CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Regular building may be defined as building having uniform distributions of storey strength, stiffness, weight, and geometry over their height. Building plan of regular building is symmetric (or almost symmetric) with regard to the main axis of the building. All lateral load resisting systems, such as cores, structural walls, or frames, shall run without interruption from their foundations to the top of the building or, if setbacks at different heights are present, to the top of the relevant zone of the building. In framed buildings the ratio of the actual storey resistance to the resistance required by the analysis should not vary disproportionately between adjacent storeys.

A regular building attracts very less forces in compare to their irregular counterpart. To perform well in an earthquake, a building should possess four main attributes, namely simple and regular configuration, and adequate lateral strength, stiffness and ductility. Buildings having simple regular geometry and uniformly distributed mass and stiffness in plan as well as in elevation, suffer much less damage than buildings with irregular configurations [(IS 1893(Part1): 2002)][1].

No real life structure falls in above category. Major portion of urban building are irregular. Irregularity arises in building when there is non uniform distribution of mass, stiffness, and/or strength along height of building exists. When one or more of these properties is non-uniformly distributed, either individually or in combination with other properties in any direction, the structure is referred to as being irregular.

Irregularity in structure can be broadly classified in to two types as per IS 1893 (PART 1) 2002:

1. PLAN IRREGULARITY

A. Torsion Irregularity
B. Re-entrant Corners
C. Diaphragm Discontinuity
D. Out-of-Plane Offsets
E. Non-parallel Systems

2. VERTICAL IRREGULARITY

A. Stiffness Irregularity -Soft Storey
B. Mass Irregularity
C. Vertical Geometric Irregularity
D. In-Plane Discontinuity in Vertical Elements Resisting Lateral Force
E. Discontinuity in Capacity - Weak Storey

In present study, the effects of mass irregularity on behavior of building are discussed.

MASS IRREGULARITY

When irregularities in building exist due to non uniform distribution of mass along height then it is termed as mass irregular building. Mass irregularity may occur for many reasons. Real building structures fulfill different functions at various levels over their height, e.g., buildings with floors used for commercial purposes, car parking floors, or heavy mechanical equipment. The different use of a specific floor compared to the adjacent ones results in mass irregularity. Some have been initially designed so, e.g., in the case of a educational library etc. Others have become so by accident, for example due to inconsistencies or even errors during the construction process, while many have been rendered irregular during their lifetime because of damage, rehabilitation or change of use.

Some examples are:

1. When building is used for different purpose than it was designed which attract large mass
2. When some floor are reserved for machine tools or swimming room
3. When some floor is used for purpose like library or offices

1.2 MOTIVATION OF STUDY

Every building is constructed to cater some specific purpose. In order to fulfill the desired function, a number of restrictions is imposed during design and construction of building by concerned organization which gives rise irregularity in building. Irregularity may be in sense of irregular distribution of mass, stiffness, strength, setback in plan or elevation or torsion irregularity. In these condition the role of structural engineer become more critical if the building located in seismically active zone. In order to provide the solution which meets the structural performance of building as specified by governing code and simultaneously providing satisfactory output to clients, structural engineer should have sound understanding of response of different types, parts and configuration of building during seismic event. So structure engineer needs a design procedure that can calculate seismic demands of irregular building.

1.3 SPECIFIC POINT OF STUDY

In present study, the effects of mass irregularity on behaviour of building are discussed. A real building is taken which is actually constructed and effect of mass irregularity is studied for that building. Building is designed in STAAD PRO software and loading is applied according to IS 875 and IS 1893 (PART 1): 2002. Then seismic weight of a storey is increased in ratio of $100 \%, 150 \%, 200 \%, 250 \%, 300 \%, 350 \%$ and 400% with respect to above or below storey and effect of each case is carefully studied. Same process is repeated for each storey and studied carefully.

1.4 ORGANIZATION OF DISSERTATION

For presentation purposes, the dissertation is structured in six chapters. Summaries of the contents of these chapters are given hereafter.

Chapter 1 introduces the background, specific point of study, motivation of study.
Chapter 2 present detailed objective of study.
Chapter3 present literature review, past earthquake event and different codal provision.
Chapter4 discusses programme of study that include building details, input parameters and output parameters.

Chapter 5 present results and discussion.
Chapter6 conclude the dissertation by drawing conclusion from different chapter and suggesting future research requirement.
Appendix present the sraad editor file of building designed which shows the steps followed in design of building.

CHAPTER 2

OBJECTIVE OF STUDY

Following are the objectives of the study:

1.) To develop a model of a real building actually constructed/to be constructed. This building may or may not be perfectly regular as per guidelines of IS 1893 (PART 1):2002.
2.) To study the guidelines of IS 1893 (PART 1):2002 and IS 875 with respect to general principles and design criteria.
3.) To study mass irregularity criteria as per IS 1893 (PART 1):2002 and that of relevant characteristic in real building model.
4.) To consider appropriate changes in physical parameter in real building model and to study the effects of these changes on mass irregular storey characteristic of building model and on seismic performance of building.
5.) To study the effects of application of changes(as described in objective no. 4 above) in other storey of the real building model and to study changes in seismic performance of building.
6.) To compare changes in seismic performances affected because of changes in mass of ground floor storey (as per objective no.4) and in other stories (as per objective no.5)
7.) To draw graphs for changes in building performance indices vs changes in storey mass and to attempts at developing characteristics equation for relationship amongst various parameters.

CHAPTER 3

LITERATURE REVIEW

The goal of this chapter is to provide background knowledge related to this study. Hereafter, this chapter explores evidence of actual damage to structures due to mass irregular effects during past earthquakes, reviews analytical and experimental studies conducted to investigate the seismic response of mass irregular building.

3.1 Evidence of Damage to Irregular Structures

Experience from past earthquakes shows that irregular buildings are prone to severe damage.

Figure1: Olive View Hospital, San Fernando, California partial View of the 5-story Medical Treatment and Care Unit [2]

The olive view medical centre [2] was a 5 story reinforced concrete structure. Figure 1.1illustrates the damage that olive view hospital suffered during the 1971 San Fernando Earthquake. As shown in Figure 1 a large permanent lateral second floor level displacement of the main Treatment and Care Unit was found. This large inter-story drift, which induced significant non-structural and structural damage and which led to the demolishing of the building, was a consequence of the formation of a soft story at the first story level because of the existence of a reinforced concrete wall above the second floor level caused due to presence of heavy mass on floor .

3.2 PAST STUDY

3.2.1. Valmundsson and Nau (1997) [3] investigated the appropriateness of provisions for considering different irregularities as laid out in the 1994 Uniform Building Code. They considered 2-D building frames with heights of 5, 10 and 20 storeys, assuming the beams to be stiffer than the columns. For each structure height, uniform structures were defined to have a constant mass of 35 Mg at all the floor levels, and the storey stiffness were calculated to give a set of 6 desired fundamental periods. The maximum calculated drifts from the lateral design forces for the regular structures with the target period were found to lie within the UBC limit. Mass irregularities at three floor levels in the elevation of structures were then applied by means of mass ratios (ratio of modified mass of the irregular structure to the mass of uniform structure at a floor level) ranging between 0.1 and 5, and the responses were calculated for design ductility's of 1, 2, 6 and 10 considering four earthquake records. The increase in ductility demand was found to be not greater than 20% for a mass ratio of 1.5 and mass discontinuity was most critical when located on lower floors. Mass irregularity was found to be the least important of the irregularity effects Considered.
3.2.2. Al-Ali and Krawinkler (1998) [4] assessed the effects of vertical irregularities by evaluating the roof drift demands and the distribution of storey demands over the height of the structure. This was obtained by conducting elastic and inelastic dynamic analyses on 2-D single-bay 10 -storey generic structures, assuming a column hinge model. A base
structure was defined to have a uniform distribution of mass over the height. The stiffness distribution that resulted in a straight-line first mode shape was tuned to produce a first mode period of 3 s when designed according to the Modal Superposition technique. Structures with mass irregularities were created by changing the mass distribution of the base model and keeping the same stiffness distribution as the base model. Mass ratios between 0.25 and 4 were chosen and applied either at one floor or in a series of floors, and the stiffnes distribution was tuned until the structures had a fundamental period of 3.0s. Dynamic analyses were then conducted on each structure by subjecting them to a suite of 15 ground motion records. P-Delta effects were not considered and Rayleigh damping was used to obtain a damping ratio of 5% for the first and fourth modes. It was found that mass irregularities had a relatively small effect on elastic and inelastic storey shear and storey drift demands. It was also shown that mass increase at the top had a larger effect on roof and storey drifts than when increased mass was applied at the midheight or at the lower floors. Again it was concluded that mass irregularity effects were less than other types of vertical irregularities..
3.2.3 Michalis et al. (2006)[5] carried out incremental dynamic analyses on a realistic nine storey steel frame to evaluate the effect of irregularities for each performance level, from serviceability to global collapse. A mass ratio of 2 was applied at a series of floors over the selected frame and the effects of mass irregularity were evaluated. It was found that the influence of mass irregularity on inter storey drifts was comparable to the influence of stiffness irregularity.
3.2.4. Das and Nau (2003) [6] investigated the definition of irregular structure for different vertical irregularities: stiffness, strength, mass, and that due to the presence of non-structural masonry infill as prescribed in building codes. Linear and nonlinear dynamic time-history (TH) analyses were performed on an ensemble of 78 buildings of 5, 10 , and 20 stories and with different story stiffness, strength, and mass ratios. All buildings had three bays in the direction of the ground motion. The lateral force-resisting systems considered were special moment resisting frames (SMRF) designed based on the forces obtained from the ELF procedure according to the strong-column-weak-beam (SCWB) criteria of ACI 318-99 (ACI, 1999) and UBC (1997). They observed that most
structures considered in their study performed well when subjected to the design earthquake ground motion. Hence they concluded that the restrictions on the applicability of the ELF procedure given in building codes are unnecessarily conservative for certain types of vertical irregularities considered. the presence of irregularity alters the inelastic response of the building, and there are marked increases in the inelastic story drift in the vicinity of the irregularity. However, in no case did the drift exceed the code-specified limit of 2%. The structure damage indices (a measure of the overall structural damage suffered by the building subjected to scaled ground motion) for all buildings were found to be less than 0.40 , i.e., the threshold of repairable damage. The damage indices are insensitive to both the mass ratios and the location of the heavier mass. For all categories of the buildings studied, despite large increases on curvature ductility demands in the plastic regions in the vicinity of the irregularities, the demands did not exceed the computed curvature ductility capacities for which the members were designed. In general, it may be seen that the presence of irregularities has relatively little influence on the responses computed via ELF. This may not be true for a shorter structure, however.
3.2.5. Saleh Malekpour et al. [7] carried out Assessment of Equivalent Static Earthquake Analysis Procedure for Structures with Mass Irregularity in Height by taking four two-dimensional residential type steel structures with 4, 8, 12 and 16 stories and with different forms of mass irregularities in height which are designed using the standard equivalent static procedure per the Iranian Seismic Code of practice. The designed structures, then, were subjected to different nonlinear static (pushover) and dynamic analyses. Two levels of irregularities, i.e. 150 and 300 percents, located at the heights equal to 50% and 75% of the overall height of the structures, have been considered. The results show that the static procedure adapted in the code results in much higher internal forces, story shears and overturning moments in various parts of the structures compared to the dynamic results. Also, study shows that lateral inter-story drifts obtained using the equivalent static procedure and dynamic analyses are quite comparable for short buildings. For taller buildings, in contrast, dynamic analyses showed less inter-story drifts. It is also observed that mass irregularities in height could be responsible for more contribution of higher modes in seismic response of such structures.
3.2.6.Mohammad Hossein et al. [8] Carried out Seismic Response of Mass Irregular Steel Moment Resisting Frames (SMRF) According to Performance Levels from IDA Approach by taking Mass irregular structures have stories with effective mass more than 150% of effective mass of adjacent storey. Seismic response of mass irregular structures are assessed by consideration of SMRF structures with 4,6 and 8 stories, which mass irregularity is applied separately by 1.4 and 2 times mass changes in top and two intermediate stories. Seismic response is achieved by applying Incremental Dynamic Analysis. Mean annual frequency and probability of exceedance in 50 years of performance levels are evaluated by applying PBEE framework and found out Location and number of stories with mass changes are important. Probability of exceedance of limit states in 50 years for structures with mass changes in two intermediate stories are more than mass changes in top storey. For example structures with 140% mass changes in two intermediate stories have more effect in response than 200% mass changes in top storey. Also in some cases, especially for mass changes in two intermediate stories of eight and six stories structure probability of exceedance of collapse is more than 2%. It causes not to overcome our expectation for life safety of occupants according to codes.
3.2.7. Mohammad Ali Hadianfard and Mahdieh Gadami [9] carried out study SEISMIC DEMAND OF STEEL STRUCTURES WITH MASS IRREGULARITY by linear analyses (static analysis and response spectra analysis) and obtained the seismic responses which are compared with exact solution from nonlinear time history analyses. Also the nonlinear time history analysis are carried out to study the nonlinear response of 5, 10 and 15 stories buildings with vertical mass irregularity. The mass irregularity is created by increasing the effective mass (weight) of some floors relative to other floors (2 or 3 time). These floors with additional masses can be located in the first floor, middle floors or upper floors of the building. The drift of stories, plastic hinge rotation and internal forces of columns in the middle frame are investigated. The results show that the linear seismic demand estimated by response spectra analysis is less than seismic demand determined by equivalent static analysis. Also the nonlinear seismic response of building with mass irregularity is varying relative to location and amount of irregularity and it is dependent on the earthquake record selection.. The location of heavier floor has not
significant effect on the storey shear, except when the heavier mass is on the middle height of building. Also amount of irregularity has not considerable effect on the storey shear. More plastic hinges are formed on the base floor, and in vicinity of the heavier floors. Plastic hinges are more critical when mass irregularity is on the middle height of the building. Also in the high-rise buildings plastic hinges are formed on the top stories. Buildings with vertical mass irregularity designed with linear static and dynamic response spectra procedure have not well performance under the ground motion. Performance level of buildings varies with height of building, location of mass irregularity and ground motion selection. Furthermore, buildings with vertical mass irregularity usually demonstrate lower performance than the regular buildings.
3.2.8. Vinod K. Sadashiva et al. [10] describes a simple and efficient method for quantifying irregularity limits of $3,5,9$ and 15 storey shear type structures, assumed to be located in Wellington, Christchurch and Auckland. They were designed in accordance with the Equivalent Static Method of NZS 1170.5. Regular structures were defined to have constant mass at every floor level and were either designed to produce constant inter-storey drift ratio at all the floors simultaneously or to cause uniform stiffness distribution throughout the elevation of structure. Design structural ductility factors of 1 , 2,4 and 6, and target (design) inter-storey drift ratios ranging between 0.5% and 3% were used in this study. Inelastic dynamic time-history analysis was carried out by subjecting these structures to code design level earthquake records. Irregular structures were created by adding additional floor mass of $1.5,2.5,3.5$ and 5 times the regular floor mass at the first level, mid-height and the roof, and they were designed similar to regular structures. It was found that additional mass, when applied at the first floor or roof generally, produced higher drift demands than regular structures for all mass ratios. When the mass ratio was present at the mid-height, the structures generally tended to produce lesser drift demands than the corresponding regular structures. A simple equation was defined to give a conservative measure of increase in interstorey drift response due to mass irregularity which can be used to set irregularity limits. Current code requirement of 1.5 mass ratios corresponds to an increase in median response of approximately 7.5%. The
effect of the magnitude of mass irregularity on drift demand was found to be less influential than the position of mass ratios.

