-a maxins] [-c] [-1 len1] [-2 len2] [-d adap3] [-

m mutrate] [-u unmapped] [-e maxerr] [-M c|g] [-N] [-H allhits] [-

C maxhits] out.aln.mapin.ref.bfa in.read1.bfq [in.read2.bfq] 2> out.map.log

OPTIONS

-n INT Number of maximum mismatches that can always be found [2]

-a INT Maximum outer distance for a correct read pair [250]

-A INT Maximum outer distance of two RF paired read (0 for disable) [0]

-c Map reads in the color space (for SOLiD only)

-1 INT Read length for the first read, 0 for auto [0]

-2 INT Read length for the second read, 0 for auto [0]

-

m FLOAT

Mutation rate between the reference sequences and the reads [0.001]

-d FILE Specify a file containing a single line of the 3‟-adapter sequence [null]

-u FILE Dump unmapped reads and reads containing more than nmis mismatches

to a separate file [null]

-e INT Threshold on the sum of mismatching base qualities [70]

-H FILE Dump multiple/all 01-mismatch hits to FILE [null]

-C INT Maximum number of hits to output. Unlimited if larger than 512. [250]

-M c|g methylation alignment mode. All C (or G) on the forward strand will be

changed to T (or A). This option is for testing only.

-N store the mismatch position in the output file out.aln.map. When this

option is in use, the maximum allowed read length is 55bp.

mapmerge: Merge a batch of read alignments together.

maq mapmerge out.aln.map in.aln1.map in.aln2.map [...]

assemble: Call the consensus sequences from read mapping.

OPTIONS

-t FLOAT Error dependency coefficient [0.93]

-r FLOAT Fraction of heterozygotes among all sites [0.001]

-s Take single end mapping quality as the final mapping quality;

otherwise paired end mapping quality will be used

-p Discard paired end reads that are not mapped in correct pairs

-m INT Maximum number of mismatches allowed for a read to be used in

consensus calling [7]

-Q INT Maximum allowed sum of quality values of mismatched bases [60]

-q INT Minimum mapping quality allowed for a read to be used in consensus

calling [0]

-N INT Number of haplotypes in the pool (>=2) [2]

indelpe: Call consistent indels from paired end reads.

maq indelpe in.ref.bfa in.aln.map > out.indelpe

The output is TAB delimited with each line consisting of:

Chromosome

Start position

Type of the indel

Number of reads across the indel

Size of the indel and inserted/deleted nucleotides (separated by colon)

Number of indels on the reverse strand

Number of indels on the forward strand

5‟ sequence ahead of the indel

3‟ sequence following the indel

Number of reads aligned without indels

At the 3rd column, type of the indel:

* Indicates the indel is confirmed by reads from both strands

+ Means the indel is hit by at least two reads but from the same strand

- Shows the indel is only found on one read

. Means the indel is too close to another indel and is filtered out.

Commands for extracting information:

mapview: Display the read alignment in plain text.

maq mapview [-bN] in.aln.map > out.aln.txt

 OPTIONS

-b Do not display the read sequence and the quality

-N To display the positions where mismatches occur. This flag only works with a .map file

generated by „maq map -N‟.

For reads aligned before the Smith-Waterman alignment, each line consists of read name,

chromosome, position, strand, insert size from the outer coordinates of a pair, paired flag,

mapping quality, single-end mapping quality, alternative mapping quality, number of

mismatches of the best hit, sum of qualities of mismatched bases of the best hit, number of 0-

mismatch hits of the first 24bp, number of 1-mismatch hits of the first 24bp on the reference,

length of the read, read sequence and its quality. Alternative mapping quality always equals

to mapping quality if the reads are not paired. If reads are paired, it equals to the smaller

mapping quality of the two ends. This alternative mapping quality is actually the mapping

quality of an abnormal pair.

The fifth column, paired flag, is a bitwise flag. Its lower 4 bits give the orientation: 1 stands

for FF, 2 for FR, 4 for RF, and 8 for RR, where FR means that the read with smaller

coordinate is on the forward strand, and its mate is on the reverse strand. Only FR is allowed

for a correct pair. The higher bits of this flag give further information. If the pair meets the

paired end requirement, 16 will be set. If the two reads are mapped to different chromosomes,

32 will be set. If one of the two reads cannot be mapped at all, 64 will be set. The flag for a

correct pair always equals to 18.

For reads aligned by the Smith-Waterman alignment afterwards, the flag is always 130. A

line consists of read name, chromosome, position, strand, insert size, flag (always 130),

position of the indel on the read (0 if no indel), length of the indels (positive for insertions

and negative for deletions), mapping quality of its mate, number of mismatches of the best

hit, sum of qualities of mismatched bases of the best hit, two zeros, length of the read, read

sequence and its quality. The mate of a 130-flagged read always gets a flag 18. Flag 192

indicates that the read is not mapped but its mate is mapped. For such a read pair, one read

has flag 64 and the other has 192.

mapcheck: Read quality check.

maq mapcheck [-s] [-m maxmis] [-q minQ] in.ref.bfa in.aln.map > out.mapcheck

-s Take single end mapping quality as the final mapping quality

-m INT Maximum number of mismatahces allowed for a read to be counted [4]

-q INT Minimum mapping quality allowed for a read to be counted [30]

The mapcheck first reports the composition and the depth of the reference. The first column

indicates the position on a read. Following four columns which show the nucleotide

composition, substitution rates between the reference and reads will be given. These rates and

the numbers in the following columns are scaled to 999 and rounded to nearest integer. The

next group of columns shows the distribution of base qualities along the reads at a quality

interval of 10. Decay in quality can usually be observed, which means bases at the end of

read are less accurate. The last group of columns presents the fraction of substitutions for

read bases at a quality interval. This measures the accuracy of base quality estimation.

pileup: Display the alignment in a „pileup‟ text format.

maq pileup [-spvP] [-m maxmis] [-Q maxerr] [-q minQ] [-l sitefile] in.ref.bfa in.

aln.map > out.pileup

 OPTIONS

-s Take single end mapping quality as the final mapping quality

-p Discard paired end reads that are not mapped as correct pairs

-v Output verbose information including base qualities and mapping qualities

-m INT Maximum number of mismatches allowed for a read to be used [7]

-Q INT Maximum allowed number of quality values of mismatches [60]

-q INT Minimum mapping quality allowed for a read to be used [0]

-l FILE File containing the sites at which pileup will be printed out. In this file the first column

gives the names of the reference and the second the coordinates. Additional columns will

be ignored. [null]

-P also output the base position on the read

Each line consists of chromosome, position, reference base, depth and the bases on reads that

cover this position. If -v is added on the command line, base qualities and mapping qualities

will be presented in the sixth and seventh columns in order.

The fifth column always starts with „@‟. In this column, read bases identical to the reference

are showed in comma „,‟ or dot „.‟, and read bases different from the reference in letters. A

comma or an upper case indicates that the base comes from a read aligned on the forward

strand, while a dot or a lower case on the reverse strand.

cns2fq: Extract the consensus sequences in FASTQ format.

maq cns2fq [-Q minMapQ] [-n minNeiQ] [-d minDepth] [-D maxDepth] in.cns>out

.cns.fastq

-Q INT Minimum mapping quality [40]

-d INT Minimum read depth [3]

-n INT Minimum neighbouring quality [20]

-D INT Maximum read dpeth. >=255 for unlimited. [255]

In the sequence lines, bases in lower case are essentially repeats or do not have sufficient

coverage; bases in upper case indicate regions where SNPs can be reliably called. In the

quality lines, ASCII of a character minus 33 gives the PHRED quality.

cns2snp: Extract SNP sites.

maq cns2snp in.cns > out.snp

Each line consists of chromosome, position, reference base, consensus base, Phred-like

consensus quality, read depth, the average number of hits of reads covering this position, the

highest mapping quality of the reads covering the position, the minimum consensus quality in

the 3bp flanking regions at each side of the site (6bp in total), the second best call, log

likelihood ratio of the second best and the third best call, and the third best call.

The 5th column is the key criterion to judge the reliability of a SNP. However, as this quality

is only calculated assuming site independency, the other columns must be considered to get

more accurate SNP calls. Script command „maq.pl SNPfilter‟ is designed for this.

The 7th column implies whether the site falls in a repetitive region. If no read covering the

site can be mapped with high mapping quality, the flanking region is possibly repetitive or in

the lack of good reads. An SNP at such site is usually not reliable.

The 8th column roughly gives the copy number of the flanking region in the reference

genome. In most cases, this number approaches 1.00, which means the region is about

unique. Sometimes you may see non-zero read depth but 0.00 at the 7th column. This

indicates that all the reads covering the position have at least two mismatches. Maq only

counts the number of 0- and 1-mismatch hits to the reference. This is due to a complex

technical issue.

The 9th column gives the neighbouring quality. Filtering on this column is also required to

get reliable SNPs. This idea is inspired by NQS, although NQS is initially designed for a

single read instead of a consensus.

easyrun: Analyses pipeline for small genomes. Easyrun command will run most of analyses

implemented in maq.

maq.pl easyrun [-1 read1Len] [-d out.dir] [-n nReads] [-A 3adapter] [-e minDep] [-

q minCnsQ] [-p] [-2 read2Len] [-a maxIns] [-S] [-N] in.ref.fasta in1.fastq[in2.fastq]

OPTIONS

-d DIR output directory [easyrun]

-n INT number of reads/pairs in one batch of alignment [2000000]

-S apply split-read analysis of short indels (maybe very slow)

-N INT number of haplotypes/strains in the pool (>=2) [2]

-A FILE file for 3‟-adapter. The file should contain a single line of sequence [null]

-1 INT length of the first read, 0 for auto [0]

-e INT minimum read depth required to call a SNP (for SNPfilter) [3]

-q INT minimum consensus quality for SNPs in cns.final.snp [30]

-p switch to paired end alignment mode

-2 INT length of the second read when -p is applied [0]

-a INT maximum insert size when -p is applied [250]

Several files will be generated in out.dir, among which the following files are the key output:

cns.final.snp final SNP calls with low quality ones filtered out

cns.fq consensus sequences and qualities in the FASTQ format

Key commands behind easyrun:

maq fasta2bfa ref.fasta ref.bfa;

maq fastq2bfq part1.fastq part1.bfq;

maq fastq2bfq part2.fastq part2.bfq;

maq map part1.map ref.bfa part1.bfq;

maq map part2.map ref.bfa part2.bfq;

maq mapmerge aln.map part1.map part2.map;

maq assemble cns.cns ref.bfa aln.map;

3.3.4 Annotation tools

The effect of genetic mutation on phenotype is of significant interest in genetics. Non-

synonymous single nucleotide polymorphisms (nsSNP) are genetic mutations that cause a

single amino acid substitution (AAS) in a protein sequence. These are capable of affecting

the function of the protein, subsequently altering the carrier‟s phenotype (Kumar, Henikoff

et. al. 2009). Most alterations are deleterious and so are eventually eliminated through

purifying selection. However, beneficial mutations can sweep through the population and

become fixed, thus contributing to species differentiation. With the massive amounts of

genetic variation data being generated from High-throughput sequencing platforms,

pinpointing a small subset of functionally important variants is the major challenge. Several

annotation pipelines have been developed to identify functionally important variants from the

large amount of sequencing data and decipher potential disease causal genes and causal

mutations (Wang et. al., 2010).

3.3.4.1 SIFT: Sorting Intolerant From Tolerant

For a given protein sequence, SIFT searches a protein database using PSI-BLAST algorithm

to compile a dataset of functionally related protein sequences6. It then aligns the homologous

sequences with the query sequence. Each position in the alignment is then scanned and

probabilities for all possible 20 amino acids are calculated.

These probabilities are normalized by the probability of the most frequent amino acid and are

recorded in a scaled probability matrix. Generally, a highly conserved position is intolerant to

most substitutions, whereas a poorly conserved position can tolerate most substitutions. If the

scaled probability or the SIFT score, lies below a certain threshold value, SIFT predicts a

substitution to affect protein function.

SIFT also provides a measure of confidence in the prediction. In case of very little sequence

diversity in the set of aligned sequences, may appear as highly conserved which might lead to

prediction of neutral substitutions as deleterious. This would thereby result in increase in the

false positive error7. SIFT calculates a conservation value at each position in the alignment,

to assess confidence in the prediction. The conservation value for a position ranges from zero,

when all 20 amino acids are observed at that position, to log2 20 (~4.32), when only one

amino acid is observed at that position5. To maintain the optimum diversity within the

selected sequences, SIFT ensures that the final set of aligned sequences has a median

conservation value of ~3.0. If the set of sequences used for prediction are too conserved

(median conservation value >3.25), then a low-confidence warning is issued.

SIFT can provide exome-wide analysis of single nucleotide variants and indels.

SIFT_exome_nssnvs.pl (for single nucleotide variants)

SIFT_exome_indels.pl (for indels)

SNPClassifier (for placing variants in genome)

file:///G:/thesis_draft1.docx%23_ENREF_28
file:///G:/thesis_draft1.docx%23_ENREF_28
file:///G:/thesis_draft1.docx%23_ENREF_65

1. SIFT_exome_nssnvs.pl

Input: A list of multiple chromosome coordinates of coding SNVs

Format Description

[chromosome,coordinate,orientation,alleles,user comment(optional)]

Coordinate System:

SIFT accepts both residue-based and a space-based coordinates for single nucleotide variants.

RESIDUE BASED COORDINATE SYSTEM (comma separated)

In a residue based system, each base is assigned a coordinate base on its absolute position,

starting from 1.

Format example:

2,43881517,1,A/T,#User Comment

2,43857514,1,T/C

6,88375602,1,G/A,#User Comment

22,29307353,-1,T/A

10,115912482,-1,C/T

SPACE BASED COORDINATE SYSTEM (comma separated)

The space-based coordinate system counts the spaces before and after bases rather than the

bases themselves. Zero always refers to the space before the first base. Space-based

coordinates become necessary when describing insertions/deletions and genomic

rearrangements.

Format example:

2,43881516,43881517,1,A/T,#User Comment

2,43857513,43857514,1,T/C

6,88375601,88375602,1,G/A,#User Comment

22,29307352,29307353,-1,T/A

10,115912481,115912482,-1,C/T

Orientation:

It uses 1 for positve strand and -1 for negative strand. If orientation is not known, it makes

use of 1 as default.

Alleles:

Use 'base1/base2' where either base1 or base2 may be the reference allele. SIFT will predict

for non-reference allele only. For prediction of reference allele, then use base1/base1 where

base1 is the reference allele.

Usage:

./SIFT_exome_nssnvs.pl
 -i <Query SNP filename with complete path>

 -d <Variation db directory path>

 -o <Optional: output file with complete path - default=<SIFT_HOME>/tmp>

 -m Yes to output multiple transcripts if exists: default No

The following optional parameters can also be entered if the results need to include additional

information. They are not included by default

 -A 1 to output Ensembl Gene ID

 -B 1 to output Gene Name

 -C 1 to output Gene Description

 -D 1 to output Ensembl Protein Family ID

 -E 1 to output Ensembl Protein Family Description

 -F 1 to output Ensembl Transcript Status (Known / Novel)

 -G 1 to output Protein Family Size

 -H 1 to output Ka/Ks (Human-mouse)

 -I 1 to output Ka/Ks (Human-macaque)

 -J 1 to output OMIM Disease: default

 -K 1 to output Allele Frequencies (All Hapmap Populations - weighted average)

 -L 1 to output Allele Frequencies (CEU Hapmap population)

 -M 1 to output Allele Frequencies (HCB Hapmap population)

 -N 1 to output Allele Frequencies (JPT Hapmap population)

 -O 1 to output Allele Frequencies (YRI Hapmap population)

 -P 1 to output 1000 Genomes Average Allele Frequencies

 -Q 1 to output 1000 Genomes European Population Allele Frequencies

 -R 1 to output 1000 Genomes East Asian Population Allele Frequencies

 -S 1 to output 1000 Genomes West African Population Allele Frequencies

 -T 1 to output 1000 Genomes South Asian Population Allele Frequencies

 -U 1 to output 1000 Genomes American Population Allele Frequencies

2. SIFT_exome_indels.pl

Input: A list of multiple chromosome coordinates of coding insertion/deletion variants.

SIFT scores and predictions are not provided at this stage. It accepts only space-based

coordinates for insertion/deletion variants. All values should be in local 0 space based

coordinates.

Format Description

[chromosome,coordinate,orientation,alleles,user comment(optional)]

Usage:

./SIFT_exome_indels.pl
 -i <Query indels filename with complete path>

 -c <coding info directory path>

 -d <Variation db directory path>

 -o <Optional: output file with complete path - default=<SIFT_HOME>/tmp>

 Output:

Amino Acid Position Change: This column contains the change coordinates within the

original protein sequence and the modified protein sequence.

Indel location: The percentage indicates the approximate location of the indel in the protein.

Nucleotide change: The input allele (insertion or deletion) and +/- 5 base pairs are shown.

For insertions, the inserted bases are displayed in uppercase and the flanking bases are

displayed in lowercase. For deletions, the deleted bases are displayed in lowercase whereas

the flanking bases are displayed in uppercase.

