ACKNOWLEDGEMENT

I am glad to take this opportunity to thank my project guide Mr. D.K. Vishwakarma for giving me the chance to work on this project along with his relentless support and encouragement. It would not be possible to make this project on run without his consistent guidance and valuable time, data, and reference, to name a few of his contributions. I am also thankful to all the faculty members and my classmates and of course the researcher active in this field for their direct or indirect support and motivation during the work.

I am especially indebted to my parents for their love, sacrifice, and support and would like to thank my parents for raising me in a way to believe that I can achieve anything in life with hard work and dedication.

Date:

Richa Sharma (2k11/SPD/16) M.Tech (Signal Processing & Digital Design) Dept of ECE, DTU, DELHI

ABSTRACT

The Hand Gesture Recognition is an important component of the computer vision system and is of immense interest due to its application in tele presence, sign language, intelligent video surveillance system, human computer interaction, virtual reality, traffic control etc. Hand Gesture recognition system is a process involving classifying the given gesture of the hand portion. Our thesis gives a technique for the recognition of hand gesture from the 11 different static gestures taken from NUS hand posture dataset. The purpose of this thesis is to study and develop a method for the efficient detection and classification of hand gestures in the complex background. Hand gesture detection in complex background is seen as a challenging task. Skin similarity measure is used to detect the hand in complex background hand gesture image.

The whole of the image is divided into two classes one is hand and other is background. Then Otsu's threshold algorithm is used for the segmentation of hand gesture portion in gray scale image. Then the morphological image processing techniques are used to eliminate external and internal noise in the segmented image of the hand portion comprising the hand gesture. Gabor filter is used to find features which are then fed into PCA to get the reduced feature matrix. The features of the shape are obtained by the edges so determined by the canny edge detector. These extracted features are applied as input to classifier. Linear SVM classifier discriminates the images based on dissimilarity between two images. Experimental result shows that 94.6% recognition accuracy is achieved by using linear classifier.

LIST OF FIGURES

1.1	American sign language symbol	.4
1.2	Type of gestures	.5
1.3	Block diagram of hand gesture recognition system	.7
1.4	Samples of images from database	.11
3.1	Samples of skin from different countries	17
3.2	YCbCr color space image	. 18
3.3	Skin likelihood image	18
3.4	Segmented image	.20
3.5	Erosion and dilation block diagram	21
3.6	Dilation process	. 24
3.7	Erosion process	. 24
4.1	Flow chart for texture analysis through Gabor filter	37
4.2	Kernel response with different scales and orientations	. 38
4.3	Gabor filter response of a typical hand gesture	. 38
4.4	Input to the Gabor filter bank	39
4.5	Gabor filter output	. 39
5.1	Different hyper planes separating the classes	. 39
5.2	Infinite number of hyper planes for separation of classes	. 39
5.3	Hyper plane with maximum margin	. 40
5.4	Maximum margin separators and support vectors	.41

5.5 Output of various operations applied on input image to fetch the recognized class..42

LIST OF TABLES

3.1	3X3 square structuring element	21
4.1	5X5 Gaussian filter example	26
4.2	Gradient example	35
4.3	Image segment (5X5)	35
5.1	Accuracy analysis table	43
5.2	Confusion matrix for the classification of different hand gestures classes	44

CONTENTS

DECLARATION	Ι
CERTIFICATE	II
ACKNOWLEDGMENT	III
ABSTRACT	IV
LIST OF FIGURES	V
LIST OF TABLES	VI

CHAPTER 1

1	INTRO	ODUCTION	1
	1.1	HUMAN COMPUTER INTERFACE SYSTEM	1
	1.2	GESTURES	2
	1.3	GESTURE BASED APPLICATIONS	2
	1.4	LITERATURE SURVEY	5
	1.5	THE PROPOSED APPROACH	7
	1.6	DATABASE DESCRIPTION	9
	1.9	THESIS OUTLINE	.11

CHAPTER 2

2	VARIOUS COLOR SPACE MODELS	12
	2.1 INTRODUCTION	12

2.2	RGB	13
2.3	HSV	14
2.4	YCbCr	14

CHAPTER 3

3	SEGM	IENTATION AND PREPROCESSING	16
	3.1	INTRODUCTION	16
	3.2	SEGMENTATION	17
	3.2	MORPHOLOGICAL FILTERING	20
	3.4	CONCLUSION	24

CHAPTER 4

4	FEAT	URE EXTRACTION	25
	4.1	INTRODUCTION	25
	4.2	CANNY EDGE DETECTOR	25
	4.3	GABOR FILTER BANK	34
	4.4	RESULTS	35
	4.5	PCA INTRODUCTION	35
	4.6	THE PCA THEORY	36
	4.7	PCA FOR IMAGE COMPRESSION	37

CHAPTER 5

5	CLAS	SIFICATION	38
	5.1	SUPPORT VECTOR MACHINE	. 38
	5.2	NEURAL NETWORKS AS A SOLUTION	38
	5.3	SUPPORT VECTOR MACHINES AS A SOLUTION	39
	5.4	FIGURES	42
	5.5	CLASSIFICATION RESULT USING SVM CLASSIFIER	43
	5.6	RESULT AND DISCUSSION	44

CHAPTER 6

6	CON	CLUSION AND FUTURE WORK	46
	6.1	CONCLUSION	46
	6.2	FUTURE WORK	47

REFRENCES	48