3.2.9. Poncet, L. et al. [11] studied INFLUENCE OF MASS IRREGULARITY ON THE SEISMIC DESIGN AND PERFORMANCE OF MULTI-STOREY BRACED STEEL

 FRAMES by examining for an eight-storey concentrically braced steel frame with different setback configurations. Three height locations of mass discontinuity and two ratios of seismic weight were considered. A regular structure was also studied for comparison. Both the equivalent static load method and the response spectrum analysis method were used in design. The finding are mass irregularity in eight-storey concentrically braced steel frames designed with static analysis does not seem to have significant detrimental effects on the level of protection against structural collapse, which is in line with the findings of past similar studies and tends to support IBC 2003 provisions that allow mass irregularity to be ignored when deflections remain uniform along the building height. Adopting a dynamic analysis method does not seem to provide marked benefit on the response of the buildings with mass discontinuity. For one of the irregular structures studied, the confidence levels against collapse prevention were noticeably lower, even if dynamic analysis was used in design. For immediate occupancy, mass irregularity has limited effects on elastic building response. If needed, these effects can be reduced, and perhaps eliminated, by using a dynamic analysis method.Because of the complex behavior of such structures under earthquake excitations, it is not surprising that, in spite of the large research efforts in plan irregular building structures dating back to the 1970s, even in recent years, many papers have been devoted to a better understanding of seismic response. Above research conclude that discontinuities of mass along the height, considered by current seismic codes as irregularities in elevation, do not necessarily result in actual increases in plastic demands and, more generally, in poor seismic behavior. It is observed in all above paper that mass irregularity effect is larger when it is present on top storey. Drift generally increases with mass.

3.3 CODAL PROVISIONS:

Most building codes propose a simplified method called the equivalent lateral force (ELF) procedure or the multi-mode response spectrum method to compute design forces. These methods assume that the dynamic forces developed in a structure during an earthquake are proportional to the maximum ground acceleration and the modal characteristics of the structure. These forces are approximated as a set of equivalent lateral forces which are distributed over the height of the structure. However, the ELF method is based on a number of assumptions which are true for regular structures "structures with uniform distribution of stiffness, strength, and mass over the height". So the current building codes define criteria in order to categorize building structures as either regular or irregular as explained below.

3.3.1 IS CODE 1893 (PART 1): 2002 (TABLE 5 CLAUSES 7.1) [1]

Mass irregularity shall be considered to exist where the seismic weight of any storey is more than 200 percent of that of its adjacent storey. The irregularity need not be considered in case of roofs.

FIG 2.MASS IRREGULARITY[1]

3.3.2. UNIVERSAL BUILDING CODE (SECTION 1629) [12]

Mass irregularity is considered to exist where the effective mass of any story is more than 150% of the effective mass of an adjacent story. A roof that is lighter than the floor below need not be considered.

Weight

M3 $\boldsymbol{>} 150 \%$ M2 or, M4

FIG 3 UBC CRITERIA [12]

3.3.3 NEHRP code (BSSC, 2003) [13]:

A structure is defined to be mass irregular if the ratio of Mass between adjacent stories exceeds 150% and the criteria that define the irregularities have been assigned by judgment.

3.3.4 Iranian seismic code (Standard 2800)[14]:

The mass regularity condition is that the effective mass of any story shall not be more than 150 percent of the effective mass of an adjacent story.

3.3.5 International Building Code (IBC) [15]:

Weight (Mass) Irregularity is defined to exist where the effective mass of any story is more than 150% of the effective mass of an adjacent story. A roof that is lighter than the floor below need not be considered.

So IBC code, IRANIAN code, EURO code, UBC code, NEHRP code all have same provision for mass irregularity.

CHAPTER 4

PROGRAMME OF STUDY

4.1. INTRODUCTION

Major portion of urban building is irregular. To design irregular building in seismically active area is a challenging job for structural engineer. Structural engineer should be well versed with effect of different irregularities on performance of different types and configuration of building.

Sometime the building is designed irregular and many time it become irregular due to different circumstances like change of use of building, damage or reconstruction. These building should be investigated and designed properly. Different irregularity has different effects on response of given building during seismic event. In present chapter, details of building, different input, and output parameter and analysis process are discussed.

A four storey building is selected as shown in figure below:

FIG 4 3-D VIEW OF BUILDING (COLUMN-BEAM VIEW)

FIG 5 3-D VIEW OF BUILDING

FIG 6: PLAN VIEW OF BUILDING

FIG 7 ELEVATION VIEW OF BUILDING

FIG 8 SIDE VIEW OF BUILDING

TABLE 1

STRUCTURAL DATA	
HEIGHT	15.45 m
WIDTH	15.65 m
LENGTH	33.0 m
NO. OF STOREY	4
STOREY HEIGHT	3.3 m
TOTAL NO. OF COLUMN	159
TOTAL NO. OF BEAM	346
CONCRETE GRADE	M 25
STEEL GRADE	Fe 415
DENSITY OF CONCRETE	2402.616
	$\mathrm{~kg} / \mathrm{m}^{\wedge} 3$
POISION RATIO	0.17
YOUNG'S MODULUS OF	$25000 \mathrm{~N} / \mathrm{MM} \mathrm{M}^{\wedge}$
ELASTICITY	
BEAM DIMENSION	$0.45^{*} 0.30 \mathrm{~m}$
COLUMN DIMENSION	$0.60^{*} 0.45 \mathrm{~m}$

TABLE 2

EARTHQUAKE DATA	
ZONE VALUE	0.24
IMPORTANCE FACTOR	1.5
RESPONSE REDUCTION FACTOR	5
TYPE OF SOIL	2
DAMPING	5%
CUT OFF MODE	21

TABLE 3

DEAD LOAD	
ROOF	4657.86 kN
4TH FLOOR	4887.00 kN
3RD FLOOR	4887.00 kN
2ND FLOOR	4887.00 kN
1ST FLOOR	4887.00 kN

TABLE 4

LIVE LOAD	
ROOF	1559 kN
4TH FLOOR	1823 kN
3RD FLOOR	1823 kN
2ND FLOOR	1964 kN
1ST FLOOR	1823 kN

4.2 INPUT PARAMETERS

Input parameter are weight on each floor, seismic weight on each floor, dimension of building, beam and column, site condition of building, purpose of building, type of materials used.

Following paragraphs describe each input parameter briefly:
Design Acceleration Spectrum: Design acceleration spectrum refers to an average smoothened plot of maximum acceleration as a function of frequency or time period of vibration for a specified damping ratio for earthquake excitations at the base of a single degree of freedom system.

Importance Factor: It is a factor used to obtain the design seismic force depending on the functional use of the structure, characterized by hazardous consequences of its failure, its post-earthquake functional need, historic value, or economic importance.

Response Reduction Factor: It is the factor by which the actual base shear force, that would be generated if the structure were to remain elastic during its response to the Design Basis Earthquake (DBE) shaking, shall be reduced to obtain the design lateral force.

Zone Factor (Z): It is a factor to obtain the design spectrum depending on the perceived maximum seismic risk characterized by Maximum Considered Earthquake (MCE) in the zone in which the structure is located.

Structural Response Factor $\left(\frac{\boldsymbol{s}_{\boldsymbol{a}}}{\boldsymbol{g}}\right)$: It is a factor denoting the acceleration response spectrum of the structure subjected to earthquake ground vibrations, and depends on natural period of vibration and damping of the structure.

Damping: The effect of internal friction, imperfect elasticity of material, slipping, sliding, etc in reducing the amplitude of vibration and is expressed as a percentage of critical damping.

Modal Mass: Modal mass of a structure subjected to horizontal or vertical, as the case maybe, ground motion is apart of the total seismic mass of the structure that is effective in mode \boldsymbol{k} of vibration. The modal mass for a given mode has a unique value irrespective of scaling of the mode shape.

Normal Mode: A system is said to be vibrating in a normal mode when all its masses attain maximum values of displacements and rotations simultaneously, and pass through equilibrium positions simultaneously.

Seismic Weight: It is the total dead load plus appropriate amounts of specified imposed load.