For example:

Input for insertion variant: "10,102760304,102760304,1,GCGGCT"

Nucleotide change: cggct-GCGGCT-acggc

Input for insertion variant: "12,110521161,110521164,1,/"

Nucleotide change: TGCTG-ctg-TTGCT

Caused Nonsense Mediated Decay: This column indicates whether the input indel is likely to

cause NMD.

Repeat detected: This column gets populated if the input insertion/deletion is found to expand

or contract a coding repeat region.

3.3.4.2 ANNOVAR

ANNOVAR, functional annotation of genetic variants from high-throughput sequencing data,

is an efficient command line Perl program to functionally annotate genetic variants from

diverse genomes. ANNOVAR was developed to fill the need and shortlist single nucleotide

variants and insertions/deletions, by up-to-date annotation, examining their functional

consequence on genes, inferring cytogenetic bands, reporting functional importance scores,

finding variants in conserved regions, or identifying variants reported in the 1000 Genomes

project and dbSNP.

Given a list of variants with chromosome, start position, end position, reference nucleotide

and observed nucleotides, ANNOVAR can perform:

1. Gene-based annotation: To identify the affected amino acids and whether SNPs or

CNVs cause protein coding changes. Genes from RefSeq, UCSC, ENSEMBL,

GENCODE, or many other gene definition systems can be flexibly used.

2. Region-based annotations: To identify variants in specific genomic regions, for

example, conserved regions among 44 species, predicted transcription factor binding

sites, segmental duplication regions, GWAS hits, database of genomic variants,

DNAse I hypersensitivity sites, ENCODE H3K4Me1/H3K4Me3/H3K27Ac/CTCF

sites, ChIP-Seq peaks, RNA-Seq peaks, or many other annotations on genomic

intervals.

3. Filter-based annotation: To identify variants that are reported in dbSNP, or identify

the subset of common SNPs (MAF>1%) in the 1000 Genome Project, or identify

subset of non-synonymous SNPs with SIFT score>0.05, or find intergenic variants

with GERP++ score<2, or many other annotations on specific mutations.

4. Other functionalities: Retrieve the nucleotide sequence in any user-specific genomic

positions in batch, identify a candidate gene list for Mendelian diseases from exome

data, and other utilities.

Preparation of local annotation databases

ANNOVAR requires "annotation databases" saved in local disk for annotating genetic

variants. The --downdb argument can be issued to download required annotation database

from the UCSC Genome Browser or the ANNOVAR database repository automatically,

assuming that the computer is connected to Internet. Several different types of annotation

databases can be downloaded, with the command below:

annotate_variation.pl -downdb [optional arguments] <table-name> <output-directory-

name>

1. Download gene annotation databases

Usage:

annotate_variation.pl -downdb -buildver hg18 -webfrom annovar refGene humandb

The keyword "refGene" tells the program that RefSeq gene-related annotations need

to be downloaded.

Besides RefSeq gene, several other gene annotations can be downloaded and uesd in

gene-based annotation, like knownGene gene annotations and ensGene gene

annotations.

2. Download region annotation databases from UCSC

Usage:

annotate_variation.pl -downdb -buildver hg18 <UCSC Table name> humandb/

UCSC Table Name Explanation

cytoBand the approximate location of bands seen on Giemsa-stained chromosomes

tfbsConsSites
transcription factor binding sites conserved in the human/mouse/rat alignment,

based on transfac Matrix Database (v7.0)

wgRna snoRNA and miRNA annotations

targetScanS TargetScan generated miRNA target site predictions

genomicSuperDups Segmental duplications in genome

phastConsElements*way

Conserved elements produced by the phastCons program based on a whole-genome

alignment of vertebrates. Depending on species used, it could be 17way, 28way,

30way, 44way, etc, so users have to specify the *way in the command line

argument.

Evofold
Conserved functional RNA, through RNA secondary structure predictions made

with the EvoFold program

Dgv
Database of Genomic Variants, which contains annotations for reported structural

variations

omimGene

Canonical UCSC genes that have been associated with identifiers in the Online

Mendelian Inheritance in Man (OMIM) database. As advised by UCSC, the results

"should be treated with skepticism and any conclusions based on them should be

carefully scrutinized using independent resources", including manual inspection of

primary literature.

gwasCatalog Published GWAS results on diverse human diseases.

(other)

All other databases, using the URL ftp://hgdownload.cse.ucsc.edu/goldenPath/

<build-version>/database/<table-name>.txt.gz, where <build-version> and <table-

name> is specified by the user. If the Table does not exist in UCSC databases, an

error will be thrown by the program.

3. Users can supply additional filter-based annotation databases

In addition to downloading annotation databases from Internet, several types of self-

annotated databases can be supplied. The "generic" format can be used for filter-based

annotations, while the "gff3" format can be used for region-based annotations or gene-based

annotations.

Table Dataset Explanation

generic

any filter-based data set

conforming to generic

format (for use with --

filter operation)

Users can generate their own variants databases with the simple

format (chr, start, end, reference allele, observed allele, and any

other columns), and ANNOVAR can process this database using -

dbtype generic argument. For example, some users may want to

compute whole-exome PolyPhen scores and use ANNOVAR to

annotate variants using these scores.

gff3

any annotation data set

conforming to Generic

Feature Format 3 (GFF3),

a current golden standard

for model-organism

sequence feature

annotations (for use with

-regionanno opeartion)

Users can supply a GFF3 formatted database file, and annovar will

perform region-based annoations on query against this file. A

detailed description on GFF3 format can be found at sequence

ontology website:http://www.sequenceontology.org/gff3.shtml. It

has become the standard for many model organism databases for

sequence feature exchange, so essentially users have unlimited

ability to annotate their variants, as long as a particular annotation

database exist in GFF3 format.

vcf

any custom VCF file with

population frequency

data on alleles

VCF format is adopted by the 1000 Genomes Project to present

variation data. The file may contain called alleles and their

frequencies in a population, but may also contain individual

genotypes for each subject in a population. ANNOVAR will

examine the annotated mutations in a population.

bed
a BED file with chr, start

and end position

Users can supply a custom BED file for region-based annotation.

For example, after an exome sequencing experiments you

generated variant calls, but are only interested in the calls located

in the "target region" of the exome enrichment array; in this case,

you can use the BED file provided by array manufacturer to filter

the subset of variants located within target regions.

Standard format of ANNOVAR input file

ANNOVAR takes text-based input files, where each line corresponds to one variant. On each

line, the first five space- or tab- delimited columns represent chromosome, start position, end

position, the reference nucleotides and the observed nucleotides. Additional columns can be

supplied and will be printed out in identical form. For convenience, users can use:

“0” To fill in the reference nucleotides, if this information is not readily available

http://www.sequenceontology.org/gff3.shtml

“–” To represent a null nucleotide, insertions, deletions or block substitutions can be readily

represented by this simple file format

By default, 1-based coordinate system will be assumed; if --zerostart argument is issued, a

half-open zero-based coordinate system will be used in ANNOVAR instead.

Example input file:
1 161003087 161003087 C T comments: rs1000050, a SNP in Illumina SNP arrays

1 84647761 84647761 C T comments: rs6576700 or SNP_A-1780419, a SNP in Affymetrix SNP arrays

1 13133880 13133881 TC - comments: rs59770105, a 2-bp deletion

1 11326183 11326183 - AT comments: rs35561142, a 2-bp insertion

1 105293754 105293754 A ATAAA comments: rs10552169, a block substitution

1 67478546 67478546 G A comments: rs11209026 (R381Q), a SNP in IL23R associated with Crohn's disease

Format conversion script: To generate ANNOVAR input files

The convert2annovar.pl script provides some very rudimentary utility to convert other

"genotype calling" format into ANNOVAR format. Currently, the program can handle

Samtools genotype-calling pileup format, Illumina export format from GenomeStudio,

SOLiD GFF genotype-calling format, Complete Genomics variant format, and VCF format.

Usage:

convert2annovar.pl -format <format> -out <output filename> <input filename>

Options:

-format cg: To convert Complete Genomics genotyping calling format to ANNOVAR format

-format gff3-solid: To convert GFF3-SOLiD format to ANNOVAR format

-format soapsnp: To convert SOAPsnp format to ANNOVAR format

-format maq: To convert MAQ genotype calling format to ANNOVAR format

-format cassava: To convert CASAVA genotype calling format to ANNOVAR format

OUTPUT

Two output files are generated: *.variant_function and *.exonic_variant_function

Output file 1 (refSeq gene annotation)

The first file contains annotation for all variants, by adding two columns to the beginning of

each input line.

The first column tells whether the variant hit exons or intergenic regions, introns or non-

coding RNA genes.

If the variant is exonic/intronic/ncRNA, the second column gives the gene name (if multiple

genes are hit, comma will be added between gene names); if not, the second column will give

the two neighboring genes and the distance to these neighboring genes.

The possible values of the first column are summarized below:

Value Default precedence Explanation

exonic 1 variant overlaps a coding exon

splicing 1
variant is within 2-bp of a splicing junction (use -splicing_threshold

to change this)

ncRNA 2
variant overlaps a transcript without coding annotation in the gene

definition (see Notes below for more explanation)

UTR5 3 variant overlaps a 5' untranslated region

UTR3 3 variant overlaps a 3' untranslated region

intronic 4 variant overlaps an intron

upstream 5 variant overlaps 1-kb region upstream of transcription start site

downstream 5
variant overlaps 1-kb region downtream of transcription end site

(use -neargene to change this)

intergenic 6 variant is in intergenic region

 To know all the functional consequences, --separate argument should be used. In this case,

several output lines may be present for each variant, representing several possible functional

consequences.

Output file 2 (refSeq gene annotation)

The second output file, ex1.human.exonic_variant_function, contains the amino acid changes

as a result of the exonic variant. The exact format of the output below may change slightly

between different versions of ANNOVAR. Only exonic variants are annotated in this file.

The first column gives the line # in the original input file.

The second field tells the functional consequences of the variant (possible values in this fields

include: nonsynonymous SNV, synonymous SNV, frameshift insertion, frameshift deletion,

nonframeshift insertion, nonframeshift deletion, frameshift block substitution, nonframshift

block substitution).

The third column contains the gene name, the transcript identifier and the sequence change in

the corresponding transcript. A standard nomenclature is used in specifying the sequence

changes (you may want to add -hgvs argument so that the cDNA level annotation is

compatible with HGVS nomenclature).

More detailed explanation of these exonic_variant_functoin annotations are given below.

Annotation Precedence Explanation

frameshift insertion 1
an insertion of one or more nucleotides that cause frameshift changes in

protein coding sequence

frameshift deletion 2
a deletion of one or more nucleotides that cause frameshift changes in protein

coding sequence

frameshift block

substitution
3

a block substitution of one or more nucleotides that cause frameshift changes

in protein coding sequence

stopgain 4

a nonsynonymous SNV, frameshift insertion/deletion, nonframeshift

insertion/deletion or block substitution that lead to the immediate creation of

stop codon at the variant site. For frameshift mutations, the creation of stop

codon downstream of the variant will not be counted as "stopgain"!

stoploss 5

a nonsynonymous SNV, frameshift insertion/deletion, nonframeshift

insertion/deletion or block substitution that lead to the immediate elimination

of stop codon at the variant site

nonframeshift

insertion
6

an insertion of 3 or multiples of 3 nucleotides that do not cause frameshift

changes in protein coding sequence

nonframeshift

deletion
7

a deletion of 3 or mutliples of 3 nucleotides that do not cause frameshift

changes in protein coding sequence

http://www.hgmd.cf.ac.uk/docs/mut_nom.html

nonframeshift

block substitution
8

a block substitution of one or more nucleotides that do not cause frameshift

changes in protein coding sequence

nonsynonymous

SNV
9 a single nucleotide change that cause an amino acid change

synonymous SNV 10 a single nucleotide change that cause an amino acid change

3.3.5 Existing Databases

3.3.5.1 dbSNP

The NCBI Short Genetic Variations (SNV) database, also known as dbSNP, catalogs short

variations in nucleotide sequences from a wide range of organisms. These variations include

single nucleotide variations, short nucleotide insertions and deletions, short tandem repeats

and microsatellites. SNVs may be common, thus representing true polymorphisms or they

may be rare. Each dbSNP entry includes the sequence context of the polymorphism (i.e., the

surrounding sequence), the occurrence frequency of the polymorphism (by population or

individual), and the experimental method(s), protocols, and conditions used to assay the

variation (Kitts A. and Sherry S., 2011). It hosts 40,564 entries for Mycobacterium

tuberculosis, which includes SNPs as well as INDELs.

Fig. 10: Home page of dbSNP

3.3.5.2 TBDB

The Tuberculosis Database (TBDB) is an integrated database providing access to TB

genomic data and resources, relevant to the discovery and development of TB drugs, vaccines

and biomarkers. The current release of TBDB houses genome sequence data and annotations

for 28 different Mycobacterium tuberculosis strains and related bacteria. TBDB stores pre-

and post-publication gene-expression data from M. tuberculosis and its close relatives. TBDB

currently hosts data for nearly 1500 public tuberculosis microarrays and 260 arrays

for Streptomyces. In addition, TBDB provides access to a suite of comparative genomics and

microarray analysis software. By bringing together M. tuberculosis genome annotation and

gene-expression data with a suite of analysis tools, TBDB (http://www.tbdb.org/) provides a

unique discovery platform for TB research (Reddy et. al., 2009).

http://www.tbdb.org/
file:///G:/thesis_draft1.docx%23_ENREF_48

Fig. 11: Home Page of TBDB

3.3.5.3 MTCID

MTCID (M. tuberculosis clinical isolate genetic polymorphism database) is an attempt to

provide a comprehensive repository to store, access and disseminate single nucleotide

polymorphism (SNPs) and spoligotyping profiles of M. tuberculosis. It can be used to

automatically upload the information available with a user that adds to the existing database

at the backend. Besides it may also aid in maintaining clinical profiles of TB and treatment of

patients. The database has 'search' features and is available at http://ccbb.jnu.ac.in/Tb (Bharti

et. al., 2012).

Fig. 12: Search Page of MTCID

3.3.5.3 TbDReaMDB

TBDReaMDB (http://www.tbdreamdb.com/index.html) is a comprehensive resource on drug

resistance mutations in M. tuberculosis. The resource has been compiled by conducting a

systematic review to identify drug resistance mutations from the existing literature to include

in the database. For each mutation, the database provides complete codon changes for each

mutation at both the nucleotide and amino acid level. The database is divided into two parts.

The first part lists all the unique mutations reported in drug-resistant TB isolates, as well as

information on the time period of isolate collection, country of origin, molecular detection

method, resistance pattern, and susceptibility testing method. As of September 1, 2008,

TBDReaMDB contains 946 unique mutations associated with seven different drug classes

and spread over 36 genes, two intergenic/promoter regions, and one ribosomal RNA coding

region. The second part of the database provides data on the relative frequency of the most

common mutations associated with resistance to specific drugs, as reported in surveys from

diverse geographical sites (Sandgren et. al., 2009).

http://ccbb.jnu.ac.in/Tb
file:///G:/thesis_draft1.docx%23_ENREF_6
file:///G:/thesis_draft1.docx%23_ENREF_6
http://www.tbdreamdb.com/index.html
file:///G:/thesis_draft1.docx%23_ENREF_52

Fig. 13: Home Page of TBDReaMDB

4. METHODOLOGY

4.1 Datasets and Methods

Genome Datasets: The availability of re-sequencing data-sets in public domain was

extensively used to compile the M. tuberculosis variome. We retrieved a total of 37 datasets

from re-sequencing projects of M. tuberculosis from the NCBI Sequence Read Archive

(SRA). These data sets correspond to a total of 469 strain samples. All datasets were part of

re-sequencing projects using next-generation sequencing. Only datasets in public domain and

not in embargo were considered for our analysis.

The Sequence Read Archive (SRA) stores raw sequencing data from next-generation

sequencing platforms including Applied Biosystems SOLiD® System, Complete

Genomics®, Helicos Heliscope®, Illumina Genome Analyzer®, Pacific Biosciences

SMRT®, and Roche 454 GS System®. The SRA is the single best resource for useful data

from initiatives such as the 1,000 Genomes Project and institutions like the Broad Institute,

Washington University, and the Wellcome Trust Sanger Institute. Sequencing reads from 469

strain samples were downloaded from SRA in .sra format and saved separately in different

folders with the corresponding sample names. This was done so that multiple reads from the

same sample can be easily aligned and used to derive a consensus base-call at each position.

The retrieval and segregation of such a large dataset was done computationally using a perl

script. This was then followed by conversion of .sra format to the maq acceptable .fastq

format using sratoolkit.

Usage:

./fastq-dump –split-files –O <output directory> <path>

OPTIONS

--split-files Dump each read into a separate file.

Files will receive suffix corresponding to read number.

 -O Output directory, default is „.‟

The H37Rv reference genome (NC_000962.2) was used as the reference for mapping the

reads, since it is considered to be best characterized strain of Mycobacterium tuberculosis.

The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very

high guanine + cytosine content that is reflected in the biased amino-acid content of the

proteins (Cole et. al., 1998).

file:///G:/thesis_draft1.docx%23_ENREF_10

4.2 Read Mapping and variant calling

We used a popular and extensively used quality aware reference mapping toolkit Mapping

and Assembly with Quality (MAQ)(Li et. al., 2008). To assure good quality of mapping base-

wise mean quality of reads was first deduced using FastQC tool

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were then filtered

based on the quality score. For each run, read length greater than 15 with mean Phred quality

more than 20 were selected for reference alignment while rest of the datasets were discarded.

The consensus mapping quality was also used to weed out low quality assemblies. Further all

data sets which did not match quality criteria of mean Phred score cutoff of 20 across the

genome were dropped from further analysis. The resulting dataset comprised of a total of 469

unique samples which were then mapped to the reference genome. The variants were called

using the MAQ variant caller using parameters described as follows:

Parameter for single end runs

$ maq.pl easyrun –d <output folder> -1 <length of read> -e 10 –q 60 <reference> <read>

Parameter for paired end runs

$ maq.pl easyrun –d <output folder> -1 <length of forward read> -2 <length of reverse read> -e 10 –

q 60 –p <ref> <read1> <read2>

Easyrun command of MAQ has been used with options –d, -l, –e and –q to mention the

output directory, read length, minimum read depth to call an SNP and quality threshold for

the final SNP calls respectively. Reads from all the 469 samples were mapped on to the

H37Rv Reference genome sequentially using a perl script.

4.3 Variant comparison

We retrieved variants from dbSNP and MTCID for comparisons. The databases briefly had

3,885 & 263 variants annotated respectively on the M. tuberculosis H37Rv genome. MTCID

is a repository providing access to the genetic polymorphisms from clinical isolates and also

provides information on their strains and associated spoligotypes (Bharti et. al., 2012), while

dbSNP archives genomic variants of organisms. Additionally, the datasets corresponding to

drug-resistance traits were retrieved from TB Drug resistance mutation database

(TBDreamDB) (Sandgren et. al., 2009). This dataset comprised of over 1,100 variants

corresponding to about 40 genes for 9 antibiotics. The comparison of the variants generated

from re-sequencing datasets to the known variants reported was done using custom scripts.

file:///G:/thesis_draft1.docx%23_ENREF_30
file:///G:/thesis_draft1.docx%23_ENREF_7
file:///G:/thesis_draft1.docx%23_ENREF_53

4.4 Variant annotation

The variants were annotated using the popular variant annotation toolkit ANNOVAR (Wang

et. al., 2010). Briefly the gene coordinates were formatted and fed to ANNOVAR using

custom scripts and the variants were annotated in a number of parameters like gene loci

(genic, intergenic), effect (synonymous, non-synonymous, stop gain/loss) etc. Gene based

annotation was done using the input file that was prepared using a custom script.

annotate_variation.pl -geneanno -dbtype knowngene mtb.txt mtbdb/ –out annovar_out

where mtb.txt is the maq output variant file in annovar input format, mtbdb is the manually

prepared database and annovar_out is the output directory wherein the variant_function and

exonic_variant_function files created by ANNOVAR are saved. The annotation in these files

was then mapped onto the variant list deciphered by MAQ with respect to the variant

position.

4.5 Mapping Genes onto the Variants

To download genic information, for the H37Rv reference genome, UCSC genome browser

was used. In the table browser Bacteria-Actinobacteria was chosen as clade, Mycobacterium

tuberculosis H37Rv as genome, group was set as Genes and Gene prediction Tracks and

Track was set to Genbank RefSeq. With these settings a file named genes was downloaded in

BED format. Genes.bed file was then used to map the variants with the gene related

information if the variant positions fall within the gene loci using a perl script (map_gene.pl-

APPENDIX-I). The output was saved in a file with the name of map_exonic_gene.txt. Once

the genes were mapped onto the exonic variants, a file was compiled with both the exonic as

well as non-exonic variants named map_all_var_gene.txt

Fig. 14: Downloading MTB gene table from UCSC Table Browser

file:///G:/thesis_draft1.docx%23_ENREF_64
file:///G:/thesis_draft1.docx%23_ENREF_64

4.6 Functional analyses of variations

The genic non-synonymous variants were analyzed further using Sorting Intolerant from

tolerant (SIFT) (Ng and Henikoff, 2001) for potential functional consequences. Briefly the

annotations from ANNOVAR were reformatted using custom scripts and used as template for

analysis using SIFT. For this input file was first prepared in the Residue based format and

SIFT_exome_nssnvs.pl command was used to notate the variants with functional

consequences. The output file of this tool was again fed to a perl script to map functional

consequence onto the exonic as well as non-exonic variants.

4.7 Mapping of variants to regulatory regions

The recent availability of ChIP-seq datasets for M. tuberculosis was extensively used for the

mapping of variants. These data sets were retrieved from the Broad Institute repository and

correspond to ChIP-seq peaks corresponding to 50 transcription factors. The respective

positions of the peaks were downloaded and variants were matched to the respective loci

using custom scripts (map_peaks.pl – APPENDIX-II) and saved as map_var_gene_peaks.txt

Fig. 15: Exporting of ChIP-Seq peaks data from TBDB

4.8 Mapping of variants to ncRNA

Similar to retrieving genic information from UCSC genome browser, information for ncRNA

was also retrieved to identify the variants that fall within ncRNAs. In the table browser

Bacteria-Actinobacteria was chosen as clade, Mycobacterium tuberculosis H37Rv as

genome, group was set as Genes and Gene prediction Tracks, Track was set to GenBank

ncRNAs and Table as gbRNAs. With these settings a file named nc_rna was downloaded and

file:///G:/thesis_draft1.docx%23_ENREF_39

was then used to map the variants with the ncRNA related information if the variant position

falls within the loci using a perl script (map_ncrna.pl-APPENDIX-III).

Fig. 16: Downloading ncRNA data from UCSC Table Browser

4.9 Mapping of variants to Sample information

Sample information was extracted from SRA, with respect to the Sample Accession number,

Experiment Accession Numbers corresponding to those samples and Accession number for

the corresponding Studies, for the identified variants. Another perl script as then designed to

add Sample, Experiment and Study information to the map_var_gene_peaks.txt file.

Fig. 17: Extracting strain information from Sequence Read Archive

4.10 Mapping of variants to information related to Drug Resistance

The datasets corresponding to drug-resistance traits were retrieved from TB Drug resistance

mutation database (TBDreamDB - http://www.tbdreamdb.com/TBDReaMDB_High

ConfidenceMutations201004.txt) which comprises over 1,100 variants corresponding to

about 40 genes for 9 antibiotics. Variant positions in the file composed until now were cross-

checked for drug resistance from the data retrieved from TBDreamDB. In case of any match

found, the file was updated with the corresponding information.

Fig. 18: Extracting the drug resistance data from TBDReamDB

4.11 Mapping of variants to those available in existing databases

Entire variant dataset available in existing databases like dbSNP, MTCID and TBDB were

retrieved. These were then cross-checked with our own variant dataset. In case of a match

found the variant information was appended with the database name. This was done so as to

inform whether a variation has been already reported or not and if so then in which database.

4.12 Database construction

With the variant information compiled as mentioned above, a database was constructed using

MySQL, an Open source relational database system. The data model for the same was created

using MySQL Workbench, which is a visual database design application that can be used to

efficiently design, manage and document database schemata. To create a new data model, the

following steps were performed:

1. Under the heading “Data modeling”, “Create new data model” was selected.

2. Double-clicked on the “mydb” tab to enter the name of the database.

3. Double-clicked on “Add table” to add a new table to the database. The table name,

column names and types as well as declaration of primary key, foreign keys and other

constraints and triggers, was done here.

Fig. 19: Constructing a database on MySQL Workbench

To create a new table:

1. Double-clicked on “Add table” under the heading Tables.

2. Typed the table name in the text box.

3. Double-clicked under the heading “Column Name” and typed the name of the column that

is the primary key. It was ensured that the PK (Primary Key) and NN (Not Null) checkboxes

were selected.

4. Selected the data-type of the column.

5. Created the other fields in the same way.

Fig. 20: Developing a table with required columns on MySQL Workbench

The data file was uploaded into MySQL command-line using the following command on the

terminal:

mysql –h localhost –u root –p matb_anno –local -infile

mysql> Load data local –infile tbvar.txt into table tbvar_db

Interfaces were coded in Perl-CGI and HTML/CSS and the server was hosted on Apache

HTTP server. The Common Gateway Interface, or CGI, is a set of standards that define how

information is exchanged between the web server and a custom script.

Fig. 21: Information retrieval from database by web browser using CGI

The process of retrieving data from an online database through a web browser is discussed as

follows:

1. The browser sends the query to the server using the GET or POST methods.

2. The server executes the CGI program which connects to the database and fetches the

required information.

3. This retrieved information is passed to the server.

4. The server then sends the information back to the browser where it is displayed to the user.

Table III: Description of HTML scripts used to develop the web interface of tbvar

S. No. Script Name Description

1. index.html The home page wherein user can input query in form of variant

location, range, gene-name or rvID

2. annoTB.html To annotate list of variations together

3. contact.html Feedback form

4. browser.html An access to the Mycobacterium tuberculosis genome browser

5. help.html An access to the user manual

Table IV: Description of Perl-CGI scripts used to develop the web interface of tbvar

S.

No.

Script Name Description

1. tbvar.cgi To extract the input query by the user, retrieve the

corresponding information from the compiled datasheet and

represent it separately under different tabs of Genomic

Variation, Gene Annotation, Functional Effects, Regulatory

Variations, Strain Information, Drug Resistance, ncRNA and

Genome Browser.(APPENDIX-IV)

2. annoTB_upload.cgi To extract the inserted variant file in the annoTB web-page,

retrieve the corresponding information from the compiled

datasheet and report Drug Resistant variations, Deleterious

variations, Non-Synonymous variation, Synonymous

variations, Regulatory Variations and the Novel variations that

were not mapped on either of the databases. (APPENDIX-V)

3. annoTB_submit.cgi To save the novel variations submitted by the user on the

server. (APPENDIX-VI)

4. feedback_form.cgi To retrieve the information fed by the user in the contact page

and save it on the server. (APPENDIX-VII)

External modules used in the scripts include:

CGI.pm To provide a consistent Application Programming Interface for receiving

user input and producing

HTML output

DBI.pm Connecting to the database

List::MoreUtils qw/ uniq / To use the unique function (uniq) for an array

Fig. 22: Summary of the datasets and methodology used in creating the resource

4.13 Embedding JBrowse in the interface

JBrowse is a genome browser with a fully dynamic AJAX interface, being developed as the

eventual successor to GBrowse. It is very fast and scales well to large datasets. It is fast to

work with, performs smooth scrolling and zooming, enabling the user to explore the genome

with unparalleled speed. JBrowse scales easily to multi-gigabase genomes. It can support

various file formats that includeGFF3, BED, FASTA, Wiggle, BigWig, BAM, and more. It

can serve huge datasets from a single low-cost cloud instance.

1. Installing the prerequisites:

sudo apt-get install libpng-dev libgd2-noxpm-dev build-essential

2. Downloaded JBrowse from http://jbrowse.org/jbrowse-1-9-7-maintenance-release/ onto

the web server

3. Unpacked JBrowse and granted all permissions to the JBrowse directory

cd /var/www

unzip JBrowse-1.9.7*.zip

sudo chmod 777 JBrowse-1.9.7

5 To install all of JBrowse's (modest) prerequisites in the jbrowse/ directory itself, the

automated-setup script was run.

./setup.sh

6 Reference sequence was formatted for JBrowse using the following command:

bin/prepare-refseqs.pl –fasta docs/tutorial/data-files/mtb.fa

7 To import feature data into JBrowse, all the tracks from TBrowse (http://tbrowse.osdd.net/)

and files with information of Genes and Variations were first converted in BED format.

These flat-files were then imported using:

bin/flatfile-to-json.pl --out MTB/json/ --bed MTB/raw/*.bed --tracklabel 16SrRNA --key *;

where * is the track name.

A shell script was written to import all the tracks with the same parameters as above

wherein the above command was encoded for all the tracks.

8 After running the shell script, the browser could be accessed from localhost at the path:

jbrowse/index.html?data=MTB/json

9 To embed JBrowse within our web page, iframe tag was used within the browser.html

script.

<iframe src="jbrowse/index.html?data=MTB/json" style="border: 1px solid

black; width:900px; height:600px;"></iframe>

http://jbrowse.org/jbrowse-1-9-7-maintenance-release/
http://tbrowse.osdd.net/

5. RESULTS

5.1 Data Compilation

The variants reported by MAQ were annotated using ANNOVAR, SIFT and custom scripts

for mapping information regarding genes, regulatory peaks, ncRNAs, strain and drug

resistance. The final output file was then loaded onto a database with respect to following

column names:

Table V: Description of the columns that have been included while compiling the database

S. No. Column Name Description

1. var_int_id The variant position

2. var_snp_id ID‟s to link to the existing databases

3. var_ref Reference allele at the variant position

4. var_alt Alternate allele at the variant position

5. var_loci
Whether the variant lies in the exonic region,

Upstream or Downstream or Intergenic

6. var_type Whether the variation is Synonymous or Non-Synonymous

7. var_freq
Frequency of finding a particular variation within the entire dataset.

It is equal to the number of samples containing a particular variation.

8. gene_int_id RvID of the corresponding gene within which the variant lies

9. gene_name Name of the corresponding gene within which the variant lies

10. gene_start Genomic position from where the corresponding gene starts

11. gene_stop Genomic position from where the corresponding gene stops

12. gene_orientation “+”: for forward orientation, “-”: for reverse orientation

13. var_aa_mutation <reference aamino acid><variant position><alternate allele>

14. var_func_effect Whether the variation is tolerated pr deleterious

15. var_sift_score SIFT score corresponding to the variations which lies within 0-1

16. var_TF
RvID or the gene name of the Transcription factor within which

 the variant position lies

17. var_target RvID or the gene name of the target of the corresponding TF

18. reg_start genomic position for the start of the regulatory peak

19. reg_stop Genomic position for the start of the regulatory peak

20. strain_sample Accession Number of the corresponding sample

21. strain_exp Accession Number of the corresponding sample experiment

22. strain_ref Accession Number of the corresponding sample

23. ncrna_start genomic position for the start of ncRNA within which it falls

24. ncrna_stop genomic position for the stop of ncRNA within which it falls

25. ncrna_name Name or ID of the ncRNA within which it falls

26. ncrna_strand “+”: for forward strand, “-”: for reverse strand

27. ncrna_product Product description of the corresponding ncRNA

28. gene_anno Annotation of the gene within which the variation falls

5.2 Database statistics

Our database hosts over 29,472 unique single nucleotide variants from 469 unique sequenced

strains of M. tuberculosis. Of the total, 7,856 variants could be mapped to other known

variations in M. tuberculosis retrieved from dbSNP, MTCID & TBDB, suggesting that

21,616 variants are novel and reported for the first time in this report. The overlap of

variations within tbvar with each of the resources is summarized in Figure 23.

Fig. 23: Comparison of the variations in M. tuberculosis with respect to other variation resources.

tbvar
29,472

TBDB

MTCIDdbSNP

1,970 53

5,833

From the entire dataset, 26,083 variations were found to lie within genes and 16,209

variations were reported as non-synonymous. In a total of 2,407 genes 5,394 variations were

predicted as deleterious by SIFT. Apart from these a total of 9,446 variations were sense

mutations and 398 confer stop codon mutation to the genes. A total of 38 mutations led to

loss of a stop codon within gene and 7,873 variations mapped to regulatory regions annotated

as per ChIP-seq dataset obtained from (http://genome.tbdb.org/annotation/genome/tbdb/

RegulatoryNetwork.html). A comprehensive representation of the data is show in Figure 24.

Fig. 24: Graphical representation showing distribution of SNPs in various loci of the M. tuberculosis

genome

Non-Synonymous, 16264

Synonymous, 9465

Upstream, 772

Stop Gain, 398

Downstream, 392

Stop Loss, 38

Others, 2143

29,472 unique SNPs

http://genome.tbdb.org/annotation/genome/tbdb/RegulatoryNetwork.html
http://genome.tbdb.org/annotation/genome/tbdb/RegulatoryNetwork.html

5.3 Genomic variations tend to saturation

We analyzed the repertoire of genomic variations encoded by the 469 (samples) strains of M.

tuberculosis to evaluate whether this forms a near comprehensive set of genetic variations

encoded by the pathogen. The percentage of the total repertoire contributed by randomly

picked sets of genomes was evaluated.

1. Each bin of 5 samples was randomly chosen for 1000 iterations

2. Number of novel SNVs were identified for each bin

3. This number for each bin was averaged and a box plot was plotted

Fig. 25: Variations plotted across subset of the genomes. The 95 percentile and 5 percentile form upper and lower

boxes, while upper and lower error bars indicate maximum and minimum. The blue line passing through the boxes indicates

average per bin of samples.

It was found that the variations tend to saturate close to 195 genomes i.e. after 195 genomes

not more than a fixed number of novel variations would come up in any10 samples taken at

random. We suggest that tbvar thus encompasses majority of the common variants encoded

by the pathogen, thus providing a comprehensive resource and starting point towards

understanding the pathogen diversity and evaluation of variations for therapeutic and drug

discovery applications.