Partial safety factors for limit state design of reinforced concrete structure

In the limit state design of reinforced concrete structures, the following load combinations shall be accounted for:

1) 1.5 (DL+LL)
2) $1.2(\mathrm{DL}+\mathrm{ZL}+\mathrm{EL})$
3) $1.5(\mathrm{DL}+\mathrm{EL})$
4) $0.9 \mathrm{DL}+1.5 \mathrm{EL}$

4.3 Earthquake Lateral Force Analysis [15]

The design lateral force shall first be computed for the building as a whole. Then design lateral force calculated shall be distributed to the various floor levels. The overall design seismic force thus obtained at each floor level shall then be distributed to individual lateral load resisting elements depending on the floor diaphragm action. There are two commonly used procedures for specifying seismic design lateral forces:

1. Equivalent static force analysis
2. Dynamic analysis

Equivalent static force analysis

The equivalent lateral force analysis for an earthquake converts a dynamic analysis into partly dynamic and partly static analyses for finding the maximum displacement (or stresses) induced in the structure due to earthquake excitation. The equivalent lateral force for an earthquake is defined as a set of lateral static forces which will produce the same peak response of the structure as that obtained by the dynamic analysis of the structure under the same earthquake. This equivalence is restricted only to a single mode of vibration of the structure. Inherently, equivalent static lateral force analysis is based on the following assumptions:

1. Structure is rigid.
2. Perfect fixity between structure and foundation.
3. Same acceleration is induced in each point of structure during ground motion.
4. Dominant effect of earthquake is equivalent to horizontal force of varying magnitude over the height.
5. Base shear on the structure is determined approximately.

However, during an earthquake structure does not remain rigid, it deflects, and thus base shear is disturbed along the height.

The limitation of equivalent static lateral force analysis is that empirical relationships are used to specify dynamic inertial forces as static forces which do not explicitly account for
the dynamic characteristics of the particular structure being designed or analyzed. These formulas were developed to approximately represent the dynamic behavior of regular structures. For such structures, the equivalent static force procedure is most often adequate. Structures that are classified as irregular violate the assumptions on which the empirical formulas, used in the equivalent static force procedure, are developed.

Step by step procedure for Equivalent static force analysis according to code

Step-1: Depending on the location of the building site, identify the seismic zone and assign Zone factor (Z)
Step-2: Compute the seismic weight of the building (W)
Step-3: Compute the natural period of the building $\left(T_{a}\right)$
Step-4: Obtain the data pertaining to type of soil conditions of foundation of the building Step-5: Using T_{a} and soil type, compute the average spectral acceleration as per code

Step-6: Assign the value of importance factor (I) depending on occupancy and/or functionality of structure
Step-7: Assign the values of response reduction factor (R) depending on type of structure Step-8: Knowing Z, $\frac{s_{a}}{g}$, R and I compute design horizontal acceleration coefficient (A_{h})

Step-9: Using A_{H} and W compute design seismic base shear $\left(V_{B}\right)$, from $V_{B}=A_{H} \mathrm{~W}$ as per code

Dynamic Analysis

1.) Dynamic analysis is classified into two types,
a.) Response spectrum method
b.) Time history method
2.) Dynamic analysis shall be performed to obtain the design seismic force and its distribution along the height of the building and to the various lateral load resisting elements, for the following buildings:
a.) Regular buildings Those greater than 40 m in height in Zones IV and V and those greater than 90 m in height in Zones II and III.
b.) Irregular buildings - All framed buildings higher than 12 m in Zones IV and V, and those greater than 40 m in height in Zones II and III.
3.) Time History Method: Time history method of analysis, when used, shall be based on an appropriate ground motion and shall be performed using accepted principles of dynamics.
4.) Response Spectrum Method: Response spectrum method of analysis shall be performed using the design spectrum
5.) Modes to be considered: The number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least 90\%.

Step by step procedure for Response spectrum method

Step-1: Depending on the location of the building site, identify the seismic zone and assign Zone factor (Z)

Step-2: Compute the seismic weight of the building (W)
Step-3: Establish mass [M] and stiffness [K] matrices of the building using system of masses lumped at the floor levels with each mass having one degree of freedom, that of lateral displacement in the direction under consideration. Accordingly, to develop stiffness matrix effective stiffness of each floor is computed using the lateral stiffness coefficients of columns and infill walls. Usually floor slab is assumed to be infinitely stiff.

Step-4: Using [M] and $[\mathrm{K}]$ of previous step and employing the principles of dynamics compute the modal frequencies, $\{\mathrm{w}\}$ and corresponding mode shapes, $[\mathrm{j}]$.

Step-5: Compute modal mass M_{k} of mode k as per code
Step-6: Compute modal participation factors P_{k} of mode k as per code
Step-7: Compute design lateral force $\left(Q_{i k}\right)$ at each floor in each mode as per code
Step-8: Compute storey shear forces in each mode $\left(V_{i k}\right)$ acting in storey i in mode k as per code

Step-9: Compute storey shear forces due to all modes considered, V_{I} in storey i , by combining shear forces due to each mode as per code.

4.4 OUTPUT PARAMETERS:

Parameter in which changes is noted after modifying the structure are frequency, time period, spectral acceleration, base shear, SRSS shear, CQC shear, SHEAR 10 pt shear, ABS shear, storey shear, storey drift and mass participation factor.

Modal Participation Factor: Modal participation factor of mode k of vibration is the amount by which mode k contributes to the overall vibration of the structure under horizontal and vertical earthquake ground motions. Since the amplitudes of 95 percent mode shapes can be scaled arbitrarily, the value of this factor depends on the scaling used for mode shapes.

Natural Period: Natural period of a structure is its time period of undamped free vibration.

Storey Drift: It is the displacement of one level relative to the other level above or below.

Storey Shear: It is the sum of design lateral forces at all levels above the storey under consideration.

Storey drift Limitation: The storey drift in any due to minimum specified design lateral load with partial factor of safety 1.0 shall not be increased by 0.004 times the storey height.

SRSS METHOD: It is approximate for combining modal response. In this method, the squares of a specific response are summed. The square root of this sum is taken to be combines effect. It is important to note that the quantities combined are those for each individual mode.

$$
r_{o}=\left(\sum_{n=1}^{n N} r_{n o}{ }^{2}\right)^{0.5}
$$

This method gives excellence response estimates for structure with well separated natural frequencies.

CQC METHOD: It is modal combination method based on the use of cross modal coefficient. The cross modal coefficient reflects the duration and frequency content of seismic event as well as the modal frequencies and damping ratio of the structure.

$$
r_{o}=\left(\sum_{i=1}^{N} \sum_{n=1}^{N} \rho_{i n} r_{i o} r_{n o}\right)^{0.5}
$$

This method gives acceptable response estimates for types of structure having well separated natural frequencies as well as to those having closely spaced natural frequencies like in multistory building with unsymmetrical plan.

ABS METHOD: It is modal combination method based on assumption that all modal peaks occurs at the same time and algebraic sign is ignored to get an upper bound to the peak value of the total response. This upper bound value (ABS VALUE) is too conservative.

$$
r_{o} \leq \sum_{n=0}^{N} r_{n o}
$$

4.5 DETAILS OF STEPS PERFORMED

1. The building is designed in STAAD PRO V8i with dimension and specification discussed above.
2. For calculating seismic force, every joint in structure is pinned and static analysis is performed to calculate resulting reaction on each joint. Reaction in global y direction is taken as seismic force in all direction and then it is applied on each joint.
3. Keeping dead load constant, the live load of concerned storey is increased in such a way that ratio of total seismic weight on that particular storey to that above or below it become equal to X .
4. Each storey is subjected to live load such that value of X becomes 1 .
5. Then resulting building model is analyzed and value of output parameter is noted down.
6. Steps 2 to 6 is repeated for $\mathrm{X}=1,1.5,2,2.5,3,3.5$ and 4 for each floor.

CHAPTER 5

RESULT AND DISCUSSION

Following result is obtained in the present study which is tabulated and graph is drawn for each output parameter.

5.1 Variation of frequency vs. mass ratio

TABLE 5

VARIATION OF FREQUENCY VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	1.086	1.086	1.086	1.086	1.086
1.5	1.086	1.074	1.054	1.025	0.993
2	1.085	1.061	1.023	0.966	0.927
2.5	1.084	1.048	1.006	0.926	0.873
3	1.084	1.035	0.967	0.887	0.826
3.5	1.083	1.022	0.941	0.852	0.786
4	1.082	1.009	0.917	0.82	0.751

FIG 9 Variation of frequency vs. mass ratio

Frequency of building decreases with increase in loading of structure irrespective of position of increased weight. Maximum effect is observed when maximum weight is present on roof. In this case variation with respect to base case is 30.87%. Least variation is observed when weight is increased on first floor. In this case frequency increased from 1.086 to 1.082 corresponding to mass ratio 1 and 4 respectively. Variation in frequency increases when increased weight is placed on higher floor.

It is observed that the variation of frequency vs. mass ratio follows following equation

TABLE 6

FLOOR	EQUATION
1	$\mathrm{Y}=-0.001 \mathrm{X}+1.087$
2	$\mathrm{Y}=-0.025 \mathrm{X}+1.112$
3	$\mathrm{Y}=0.001 \mathrm{X}^{2}-0.061 \mathrm{X}+1.145$
4	$\mathrm{Y}=0.012 X^{2}-0.150 \mathrm{X}+1.222$
ROOF	$\mathrm{Y}=0.020 X^{2}-0.211 \mathrm{X}+1.271$

5.2 Variation of Time Period vs. Mass Ratio

TABLE 7

VARIATION OF TIME PERIOD VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	0.92063	0.92063	0.92063	0.92063	0.92063
1.5	0.92115	0.93128	0.94852	0.97594	1.00728
2	0.92172	0.94268	0.97735	1.03531	1.07832
2.5	0.9228	0.95461	0.99063	1.0795	1.14598
3	0.92287	0.96654	1.03452	1.12771	1.21026
3.5	0.92342	0.97881	1.06243	1.17416	1.27224
4	0.924	0.99133	1.08998	1.21904	1.33073

FIG 10 Variation of Time Period vs. Mass Ratio

Time period of building increases with increases in loading of structure irrespective of position of increased weight. It is expected as frequency is inversely proportion to time period. Maximum variation is observed when maximum weight (mass ratio=4) is present on roof (mass ratio=4). In this case, variation with respect to base case is 44.54%.

It is observed that the variation of Time period vs. mass ratio follows following equation:
TABLE 8

FLOOR	EQUATION
1	$\mathrm{Y}=-0.009 X^{2}+0.181 \mathrm{X}+0.751$
2	$\mathrm{Y}=-0.005 X^{2}+0.124 \mathrm{X}+0.801$
3	$\mathrm{Y}=0.002 X^{2}+0.043 \mathrm{X}+0.875$
4	$\mathrm{Y}=0.023 \mathrm{X}+0.896$
ROOF	$\mathrm{Y}=0.001 \mathrm{X}+0.919$

5.3 Variation of Spectral Acceleration vs. Mass Ratio

TABLE 9

VARIATION OF SPECTRAL ACCELERATION VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	1.47726	1.47726	1.47726	1.47726	1.47726
1.5	1.47641	1.46035	1.43381	1.39352	1.35017
2	1.4755	1.44269	1.39151	1.31362	1.26122
2.5	1.47461	1.42466	1.35726	1.25984	1.18676
3	1.47366	1.40708	1.31462	1.20599	1.12373
3.5	1.47279	1.38944	1.28009	1.15827	1.06898
4	1.47186	1.37189	1.24773	1.11563	1.02199

FIG 11 Variation of Spectral Acceleration vs. Mass Ratio

Spectral acceleration of building decreases with increase in loading of structure irrespective of position of increased weight. Maximum effect is observed when maximum
weight (mass ratio=4) is present on roof. In this case variation with respect to base case is 30.81%. Least variation is observed when weight is increased on first floor. In this case frequency decreases from 1.47726 to 1.47186 corresponding to mass ratio 1 and 4 respectively.