5.4 Database features and navigation

5.4.1 Home Page

The database has a user-friendly interface. Homepage of the database introduces the database

and its purpose to the users. It also gives a brief overview of the data that the database holds.

It directs the user to different search and browse options. The search option is quite simple,

where a user can search using a gene ID or a set of genomic positions and is immediately

presented with a list of variants, which satisfy the condition. The search supports gene names,

Tuberculist RvIDs and GenBank IDs. The „Eureka‟ button returns results for the input search

term in various tabs below the explore form. Search term in any of the above mentioned form

takes user to a separate result page which is further divided into different sections in form of

tabs. The result page interface is hyperlinked so as to provide the user to dynamic

compilations of information, pertaining, for example a strain, a gene or a set of properties,

say drug resistance. The homepage also features a browse interface which allows users to

quickly browse for relevant information quickly. To aid the user on the genomic location of

the variants under question, the resource also features a browser tab displaying the variations

on a genome browser interface exported from TBrowse(Bhardwaj et. al., 2009).

Fig. 26: Home Page of the web-interface for tbvar

file:///G:/thesis_draft1.docx%23_ENREF_5

5.4.2 tbvar

The search form takes the user to a different page that hosts the complete information

segregated under different tabs. Information regarding each tab can be obtained by hovering

the mouse over the link. Each of the section displayed in the form of tab is highlighted in

Figure 27. The interface also allows the user to shift through this list by using a set of tabs to

filter out synonymous/non-synonymous, deleterious or variations in regulatory regions.

Fig. 27: Screenshot showing result table and information about each section of the database

The resource is hyperlinked so as to provide the user dynamic compilations of information,

pertaining, for example a strain, a gene or a set of properties, say drug resistance. It is also

interlinked to various other primary resources for gene information and sources of raw data.

This includes Tuberculist and TBdb for gene information, Uniprot for protein annotations and

NCBI SRA for raw datasets and TBrowse for genome centered annotations. The variants in

the database are also available as a track shared in TBrowse. Variant datasets and annotations

have also been made available for download to aid computational biologists with a ready set

of formatted data sets for analyses.

The output page for database query is divided into different sections which can be explored

using different tabs at the top of result table. Different sections show different biological and

other information related to query.

Genomic variations:

This section gives information on the genomic position of the variations along with their

genomic loci (e.g. whether they lie in genic part of the inter-genic region of the genome).

This section also mentions the count and frequency of occurrence of the particular variation

within the population of samples chosen for building database. Finally, this section also links

out to other various databases for the variants found in other similar databases.

Fig. 28: Information provided under „Genomic Variations‟ tab

Gene annotation:

This section shows all the information pertaining to a gene harboring variations. It shows

gene name and it‟s ID. This tab also gives annotation for the respective gene. Genomic

coordinates of genes and its orientation are also presented in this section.

Fig. 29: Information provided under „Gene Annotation‟ tab

Functional effects:

This section shows SIFT prediction and SIFT score for non-synonymous variations. SIFT

predicts whether a genomic variation has any functional consequence on the corresponding

protein. Here we consider a change in protein structure as predicted by SIFT to be

DELETERIOUS, while no change in the protein structure is considered as TOLERATED.

SIFT score is a major parameter in prediction and is provided in this tab.

Fig. 30: Information provided under „Functional Effects‟ tab

Regulatory variations:

Variations lying in the regulatory elements on MTB genome as found through Transcription

factor (TF) ChIP-seq of 50 transcription factors are reported in this section. The targets

predicted against these TFs are also reported in this section along with their genomic

positions for start and stop. In case the variation doesn‟t lie within the range of genomic

coordinates of the peak, a message of “No Regulatory Effect is shown”.

Fig. 31: Information provided under „Regulatory Variations‟ tab

Strain information:

This section reports information on the samples and corresponding experiment and study

from which the variations were derived. In case of multiple samples, experiments or studies

for a single variation, all of them are listed one after the other in successive rows.

Fig. 32: Information provided under „Strain Information‟ tab

Drug resistance:

Variations known to be annotated as drug resistant are reported in this section of the database.

Variations having resistance to known anti-tb drug along with the antibiotic and

corresponding resistant gene information are reported under this tab. Peer reviewed reference

from which the information was derived is also reported. This tab appears only if the query

has a drug resistant mutant associated with it.

Fig. 33: Information provided under „Drug Resistance‟ tab

ncRNA Loci:

Variations falling in the non-coding RNA regions of the genome are reported in this tab. This

is also an optional tab which appears only if any variation in the query lies in the non-coding

region of the genome. It reports genomic coordinates of the nc-RNA, its orientation and the

product of this ncRNA.

Fig. 34: Information provided under „ncRNA loci‟ tab

Genome Browser:

A genome browser hosting tracks from TBrowse and other relevant variation information and

region surrounding the region of interest is shown in this section. Users can navigate through

the genome by clicking and dragging the browser area. New tracks of interest can be added to

the browser by a simple drag and drop from the vertical panel on the left.

Users can also upload their own tracks of interest to show up in the browser by choosing:

In case of local files:

File -> Open -> Select Files

Or

Drag and Drop the files into the text box

In case of remote files:

 Paste remote URLs.

Users can upload files in one of these file formats (GFF, BigWig, BAM & BAI).

Configuration of the information to show in browser is customizable. Users have an option to

either open the file or directly add it as a track.

Fig. 35: Information provided under „Genome Browser‟ tab

5.4.3 Application of tbvar: annoTB

One of the ready applications of a comprehensive resource like tbvar would be for annotation

of variants from re-sequencing of isolates, including in clinical settings. tbvar provides an

annotation feature „annoTB‟, where users can input custom variant list from re-sequencing

data, and get annotations for them. In the present report we use this feature as a proof of

concept to annotate variations from a clinical isolate.

This is novel feature of tbvar, where clinicians can simply upload MTB variant list in a

simple file format which is used by a parser to map those variations onto variations housed in

„tbvar‟. Since tbvar is a comprehensive compendium of known genomic variations in MTB,

most of the variations in clinical sample genome get annotated. Rest of the variations that

don‟t map onto the in-house variant list are considered to be novel, ones that have never been

reported. For such variations tbvar provides an option to submit them to the IGIB server.

Input: annoTB accepts input in the form of an SNP file. An example SNP file can be viewed

by clicking on „Load Example‟ button below the text area. annoTB only accepts variant

position, reference allele and alternate allele, in tab separated format. Ambiguous bases are

not allowed for annotation and hence discarded.

Pos. Ref. Alt.

30944 C T

30954 A T

31468 T C

31468 T C

34063 C T

35063 C A

7585 G C

Fig. 36: Description of the annoTB web-page

Output:

A report showing variation annotation and corresponding information is available for users to

analyze. The report gives a summary of annotated variations and also shows the variations

known to confer drug resistance. Different panels below report summary give information on

annotation of individual variation section-wise.

Report Summary lists the certain numbers of interest for the user. It tells how many variants

were uploaded, amongst which how many got mapped onto the in-house variant dataset. Out

of the mapped dataset, numbers of those that have corresponding drug resistance annotations,

are synonymous or non-synonymous or reported to have regulatory effect are also given.

Number of variations that don‟t map to the tbvar dataset (novel variations) is also reported

here. Apart from this the report summary also informs the resistant drugs for the entire input

data, along with the corresponding variations beneath them.

Fig. 37: Information provided under annoTB Report Summary

Report summary

Example input

Reset button

Simple text input for variation

positions

Upload SNPs

Drug resistance panel lists the variations annotated to be drug resistant.

Fig. 38: Information related to „Drug Resistant Variations‟ provided under annoTB Report

Deleterious variations panel lists deleterious variations predicted by SIFT which exist in

database.

Fig. 39: Showing the information related to „Deleterious Variations‟ provided under annoTB Report

Non-synonymous and synonymous variations are listed in next two panels wherein the user

can know which of his input variations are synonymous and which ones are non-

synonymous.

Fig. 40: Information related to „Syn/Non-Syn Variations‟ provided under annoTB Report

Regulatory variations in uploaded SNP file matching to those present in database are shown

in regulatory variation panel.

Fig. 41: Information related to „Regulatory Variations‟ provided under annoTB Report

Novel Variations: The last panel lists those variations not present in „tbvar‟. Users have an

option to submit these novel variations to the database.

Fig. 42: Information related to „Novel Variations‟ provided under annoTB Report

When users press the submit button, a form asking for information of the submitter and

submission opens up. By submitting the form users submit the SNP file they uploaded to the

server where manual curation is done and the data is included into the database.

Fig. 43: Submission form for submitting variant file that has been loaded by the user in annoTB

5.4.4 Help Manual

The MANUAL button links the web page to a detailed Help Manual which is provided to aid

the user on the search and navigation options. The manual has been embedded in the

webpage using iframe tags (<iframe></iframe>). The manual is also available for download

from the Download Manual link.

Fig. 44: Screenshot of web-interface for the Reference Manual

5.4.5 Contact Page

The users have been given an option to contact us by filling the form that has been linked to

the CONTACT button. Herein the user is asked to enter its name, e-mail id and comments

regarding the database. Whatever the user fills in is fetched by the CGI script

feedback_form.cgi with a click on the submit button. This information is saved as a file with

the name of [user]_[id].txt in the folder named „feedback‟ on the server.

Fig. 44: Screenshot of web-interface for the Contact Us form

6. DISCUSSION

Present day concern is a number of interconnected issues that include high morbidity and

mortality rate of tuberculosis, steady growth in the reported incidence of drug-resistant

isolates of MTB to the principal anti-tuberculosis drugs, resequencing of large number of

clinical isolates from around the world and lack of a comprehensive, well-curated and user-

friendly database dedicated to SNP data. With the advent of Next Generation Sequencing

Technologies, a significant amount of SNP data is being developed worldwide. Owing to the

need of the hour with respect to MTBC analysis, in order to cater in the prevention and cure

of tuberculosis, it is highly recommended that this data should not be computed and stored in

local workstations, rather deposited onto the Sequence Read Archive created by NCBI, EBI

and DDBJ. Deposition of the data to SRA would make it publically available, so that the

analysis can be done at a larger scale, worldwide.

Five existing databases harbour information on polymorphisms within MTBC that include

TBDB, MTCID, MGDD, dbSNP and TBDreaMDB. The most important and multi-functional

amongst these is TBDB which contains 23,795 SNPs extracted from 25 MTBC genomes.

While, TBDreaMDB is known to be the most complete repository for drug resistance

mutations in MTBC till date, that features 1447 variations. A new database for MTBC is

highly required that is frequently updated and contains explicit annotations corresponding to

the mutations. It should include certain important fields like essentiality of the corresponding

gene based on experimental evidence, source of that variation like the sample information,

clinical associations like virulence, drug treatment etc., functional predictions for the variants

and frequency data on SNP distribution, in addition to the custom fields that include position,

gene annotation, nucleotide change, amino acid change, type of amino acid change

(synonymous/non-synonymous) etc.

So the major objectives of this study were to analyze re-sequencing data sets from various

laboratories in public domain, identify genomic variations amongst these datasets, annotate

them and characterize them with functional consequences and associated drug resistance and

finally provide a near-comprehensive annotated repertoire of common genomic variations.

tbvar provides a much needed compendium of genomic variants and annotations for

Mycobacterium tuberculosis and provides the first step towards accelerating genotype-

phenotype correlations in the pathogen. It houses 29,472 unique single nucleotide variants

from 469 sequenced strains of M. tuberculosis. The database also provides a user-friendly

interface, closely integrated and interlinked with other major resources in the field. Of the

total, 7,856 variants could be mapped to other known variations in M. tuberculosis retrieved

from dbSNP, MTCID & TBDB, suggesting that 21,616 variants are novel and reported for

the first time in this report. 26,083 variations were genic and 16,209 were found to be non-

synonymous and 5,394 were found to be deleterious in a total of 2,407 genes as predicted by

SIFT, while a total of 9,446 variations were sense mutations and number of variations

conferring stop codon mutation to the gene was 398. A total of 38 mutations led to loss of a

stop codon within gene. A total of 7,873 variations mapped to regulatory regions.

tbvar also provides a novel application „annoTB‟, where users can input custom variant list

from re-sequencing data, and get them annotated for potential drug-resistant variations,

retrieve allele frequencies of variations, know the genomic variations in regulatory regions

and also retrieve information on other strains which have the same variation.

7. CONCLUSION AND FUTURE PERSPECTIVE

NGS studies of MTBC clinical isolates are discovering thousands of SNPs. Studying the

functional effects of these SNPs and their association with phylogenetic clades is required to

become an increasing concern of the research portfolio. MTBC consist of a diverse

population of strains, and this diversity is considered to be important while developing new

tools and strategies to combat TB. A new, extended, and well-curated database is thus,

necessary to accommodate these rapidly accumulating SNP data in a user-friendly and

integrated format.

Treading to achieve this motive, an initiative was taken to design tbvar. The variome was

deciphered by mapping all the high quality sequencing reads from the publically available

samples (469 samples) out of embargo to the reference genome (H37Rv). Keeping into

consideration the existing features as well as the missing features within the currently

available databases, an explicit list of parameters was decided to provide annotations to the

identified variome. tbvar, thus encompasses majority of the common variants encoded by the

pathogen, providing a comprehensive resource and starting point towards understanding the

pathogen diversity and evaluation of variations for therapeutic and drug discovery

applications.

We foresee drastic improvements in the compendium of genomic variants with more genome

scale data being available in public domain. We would also improve upon the variant

annotations with availability of genome-scale epigenetic data sets from large consortia in

public domain, consistently improving the functional annotation of variations.

8. REFERENCES

Ajay, S. S., Parker, S. C.; Abaan, H. O.; Fajardo, K. V.; and Margulies, E. H. (2011). Accurate and

comprehensive sequencing of personal genomes. Genome Res 21(9): 1498-1505.

Astier, Y.; Braha, O. and Bayley, H.; (2006). Toward single molecule DNA sequencing: direct

identification of ribonucleoside and deoxyribonucleoside 5'-monophosphates by using an

engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128(5): 1705-

1710.

Aubry, A.; Pan, X. S. ; Fisher, L. M. ; Jarlier V. ; and Cambau E. (2004). Mycobacterium tuberculosis

DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity.

Antimicrob Agents Chemother 48(4): 1281-1288.

Bentley, D. R. (2006). Whole-genome re-sequencing. Curr Opin Genet Dev 16(6): 545-552.

Bhardwaj, A.; Bhartiya, D.; Kumar, N.; and Scaria, V. ; (2009). TBrowse: An integrative genomics

map of Mycobacterium tuberculosis. Tuberculosis 89(5): 386-387.

Bharti, R.; Das, R.; Sharma P.; Katoch K.; and Bhattacharya A. (2012). MTCID: a database of genetic

polymorphisms in clinical isolates of Mycobacterium tuberculosis. Tuberculosis (Edinb) 92(2):

166-172.

Blanchard, J. S. (1996). Molecular mechanisms of drug resistance in Mycobacterium tuberculosis.

Annu Rev Biochem 65: 215-239.

Breitling, R. (2010). What is systems biology? Frontiers in Physiology. 1(9)

Brosch, R.; Gordon, S. V. ; Marmiesse, M.; Brodin, P. ; Buchrieser, C. ; Eiglmeier, K. ; Garnier, T.;

Gutierrez, C. ; Hewinson, G.; Kremer, K.; Parsons, L. M.; Pym, A. S.; Samper, S.; Soolingen D.

V.; and Cole, S. T. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis

complex. Proc Natl Acad Sci U S A 99(6): 3684-3689.

Cole, S. T.; Brosch, R.; Parkhill, J.; Garnier, T. ; Churcher, C.; Harris, D.; Gordon, S. V.; Eiglmeier,

K.; Gas, S.; Barry, C. E. ; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T. ;

Connor, R.; Davies, R.; Devlin, K.; Feltwell, T. ; Gentles, S. ; Hamlin, N.; Holroyd, S. ; Hornsby,

T.; Jagels, K. ; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K. ; Osborne, J.; Quail, M.

A.; Rajandream, M. A. ; Rogers, J. ; Rutter, S. ; Seeger, K. ; Skelton, J.; Squares, R.; Squares, S.;

Sulston, J. E. ; Taylor, K.; Whitehead S.; and Barrell B. G.; (1998). Deciphering the biology of

Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685): 537-544.

Comas, I.; Chakravartti, J. ; Small, P. M. ; Galagan, J.; Niemann, S. ; Kremer, K. ; Ernst J. D. ; and

Gagneux S. (2010). Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily

hyperconserved. Nat Genet 42(6): 498-503.

Comas, I.; and Gagneux S. (2009). The past and future of tuberculosis research. PLoS Pathog 5(10):

e1000600.

Coscolla, M. and Gagneux, S. (2010). Does M. tuberculosis genomic diversity explain disease

diversity? Drug Discov Today Dis Mech 7(1): e43-e59.

De Rossi, E.; Ainsa, J. A. and Riccardi, G. (2006). Role of mycobacterial efflux transporters in drug

resistance: an unresolved question. FEMS Microbiol Rev 30(1): 36-52.