It is observed that the variation of Spectral acceleration vs. mass ratio follows following equation:

TABLE 10

FLOOR	EQUATION
1	$\mathrm{Y}=-0.001 \mathrm{X}+1.479$
2	$\mathrm{Y}=-0.035 \mathrm{X}+1.512$
3	$\mathrm{Y}=0.003 \mathrm{X}^{2}-0.095 \mathrm{X}+1.568$
4	$\mathrm{Y}=0.003 X^{2}-0.095 \mathrm{X}+1.568$
ROOF	$\mathrm{Y}=0.017 \mathrm{X}^{2}-0.206 \mathrm{X}+1.663$

5.4 Variation of BASE SHEAR (KN) vs. Mass Ratio

TABLE 11

VARIATION OF BASE SHEAR (KN) VS MASS RATIO						
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF	
1	1269.11	1269.11	1269.11	1269.11	1269.11	
1.5	1292.67	1340.01	1332.79	1298.12	1281.12	
2	1319.74	1414.36	1395.65	1333.16	1297.92	
2.5	1343.6	1490.45	1469.11	1361.35	1318.89	
3	1373.81	1564.75	1513.08	1393.78	1342.61	
3.5	1395.97	1639.34	1567.58	1426.44	1368.46	
4	1423.05	1713.52	1619.91	1459.12	1395.12	

FIG 12 Variation of BASE SHEAR (KN) vs. Mass Ratio

Base shear increases with increase in loading of structure irrespective of position of increased weight. Maximum effect is observed in $2^{\text {nd }}$ floor and it is 35.01% when the mass ratio 4 is on $2^{\text {nd }}$ floor than that of base floor. Least variation is observed when weight is increased on top floor. In this case base shear increased from 1269.11 to 1395.12 KN corresponding to mass ratio 1 and 4 respectively.

It is observed that the variation of Base shear vs. mass ratio follows following equation:

TABLE 12

FLOOR	EQUATION
1	$\mathrm{Y}=0.273 X^{2}+50.23 \mathrm{X}+1217$
2	$\mathrm{Y}=148.7 \mathrm{X}+1118$
3	$\mathrm{Y}=-7.501 X^{2}+154.6 \mathrm{X}+1120$
4	$\mathrm{Y}=63.37 \mathrm{X}+1204$
ROOF	$\mathrm{Y}=5.904 X^{2}+13.14 \mathrm{X}+1249$

5.5 Variation of SQUARE ROOT OF SUM0 OF SQUARE SHEAR X vs. Mass Ratio

TABLE 13

VARIATION OF SQUARE ROOT OF SUM OF SQUARE SHEAR X (kN) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	1377.05	1377.05	1377.05	1377.05	1377.05
1.5	1421.5	1458.9	1435.98	1407.14	1395.38
2	1490.2	1543.51	1496.36	1443.33	1415.52
2.5	1554.64	1628.57	1557.05	1472.13	1438.52
3	1648.77	1709.63	1608.95	1504.3	1471.19
3.5	1713.47	1790.47	1662.84	1537.55	1501.55
4	1795.69	1869.96	1717.89	1572.84	1530.79

FIG 13 Variation of SQUARE ROOT OF SUM0 OF SQUARE SHEAR X vs. Mass Ratio

It is observed that the variation of SRSS Shear vs. mass ratio follows following equation:

TABLE 14

FLOOR	EQUATION
1	$\mathrm{Y}=10.86 X^{2}+88.40 \mathrm{X}+1271$.
2	$\mathrm{Y}=-1.840 X^{2}+174.0 \mathrm{X}+1203$
3	$\mathrm{Y}=-3.306 X^{2}+130.0 \mathrm{X}+1249$
4	$\mathrm{Y}=0.859 X^{2}+60.64 \mathrm{X}+1315$
ROOF	$\mathrm{Y}=5.951 X^{2}+22.32 \mathrm{X}+1348$

5.6 VARIATION OF SHEAR 10 PCT SHEAR X (KN) VS MASS RATIO

TABLE 15

VARIATION OF SHEAR 10 PCT SHEAR X (KN) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	1412.21	1412.21	1412.21	1412.21	1412.21
1.5	1458.58	1497	1474.7	1446.38	1430.13
2	1526.7	1584.97	1538.62	1444.05	1451.74
2.5	1594.15	1673.67	1582.21	1473.1	1476.98
3	1689.25	1759.01	1612.35	1506.61	1473.55
3.5	1760.99	1840.45	1666.7	1540.02	1502.39
4	1843.09	1923.34	1719.22	1573.89	1531.59

FIG 14 VARIATION OF SHEAR 10 PCT SHEAR X (KN) VS MASS RATIO

The variation of SHEAR 10 PCT Shear vs. mass ratio follows following equation:

TABLE 16

FLOOR	EQUATION
1	$\mathrm{Y}=12.00 \times 2+87.13 \mathrm{X}+1307$
2	$\mathrm{Y}=-2.327 \times 2+182.6 \mathrm{X}+1230$
3	$\mathrm{Y}=-5.933 \times 2+128.1 \mathrm{X}+1294$
4	$\mathrm{Y}=8.862 \times 2+8.177 \mathrm{X}+1400$
ROOF	$\mathrm{Y}=1.676 \times 2+29.07 \mathrm{X}+1383$

5.7 VARIATION OF ABS SHEAR X (KN) VS MASS RATIO

TABLE 17

VARIATION OF ABSOLUTE SUM SHEAR X (kN) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	2490.95	2490.95	2490.95	2490.95	2490.95
1.5	2727.13	2634.17	2575.64	2536.42	2542.38
2	2986.66	2780.87	2655.53	2591.82	2591.05
2.5	3200.04	2925.95	2490.95	2635.91	2640.57
3	3489.42	3062.92	2810.16	2684.58	2681.28
3.5	3635.32	3196.2	2881.54	2734.17	2730.21
4	3859.7	3325.04	2949.25	2779.8	2777.2

FIG 15 VARIATION OF ABS SHEAR X (KN) VS MASS RATIO

The variation of ABS Shear vs. mass ratio follows following equation:

TABLE 18

FLOOR	EQUATION
1	$\mathrm{Y}=12.00 X^{2}+87.13 \mathrm{X}+1307$
2	$\mathrm{Y}=-2.327 X^{2}+182.6 \mathrm{X}+1230$.
3	$\mathrm{Y}=-5.933 X^{2}+128.1 \mathrm{X}+1294$
4	$\mathrm{Y}=8.862 X^{2}+8.177 \mathrm{X}+1400$
ROOF	$\mathrm{Y}=1.676 X^{2}+29.07 \mathrm{X}+1383$

5.8 VARIATION OF CQC SHEAR X (KN) VS MASS RATIO

TABLE 19

VARIATION OF CQC SHEAR X (KN) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	1520.05	1520.05	1520.05	1520.05	1520.05
1.5	1571.5	1608.7	1582.98	1546.03	1525.55
2	1646.9	1700.86	1646.75	1578.83	1540.64
2.5	1718.19	1792.84	1700.05	1605.93	1561.58
3	1827.21	1881.22	1767.75	1637.82	1586.73
3.5	1895.61	1968.53	1824.8	1670.16	1613.84
4	1993.21	2058.52	1879.84	1703.25	1641.79

FIG 16 VARIATION OF CQC SHEAR X (KN) VS MASS RATIO

The variation of CQC Shear vs. mass ratio follows following equation:
TABLE 20

FLOOR	EQUATION
1	$\mathrm{Y}=-22.62 X^{2}+572.0 \mathrm{X}+1932$
2	$\mathrm{Y}=-7.391 X^{2}+316.1 \mathrm{X}+2179$
3	$\mathrm{Y}=40.00 X^{2}-47.07 \mathrm{X}+2521$
4	$\mathrm{Y}=-0.909 X^{2}+101.3 \mathrm{X}+2389$
ROOF	$\mathrm{Y}=-0.909 X^{2}+101.3 \mathrm{X}+2312$

SRSS Shear, CQC Shear, ABS Shear and SHEAR 10 PCT Shear shows the same trends as base shear. Maximum effect is observed in $2^{\text {nd }}$ floor in all case while minimum effect is observed when weight is increased on roof
5.9 VARIATION OF ROOF DRIFTS (mm) VS MASS RATIO

TABLE 21

VARIATION OF ROOF DRIFT (mm) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	2.896	2.896	2.896	2.896	2.896
1.5	2.922	2.926	2.855	2.862	3.451
2	2.956	2.951	2.81	2.838	3.847
2.5	2.982	2.974	2.896	2.829	4.193
3	3.023	2.991	2.719	2.825	4.502
3.5	3.046	3.005	2.675	2.827	4.786
4	3.079	3.004	2.633	2.834	4.934

FIG 17 VARIATION OF ROOF DRIFTS (mm) VS MASS RATIO

Roof drift show increasing trend when weight is changed on $1^{\text {st }}, 2^{\text {nd }}$ and top floor while show decreasing trend when weight is changed on $3^{\text {rd }}$ and $4^{\text {th }}$ floor. Maximum variation is observed in roof drift when irregularity is induced in top storey by keeping mass ratio equal to 4 and it is 70% more than that of base case while it is 6.31% more than that of base case when irregularity is induced in top storey by keeping mass ratio equal to 4 Least variation is observed when irregularity is induced in middle floor.

The variation of roof drift vs. mass ratio follows following equation:
TABLE 22

FLOOR	EQUATION
1	$\mathrm{Y}=0.061 \mathrm{X}+2.832$
2	$\mathrm{Y}=0.037 \mathrm{X}+2.870$
3	$\mathrm{Y}=-0.025 X^{2}+0.036 \mathrm{X}+2.873$
4	$\mathrm{Y}=0.016 X^{2}-0.101 \mathrm{X}+2.978$
ROOF	$\mathrm{Y}=-0.127 X^{2}+1.309 \mathrm{X}+1.734$

5.10 VARIATION OF MAX FX (N) VS MASS RATIO

TABLE 23

VARIATION OF MAX FX (N) VS MASS RATIO					
MASS RATIO	IST FLOOR	2 ND FLOOR	$3 R D ~ F L O O R$	4 TH FLOOR	ROOF
1	$2.35 \mathrm{E}+05$				
1.5	$2.44 \mathrm{E}+05$	$2.54 \mathrm{E}+05$	$2.48 \mathrm{E}+05$	$2.42 \mathrm{E}+05$	$2.40 \mathrm{E}+05$
2	$2.48 \mathrm{E}+05$	$2.71 \mathrm{E}+05$	$2.61 \mathrm{E}+05$	$2.50 \mathrm{E}+05$	$2.44 \mathrm{E}+05$
2.5	$2.60 \mathrm{E}+05$	$2.88 \mathrm{E}+05$	$2.75 \mathrm{E}+05$	$2.56 \mathrm{E}+05$	$2.49 \mathrm{E}+05$
3	$2.61 \mathrm{E}+05$	$3.04 \mathrm{E}+05$	$2.85 \mathrm{E}+05$	$2.63 \mathrm{E}+05$	$2.54 \mathrm{E}+05$
3.5	$2.78 \mathrm{E}+05$	$3.20 \mathrm{E}+05$	$2.95 \mathrm{E}+05$	$2.69 \mathrm{E}+05$	$2.60 \mathrm{E}+05$
4	$3.18 \mathrm{E}+05$	$3.36 \mathrm{E}+05$	$3.05 \mathrm{E}+05$	$2.75 \mathrm{E}+05$	$2.65 \mathrm{E}+05$

FIG 18 VARIATION OF MAX FX (N) VS MASS RATIO

5.11 VARIATION OF MAX FY (N) VS MASS RATIO

TABLE 24

VARIATION OF MAX FY (N) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	$4 T H$ FLOOR	ROOF
1	$3.04 \mathrm{E}+06$				
1.5	$3.31 \mathrm{E}+06$	$3.29 \mathrm{E}+06$	$3.30 \mathrm{E}+06$	$3.33 \mathrm{E}+06$	$3.36 \mathrm{E}+06$
2	$3.61 \mathrm{E}+06$	$3.63 \mathrm{E}+06$	$3.58 \mathrm{E}+06$	$3.66 \mathrm{E}+06$	$3.64 \mathrm{E}+06$
2.5	$3.91 \mathrm{E}+06$	$3.94 \mathrm{E}+06$	$3.96 \mathrm{E}+06$	$3.93 \mathrm{E}+06$	$3.92 \mathrm{E}+06$
3	$4.20 \mathrm{E}+06$	$4.25 \mathrm{E}+06$	$4.14 \mathrm{E}+06$	$4.22 \mathrm{E}+06$	$4.20 \mathrm{E}+06$
3.5	$4.50 \mathrm{E}+06$	$4.56 \mathrm{E}+06$	$4.42 \mathrm{E}+06$	$4.52 \mathrm{E}+06$	$4.49 \mathrm{E}+06$
4	$4.80 \mathrm{E}+06$	$4.86 \mathrm{E}+06$	$4.70 \mathrm{E}+06$	$4.82 \mathrm{E}+06$	$4.77 \mathrm{E}+06$

FIG 19 VARIATION OF MAX FY (N) VS MASS RATIO

5.12 VARIATION OF MAX FZ (N) VS MASS RATIO

TABLE 25

VARIATION OF MAX FZ (N) VS MASS RATIO						
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4 TH FLOOR	ROOF	
1	$1.41 \mathrm{E}+05$					
1.5	$1.44 \mathrm{E}+05$	$1.46 \mathrm{E}+05$	$1.44 \mathrm{E}+05$	$1.43 \mathrm{E}+05$	$1.41 \mathrm{E}+05$	
2	$1.48 \mathrm{E}+05$	$1.50 \mathrm{E}+05$	$1.47 \mathrm{E}+05$	$1.44 \mathrm{E}+05$	$1.41 \mathrm{E}+05$	
2.5	$1.56 \mathrm{E}+05$	$1.55 \mathrm{E}+05$	$1.50 \mathrm{E}+05$	$1.45 \mathrm{E}+05$	$1.42 \mathrm{E}+05$	
3	$1.60 \mathrm{E}+05$	$1.61 \mathrm{E}+05$	$1.53 \mathrm{E}+05$	$1.47 \mathrm{E}+05$	$1.43 \mathrm{E}+05$	
3.5	$1.69 \mathrm{E}+05$	$1.67 \mathrm{E}+05$	$1.55 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$1.44 \mathrm{E}+05$	
4	$1.74 \mathrm{E}+05$	$1.73 \mathrm{E}+05$	$1.57 \mathrm{E}+05$	$1.50 \mathrm{E}+05$	$1.46 \mathrm{E}+05$	

FIG 20 VARIATION OF MAX FZ (N) VS MASS RATIO

5.13 VARIATION OF MAX MX (KN-M) VS MASS RATIO

TABLE 26

VARIATION OF MAX MX (KN-M) VS MASS RATIO					
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF
1	215.627	215.627	215.627	215.627	215.627
1.5	218.893	$2.26 \mathrm{E}+02$	222.126	216.932	213.403
2	223.51	236.349	229.557	224.388	216.826
2.5	226.682	247.182	235.627	230.353	221.07
3	232.773	257.878	249.064	236.695	225.267
3.5	239.658	269.988	258.102	242.932	229.697
4	255.35	282.103	266.407	248.807	234.07

FIG 21 VARIATION OF MAX MX (KN-M) VS MASS RATIO

5.14 VARIATION OF MAX MY (KN-M) VS MASS RATIO

TABLE 27

VARIATION OF MAX MY (KN-M) VS MASS RATIO						
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF	
1	8.564	8.564	8.564	8.564	8.564	
1.5	9.224	9.403	9.192	8.945	8.815	
2	10.562	10.205	9.784	9.324	9.043	
2.5	11.159	10.975	10.5	9.599	9.277	
3	12.394	11.693	10.857	9.896	9.517	
3.5	13.19	12.39	11.342	10.185	9.759	
4	14.652	13.097	11.801	10.465	9.996	

FIG 22 VARIATION OF MAX MY (KN-M) VS MASS RATIO

5.15 VARIATION OF MAX MZ (KN-M) VS MASS RATIO

TABLE 28

VARIATION OF MAX MZ (KN-M) VS MASS RATIO						
MASS RATIO	IST FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	ROOF	
1	297.519	297.519	297.519	297.519	297.519	
1.5	309.488	325.959	318.919	309.757	305.324	
2	315.297	352.904	339.168	322.389	312.946	
2.5	330.951	378.757	357.519	331.725	320.989	
3	333.025	402.922	375.712	341.946	329.31	
3.5	350.767	426.42	392.346	351.868	337.739	
4	360.96	450.311	408.172	361.549	346.043	

FIG 23 VARIATION OF MAX MZ (KN-M) VS MASS RATIO

The variation of maximum reaction vs. mass ratio follows following equation:
TABLE 29

MAX FX	$\mathrm{Y}=-1726 X^{2}+32085 \mathrm{X}+20441$
MAX FY	$\mathrm{Y}=55768 \mathrm{X}+2 \mathrm{E}+06$
MAX FZ	$\mathrm{Y}=-355.5 X^{2}+7237 \mathrm{X}+13431$
MAX MX	$\mathrm{Y}=1.514 X^{2}+9.843 \mathrm{X}+203.9$
MAX MY	$\mathrm{Y}=-0.099 X^{2}+1.577 X+7.073$
MAX MZ	$\mathrm{Y}=-2.202 \times 2+47.82 \mathrm{x}+252.0$

Max FX, FY, FZ, MX, MY, and MZ shows similar and expected trend of increasing with increase in weight applied. Maximum variation is observed in $2^{\text {nd }}$ floor when irregularity is induced in top storey by keeping mass ratio equal to 4 while minimum variation is observed in top floor.

5.16 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 1ST STOREY

TABLE 30

VARIATION OF SHEAR X(KN) ALONG HEIGHT FOR LOAD CASE FOR 1ST STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	530.05	548.13	570.57	586.64	610.03	619.38	634.96
12.15	932.55	946.51	963.09	976.85	998.16	1010.38	1029.1
8.85	1227.44	1241.34	1257.83	1269.36	1286.16	1293.8	1305.25
5.55	1440.65	1454.69	1471.76	1484.12	1504.42	1514.95	1530.91
2.25	1520.05	1571.5	1646.9	1718.19	1827.21	1895.61	1993.21

FIG 24 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 1ST STOREY
5.17 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 2ND STOREY

TABLE 31

VARIATION OF SHEAR X(KN) ALONG HEIGHT FOR LOAD CASE FOR 2ND STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	530.05	533.16	534.92	536.64	538	539.03	537.79
12.15	932.55	946.56	958.86	970.03	979.13	986.72	989.66
8.85	1227.44	1239.22	1250.67	1261.77	1271.54	1280.17	1284.96
5.55	1440.65	1528.18	1619.39	1710.92	1799.21	1886.69	1976.52
2.25	1520.05	1608.7	1700.86	1792.84	1881.22	1968.53	2058.52

FIG 25 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 2ND STOREY

5.18 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 3RD STOREY

TABLE 32

VARIATION OF SHEAR X(KN) ALONG HEIGHT FOR LOAD CASE FOR 3RD STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	530.05	518.4	505.83	530.05	479.26	466.7	454.55
12.15	932.55	914.71	895.47	932.55	855.32	835.67	816.51
8.85	1227.44	1301.11	1374.33	1227.44	1511.72	1575.6	1636.76
5.55	1440.65	1507.04	1573.06	1440.65	1697.81	1756.2	1812.43
2.25	1520.05	1582.98	1646.75	1520.05	1767.75	1824.8	1879.84

FIG 26 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 3RD STOREY

5.19 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 4TH STOREY

TABLE 33

VARIATION OF SHEAR X(KN) ALONG HEIGHT FOR LOAD CASE FOR 4TH STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	530.05	502.49	477.14	460.77	444.39	430.76	417.41
12.15	932.55	1004.08	1077.86	1131.25	1188.28	1242.4	1293.73
8.85	1227.44	1271.08	1320.57	1358.73	1401.33	1443.2	1484.28
5.55	1440.65	1470.25	1506.28	1535.5	1569.28	1603.52	1637.76
2.25	1520.05	1546.03	1578.83	1605.93	1637.82	1670.16	1703.25

FIG 27 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR 4TH STOREY

5.20 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR TOP STOREY

TABLE 34

VARIATION OF SHEAR X(kN) ALONG HEIGHT FOR LOAD CASE FOR TOP STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	530.05	681.57	786.4	875.44	952.1	1022.31	1085.05
12.15	932.55	1012.51	1072.73	1127.59	1177.92	1226.28	1271.58
8.85	1227.44	1259.3	1289.86	1322.33	1355.38	1389.98	1424.2
5.55	1440.65	1449.73	1467.04	1489.83	1515.52	1543.95	1573.14
2.25	1520.05	1525.55	1540.64	1561.58	1586.73	1613.83	1641.79

FIG 28 VARIATION OF SHEAR X (KN) ALONG HEIGHT FOR LOAD CASE FOR TOP STOREY

5.21 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR

 1ST STOREYTABLE 35

VARIATION OF SHEAR Z(KN) ALONG HEIGHT FOR LOAD CASE FOR 1ST STOREY								
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4	
15.45	600.78	616.55	635.49	649.9	670.3	680.39	696.39	
12.15	1096.3	1110.63	1129.43	1144.34	1168.27	1182.09	1202.45	
8.85	1467.78	1481.84	1498.35	1510.44	1528.82	1537.4	1551.61	
5.55	1717.4	1733.4	1753.79	1768.28	1791.24	1802.51	1819.59	
2.25	1803.88	1860.2	1932.63	1993.02	2095.46	2161.85	2261.41	

FIG 29 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 1ST STOREY

5.22 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 2ND STOREY

TABLE 36

VARIATION OF SHEAR Z(KN) ALONG HEIGHT FOR LOAD CASE FOR 2ND STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	600.78	606.35	610.77	614.62	617.03	619.57	620.35
12.15	1096.3	1113.89	1130.55	1145.75	1157.54	1168.74	1178.23
8.85	1467.78	1484.72	1501.49	1517.75	1531.74	1545.06	1556.38
5.55	1717.4	1820.94	1929.44	2040.19	2149.48	2257.8	2365.38
2.25	1803.88	1908.38	2018.38	2130.49	2241.04	2350.08	2458.33

FIG 30 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 2ND STOREY

5.23 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 3RD STOREY

TABLE 37

VARIATION OF SHEAR Z(KN) ALONG HEIGHT FOR LOAD CASE FOR 3RD STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	600.78	586.39	570.96	600.78	540.35	524.84	502.71
12.15	1096.3	1072.69	1047.91	1096.3	999.17	976.03	953.8
8.85	1467.78	1552.46	1637.3	1467.78	1798.16	1872.88	1938.12
5.55	1717.4	1794.8	1872.43	1717.4	2020.5	2090.27	2156.08
2.25	1803.88	1878.21	1953.64	1803.88	2098.63	2166.64	2227.76

FIG 31 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 3RD STOREY

5.24 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 4TH STOREY

TABLE 38

VARIATION OF SHEAR Z(KN) ALONG HEIGHT FOR LOAD CASE FOR 4TH STOREY								
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4	
15.45	600.78	568.42	537.88	519.44	480.56	463.85	450.73	
12.15	1096.3	1183	1272.91	1340.19	1409.05	1477.02	1541.32	
8.85	1467.78	1523.11	1585.99	1634.81	1688.26	1742.27	1795.45	
5.55	1717.4	1756.04	1801.98	1841.855	1884.99	1929.88	1974.36	
2.25	1803.88	1837.14	1869.96	1915.69	1959.29	2001.84	2046.43	

FIG 32 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR 4TH STOREY

5.25 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR TOP STOREY

TABLE 39

VARIATION OF SHEAR Z(KN) ALONG HEIGHT FOR LOAD CASE FOR TOP STOREY							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	600.78	775.52	887.8	994.35	1088.49	1173.01	1248.95
12.15	1096.3	1191.88	1262.58	1329.05	1390.75	1449.65	1504.84
8.85	1467.78	1506.47	1538.07	1577.62	1619	1660.77	1702.1
5.55	1717.4	1725.62	1742.27	1767.83	1797.45	1830.38	1864.47
2.25	1803.88	1805.64	1821.92	1844.96	1875.08	1906.01	1938.33