Ewing, B. and Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error

probabilities. Genome Res 8(3): 186-194.

Ewing, B.; Hillier, L. ; Wendl, M. C. and Green, P. (1998). Base-calling of automated sequencer

traces using phred. I. Accuracy assessment. Genome Res 8(3): 175-185.

Fleischmann, R. D.; Alland, D. ; Eisen, J. A.; Carpenter, L.; White, O.; Peterson, J. ; DeBoy, R.;

Dodson, R.; Gwinn, M. ; Haft, D. ; Hickey, E.; Kolonay, J. F. ; Nelson, W. C.; Umayam, L. A. ;

Ermolaeva, M.; Salzberg, S. L.; Delcher, A. ; Utterback, T. ; Weidman, J. ; Khouri, H. ; Gill, J. ;

Mikula, A. ; Bishai, W. ; Jacobs Jr, W. R.; Venter, J. C. ; and Fraser, C. M. (2002). Whole-

genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol

184(19): 5479-5490.

Ford, C.; Yusim, K.; Ioerger, T. ; Feng, S. ; Chase, M. ; Greene, M. ; Korber, B. and Fortune, S.

(2012). Mycobacterium tuberculosis – Heterogeneity revealed through whole genome sequencing.

Tuberculosis 92(3): 194-201.

Ford CB, L. P.; Chase, M.R.; Shah, R.R.; Iartchouk, O; Galagan, J; Mohaideen, N; Ioerger, T.R.;

Sacchettini, J.C.; Lipsitch, M.; Flynn, J.L.; Fortune, S.M. (2011). Use of whole genome

sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent

infection.pdf. Nature genetics 43: 389-499.

Fumagalli,D. and Sotiriou, C. (2013). Promises and Challenges of the Next Generation

Sequencing in Breast Cancer Drug Development. http://www.icact.fr/icours/icact/

d2r1ps1p1/d2r1ps1p1.html

Gagneux, S. and Small, P. M. (2007). Global phylogeography of Mycobacterium tuberculosis and

implications for tuberculosis product development. Lancet Infect Dis 7(5): 328-337.

Gillespie, S. H. (2002). Evolution of drug resistance in Mycobacterium tuberculosis: clinical and

molecular perspective. Antimicrob Agents Chemother 46(2): 267-274.

Greenleaf, W. J. and Block, S. M. (2006). Single-molecule, motion-based DNA sequencing using

RNA polymerase. Science 313(5788): 801.

Illumina. (2011). Quality Scores for Next Generation Sequencing. Technical note:

Sequencing. http://res.illumina.com/documents/products/technotes/technote_q-scores.pdf

Ioerger, T. R.; Feng, Y. ; Ganesula, K. ; Chen, X.; Dobos, K. M.; Fortune, S. ; Jacobs, W. R. ;

Mizrahi, V.; Parish, T.; Rubin, E.; Sassetti C. ; and Sacchettini, J. C. (2010). Variation among

Genome Sequences of H37Rv Strains of Mycobacterium tuberculosis from Multiple Laboratories.

Journal of Bacteriology 192(14): 3645-3653.

Jarlier, V. and Nikaido, H. (1994). Mycobacterial cell wall: structure and role in natural resistance to

antibiotics. FEMS Microbiol Lett 123(1-2): 11-18.

Kenneth, T. Tuberculosis, Todar‟s Online Textbook of Bacteriology.http://textbook

ofbacteriology.net/tuberculosis.html

http://res.illumina.com/documents/products/technotes/technote_q-scores.pdf

Kim, D., Kim, W. Y. ; Lee, S. Y. ; Lee, S. Y.; Yun, H.; Shin, S. Y.; Lee, J. ; Hong, Y. ; Won, Y. ;

Kim, S. J.; Lee, Y. S. and Ahn, S. M. (2013). Revising a personal genome by comparing and

combining data from two different sequencing platforms. PLoS One 8(4): e60585.

Kirschner, D. E.; Young, D. and Flynn, J. L. (2010). Tuberculosis: global approaches to a global

disease. Curr Opin Biotechnol 21(4): 524-531.

Kitts, A. and Sherry, S. (2011). The Single Nucleotide Polymorphism Database (dbSNP) of

Nucleotide Sequence Variation. The NCBI Handbook. http://www.ncbi.nlm.nih.gov/

books/NBK21088/

Kochi, A.; Vareldzis, B. and Styblo, K. (1993). Multidrug-resistant tuberculosis and its control. Res

Microbiol 144(2): 104-110.

Korlach J. Pacific Biosciences:Overview. http://www.pacificbiosciences.com

Kumar, P., Henikoff, S. and Ng, P. C. (2009). Predicting the effects of coding non-synonymous

variants on protein function using the SIFT algorithm. Nat Protoc 4(7): 1073-1081.

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics 26(5): 589-595.

Li, H.; Ruan, J. and Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants

using mapping quality scores. Genome Research 18(11): 1851-1858.

Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:

387-402.

Margulies, M.; Egholm, M. ; Altman, W. E.; Attiya, S. ; Bader, J. S. ; Bemben, L. A. ; Berka, J. ;

Braverman, M. S.; Chen, Y. J. ; Chen, Z. ; Dewell, S. B. ; Du, L. ; Fierro, J. M. ; Gomes, X. V. ;

Godwin, B. C. ; He, W.; Helgesen, S. ; Ho, C. H. ; Irzyk, G. P. ; Jando, S. C.; Alenquer, M. L. ;

Jarvie, T. P. ; Jirage, K. B. ; Kim, J. B. ; Knight, J. R. ; Lanza, J. R. ; Leamon, J. H. ; Lefkowitz,

S. M.; Lei, M. ; Li, J. ; Lohman, K. L. ; Lu, H. ; Makhijani, V. B.; McDade, K. E.; McKenna, M.

P.; Myers, E. W.; Nickerson, E.; Nobile, J. R.; Plant, R.; Puc, B. P.; Ronan, M. T.; Roth, G. T.;

Sarkis, G. J.; Simons, J. F. ; Simpson, J. W.; Srinivasan, M.; Tartaro, K. R.; Tomasz, A.; Vogt, K.

A.; Volkmer, G. A.; Wang, S. H.; Wang, Y.; Weiner, M. P.; Yu, P.; Begley, R. F. and Rothberg J.

M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature

437(7057): 376-380.

McEvoy, C. R.; Cloete, R.; Muller, B.; Schurch, A. C.; Helden, P. D. van; Gagneux, S.; Warren, R.

M. and Gey van Pittius, N. C. (2012). Comparative analysis of Mycobacterium tuberculosis pe

and ppe genes reveals high sequence variation and an apparent absence of selective constraints.

PLoS One 7(4): e30593.

Metzker, M. L. (2010). Sequencing technologies - the next generation. Nat Rev Genet 11(1): 31-46.

Mitra, R. D.; Butty, V. L.; Shendure, J.; Williams, B. R.; Housman, D. E. and Church, G. M. (2003).

Digital genotyping and haplotyping with polymerase colonies. Proc Natl Acad Sci U S A 100(10):

5926-5931.

http://www.pacificbiosciences.com/

Morris, R. P.; Nguyen, L.; Gatfield, J.; Visconti, K.; Nguyen, K.; Schnappinger, D.; Ehrt, S.; Liu, Y.;

Heifets, L.; Pieters, J.; Schoolnik, G. and Thompson, C. J. (2005). Ancestral antibiotic resistance

in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102(34): 12200-12205.

Mostowy, S.; Cousins, D.; Brinkman, J.; Aranaz, A. and Behr, M. A. (2002). Genomic deletions

suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186(1): 74-80.

Musser, J. M. (1995). Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin

Microbiol Rev 8(4): 496-514.

Ng, P. C. and Henikoff, S. (2001). Predicting Deleterious Amino Acid Substitutions. Genome

Research 11(5): 863-874.

Niemann, S.; Köser, C. U.; Gagneux, S.; Plinke, C.; Homolka, S.; Bignell, H.; Carter, R. J.;

Cheetham, R. K.; Cox, A.; Gormley, N. A.; Kokko-Gonzales, P.; Murray, L. J.; Rigatti, R.; Smith,

V. P.; Arends, F. P. M.; Cox, H. S.; Smith, G. and Archer, J. A. C. (2009). Genomic Diversity

among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium tuberculosis with

Identical DNA Fingerprints. PLoS ONE 4(10): e7407.

Ozsolak, F.; Kapranov, P.; Foissac, S.; Kim, S. W.; Fishilevich, E.; Monaghan, A. P.; John, B. and

Milos, P. M. (2010). Comprehensive polyadenylation site maps in yeast and human reveal

pervasive alternative polyadenylation. Cell 143(6): 1018-1029.

Pareek, C. S.; Smoczynski R. and Tretyn, A. (2011). Sequencing technologies and genome

sequencing. J Appl Genet 52(4): 413-435.

Pellin, D., Miotto, P.; Ambrosi, A.; Cirillo, D. M. and Di Serio, C. (2012). A genome-wide

identification analysis of small regulatory RNAs in Mycobacterium tuberculosis by RNA-Seq and

conservation analysis. PLoS One 7(3): e32723.

Porreca, G. J.; Zhang, K.; Li, J. B.; Xie, B.; Austin, D.; Vassallo, S. L.; LeProust, E. M.; Peck, B. J.;

Emig, C. J.; Dahl, F.; Gao, Y.; Church, G. M. and Shendure, J. (2007). Multiplex amplification of

large sets of human exons. Nat Methods 4(11): 931-936.

Qi, W.; Käser, M.; Röltgen, K.; Yeboah-Manu, D. and Pluschke, G. (2009). Genomic Diversity and

Evolution of Mycobacterium ulcerans Revealed by Next-Generation Sequencing. PLoS Pathog

5(9): e1000580.

Ramaswamy, S. and Musser, J. M. (1998). Molecular genetic basis of antimicrobial agent resistance

in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79(1): 3-29.

Ramaswamy, S. V.; Reich, R.; Dou, S. J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T. and

Graviss, E. A. (2003). Single nucleotide polymorphisms in genes associated with isoniazid

resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(4): 1241-1250.

Reddy, T. B., Riley, R.; Wymore, F.; Montgomery, P.; DeCaprio, D.; Engels, R.; Gellesch, M.;

Hubble, J.; Jen, D.; Jin, H.; Koehrsen, M.; Larson, L.; Mao, M.; Nitzberg, M.; Sisk, P.; Stolte, C.;

Weiner, B.; White, J.; Zachariah, Z. K.; Sherlock, G.; Galagan, J. E.; Ball, C. A. and Schoolnik,

G. K. (2009). TB database: an integrated platform for tuberculosis research. Nucleic Acids Res

37(Database issue): D499-508.

Riska, P. F.; Jacobs Jr., W. R. and Alland, D. (2000). Molecular determinants of drug resistance in

tuberculosis. Int J Tuberc Lung Dis 4(2 Suppl 1): S4-10.

Rothberg, J. M.; Hinz, W.; Rearick, T. M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J. H.;

Johnson, K.; Milgrew, M. J.; Edwards, M.; Hoon, J.; Simons, J. F.; Marran, D.; Myers, J. W.;

Davidson, J. F.; Branting, A.; Nobile, J. R.; Puc, B. P.; Light, D.; Clark, T. A.; Huber, M.;

Branciforte, J. T.; Stoner, I. B.; Cawley, S. E.; Lyons, M.; Fu, Y.; Homer, N.; Sedova, M.; Miao,

X.; Reed, B.; Sabina, J.; Feierstein, E.; Schorn, M.; Alanjary, M.; Dimalanta, E.; Dressman, D.;

Kasinskas, R.; Sokolsky, T.; Fidanza, J. A.; Namsaraev, E.; McKernan, K. J.; Williams, A.; Roth,

G. T. and Bustillo, J. (2011). An integrated semiconductor device enabling non-optical genome

sequencing. Nature 475(7356): 348-352.

Rusk, N. (2009). Focus on next-generation sequencing data analysis. Forward. Nat Methods 6(11

Suppl): S1.

Sandgren, A.; Strong, M.; Muthukrishnan, P.; Weiner, B. K.; Church, G. M. and Murray, M. B.

(2009). Tuberculosis drug resistance mutation database. PLoS Med 6(2): e2.

Sandgren, A.; Strong, M.; Muthukrishnan, P.; Weiner, B. K.; Church, G. M. and Murray, M. B.

(2009). Tuberculosis Drug Resistance Mutation Database. PLoS Medicine 6(2): e2.

Sassetti, C. M. and Rubin, E. J. (2010). Relics of selection in the mycobacterial genome. Nat Genet

42(6): 476-478.

Sharma, D. and Surolia, A. (2011). Computational tools to study and understand the intricate biology

of mycobacteria. Tuberculosis (Edinb) 91(3): 273-276.

Shendure, J., Porreca, G. J.; Reppas, N. B.; Lin, X.; McCutcheon, J. P.; Rosenbaum, A. M.; Wang, M.

D.; Zhang, K.; Mitra, R. D. and Church, G. M. (2005). Accurate multiplex polony sequencing of

an evolved bacterial genome. Science 309(5741): 1728-1732.

Silva, M. S., Senna, S. G.; Ribeiro, M. O.; Valim, A. R.; Telles, M. A.; Kritski, A.; Morlock, G. P.;

Cooksey, R. C.; Zaha, A. and Rossetti, M. L. (2003). Mutations in katG, inhA, and ahpC genes of

Brazilian isoniazid-resistant isolates of Mycobacterium tuberculosis. J Clin Microbiol 41(9):

4471-4474.

Sourceforge. http://maq.sourceforge.net/index.shtml

Stein, L. D. (2010). The case for cloud computing in genome informatics. Genome Biol 11(5): 207.

Stucki, D. and Gagneux, S. (2013). Single nucleotide polymorphisms in Mycobacterium tuberculosis

and the need for a curated database. Tuberculosis (Edinb) 93(1): 30-39.

Stoppler, M.C. (2011). Tuberculosis Symptoms, Causes, Treatment –Is there a vaccine

against tuberculosis? http://www.medicinenet.com/tuberculosis/page 5.htm#tocg

Takiff, H. E.; Salazar, L.; Guerrero, C.; Philipp, W.; Huang, W. M.; Kreiswirth, B.; Cole, S. T.;

Jacobs Jr., W. R.; and Telenti, A. (1994). Cloning and nucleotide sequence of Mycobacterium

tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob

Agents Chemother 38(4): 773-780.

Telenti, A. (1997). Genetics of drug resistance in tuberculosis. Clin Chest Med 18(1): 55-64.

http://maq.sourceforge.net/index.shtml
http://www.medicinenet.com/tuberculosis/page%205.htm#tocg

Telenti, A.; Imboden, P.; Marchesi, F.; Schmidheini, T. and Bodmer, T. (1993). Direct, automated

detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and

single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37(10): 2054-

2058.

The International SNP Map Working Group. (2001). A map of human genome sequence

variation containing 1.42 million single nucleotide polymorphisms. Nature. 409:928-933.

Torres, T. T.; Metta, M.; Ottenwalder, B. and Schlotterer, C. (2008). Gene expression profiling by

massively parallel sequencing. Genome Res 18(1): 172-177.

Wang, K.; Li, M. and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants

from high-throughput sequencing data. Nucleic Acids Research 38(16): e164-e164.

Wetterstrand, K.A. (2013). DNA sequencing costs: data from the NHGRI large-scale genome

sequencing program. National Human Genome Research Institute. http://www.genome.gov/

sequencingcosts/

Whiteford, N.; Haslam, N.; Weber, G.; Prugel-Bennett, A.; Essex, J. W.; Roach, P. L.; Bradley, M.

and Neylon, C. (2005). An analysis of the feasibility of short read sequencing. Nucleic Acids Res

33(19): e171.

WHO.(2011). Global tuberculosis control. WHO Report. http://whqlibdoc.who.int/

publications/2011/9789241564380_eng.pdf

9. APPENDIX
APPENDIX-I

Perl script to map Gene related information onto the Variants:

#!usr/bin/perl

open(info1,"<map_exonic.txt") or die "cant open";

open(info2,"<gene.txt") or die "cant open";

open(info3,">map_exonic_gene.txt");

@a=<info1>;

@b=<info2>;

foreach $line1(@a) ###Read the Input file - map_exonic.txt

{

chomp $line1;

@l1=split(/\t/,$line1);

$gene='';

$gene_name='';

$RvID='';

$start='';

$stop='';

$orientation='';

$k=0;

print"$l1[3]\n";

foreach $line2(@b) ###Read the file containing gene information

{

chomp $line2;

@l2=split(/\t/,$line2);

chomp $l1[3];chomp $l2[3]; chomp $l2[4];

if($l1[3]>$l2[4] && $l1[3]<$l2[5]) ###Check whether the variant pos.