FIG 33 VARIATION OF SHEAR Z (KN) ALONG HEIGHT FOR LOAD CASE FOR TOP STOREY

Storey shear increases with increases in weight applied in a storey. A large variation in storey shear is observed in a storey or below it when mass irregularity is induced in that particular storey. Maximum variation is observed when weight is increased on 1st floor. Shear in x and z shows same variation. When mass ratio is 4 on $1^{\text {st }}$ floor, the variation of shear on $1^{\text {st }}$ floor is 31.13% more than that of base case while change in top storey shear is 19.8% to that of base shear. When mass ratio is 4 on $2^{\text {nd }}$ floor, the variation of shear on $1^{\text {st }}$ floor is 35.85% more than that of base case while change in top storey shear is 1.88% to that of base shear

5.26 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 1ST FLOOR

TABLE 40

VARIATION OF STOREY DRIFT(MM) ALONG HEIGHT FOR 1ST FLOOR							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	2.896	2.922	2.956	2.982	3.023	3.046	3.079
12.15	3.939	3.971	4.012	4.041	4.089	4.111	4.147
8.85	3.165	3.193	3.228	3.253	3.294	3.313	3.343
5.55	2.773	2.804	2.831	2.825	2.86	2.841	2.849
2.25	1.797	1.854	1.905	1.957	2.032	2.093	2.163

FIG 34 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 1ST FLOOR

5.27 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 2ND FLOOR

TABLE 41

VARIATION OF STOREY DRIFT(MM) ALONG HEIGHT FOR 2ND FLOOR							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	2.896	2.926	2.951	2.974	2.991	3.005	3.004
12.15	3.939	4.04	4.141	4.239	4.332	4.419	4.5
8.85	3.165	3.265	3.367	3.466	3.559	3.65	3.737
5.55	2.773	2.911	3.036	3.165	3.287	3.421	3.551
2.25	1.797	1.914	2.041	2.159	2.272	2.383	2.497

FIG 35 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 2ND FLOOR

5.28 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 3RD FLOOR

TABLE 42

VARIATION OF STOREY DRIFT(MM) ALONG HEIGHT FOR 3RD FLOOR							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	2.896	2.855	2.81	2.896	2.719	2.675	2.633
12.15	3.939	4.099	4.246	3.939	4.494	4.6	4.697
8.85	3.165	3.35	3.528	3.165	3.846	3.989	4.122
5.55	2.773	2.933	3.068	2.797	3.323	3.442	3.558
2.25	1.797	1.898	1.987	1.807	2.155	2.224	2.307

FIG 36 VARIATION OF STOREY DRIFT(MM) ALONG HEIGHT FOR 3RD FLOOR

5.29 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 4TH FLOOR

TABLE 43

VARIATION OF STOREY DRIFT(MM) ALONG HEIGHT FOR 4TH FLOOR							
FLOOR HEIGHT	1	1.5	2	2.5	3	3.5	4
15.45	2.896	2.862	2.838	2.829	2.825	2.827	2.834
12.15	3.939	4.157	4.359	4.496	4.639	4.77	4.894
8.85	3.165	3.345	3.513	3.628	3.746	3.856	3.96
5.55	2.773	2.882	2.977	3.05	3.132	3.212	3.291
2.25	1.797	1.844	1.907	1.939	1.995	2.042	2.088

FIG 37 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR 4TH FLOOR

5.30 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR TOP FLOOR

TABLE 44

VARIATION OF STOREY DRIFT(MM) ALONG HEIGHT FOR TOP FLOOR							
FLOOR HEIGHT	$\mathbf{1}$	1.5	$\mathbf{2}$	2.5	3	3.5	4
15.45	2.896	3.451	3.847	4.193	4.502	4.786	4.934
12.15	3.939	4.159	4.321	4.47	4.609	4.743	4.871
8.85	3.165	3.289	3.382	3.469	3.554	3.637	3.719
5.55	2.773	2.822	2.858	2.904	2.951	3.013	3.072
2.25	1.797	1.824	1.85	1.881	1.915	1.944	1.991

FIG 38 VARIATION OF STOREY DRIFT (MM) ALONG HEIGHT FOR TOP FLOOR

5.31 VARIATION OF STOREY DRIFT ALONG HEIGHT FOR 200\% MASS

TABLE 45

VARIATION OF STOREY DRIFT ALONG HEIGHT FOR 200\% MASS					
FLOOR HEIGHT	1	2	3	4	5
15.45	2.956	2.951	2.81	2.838	3.847
12.15	4.012	4.141	4.246	4.359	4.321
8.85	3.228	3.367	3.528	3.513	3.382
5.55	2.831	3.036	3.068	2.977	2.858
2.25	1.905	2.041	1.987	1.907	1.85

FIG 39 VARIATION OF STOREY DRIFT ALONG HEIGHT FOR 200\% MASS

Storey drift increases with increases in weight applied in a storey. Maximum variation is observed in $4^{\text {th }}$ floor in every case while minimum variation is noted down in $1^{\text {st }}$ floor. It
can be induced from graph 5.26 to 31 that drift in middle storey is more than that of top story. Least variation is seen in lower floor. Maximum effect is observed when weight is changes on top floor and it is 70.37% while when weight is increased by mass ratio 2 , the variation of $52.5 \%, 44.58 \%, 41.42 \%, 48.82 \%$ and 107.9% occurs between top and $1^{\text {st }}$ floor for change in mass for $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ and top storey respectively

5.32 VARIATION OF MASS PARTICIPATION FACTOR \% IN X WITH MODE

TABLE 46

Mode	Participation X \%
1	58.003
2	12.298
3	5.713
4	8.867
5	1.449
6	0.445
7	3.962
8	0.549
9	0.055
10	0
11	0.001
12	0.001
13	0.025
14	0
15	0
16	0.002
17	0.003
18	0.019
19	0
20	0.024
21	0.137

FIG 40 VARIATION OF MASS PARTICIPATION FACTOR \% IN X WITH MODE

5.33 VARIATION OF MASS PARTICIPATION FACTOR \% IN Y WITH MODE

TABLE 47

Mode	Participation Y \%
1	0
2	0.001
3	0
4	0.001
5	0.006
6	0.003
7	0
8	0.029
9	0.015
10	0.011
11	0.104
12	12.898
13	8.37
14	2.775
15	0.137
16	0.238
17	0.047
18	0.21
19	4.697
20	0.443
21	4.964

FIG 41 VARIATION OF MASS PARTICIPATION FACTOR \% IN Y WITH MODE

5.34 VARIATION OF MASS PARTICIPATION FACTOR \% IN Z WITH MODE

TABLE 48

Mode	Participation Z \%
1	1.656
2	43.592
3	31.168
4	0.113
5	4.737
6	5.921
7	0.014
8	0.998
9	3.981
10	0.008
11	0.013
12	0
13	0.001
14	0
15	0
16	0
17	0.006
18	0
19	0.002
20	0.001
21	0.001

FIG 42 VARIATION OF MASS PARTICIPATION FACTOR \% IN Z WITH MODE

5.35 VARIATION OF MASS PARTICIPATION FACTOR \% IN X WITH MASS RATIO

TABLE 49

VARIATION OF MASS PARTICIPATION FACTOR \% IN X WITH MASS RATIO					
	1st FLOOR	2nd FLOOR	3rd FLOOR	4th FLOOR	5th FLOOR
1	58.003	58.003	58.003	58.003	58.003
1.5	55.575	58.111	59.156	58.884	59.01
2	52.948	58.322	60.229	59.846	59.909
2.5	51.372	58.614	61.003	60.555	60.804
3	48.982	58.952	62.061	61.313	61.67
3.5	48.114	59.329	62.837	62.023	62.507
4	46.736	59.728	63.538	62.684	63.287

FIG 43 VARIATION OF MASS PARTICIPATION FACTOR \% IN X WITH MASS RATIO

5.36 VARIATION OF MASS PARTICIPATION FACTOR \% IN Z WITH MASS RATIO

TABLE 50

VARIATION OF MASS PARTICIPATION FACTOR \% IN Z WITH MASS RATIO					
	1st FLOOR	2nd FLOOR	3rd FLOOR	4th FLOOR	5th FLOOR
1	43.592	43.592	43.592	43.592	43.592
1.5	41.817	44.459	46.507	48.07	48.013
2	39.878	45.432	49.154	51.821	50.793
2.5	38.752	46.479	51.592	54.105	52.977
3	36.97	47.537	53.502	56.231	54.757
3.5	36.387	48.627	55.271	58	56.271
4	35.39	49.728	56.832	59.502	57.557

FIG 44 VARIATION OF MASS PARTICIPATION FACTOR \% IN Z WITH MASS RATIO

Mass participation factor $\%$ in x is decreases from mode 1 onward to mode 21.This conclude that mode 1 is dominant for mass participation factor in x direction. With increase in weight, mass participation factor \% in x for mode 1 decreases when changes done in $1^{\text {st }}$ floor while it increases when changes done in other floor. Similar trend is observed for mass participation factor in z except mode 2 is dominant in this case. Variation from $1^{\text {st }}$ mode to $2^{\text {nd }}$ mode in mass participation factor in x is -78.79% while that of z direction is changes from 1.656 to 43.592. Participation of higher mode is dominant in y and z direction than in x direction.

The variation of mass participation factor \% vs. mode follows following equation
TABLE 51

X	$Y=-0.008 X^{5}+0.233 X^{4}-3.311 X^{3}+24.33 X^{2}-87.16 X+120.4$
Y	$Y=0.002 X^{5}-0.057 X^{4}+0.738 X^{3}-4.440 X^{2}+11.10 X-8.225$
Z	$Y=0.013 X^{5}-0.353 X^{4}+4.635 X^{3}-29.79 X^{2}+80.58 \mathrm{X}-46.02$

5.37 MODE SHAPE

Fig 45, 46 MODE SHAPE

CHAPTER 6

CONCLUSIONS

Following conclusion can be drawn on the basis of this study:

1. Fundamental frequency of building decreases with increase in mass applied on the building. Value of frequency decreases as mass changes floor changes from lower to upper floor. Effect on frequency and time period is maximum when mass is increased on uppermost floor. Time period shows opposite trend to that of frequency. Spectral acceleration approximately shows same trend as frequency.
2. Base shear, SRSS, ABS, CQC and SHEAR 10PCT shear increases with mass. Maximum effect is observed when mass is changed in lower floor.
3. Roof drift show increasing trend when weight is increased on lower and top floor while show decreasing trend when weight is increased on middle floor. Maximum variation is observed in roof drift when irregularity is induced in top storey.
4. Storey shear increases with increases in weight applied in a storey. A large variation in storey shear is observed in a storey or below it when mass irregularity is induced in that particular storey. Maximum variation is observed when weight is increased on lower floor.
5. Storey drift increases with increases in weight applied in a storey. Maximum variation is observed in upper floor in every case while minimum variation is noted down in lower floor. Maximum effect is observed when weight is changes on top floor.
6. Mode 1 is dominant for mass participation factor in x direction and Mode 2 is dominant for mass participation factor in z direction. Participation of higher mode is dominant in y and z direction than in x direction.

SCOPE OF FURTHER STUDY

In the present study only one type of building is selected. In order to develop the generalized effect on different output parameter considered in this study with mass irregularity, different types of building has to be considered i.e. building with different storey in different site and different specification.

REFERNCES

1. IS 1893 (PART 1) : 2002
2. http://framework.latimes.com/2011/02/09/sylmar-earthquake
3. Valmundsson, E.V. and Nau, J.M. (1997). "Seismic Response of Building Frames with Vertical Structural Irregularities", Journal of Structural Engineering, ASCE, Vol. 123, No. 1, pp. 30-41
4. Al-Ali, A.A.K. and Krawinkler, H. (1998). "Effects of Vertical Irregularities on Seismic Behavior of Building Structures", Report No. 130, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, U.S.A.
5. Fragiadakis Michalis, Vamvatsikos Dimitrios and Papadrakakis Manolis. (2006) Evaluation of the Influence of Vertical Irregularities on the Seismic Performance of a 9-storey steel frame.
6. Das, S. and Nau, J.M. (2003). "Seismic Design Aspects of Vertically Irregular Reinforced Concrete Buildings", Earthquake Spectra, Vol. 19, No. 3, pp. 455-477
7. Saleh Malekpour, Farhad Dashti and Amir Kiani "Assessment of Equivalent Static Earthquake Analysis Procedure for Structures with Mass Irregularity in Height 6th National Congress on Civil Engineering", April 26-27, 2011, Semnan University, Semnan, Iran pp 1-10.
8. Mohammad Hossein Cheraghi AFARANI, Ahmad NICKNAM "Seismic Response of Mass Irregular Steel Moment Resisting Frames (SMRF) According to Performance Levels from IDA Approach", Gazi University Journal of Science GU J Sci 25(3):751-760 (2012) pp 751-760.
9. Mohammad Ali Hadianfard and Mahdieh Gadami, "SEISMIC DEMAND OF STEEL STRUCTURES WITH MASS IRREGULARITY", Journal of Engineering and Technology 135-154.
10. Vinod K. Sadashiva, Gregory A. MacRae \& Bruce L. Deam "DETERMINATION OF STRUCTURAL IRREGULARITY LIMITS - MASS IRREGULARITY" BULLETIN OF THE NEW ZEALAND SOCIETY FOR EARTHQUAKE ENGINEERING, Vol. 42, No. 4, December 2009 pp.288-301.
11. Poncet, L. Trembly R (2004),"INFLUENCE OF MASS IRREGULARITY ON THE SEISMIC DESIGN AND PERFORMANCE OF MULTI-STOREY BRACED STEEL FRAMES" 13th world conference on earthquake engineering, Vancover, B.C., Canada, paper No. 2896.
12. UNIVERSAL BUILDING CODE (SECTION 1629)
13. NEHRP CODE (BSSC, 2003)
14. IRANIAN SEISMIC CODE (Standard 2800):
15. INTERNATIONAL BUILDING CODE (IBC). 2003. International Code Council.
16. K.V.Vijayendra, "Earthquake resistant design of structure (Subject code: 06CV834)" Department of Civil Engineering, BIT, Bangalore on VTU learning
17. IS 875:1997
18. STAAD PRO V8i

APPENDIX:

Following is STAAD editor file of original building which is designed in STAAD PRO V8i:

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 21-Apr-13

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

100 0; $26.600 ; 39.0500 ; 415.6500$ 0; 500 6.6; 66.60 6.6;
79.050 6.6; 815.650 6.6; 9 9.05 0 9.7; 10 15.65 0 9.7; 1100 13.2;
126.60 13.2; 139.050 16.3; 1415.650 16.3; 159.050 19.8;
1615.650 19.8; 1700 19.8; 186.60 19.8; 199.050 26.4; 2015.650 26.4;

2100 26.4; 226.60 26.4; 239.050 33; 2415.650 33; 256.60 33;
$2602.250 ; 276.62 .250 ; 289.052 .250 ; 2915.652 .250 ; 3002.25$ 6.6;
31 6.6 2.25 6.6; 32 9.05 2.25 6.6; 3315.65 2.25 6.6; 34 9.05 2.25 9.7;
35 12.65 2.25 9.7; 3602.25 13.2; 376.6 2.25 13.2; 3815.652 .25 9.7;
39 9.05 2.25 16.3; 4012.65 2.25 16.3; 4115.65 2.25 16.3; 429.052 .25 19.8;
43 15.65 2.25 19.8; 4402.25 19.8; 456.6 2.25 19.8; 460 2.25 26.4;
47 6.6 2.25 26.4; 489.05 2.25 26.4; 4915.65 2.25 26.4; 506.62 .25 33;
51 9.05 2.25 33; 5215.65 2.25 33; $5305.550 ; 546.65 .550 ; 559.055 .550$;
56 15.65 5.55 0; 570 5.55 6.6; 58 6.6 5.55 6.6; 59 9.05 5.55 6.6;
60 15.65 5.55 6.6; 61 9.05 5.55 9.7; 62 12.65 5.55 9.7; 6305.55 13.2;
64 6.6 5.55 13.2; 6515.65 5.55 9.7; 669.05 5.55 16.3; 6712.65 5.55 16.3;
68 15.65 5.55 16.3; 69 9.05 5.55 19.8; 7015.65 5.55 19.8; 7105.55 19.8;
726.65 .55 19.8; 7305.55 26.4; 746.65 .55 26.4; 75 9.05 5.55 26.4;

76 15.65 5.55 26.4; 776.65 .55 33; 789.05 5.55 33; 7915.65 5.55 33;
8005.55 3.3; 816.65 .55 3.3; 8205.55 9.7; 836.6 5.55 9.7; 8405.55 16.3; 856.6 5.55 16.3; 8605.55 23.1; 876.6 5.55 23.1; 889.05 5.55 23.1; 89 15.65 5.55 23.1; 909.05 5.55 29.7; 9115.65 5.55 29.7; 9608.850 ; 976.6 8.85 0; 989.05 8.85 0; 9915.65 8.85 0; 10008.85 6.6; 1016.6 8.85 6.6; 1029.05 8.85 6.6; 1040 8.85 3.3; 1056.6 8.85 3.3; 1089.058 .85 9.7; 10912.658 .85 9.7; 11008.85 13.2; 1116.68 .85 13.2; 11208.85 9.7; 1136.68 .85 9.7; 11415.658 .85 6.6; 11515.65 8.85 9.7; 1169.058 .85 16.3; 11712.658 .85 16.3; 11815.658 .85 16.3; 11908.85 19.8; 1206.68 .85 19.8; 12108.85 16.3; 1226.68 .85 16.3; 1239.058 .85 19.8; 12415.658 .85 19.8; 12508.85 26.4; 1266.68 .85 26.4; 1279.058 .85 26.4; 12815.658 .85 26.4; 1290 8.85 23.1; 1306.68 .85 23.1; 1319.058 .85 23.1; 13215.658 .85 23.1; 1336.68 .85 33; 1349.058 .85 29.7; 13515.658 .85 29.7; 1369.058 .85 33; 13715.658 .85 33; 139012.150 ; 1406.612 .150 ; 141 9.05 12.15 0; $14215.6512 .150 ; 143012.15$ 6.6; 1446.612 .15 6.6; 145 9.05 12.15 6.6; 147012.15 3.3; 1486.612 .15 3.3; 1519.0512 .15 9.7; 153012.15 13.2; 1546.612 .15 13.2; 1550 12.15 9.7; 1566.6 12.15 9.7; 15715.6512 .15 6.6; 15815.6512 .15 9.7; 1599.0512 .15 16.3; 16115.6512 .15 16.3; 162012.15 19.8; 1636.612 .15 19.8; 164012.15 16.3; $1656.612 .1516 .3 ; 1669.0512 .1519 .8 ; 16715.6512 .15$ 19.8; 168012.15 26.4; 1696.612 .15 26.4; 1709.0512 .15 26.4; 17115.65 12.15 26.4; 172012.15 23.1; 1736.612 .15 23.1; 1749.0512 .15 23.1; 17515.6512 .15 23.1; 1766.612 .1533 ; 1779.0512 .15 29.7; 17815.6512 .15 29.7; 1799.0512 .1533 ; 18015.6512 .15 33; 1829.0512 .15 13; 18315.6512 .15 13; 184015.450 ; $1856.615 .450 ; 1869.0515 .450 ; 18715.6515 .450 ; 188015.45$ 6.6; 1896.6 15.45 6.6; 1909.05 15.45 6.6; 1920 15.45 3.3; 1936.615 .45 3.3; 196015.45 13.2; 1976.615 .45 13.2; 1980 15.45 9.7; 1996.615 .45 9.7; 200 9.05 15.45 9.7; 20115.65 15.45 6.6; 20215.6515 .45 9.7; 203 9.05 15.45 13; 204015.45 19.8; 2056.615 .45 19.8; 206015.45 16.3; 2076.6 15.45 16.3; 2089.0515 .45 16.3; 2099.0515 .45 19.8; 21015.6515 .45 16.3; 21115.6515 .45 19.8; 212015.45 26.4;
2136.615 .45 26.4; 2149.0515 .45 26.4; 21515.6515 .45 26.4; 216015.45 23.1; 2176.615 .45 23.1; 2189.0515 .45 23.1; 21915.65 15.45 23.1; 2206.615 .45 33; 2219.05 15.45 29.7; 22215.6515 .45 29.7; 2239.0515 .45 33; 22415.6515 .4533 ; 22615.6515 .45 13; 22712.650 9.7; 22812.650 16.3; 2296.6 2.25 9.7; 2306.62 .25 16.3; 231 10.55 2.25 16.3; 23210.552 .25 19.8; 23315.65 3.9 16.3; 23415.65 3.9 19.8; 23515.657 .2 19.8; 23615.657 .2 16.3; 23715.65 10.5 16.3; 23815.6510 .5 19.8; $23912.30500 ; 24012.30503 .74$; 241 12.305 0 6.6; 24215.650 3.74; 243 12.305 2.25 0; 24412.3052 .25 3.74; 245 12.305 2.25 6.6; 24615.652 .25 3.74; 24712.3055 .550 ; 248 12.305 5.55 3.74; 249 12.305 5.55 6.6; 25015.65 5.55 3.74; 251 12.305 8.85 0; 25212.3058 .85 3.74; 25312.3058 .85 6.6; 25415.658 .85 3.74; $25512.30512 .150 ; 25612.30512 .153 .74$; 25712.30512 .15 6.6; $25815.6512 .153 .74 ; 25912.30515 .450$; 26012.30515 .45 3.74; 26112.30515 .45 6.6; 26215.6515 .45 3.74;

MEMBER INCIDENCES

126 27; 227 28; 328 243; 430 31; 532 245; 626 30; 727 31; 828 32;
929 246; 1034 35; 1136 37; 1230 36; 1331 229; 1432 34; 1533 38;
1635 38; 1739 231; 1834 39; 1935 40; 2040 41; 2144 45; 2236 44;
2337 230; 2439 42; 2541 43; 2646 47; 2748 49; 2844 46; 2945 47;
3042 48; 3143 49; 3247 50; 3348 51; 3449 52; 3550 51; $365152 ; 37126$;
382 27; 393 28; 404 29; 415 30; 426 31; 437 32; 448 33; 459 34;
4610 38; 4711 36; 4812 37; 4913 39; 5014 41; 5117 44; 5218 45; 5315 42;
5416 43; 5521 46; 5622 47; 5719 48; 5820 49; 5925 50; 6023 51; 6124 52;
6253 54; 6354 55; 6455 247; 6557 58; 6659 249; 6753 80; 6854 81;
6955 59; 7056 250; 7161 62; 7263 64; 7357 82; 7458 83; 7559 61;
7660 65; 7762 65; 7866 67; 7961 66; 8062 67; 8167 68; 8271 72; 8363 84; 8464 85; 8566 69; 8773 74; 8875 76; 8971 86; 9072 87; 9169 88; 9270 89; 9374 77; 9475 90; 9576 91; 9677 78; 9778 79; 9826 53; 9927 54; 10028 55; 10129 56; 10230 57; 10331 58; 10432 59; 10533 60; 10634 61; 10738 65; 10836 63; 10937 64; 11039 66; 11141 233; 11244 71; 11345 72;