{ # lies between the start and stop positions of the

gene

print "$l1[3]\t$l2[3]\t$l2[4]\n";

$gene_name=$l1[7]; ###In case the condition turns true gene_name, rvid, start, stop and

$RvID=$l2[1]; #orientation are fetched from the gene file and stored in the

variables

$start,$l2[4]; #or else the variables remain empty

$stop,$l2[5];

$orientation,$l2[3];

$k++;

}

}

if(!$gene_name[1])

{print info3 "$line1\t\t\t\t\t\n";}

else

{

print info3 "$line1\t$gene_name\t$RvID\t$start\t$stop\t$orientation\n"; ###The values are

written

print "$line1\t$gene_name\t$RvID\t$start\t$stop\t$orientation\n"; # into the output file along

with the prior information

}

}

APPENDIX-II

Perl script to map information related to regulatory regions onto the variants:

#!usr/bin/perl

open(info1,"<map_all_var_gene.txt");

open(info2,"<peaks.txt");

open(info3,">map_var_gene_peaks.txt");

@a=<info1>;

@b=<info2>;

foreach $line1(@a) ###Read the input file

{

chop $line1;

@l1=split(/\t/,$line1);

@reg=''; @tar=''; @start=''; @stop=''; @type='';

$k=0;

foreach $line2(@b) ###Read the file containing information

regarding peaks

{

chomp $line2;

@l2=split(/\t/,$line2);

if($l1[3]>$l2[5] && $l1[3]<$l2[6]) ###Checks whether the variant location falls within the

peak loci

{ ###In case the condition turns true the regulator, target names

and its

push(@reg,$l2[0]); #start, stop positions and orientation are pushed to respective arrays

push(@tar,$l2[1]); #or else the array remains empty

push(@start,$l2[5]);

push(@stop,$l2[6]);

push(@type,$l2[9]);

$k++;

}

}

$regulator=join(';',@reg);

$target=join(';',@tar);

$start_pos=join(';',@start);

$stop_pos=join(';',@stop);

$type_pos=join(';',@type);

if(!$reg[1])

{

chop $line1;

print info3 "$line1\t\t\t\t\t\n";}

else{

chop $line1;

print info3 "$line1\t$regulator\t$target\t$start_pos\t$stop_pos\t$type_pos\n";

print "$line1\t$regulator\t$target\t$start_pos\t$stop_pos\t$type_pos\n";

}

}

APPENDIX-III

Perl script to map ncRNA related information onto the Variants:

#!usr/bin/perl

open(info1,"<map_var_gene_peaks.txt");

open(info2,"<nc_rna.txt");

open(info3,">map_var_gene_peaks_ncrna.txt");

@a=<info1>;

@b=<info2>;

foreach $line1(@a) ###Read the Input file

{

chomp $line1;

@l1=split(/\t/,$line1);

@start=''; @stop=''; @name=''; @strand=''; @product='';

$k=0;

print"$l1[2]\n";

foreach $line2(@b) ###Read the file containing info regarding ncRNA

{

chomp $line2;

@l2=split(/\t/,$line2);

chomp $l1[2];chomp $l2[2]; chomp $l2[3];

if($l1[2]>$l2[2] && $l1[2]<$l2[3]) ###Check whether the variant position fall within

the ncRNA

{ #gonomic loci or not

print "$l1[2]\t$l2[2]\t$l2[3]\n"; #In case the condition turns true, the required info is fetched

push(@start,$l2[2]); #and pushed into the corresponding arrays

push(@stop,$l2[3]); #or else the arrays remain empty

push(@name,$l2[4]);

push(@strand,$l2[6]);

push(@product,$l2[7]);

$k++;

}

}

if(!$start[1])

{print info3 "$line1\t\t\t\t\t\n";}

else

{

print info3 "$line1\t$start[1]\t$stop[1]\t$name[1]\t$strand[1]\t$product[1]\n";

print "$line1\t$start[1]\t$stop[1]\t$name[1]\t$strand[1]\t$product[1]\n";

}

}

APPENDIX-IV

CGI script to extract the input query fed by the user, retrieve the corresponding

information from the compiled datasheet and represent it separately under different

tabs:

#!/usr/bin/perl

Importing libraries##########

use strict;

use CGI qw(:standard);

use DBI;

use List::MoreUtils qw/ uniq /;

######Fetching query fed by the user#############

my $cgi= new CGI;

my $query=$cgi->param('query');

my $table_nm = $cgi->param('hidden');

my $pos=''; my $rvid; my $name; my $range;

print "Content-type:text/html\r\n\r\n";

########Coding style-sheet##########

print '<html><head>

<style>

#tb {color:#003300;}

#var {color:#FFFFFF;}

#Tables li:link { text-decoration:none; background-color:#003366;color:#FFFFFF;border-radius:4px}

#Tables li:hover { text-decoration:none; background-color:gray;color:#FFFFFF;border-radius:4px}

#Tables li:visited { text-decoration:none; color:#FFFFFF;}

table a:link {color:#4682B4; text-decoration:none; font-size: 13px; font-weight:bold;}

table a:visited {color:#4682B4; text-decoration:none; font-size: 13px; font-weight:bold;}

table a:hover {color:#191970; text-decoration:none; font-size: 13px;font-weight:bold;}

a.'.$table_nm.':link, a.'.$table_nm.':visited{color:##FFCC00; text-decoration:none; font-size:125%;

background-color:#FF9900; border-style:solid;border-width:0px 0px 3.5px 0px ;border-

color:#FFFFFF; border-radius: 4px; font-weight:bold;}

a.'.$table_nm.':hover,{color:##FFCC00; text-decoration:none; font-size:125%; background-

color:yellow; border-style:solid;border-width:0px 0px 3.5px 0px ;border-color:#FFFFFF; border-

radius: 4px; font-weight:bold;}

#Links a:link {color:#003366; text-decoration:none;}

#Links a:hover{color:#FFCC00; text-decoration:none;}

table tr:hover {color:#000000; background-color:#E6E6FA;}

body{background-color:#FFFFFF; margin-left: 10px; margin-right: 10px;}

#Header{color:#191970; padding: 0px 0px 0px 30px; background-color: #003366;}

hr{color:#FFFFFF;}

#headertab td, th { border:1px solid #003366; }

#header table {border-collapse: collapse; border:1px solid #003366;}

#headertab th {background-color: #003366;}

#headertab td {background-color: #003366;}

#Links{background-color:#FFFFFF}

#Search{background-color:#FFFFFF;font-size:15pt;}

#Search input{border-style:solid;border-width:1.5px;border-color:#003366;border-radius: 4px;}

#Tables{font-size:15pt;border-radius: 4px;max-width:95%;}

#Tables ul {list-style: none;margin:0;padding:0;margin-bottom:0;}

#Tables li {display: inline;margin: 0 0.5em 0 0;}

#Result{color:#4682B4;background-color:#FFFFFF;font-weight:bold;max-width:75%;margin-

left:15%;border-style:solid;border-width:1.5px 1.5px 1.5px 1.5px;border-color:gray;border-radius:

4px;}

table {color:#44677D;border-collapse:collapse; min-width:90%;font-size:14px;}

td {font-size:14px;border-collapse:collapse;text-align:center;padding:6px 6px 6px 6px;}

th{background-color:#003366;color:#FFFFFF;border-color:#FFFFFF;font-size:16px;}

table tr:nth-child(odd) td{background-color:#FFFFFF;}

table tr:nth-child(even) td{background-color:#E6E6FA;}

#footer{color:#FFFFFF;font-size:10pt; padding: 10px 10px; background-color:#003366;border-radius:

4px;}

</style>

<title>tbvar</title>

</head>

######## Designing Result page of the interface##########

<body style="font-family: Arial;">

<div id=Header style="vertical-align:middle;height:100;">

<img

src="/igiblogo.png" align="right" width="300" height="100"></div>

<div id=Links>

</div>

<div id=Search>

<center><form id="submit" action="tbvar.cgi" method="Get" align="center"><input type="text"

id="query" name="query" size=35% placeholder="Search: Variant Location, Range, Gene or Rvid" ><input

name="hidden" type="hidden" value="variation"> <input type="submit"

value="Eureka"></center></form></div>';

#######Connecting to the database##############

my $dbh=DBI->connect('dbi:mysql:mtb_anno','root','123456') or die "Connection Error:$DBI::errstr\n";

#######Checking the type of query fed############

if($query=~/\d*\-\d*/)

{

$range=$query;

}

if($query=~/^[0-9]*$/)

{

$pos=$query;

}

if($query=~/^[Rr]v*/)

{

$rvid=$query;}

if($query=~/[a-z A-Z]+/)

{

$name=$query;}

#####----Tabs---------############

print " <center>

<div id=Tables><ul id='nav'>

<li id='tab1'><a class='variation' href='/cgi-bin/tbvar.cgi?query=$query&hidden=variation' class='links'

id='link1' title='Shows the basic information of the variations including type frequency and mapping to other

resources'>

<li id='tab4'><a class = 'Gene' href='/cgi-bin/tbvar.cgi?query=$query&hidden=Gene' id='link4' class='links'

title='Shows information pertaining to the gene housing the variations'><img

src=/gene_annotation.gif>

<li id='tab3'><a class = 'non_syn_mutant_gene' href='/cgi-

bin/tbvar.cgi?query=$query&hidden=non_syn_mutant_gene' class='links' id='link3' title='Shows information on

functional consequence of a variation on the protein'>

<li id='tab5'><a class = 'Regulatory_Variations' href='/cgi-

bin/tbvar.cgi?query=$query&hidden=Regulatory_Variations' class='links' id='link5' title='Shows information on

mapping of the variations on the Transcription factor regulatory elements'><img

src=/regulatory_variations.gif>

<li id='tab7'><a class = 'variant_strain_info' href='/cgi-bin/tbvar.cgi?query=$query&hidden=variant_strain_info'

class='links' id='link7' title='Shows information on the sequencing of the sample, experiment and the study from

which the variation was derived'>";

my $sql1="Select * from mtb_anno.tbvar_db";

my $sql2="Select * from mtb_anno.drug";

if($rvid)

{

 my $sql1_ap=$sql1." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 my $sth1=$dbh->prepare($sql1_ap);

 $sth1->execute or die "SQL error:$DBI::errstr\n";

 my @all_1= $sth1->fetchrow_array;

 my $rvid_drug= $all_1[8];

 my $sql2_ap=$sql2." where UPPER(var_resis_gene)=UPPER(\"$rvid_drug\")";

 my $sth2=$dbh->prepare($sql2_ap);

 $sth2->execute or die "SQL error:$DBI::errstr\n";

 my @all_2= $sth2->fetchrow_array;

if($all_1[24])

{print"<li id='tab8'><a class = 'nc_rna' href='/cgi-bin/tbvar.cgi?query=$query&hidden=nc_rna' class='links'

id='link8' title='Shows information on variations mapping to ncRNA loci of the genome'><img

src=/ncRNA.gif>"}

if($all_2[1])

{print"<li id='tab6'><a class = 'Drug_Resistance' href='/cgi-

bin/tbvar.cgi?query=$query&hidden=Drug_Resistance' class='links' id='link6' title='Shows information on

variations found to confer drug resistance property to Mtb'>"}

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql1_ap=$sql1." where var_int_id between \"$start\" and \"$stop\"";

 my $sql2_ap=$sql2." where var_int_id between \"$start\" and \"$stop\"";

 my $sth1=$dbh->prepare($sql1_ap);

 my $sth2=$dbh->prepare($sql2_ap);

 $sth1->execute or die "SQL error:$DBI::errstr\n";

 $sth2->execute or die "SQL error:$DBI::errstr\n";

 my @all_1= $sth1->fetchrow_array;

 my @all_2= $sth2->fetchrow_array;

if($all_1[24])

{print"<li id='tab8'><a class = 'nc_rna' href='/cgi-bin/tbvar.cgi?query=$query&hidden=nc_rna' class='links'

id='link8' title='Shows information on variations mapping to ncRNA loci of the genome'><img

src=/ncRNA.gif>"}

if($all_2[1])

{print"<li id='tab6'><a class = 'Drug_Resistance' href='/cgi-

bin/tbvar.cgi?query=$query&hidden=Drug_Resistance' class='links' id='link6' title='Shows information on

variations found to confer drug resistance property to Mtb'>"}

}

if($pos)

{

 my $sql1_ap=$sql1." where var_int_id=\"$pos\"";

 my $sql2_ap=$sql2." where var_int_id=\"$pos\"";

 my $sth1=$dbh->prepare($sql1_ap);

 my $sth2=$dbh->prepare($sql2_ap);

 $sth1->execute or die "SQL error:$DBI::errstr\n";

 $sth2->execute or die "SQL error:$DBI::errstr\n";

 my @all_1= $sth1->fetchrow_array;

 my @all_2= $sth2->fetchrow_array;

if($all_1[24])

{print"<li id='tab8'><a class = 'nc_rna' href='/cgi-bin/tbvar.cgi?query=$query&hidden=nc_rna' class='links'

id='link8' title='Shows information on variations mapping to ncRNA loci of the genome'><img

src=/ncRNA.gif>"}

if($all_2[1])

{print"<li id='tab6'><a class = 'Drug_Resistance' href='/cgi-

bin/tbvar.cgi?query=$query&hidden=Drug_Resistance' class='links' id='link6' title='Shows information on

variations found to confer drug resistance property to Mtb'>"}

}

if($name)

{

 my $sql1_ap=$sql1." where UPPER(gene_name)=UPPER(\"$name\")";

 my $sql2_ap=$sql2." where UPPER(var_resis_gene)=UPPER(\"$name\")";

 my $sth1=$dbh->prepare($sql1_ap);

 my $sth2=$dbh->prepare($sql2_ap);

 $sth1->execute or die "SQL error:$DBI::errstr\n";

 $sth2->execute or die "SQL error:$DBI::errstr\n";

 my @all_1= $sth1->fetchrow_array;

 my @all_2= $sth2->fetchrow_array;

if($all_1[24])

{print"<li id='tab8'><a class = 'nc_rna' href='/cgi-bin/tbvar.cgi?query=$query&hidden=nc_rna' class='links'

id='link8' title='Shows information on variations mapping to ncRNA loci of the genome'><img

src=/ncRNA.gif>"}

if($all_2[1])

{print"<li id='tab6'><a class = 'Drug_Resistance' href='/cgi-

bin/tbvar.cgi?query=$query&hidden=Drug_Resistance' class='links' id='link6' title='Shows information on

variations found to confer drug resistance property to Mtb'>"}

}

print"<li id='tab9'><a class = 'Browser' href='/cgi-bin/tbvar.cgi?query=$query&hidden=Browser' class='links'

id='link8' title='Browse the region surrounding the variation and genes harbouring the variations'><img

src=/genome_browser.gif>

</div></center>";

if($query)

{print"<div id=Result><center>";}

#####-------For Variation Table--------#########

if($table_nm eq "variation")

{

print"<center>
<table><tr><th>Gene Id </th><th>Position </th><th>Ref

Allele </th><th>Alt

Allele </th><th>Location </th><th>Type </th><th>Variant

Count </th><th>Frequency Percentage </th><th>External

Link </th></tr><tr>";

my $sql1="Select gene_int_id,var_int_id,var_ref,var_alt,var_loci,var_type,var_freq,var_snp_id from

mtb_anno.tbvar_db";

if($rvid)

{

 my $sql1_ap=$sql1." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 &var($sql1_ap);

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql1_ap=$sql1." where var_int_id between \"$start\" and \"$stop\"";

 &var($sql1_ap);

}

if($pos)

{

 my $sql1_ap=$sql1." where var_int_id=\"$pos\"";

 &var($sql1_ap);

}

if($name)

{

 my $sql1_ap=$sql1." where UPPER(gene_name)=UPPER(\"$name\")";

 &var($sql1_ap);

}

}

########-------For Gene Table-----------##########

if($table_nm eq "Gene")

{

 my $sql4="Select gene_int_id, gene_name, gene_anno, gene_start, gene_stop, gene_orientation from

mtb_anno.tbvar_db";

 print"<center>
<table><th>Gene Id </th><th>Gene Name</th><th>Gene

Annotation</th><th>Start</th><th>Stop</th><th>Orientation</th></tr><tr>";

 if($rvid eq $name)

{

 my $sql4_ap=$sql4." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 my $sth4=$dbh->prepare($sql4_ap);

 $sth4->execute or die "SQL error:$DBI::errstr\n";

 my @all=$sth4->fetchrow_array;

 if($all[0])

 {print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[0]</td><td>

$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td></tr><tr></center>";}

}

else

{

if($rvid)

{

 my $sql4_ap=$sql4." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 my $sth4=$dbh->prepare($sql4_ap);

 $sth4->execute or die "SQL error:$DBI::errstr\n";

 my @all=$sth4->fetchrow_array;

 if($all[0])

 {print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[0]</td><td>

$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td></tr><tr></center>";}

}

if($name)

{

 my $sql4_ap=$sql4." where UPPER(gene_name)=UPPER(\"$name\")";

 my $sth4=$dbh->prepare($sql4_ap);

 $sth4->execute or die "SQL error:$DBI::errstr\n";

 my @all=$sth4->fetchrow_array;

 if($all[0]) {print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[0]</td><td>

$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td></tr><tr></center>";}

}

}

if($pos)

{

 my $sql4_ap=$sql4." where var_int_id=\"$pos\"";

 my $sth4=$dbh->prepare($sql4_ap);

 $sth4->execute or die "SQL error:$DBI::errstr\n";

 my @all=$sth4->fetchrow_array;

 if($all[0]) {print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[0]</td><td>

$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td></tr><tr></center>";}

 else{print"<td></td><td></td><td>Intergenic</td><td></td><td></td><td></td>";}

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql4_ap=$sql4." where var_int_id between \"$start\" and \"$stop\"";

 &gene($sql4_ap);

}

}

########-------For Non-Syn Mutant Gene Table-----------########

if($table_nm eq "non_syn_mutant_gene")

{

print"
<table ><th>Position </th><th>Amino Acid Mutation</th><th>Functional

Effect</th><th>SIFT Score</th></tr><tr>";

my $sql3="Select * from mtb_anno.tbvar_db";

if($rvid)

{

 my $sql3_ap=$sql3." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 &nsmg($sql3_ap);

}

if($pos)

{

 my $sql3_ap=$sql3." where var_int_id=\"$pos\"";

 &nsmg($sql3_ap);

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql3_ap=$sql3." where var_int_id between \"$start\" and \"$stop\"";

 &nsmg($sql3_ap);

}

if($name)

{

 my $sql3_ap=$sql3." where UPPER(gene_name)=UPPER(\"$name\")";

 &nsmg($sql3_ap);

}

}

#########--------------For Drug Resistance Table----------###########

if($table_nm eq "Drug_Resistance")

{

 print"
<table><tr><th>Position </th><th>Resistant Drug</th><th>Resistant

Gene</th><th>Reference</th></tr><tr>";

my $sql5="Select * from mtb_anno.drug";

if($rvid)

{

my $sql="Select * from mtb_anno.tbvar_db where gene_int_id=\"$rvid\"";

my $sth=$dbh->prepare($sql);

 $sth->execute or die "SQL error:$DBI::errstr\n";

 my @all=$sth->fetchrow_array;

 my $sql5_ap=$sql5." where UPPER(var_resis_gene)=UPPER(\"$all[8]\");";

 &drug($sql5_ap);

}

if($pos)

{

 my $sql5_ap=$sql5." where var_int_id=\"$pos\"";

 &drug($sql5_ap);

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql5_ap=$sql5." where var_int_id between \"$start\" and \"$stop\"";

 &drug($sql5_ap);

}

if($name)

{

 my $sql5_ap=$sql5." where UPPER(var_resis_gene)=UPPER(\"$name\")";

 &drug($sql5_ap);

}

}

###########------------For Regulatory Variations Table----------#############

if($table_nm eq "Regulatory_Variations")

{

print"
<table><tr><th>Position </th><th>Regulator</th><th>Target</th><th>Start</th><th>

Stop</th></tr><tr>";

my $sql6="Select * from mtb_anno.tbvar_db";

if($rvid)

{

 my $sql6_ap=$sql6." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 ®($sql6_ap);

}

if($pos)

{

 my $sql6_ap=$sql6." where var_int_id=\"$pos\"";

 ®($sql6_ap);

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql6_ap=$sql6." where var_int_id between \"$start\" and \"$stop\"";

 ®($sql6_ap);

}

if($name)

{

 my $sql6_ap=$sql6." where UPPER(gene_name)=UPPER(\"$name\")";

 ®($sql6_ap);

}

}

############------For Variant Strain Info Table------------############

if($table_nm eq "variant_strain_info")

{

 print"
<table><tr><th>Position </th><th>Sample</th><th>Experiment</th><th>

Reference</th></tr><tr>";

my $sql7="Select * from mtb_anno.tbvar_db";

if($rvid)

{

 my $sql7_ap=$sql7." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 &strain($sql7_ap);

}

if($pos)

{

 my $sql7_ap=$sql7." where var_int_id=\"$pos\"";

 &strain($sql7_ap);

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql7_ap=$sql7." where var_int_id between \"$start\" and \"$stop\"";

 &strain($sql7_ap);

}

if($name)

{

 my $sql7_ap=$sql7." where UPPER(gene_name)=UPPER(\"$name\")";

 &strain($sql7_ap);

}

}

############------For ncRNA------------############

if($table_nm eq "nc_rna")

{

print"
<table><tr><th>Position </th><th>ncRNA Start</th><th>ncRNA

Stop</th><th>ncRNA Name</th><th>ncRNA strand</th><th>ncRNA Product</th></tr><tr>";

my $sql8="Select * from mtb_anno.tbvar_db";

if($rvid)

{

 my $sql8_ap=$sql8." where UPPER(gene_int_id)=UPPER(\"$rvid\")";

 &ncrna($sql8_ap);

}

if($pos)

{

 my $sql8_ap=$sql8." where var_int_id=\"$pos\"";

 &ncrna($sql8_ap);

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

 my $sql8_ap=$sql8." where var_int_id between \"$start\" and \"$stop\"";

 &ncrna($sql8_ap);

}

if($name)

{

 my $sql8_ap=$sql8." where UPPER(gene_name)=UPPER(\"$name\")";

 &ncrna($sql8_ap);

}

}

############------For Browser------------############

if($table_nm eq "Browser")

{

if($name || $rvid)

{

if($name eq $rvid)

{

my $sql="Select * from mtb_anno.tbvar_db where UPPER(gene_name)=UPPER(\"$name\")";

my $sth=$dbh->prepare($sql);

$sth->execute or die "SQL error:$DBI::errstr\n";

my @all;

@all=$sth->fetchrow_array;

my $gene_start=$all[9];

my $gene_stop=$all[10];

print"
<iframe style='border: 1px solid black; margin-left:25px; margin-right:50px;'

src='/jbrowse/index.html?data=mtb/json&loc=chrI%3A$all[9]..$all[10]&tracks=DNA%2CGenes%2CVariation

s' width='900' height='400' ></iframe>";

}

else

{

if($name)

{

my $sql="Select * from mtb_anno.tbvar_db where UPPER(gene_name)=UPPER(\"$name\")";

my $sth=$dbh->prepare($sql);

$sth->execute or die "SQL error:$DBI::errstr\n";

my @all;

@all=$sth->fetchrow_array;

my $gene_start=$all[9];

my $gene_stop=$all[10];

print"
<iframe style='border: 1px solid black; margin-left:25px; margin-right:50px;'

src='/jbrowse/index.html?data=mtb/json&loc=chrI%3A$all[9]..$all[10]&tracks=DNA%2CGenes%2CVariation

s' width='900' height='400' ></iframe>";

}

if($rvid)

{

my $sql="Select * from mtb_anno.tbvar_db where UPPER(gene_int_id)=UPPER(\"$rvid\")";

my $sth=$dbh->prepare($sql);

$sth->execute or die "SQL error:$DBI::errstr\n";

my @all;

@all=$sth->fetchrow_array;

my $gene_start=$all[9];

my $gene_stop=$all[10];

print "$all[8]\t$all[7]\t$gene_start\t$gene_stop
";

print"
<iframe style='border: 1px solid black; margin-left:25px; margin-right:50px;'

src='/jbrowse/index.html?data=mtb/json&loc=chrI%3A$all[9]..$all[10]&tracks=DNA%2CGenes%2CVariation

s' width='900' height='400' ></iframe>";

}

}

}

if($pos)

{

print"
<iframe style='border: 1px solid black; margin-left:25px; margin-right:50px;'

src='/jbrowse/index.html?data=mtb/json&loc=chrI%3A$pos&tracks=DNA%2CGenes%2CVariations'

width='900' height='400' ></iframe>";

}

if($range)

{

 my @ran=split(/\-/,$range);

 my $start=$ran[0];

 my $stop=$ran[1];

print"
<iframe style='border: 1px solid black; margin-left:25px; margin-right:50px;'

src='/jbrowse/index.html?data=mtb/json&loc=chrI%3A$start..$stop&tracks=DNA%2CGenes%2CVariations'

width='900' height='400' ></iframe>";

}

}

print "</tr></table>
</div>
</center>";

if(!$query)

{print"

";}

print"</center></body></html>";

###########-----------Subroutines to show result------------###########

sub var

{

my($sql)=@_;

 my $sth1=$dbh->prepare($sql);

 $sth1->execute or die "SQL error:$DBI::errstr\n";

 my @all;

 while (@all = $sth1->fetchrow_array)

 {

 my $sql_drug="Select * from mtb_anno.drug where var_int_id=$all[1]";

 my $sth_drug=$dbh->prepare($sql_drug);

 $sth_drug->execute or die "SQL error:$DBI::errstr\n";

 my @all_drug = $sth_drug->fetchrow_array;

#print"$all[1]
";

my $freq_pct=sprintf "%.2f",(($all[6]/469)*100);

chop $all[7];

if($all[7]=~/^rs[0-9]+$/)

{print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[0]&hidden=Gene'

id='link4'>$all[0]</td><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td>d

bSNP</td></tr><tr></center>";next;}

if($all[7]=~/^rs[0-9]+ ;7000[0-9]+/)

{my @links=split(/;/,$all[7]);

print"<center><td>$all[0]</td><td><a

href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td><a

href='http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?searchType=adhoc_search&type=rs&rs=$links[0]'

>dbSNP;TBD

B</td></tr><tr></center>";next;}

if($all[7]=~/^7000[0-9]+$/)

{print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[0]&hidden=Gene'

id='link4'>$all[0]</td><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td>TBDB

</td></tr><tr></center>";next;}

if($all[7]=~/^mtci/)

{print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[0]&hidden=Gene'

id='link4'>$all[0]</td><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td><a href='http://ccbb.jnu.ac.in/cgi-

bin/mtcid/search'>MTCID</td></tr><tr></center>";next;}

if($all[7]=~/^rs[0-9]+ ;mtci$/)

{my @links=split(/;/,$all[7]);

print"<center><td>$all[0]</td><td><a

href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td><a

href='http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?searchType=adhoc_search&type=rs&rs=$links[0]'

>dbSNP;MTCID</td></tr><tr></center>";next;}

if($all[7]=~/7000[0-9]+;mtci$/)

{my @links=split(/;/,$all[7]);

print"<center><td>$all[0]</td><td><a

href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td>TBDB

;MTCID</td></tr><tr></center>";next;}

else

{print"<center><td><a href='/cgi-bin/tbvar.cgi?query=$all[0]&hidden=Gene'

id='link4'>$all[0]</td><td><a href='/cgi-bin/tbvar.cgi?query=$all[1]&hidden=variation'

id='link1'>$all[1]</td><td>$all[2]</td><td>$all[3]</td><td>$all[4]</td><td>$all[5]</td><td>$all[6]</td>

<td>$freq_pct</td><td></td></tr><tr></center>";}

}

}

sub gene

{

my($sql)=@_;

 my $sth4=$dbh->prepare($sql);

 $sth4->execute or die "SQL error:$DBI::errstr\n";

 my @all; my @name='';

 while(@all=$sth4->fetchrow_array)

 {

 push(@name,$all[0]);

 }

 my @unique = uniq @name;

 my $l=@unique;

 for(my $i=1;$i<$l;$i++)

 {

 my $sql_un="Select gene_int_id, gene_name, gene_anno, gene_start, gene_stop, gene_orientation

from mtb_anno.tbvar_db where UPPER(gene_name)=UPPER(\"$unique[$i]\")";

 my $sth4_un=$dbh->prepare($sql_un);

 $sth4_un->execute or die "SQL error:$DBI::errstr\n";

 my @all_un=$sth4_un->fetchrow_array;

 print"<center><td>

$all_un[0]</td><td>$all_un[1]</td><td>$all_un[2]</td><td>$all_un[3]</td><td>$all_un[4]</td><td>$all_

un[5]</td></tr><tr></center>";

 }

}

sub nsmg

{

my($sql)=@_;

 my $sth3=$dbh->prepare($sql);

 $sth3->execute or die "SQL error:$DBI::errstr\n";

 my @all;my @mut;

 while(@all=$sth3->fetchrow_array)

 {

 push(@mut,$all[12]);my $l=@mut; $l=$l-1;my $sl=$l-1;

 if($l>0 && $mut[$l] eq $mut[$sl])

 {next;}

 else

 {

 if($all[12])

 {

 if(!$all[13])

 {$all[13]='Not Scored'; $all[14]='Not Scored';

 print"<td>

$all[0]</td><td>$all[12]</td><td>$all[13]</td><td>$all[14]</td></tr><tr>";}

 else

 {print"<td>

$all[0]</td><td>$all[12]</td><td>$all[13]</td><td>$all[14]</td></tr><tr>";}

 }

 else

 {$all[12]='No Mutation';

 if(!$all[13])

 {$all[13]='Not Scored'; $all[14]='Not Scored';

 print"<td>

$all[0]</td><td>$all[12]</td><td>$all[13]</td><td>$all[14]</td></tr><tr>";}

 else

 {print"<td>

$all[0]</td><td>$all[12]</td><td>$all[13]</td><td>$all[14]</td></tr><tr>";}

 }

 }

}

}

sub drug

{

my($sql)=@_;

 my $sth5=$dbh->prepare($sql);

 $sth5->execute or die "SQL error:$DBI::errstr\n";

 my @all;

 while(@all=$sth5->fetchrow_array)

 {

 print"<td>

$all[0]</td><td>$all[1]</td><td>$all[2]</td><td>$all[3]</td></tr><tr>";

 }

}

sub reg

{

my($sql)=@_;

 my $sth6=$dbh->prepare($sql);

 $sth6->execute or die "SQL error:$DBI::errstr\n";

 my @all; my @pos;my $l_pos;

 while(@all=$sth6->fetchrow_array)

 {

 push(@pos,$all[0]);my $l=@pos; $l=$l-1;my $sl=$l-1;

 if($l>0 && $pos[$l]==$pos[$sl])

 {next;}

 else

 {#print"i m here $pos[$l_pos]
$pos[$l_pos]:$pos[$l_pos-1]";

 if(!$all[15])

 {print"<td>

$all[0]</td><td>No Regulatory Effect</td><td></td><td></td><td></td></tr><tr>";}

 else

 {

 my @reg=split(/;/,$all[15]);

 my @tar=split(/;/,$all[16]);

 my @start=split(/;/,$all[17]);

 my @stop=split(/;/,$all[18]);

 my $len=@reg;

 for(my $i=1;$i<$len;$i++)

 {

 if($rvid eq $tar[$i])

 {

 print"<td>

$all[0]</td><td>$reg[$i]</td><td>$tar[$i]</td><td>$start[$i]</td><td>$stop[$i]</td></tr><tr>";

 }

 if($range)

 {print"<td>

@all[0]</td><td>$reg[$i]</td><td>$tar[$i]</td><td>$start[$i]</td><td>$stop[$i]</td></tr><tr>";}

 if($pos)

 {print"<td>

@all[0]</td><td>$reg[$i]</td><td>$tar[$i]</td><td>$start[$i]</td><td>$stop[$i]</td></tr><tr>";}

 if($name)

 {

 if($all[7] eq $tar[$i])

 {print"<td>

@all[0]</td><td>$reg[$i]</td><td>$tar[$i]</td><td>$start[$i]</td><td>$stop[$i]</td></tr><tr>";}

 }

 }

 }

 }next;

}}

sub strain

{

my($sql)=@_;

 my $sth7=$dbh->prepare($sql);

 $sth7->execute or die "SQL error:$DBI::errstr\n";

 my @all;my @pos;

 while(@all=$sth7->fetchrow_array)

 {

 push(@pos,$all[0]);my $l=@pos; $l=$l-1;my $sl=$l-1;

my @sample=split(/;/,$all[19]);

my @exp=split(/;/,$all[20]);

my @ref=split(/;/,$all[21]);

my $len=@sample;

for(my $i=0;$i<$len;$i++)

{print"<td> @all[0]</td><td>$sample[$i]</td><td>$exp[$i]</td><td>$ref[$i]</td></tr><tr>";}

}

}

sub ncrna

{

my($sql)=@_;

my $sth7=$dbh->prepare($sql);

 $sth7->execute or die "SQL error:$DBI::errstr\n";

 my @all;my @pos;

 while(@all=$sth7->fetchrow_array)

 {

 push(@pos,$all[0]);my $l=@pos; $l=$l-1;my $sl=$l-1;

 if($l>0 && $pos[$l]==$pos[$sl])

 {next;}

 else

 {

 if($all[24])

 {print"<td>

$all[0]</td><td>$all[23]</td><td>$all[24]</td><td>$all[25]</td><td>$all[26]</td><td>$all[27]</td></tr>

<tr>";}

 }

}

}

print"</tr></table>
<center></center></div>

<div id=footer style='height:30px;margin-right:5px;width=100; color:#FFFFFF;font-size:10pt; padding: 10px

10px; background-color:#003366;'>Copyright©2013 CSIR</div>";

APPENDIX-V

CGI script to extract the inserted variant file in the annoTB web-page, retrieve the

corresponding information from the compiled datasheet and present in the form of a

report

#!/usr/bin/perl

use strict;

use CGI;

use DBI;

use List::MoreUtils qw/ uniq /;

my $upload_dir = "/usr/lib/cgi-bin/upload";

#########Extractingthe query submitted in the form########

my $cgi = new CGI;

my $query_batch=$cgi->param('query');

my $table_nm = $cgi->param('hidden');

my $t = $cgi->param("batch");

my @text=split(/\n/,$t);

my @input;my $query;my @ref;my @alt;my $in_len;

if(@text)

{

@input='';@ref='';@alt='';

foreach my $textline(@text)

{

my @val=split(/\s+/,$textline);

$val[1]=~s/\s//g;

push(@input,$val[0]);

push(@ref,$val[1]);

push(@alt,$val[2]);

}

$in_len=@input;

$query=join(",",@input);

$query=substr($query,1);

}

######Designing the web page##########

print "Content-type:text/html\r\n\r\n";

print '<html><head>

######Coding the style-sheet###########

<style>

#tb {color:#003300;}

#var {color:#FFFFFF;}

#Result_Table tr:hover {color:#000000; background-color:#E6E6FA;}

#Result_Novel tr:hover {color:#000000; background-color:#E6E6FA;}

body{background-color:#FFFFFF; margin-left: 10px; margin-right: 10px;}

#Header{color:#191970;font-size:30pt; padding: 0px 0px 0px 30px; background-color: #003366;}

hr{color:#FFFFFF;}

p{color:#003366;}

#Links{background-color:#FFFFFF}

#Search{background-color:#FFFFFF;font-size:15pt;}

#Search input{border-style:solid;border-width:1.5px;border-color:#003366;border-radius: 4px;}

#Result{color:#4682B4;background-color:#FFFFFF;font-weight:bold;max-width:55%;margin-

left:18%;border-style:solid;border-width:1.5px 1.5px 1.5px 1.5px;border-color:#003366;border-radius:

4px;padding:0px 30px 0px 85px;}

table {color:#44677D;border-collapse:collapse; min-width:80%;font-size:17px;text-align:center;}

table a:link {color:#4682B4; text-decoration:none; font-size: 12px; font-weight:bold;}

table a:visited {color:#4682B4; text-decoration:none; font-size: 12px; font-weight:bold;}

table a:hover {color:#191970; text-decoration:none; font-size: 12px; font-weight:bold;}

#Result_Table td {font-size:14px;border-collapse:collapse;text-align:center;}

#Result_Table th{background-color:#003366;color:#FFFFFF;border-color:#FFFFFF;text-

align:center;}

#Result_Table table tr:nth-child(odd) td{background-color:#FFFFFF;}

#Result_Table table tr:nth-child(even) td{background-color:#E6E6FA;}

#Result_Table{max-width:80%;margin-left:18%;}

#Result_Novel td {font-size:14px;border-collapse:collapse;text-align:center;}

#Result_Novel th{background-color:#8B0000;color:#FFFFFF;border-color:#FFFFFF;text-

align:center;}

#Result_Novel table tr:nth-child(odd) td{color:#8B0000;background-color:#FFFFFF;}

#Result_Novel table tr:nth-child(even) td{color:#8B0000;background-color:#FFB2B2;}

#Result_Novel {max-width:80%;margin-left:18%;}

#footer{color:#FFFFFF;font-size:10pt; padding: 10px 10px; background-color:#003366;border-radius:

4px;}

</style>

<title>tbvar</title>

</head>

<body style="font-family: Arial;">

<div id=Header style="vertical-align:middle; height:100;" >

<img

src="/igiblogo.png" align="right" width="300" height="100"></div>

<div id=Links>

</div>';

#######Connecting to the database##############

my $dbh=DBI->connect('dbi:mysql:mtb_anno','root','123456') or die "Connection Error:$DBI::errstr\n";

my $sql1="Select * from mtb_anno.tbvar_db";

my $sql2="Select * from mtb_anno.drug";

my @pos=split(/,/,$query); my $uploaded=@pos;

my $sql1="Select * from mtb_anno.tbvar_db where var_int_id=$pos[0]";

my $sql2="Select * from mtb_anno.drug where var_int_id=$pos[0]";

for(my $i=1;$i<$uploaded;$i++)

{

$sql1=$sql1.' or var_int_id='.$pos[$i];

$sql2=$sql2.' or var_int_id='.$pos[$i];

}

$sql1=$sql1.';';

$sql2=$sql2.';';

 my $sth1=$dbh->prepare($sql1);

 my $sth2=$dbh->prepare($sql2);

 $sth1->execute or die "SQL error:$DBI::errstr\n";

 $sth2->execute or die "SQL error:$DBI::errstr\n";

 my @mapped='';my $map=0; my $drug_resis=0; my @drugs='';my $drug_names;my @targets;my

$tar;my @resis_var='';my $dr;my @unique_drugs;my $ud;my $rv;my @var;my $l;my

@unique_targets;my$syn=0;my $non_syn=0;my $ut=0;my @reg;my @dr_pos;my $drp;

 while(my @all_1= $sth1->fetchrow_array)

 {

 push(@mapped,$all_1[0]);

 $map++;

 if($all_1[5] eq 'synonymous SNV')

 {$syn++;}

 if($all_1[5] eq 'nonsynonymous SNV')

 {$non_syn++;}

 if($all_1[16])

 {

 $ut++;

 }

 }

 while(my @all_2= $sth2->fetchrow_array)

 {

 push(@var,$all_2[0]);$l=@var;

 push(@drugs,$all_2[1]);$dr=@drugs;

 @unique_drugs=uniq @drugs;my$ud=@unique_drugs;

 $drug_resis++;

 }

 my @unique=@unique_drugs;

 shift(@unique);

 foreach $ud(@unique)

 {

 @dr_pos=();

 for(my $i=0;$i<$dr;$i++)

 {

 if($ud eq $drugs[$i])

 {

 push(@dr_pos,$var[$i-1]);

 }

 }

 $drp=join(',',@dr_pos);

 $ud=$ud.';'.$drp;

 }

 my $novel=$uploaded-$map;

print"<p style=' text-align:center; font-size:28px;'>REPORT</p>

<div id=Report Summary>

<table><tr><td align='Left'> Uploaded Variants: $uploaded

 Mapped Variants: $map

 Novel Variants: $novel

 Drug Resistant Variants: $drug_resis
</td><td align ='right'>

 Synonymous Variants: $syn

 Non-Synonymous Variants: $non_syn

 Regulatory Variations: $ut
</td></tr><tr>

<table>
 Resistant Drugs:";

foreach my$u(@unique)

{

my @dr_pos=split(/;/,$u);

print"<td>$dr_pos[0]
<p style='font-size:12px;'>$dr_pos[1]</p></td>";

}

print"</table></tr></table>
</div>

<p style='margin-left:150px'>Drug Resistant Variations

<div id=Result_Table><table><tr><th>Variant Position</th><th>Ref Allele</th><th>Alt

Allele</th><th>Variant Count</th><th>Gene</th><th>Type</th><th>Resistant Drug</th></tr><tr>";

my @resis_drugs=@drugs;my $rd;

$sth1->execute or die "SQL error:$DBI::errstr\n";

while(my @all_1= $sth1->fetchrow_array)

{

my $freq_pct=sprintf "%.2f",(($all_1[6]/470)*100);

for(my $i=0;$i<$dr+1;$i++)

{

if($all_1[0]==$var[$i])

{

print"<td>$all_1[0]</td><td>$all_1[2]</td><td>$all_1[3]</td><td>$freq_pct</td><td>$all_1[8]</td><td

>$all_1[5]</td><td>$drugs[$i+1]</td></tr><tr>";

$resis_drugs[$i+1]=$resis_drugs[$i+1].','.$all_1[0];

}

}

}

print"</tr></table></div>";

print"
<p style='margin-left:150px'>Deleterious Variations

<div id=Result_Table><table><tr><th>Variant Position</th><th>Ref Allele</th><th>Alt

Allele</th><th>Variant Count</th><th>Gene</th><th>SIFT Score</th></tr><tr>";

$sth1->execute or die "SQL error:$DBI::errstr\n";

while(my @all_1= $sth1->fetchrow_array)

{

my $freq_pct=sprintf "%.2f",(($all_1[6]/470)*100);

if($all_1[13] eq 'DELETERIOUS')

{print"<td>$all_1[0]</td><td>$all_1[2]</td><td>$all_1[3]</td><td>$freq_pct</td><td>$all_1[8]</td><td

>$all_1[14]</td></tr><tr>";

}

}

print"</tr></table></div>";

print"
<p style='margin-left:150px'>Non-synonymous Variations

<div id=Result_Table><table><tr><th>Variant Position</th><th>Ref Allele</th><th>Alt

Allele</th><th>Variant Count</th><th>Gene</th><th>Type</th></tr><tr>";

$sth1->execute or die "SQL error:$DBI::errstr\n";

while(my @all_1= $sth1->fetchrow_array)

{

my $freq_pct=sprintf "%.2f",(($all_1[6]/470)*100);

if($all_1[5] eq 'nonsynonymous SNV')

{print"<td>$all_1[0]</td><td>$all_1[2]</td><td>$all_1[3]</td><td>$freq_pct</td><td>$all_1[8]</td><td

>$all_1[5]</td></tr><tr>";

}

}

print"</tr></table></div>";

print"
<p style='margin-left:150px'>Synonymous Variations

<div id=Result_Table><table><tr><th>Variant Position</th><th>Ref Allele</th><th>Alt

Allele</th><th>Variant Count</th><th>Gene</th><th>Type</th></tr><tr>";

$sth1->execute or die "SQL error:$DBI::errstr\n";

while(my @all_1= $sth1->fetchrow_array)

{

my $freq_pct=sprintf "%.2f",(($all_1[6]/470)*100);

if($all_1[5] eq 'synonymous SNV')

{print"<td>$all_1[0]</td><td>$all_1[2]</td><td>$all_1[3]</td><td>$freq_pct</td><td>$all_1[8]</td><td

>$all_1[5]</td></tr><tr>";

}

}

print"</tr></table></div>";

print"
<p style='margin-left:150px'>Regulatory Variations

<div id=Result_Table><table><tr><th>Variant Position</th><th>Ref Allele</th><th>Alt

Allele</th><th>Variant

Count</th><th>Gene</th><th>Type</th><th>Regulator</th><th>Target</th></tr><tr>";

$sth1->execute or die "SQL error:$DBI::errstr\n";

while(my @all_1= $sth1->fetchrow_array)

{

if($all_1[15])

{

my $freq_pct=sprintf "%.2f",(($all_1[6]/470)*100);

 $all_1[15]=substr($all_1[15],1);

 @reg=split(/;/,$all_1[15]);

 $all_1[16]=substr($all_1[16],1);

 @targets=split(/;/,$all_1[16]);

 $tar=@reg;

 for(my $i=0;$i<$tar;$i++)

 {print"<td>$all_1[0]</td><td>$all_1[2]</td><td>$all_1[3]</td><td>$freq_pct</td><td>$all_1[8]</td><td

>$all_1[5]</td><td>$reg[$i]</td><td>$targets[$i]</td></tr><tr>";}

}

}

print"</tr></table></div>";

print"
<p style='margin-left:150px; color:#8B0000'>Novel Variations<table><td></td><td

align='right'><form action='/cgi-bin/annoTB_submit.cgi' method='post'><input name='hidden' type='hidden'

value='@text'><input type='submit' name='submit' value='Submit'></form></td></table>

<div id=Result_Novel>

<table><tr><th>Variant Position</th><th>Ref Allele</th><th>Alt Allele</th></tr><tr>";

my $flag;my @check;

foreach my$p(@pos)

{$flag=0;

foreach my $m(@mapped)

{

if($p==$m)

{$flag=1; next;}

}

push(@check,$flag);

}

my $c=@check;

for(my $i=0;$i<$c;$i++)

{

if($check[$i]==0)

{

print"<td>$pos[$i]</td><td>$ref[$i]</td><td>$alt[$i]</td></tr><tr>";

}}

print"</tr></table>
<center></center></div>

<div id=footer style='height:30px;margin-right:5px;width=100; color:#FFFFFF;font-size:10pt; padding: 10px

10px; background-color:#003366;'>Copyright©2013 CSIR";

 ##

APPENDIX-VI

CGI script to save the novel variations submitted by the user on the server:

#!/usr/bin/perl

use CGI;

######## Fetching the submitted data###########

my $cgi = new CGI;

my $text=$cgi->param('hidden');

 my $name=$cgi->param('name');

 my $insti=$cgi->param('insti');

 my $email_address = $cgi->param('id');

 my $strain=$cgi->param('strain');

 my $pub=$cgi->param('publication');

 my $ref_genome = $cgi->param('reference');

 my $location = $cgi->param('location');

 my $depth = $cgi->param('coverage');

my @split_id=split(/@/,$email_address);

my $file_name=$strain.'_'.$split_id[0].'.txt';

my @input=split(/\s\s/,$text);

#########Designing the web interface#########

print "Content-type:text/html\r\n\r\n";

print '<html><head>

<title>tbvar</title>

</head>

<body style="font-family: Arial;">

<div id=Header style="vertical-align:middle;"><table id="headertab" width="100%" bgcolor="#003366">

<tr><td></td><!--td

align="right"><form style="display:inline" id="submit" action="tbvar.cgi" method="Get"><input type="text"

id="query" name="query" size="30" placeholder="Search: Variant Location, Range or Rvid"><input

name="hidden" type="hidden" value="variation"><input type="submit"

value="Eureka"></center></form></td--><td align="right"><img src="/igiblogo.png" align="right"

width="300" height="100"></td></tr></table></div>

<div id=Links>

</div>

';

######To accept the submission onlyif the complete form has been filled#########

if(!$name && !$insti && !$email_address && !$strain && !$pub && !$ref_genome && !$location &&

!$depth)

{

print"

<center>

<div id=Submission_form style='text-align: justify; margin-left:100px;margin-right:50px;'><form action='/cgi-

bin/annoTB_submit.cgi' method='post'>

Your Name:
<input type='text' id='name' name='name' size='30'>

Institution:
<input type='text' id='insti' name='insti' size='30'>

e-mail ID:
<input type='text' id='id' name='id' size='30'>

Strain:
<input type='text' id='strain' name='strain' size='30'>

Publication:
<input type='text' id='publication' name='publication' size='30'>

Reference Genome:
<input type='text' id='reference' name='reference' size='30'>

Geographic Location:
<input type='text' id='location' name='location' size='30'>

Minimum Depth Coverage:
<input type='text' id='coverage' name='coverage' size='30'>

<input name='hidden' type='hidden' value='@input'>

<input type='submit' name='send' value='Submit'></form>

</div></center>";

}

else

{

print'<center><p style="color:#003366;font-size: 28px ;">Thanks for submission.</p></center></body>';

open(info,">upload/$file_name");

print info "## $name\n## $insti\n## $email_address\n## $strain\n## $pub\n## $ref_genome\n## $location\n##

$depth\n\n";

foreach (@input)

{

print info "$_\n";

}

}

print"<div id=footer style='height:30px;margin-right:5px;width=100; color:#FFFFFF;font-size:10pt; padding:

10px 10px; background-color:#003366;'>Copyright©2013 CSIR</div>";

APPENDIX-VII

CGI script to retrieve the information fed by the user in the contact page and save it on

the server:

#!/usr/bin/perl

use CGI;

##########Extracting the submitted information##########

my $cgi = new CGI;

 my $name=$cgi->param('name');

 my $email_address = $cgi->param('id');

 my $feedback = $cgi->param('feedback');

my @split_id=split(/@/,$email_address);

my $file_name=$split_id[0].'.txt'; #### Creating the file name in which the feedback info

####would be saved

#########Designing the web page#############

print "Content-type:text/html\r\n\r\n";

print '<html><head>

<title>tbvar</title>

</head>

<body style="font-family: Arial;">

<div id=Header style="vertical-align:middle;"><table id="headertab" width="100%" bgcolor="#003366">

<tr><td></td><!--td

align="right"><form style="display:inline" id="submit" action="tbvar.cgi" method="Get"><input type="text"

id="query" name="query" size="30" placeholder="Search: Variant Location, Range or Rvid"><input

name="hidden" type="hidden" value="variation"><input type="submit"

value="Eureka"></center></form></td--><td align="right"><img src="/igiblogo.png" align="right"

width="300" height="100"></td></tr></table></div>

<div id=Links>

</div>

';

##########Accepting the submission only if the complete form has been filled#########

if(!$name && !$email_address && !$feedback)

{

print'

<div id=Feedback_form style="text-align: justify; margin-left:100px;margin-right:50px;"><form action="/cgi-

bin/feedback_form.cgi" method="post">

Your Name:
<input type="text" id="name" name="name" size="30">

e-mail ID:
<input

type="text" id="id" name="id" size="30">

Your Comments:
<textarea name="feedback"

cols="50" rows="10"></textarea>

<input type="submit" name="send" value="Submit"></form>

</div>

';

}

else

{

open(info,">feedback/$file_name");

print info "$name\n$email_address\n\n\n$feedback";

print'

<center><p style="color:#003366;font-size: 28px ;">Thanks for your comments.</p></center>';

}

print'

<div id=footer style="height:30px;margin-right:5px;width=100; color:#FFFFFF;font-size:10pt; padding: 10px

10px; background-color:#003366;">Copyright©2013 CSIR-Institute of Genomics and Integrative

Biology </div>';