11442 69; 11543 234; 11646 73; 11747 74; 11848 75; 11949 76; 12050 77; 12151 78; 12252 79; 12342 232; 12469 70; 12580 57; 12681 58; 12780 81; 12882 63; 12983 64; $1308471 ; 1318572 ; 1328673 ; 1338774 ; 1348875$; 13589 76; $1369078 ; 1379179 ; 13882$ 83; 13984 85; 14086 87; 14188 89; 14290 91; 144250 60; 147249 60; 14996 97; 15097 98; 15198 251; 152100 101; 153102 253; 15496 104; 15597 105; 15698 102; 15799 254; 158108 109; 159110 111; 160100 112; 161101 113; 162102 108; 163114115 ; 164109 115; 165116 117; 166108 116; 167109 117; 168117 118; 169119 120; 170110 121; 171111 122; 172116 123; 174125 126; 175127 128; 176119 129; 177120 130; 178123 131; 179124 132; 180126 133; 181127 134; 182128135 ; 183133 136; 184136 137; 18553 96; 18654 97; 18755 98; 18856 99; 18957 100; 19058 101; 19159 102; 19260 114; 19361 108; 19465 115; 19563 110; 19664 111; 19766 116; 19868 236; 19971 119; 20072 120; 20169 123; 20270 235; 20373 125; 20474 126; 20575 127; 20676 128; 20777 133; 20878 136; 20979 137; 210123 124; 211104 100; 212105 101; 213104 105; 214112 110; 215113 111; 216121 119; 217122 120; 218129 125; 219130 126; 220131 127; 221132 128; 222134 136; 223135 137; 224112113 ; 225121 122; 226129 130; 227131 132; 228134 135; 230254 114; 233253 114; 235139 140; 236140 141; 237141 255; 238143 144; 239145 257; 240139 147; 241140 148; 242141 145; 243142 258; 245153 154; 246143 155; 247144 156; 248145 151; 249157 158; 252151 182; 255162 163; 256153 164; 257154 165; 258159 166; 260168 169; 261170 171; 262162 172; 263163 173; 264166 174; 265167 175; 266169 176; 267170 177; 268171 178; 269176 179; 270179 180; 27196 139; 27297 140; 27398 141; 27499 142; 275100 143; 276101 144; 277102 145; 278114 157; 279108 151; 280115 158; 281110 153; 282111 154; 283116 159; 284118 237; 285119 162; 286120 163; 287123 166; 288124238 ; 289125 168; 290126 169; 291127 170; 292128 171; 293133 176; 294136 179; 295137 180; 296166 167; 297147 143; 298148 144; 299147 148; 300155 153; 301156 154; 302164 162; 303165 163; 304172 168; 305173 169; 306174 170; 307175 171; 308177 179; 309178 180; 310155 156; 311164 165; 312172 173; 313174 175; 314177 178; 316258 157; 319257 157; 321151 158; 322159 161;

323158 183; 324182 159; 325183 161; 326182 183; 327184 185; 328185 186; 329186 259; 330188 189; 331190 261; 332184 192; 333185 193; 334186 190; 335187 262; 336196 197; 337188 198; 338189 199; 339190 200; 340201 202; 341200 203; 342204 205; 343196 206; 344197 207; 345208 209; 346210 211; 347212 213; 348214 215; 349204 216; 350205 217; 351209 218; 352211 219; 353213 220; 354214 221; 355215 222; 356220 223; 357223 224; 358139 184; 359140 185; 360141 186; 361142 187; 362143 188; 363144 189; 364145 190; 365157 201; 366151 200; 367158 202; 368153 196; 369154 197; 370159 208; 372162 204; 373163 205; 374166 209; 376168 212; 377169 213; 378170214 ; 379171 215; 380176 220; 381179 223; 382180 224; 383209 211; 384192 188; 385193 189; 386192 193; 387198 196; 388199 197; 389206 204; 390207 205; 391216 212; 392217 213; 393218 214; 394219 215; 395221 223; 396222 224; 397198 199; 398206 207; 399216 217; 400218 219; 401221 222; 403262 201; 406261 201; 408200 202; 409208 210; 410202 226; 411203 208; 412226 210; 413203 226; 414227 35; 41535 62; 41662 109; 417228 40; 41840 67; 41967 117; 42031 32; 42145 42; 42247 48; 423229 37; 424230 45; 425229 34; 426230 39; 427231 40; 428232 43; 429231 232; 43058 59; 431101 102; 432144 145; 433189 190; 43483 61; 435113 108; 436156 151; 437199 200; 43872 69; 439120 123; 440163 166; 441205 209; 44274 75; 443126 127; 444169 170; 445213 214; 44685 66; 447122 116; 448165 159; 449207 208; 450233 68; 451234 70; 452235 124; 453236 118; 454237 161; 455238 167; 458233 234; 459236 235; 460237 238; 461161 210; 462167 211; 463243 29; 464246 33; 465245 33; 466243 244; 467244 246; 468244 245; 469247 56; 470247 248; 471248 250; 472248 249; 473251 99; 474251 252; 475252 254; 476252 253; 477255 142; 478255 256; 479256 258; 480256 257; 481259 187; 482259 260; 483260 262; 484260 261; 485239 243; 486243 247; 487247 251; 488251 255; 489255 259; 490240 244; 491244 248; 492248 252; 493252 256; 494256 260; 495241 245; 496245 249; 497249 253; 498253 257; 499257 261; 500242 246; 501246 250; 502250 254; 503254 258; 504258 262;

UNIT MMS NEWTON

DEFINE MATERIAL START

ISOTROPIC MATERIAL1

E 25000
POISSON 0.17
DENSITY 2.4e-005
DAMP 7.90066e+033
END DEFINE MATERIAL

UNIT METER KN

CONSTANTS

MATERIAL MATERIAL1 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228230 -

233235 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370 372 -

373 TO 374376 TO 401403406408 TO 455458 TO 504

MEMBER PROPERTY INDIAN

*COLUMN

37 TO 6198 TO 122185 TO 209271 TO 295358 TO 370372 TO 374376 TO 382 -450 TO 455461462485 TO 504 PRIS YD 0.45 ZD 0.6

414 TO 419 PRIS YD 0.6 ZD 0.45

*PLINTH BEAM

13 TO 1316 TO 2326 TO 3436123423424427428463 TO 466-468 PRIS YD 0.6 ZD 0.3

21415242535420 TO 422425426429467 PRIS YD 0.45 ZD 0.3

*BEAMS

6264 TO 7072 TO 74798082 TO 8587 TO 9597124 TO 142144147149 151-152 TO 157159 TO 161166167169 TO 172174 TO 182184210 TO 228 230233 -235 237 TO 243245 TO 247252255 TO 258260 TO 268270296 TO 314316319 -321 TO 327329 TO 338341 TO 355357383 TO 401403406408 TO 413469470 -472 TO 474476 TO 478480 TO 482484 PRIS IY 100 YD 0.6 ZD 0.3

637175 TO 788196150158162 TO 165168183236248249269328339 340-356 430 TO 449458 TO 460471475479483 PRIS IY 100 YD 0.45 ZD 0.3

SUPPORTS

1 TO 25227228239 TO 242 FIXED

MEMBER RELEASE

127138 TO 142213224 TO 228299310 TO 314326386397 TO 401 413 START FX FZ MX MY MZ

127140 TO 142213226 TO 228299312 TO 314326386399 TO 401 413 END FX FZ MX MY MZ

CUT OFF MODE SHAPE 21
DEFINE 1893 LOAD
ZONE 0.24 RF 5 I 1.5 SS 2 ST 1 DM 0.05
SELFWEIGHT
LOAD 1 EQX
JOINT LOAD
1 FX 7.29
2 FX 7.29
3 FX 7.29
4 FX 7.29
5 FX 7.29
6 FX 7.29
7 FX 7.29
8 FX 7.29
9 FX 7.29
10 FX 7.29
11 FX 7.29
12 FX 7.29
13 FX 7.29
14 FX 7.29
15 FX 7.29
16 FX 7.29
17 FX 7.29
18 FX 7.29

19 FX 7.29
20 FX 7.29
21 FX 7.29
22 FX 7.29
23 FX 7.29
24 FX 7.29
25 FX 7.29
26 FX 220.187
27 FX 272.646
28 FX 236.409
29 FX 115.404
30 FX 352.938
31 FX 349.267
32 FX 293.953
33 FX 126.557
34 FX 242.602
35 FX 243.454
36 FX 369.985
37 FX 279.239
38 FX 93.671
39 FX 196.047
40 FX 198.889
41 FX 78.968
42 FX 137.696
43 FX 253.012
44 FX 326.209
45 FX 333.074
46 FX 220.614
47 FX 362.96
48 FX 384.079
49 FX 329.414

50 FX 111.796
51 FX 238.803
52 FX 199.885
53 FX 155.291
54 FX 189.936
55 FX 244.505
56 FX 118.872
57 FX 201.572
58 FX 236.769
59 FX 301.155
60 FX 175.18
61 FX 202.665
62 FX 243.027
63 FX 229.023
64 FX 249.606
65 FX 97.112
66 FX 255.836
67 FX 188.688
68 FX 34.91
69 FX 280.8
70 FX 142.003
71 FX 186.845
72 FX 214.141
73 FX 172.02
74 FX 305.407
75 FX 206.408
76 FX 179.647
77 FX 120.221
78 FX 178.379
79 FX 151.525
80 FX 159.922

81 FX 180.604
82 FX 146.778
83 FX 241.746
84 FX 145.938
85 FX 241.308
86 FX 202.448
87 FX 214.892
88 FX 178.075
89 FX 163.936
90 FX 225.228
91 FX 203.131
96 FX 152.751
97 FX 187.876
98 FX 243.372
99 FX 118.827
100 FX 200.466
101 FX 237.682
102 FX 298.979
104 FX 162.951
105 FX 186.159
108 FX 203.966
109 FX 228.178
110 FX 208.359
111 FX 230.553
112 FX 146.473
113 FX 241.898
114 FX 175.345
115 FX 98.809
116 FX 255.6
117 FX 177.331
118 FX 34.178

119 FX 212.736
120 FX 248.131
121 FX 145.764
122 FX 241.276
123 FX 272.383
124 FX 141.745
125 FX 153.349
126 FX 280.643
127 FX 239.527
128 FX 205.754
129 FX 162.093
130 FX 175.55
131 FX 180.835
132 FX 163.733
133 FX 121.132
134 FX 185.127
135 FX 162.572
136 FX 157.753
137 FX 132.653
139 FX 153.822
140 FX 186.866
141 FX 245.051
142 FX 118.8
143 FX 201.419
144 FX 235.098
145 FX 306.78
147 FX 162.154
148 FX 184.767
151 FX 231.431
153 FX 208.482
154 FX 229.493

155 FX 146.962
156 FX 230.098
157 FX 173.533
158 FX 236.428
159 FX 249.01
161 FX 148.556
162 FX 213.564
163 FX 246.861
164 FX 145.963
165 FX 235.852
166 FX 282.809
167 FX 147.317
168 FX 154.027
169 FX 282.036
170 FX 237.539
171 FX 206.697
172 FX 161.456
173 FX 175.309
174 FX 178.999
175 FX 163.493
176 FX 122.606
177 FX 184.175
178 FX 161.914
179 FX 156.807
180 FX 133.677
182 FX 176.964
183 FX 163.82
184 FX 115.836
185 FX 157.633
186 FX 137.288
187 FX 66.148

188 FX 168.337
189 FX 222.518
190 FX 175.381
192 FX 171.002
193 FX 196.994
196 FX 178.839
197 FX 201.811
198 FX 150.363
199 FX 254.797
200 FX 153.792
201 FX 94.701
202 FX 171.954
203 FX 194.295
204 FX 181.595
205 FX 219.397
206 FX 149.526
207 FX 250.487
208 FX 177.433
209 FX 214.969
210 FX 182.576
211 FX 181.356
212 FX 116.946
213 FX 218.958
214 FX 216.817
215 FX 175.017
216 FX 169.74
217 FX 183.067
218 FX 191.97
219 FX 166.297
220 FX 82.127
221 FX 196.039

222 FX 170.419
223 FX 159.795
224 FX 115.77
226 FX 166.669
227 FX 7.29
228 FX 7.29
229 FX 133.457
230 FX 136.832
231 FX 136.063
232 FX 273.146
233 FX 107.258
234 FX 105.716
235 FX 106.295
236 FX 106.679
237 FX 106.57
238 FX 106.404
239 FX 7.29
240 FX 7.29
241 FX 7.29
242 FX 7.29
243 FX 190.653
244 FX 254.359
245 FX 213.068
246 FX 175.922
247 FX 193.222
248 FX 256.407
249 FX 241.84
250 FX 200.034
251 FX 193.422
252 FX 256.701
253 FX 241.471

254 FX 199.964
255 FX 193.28
256 FX 256.505
257 FX 242.017
258 FX 200.257
259 FX 115.277
260 FX 156.177
261 FX 144.844
262 FX 113.516
1 FY 7.29
2 FY 7.29
3 FY 7.29
4 FY 7.29
5 FY 7.29
6 FY 7.29
7 FY 7.29
8 FY 7.29
9 FY 7.29
10 FY 7.29
11 FY 7.29
12 FY 7.29
13 FY 7.29
14 FY 7.29
15 FY 7.29
16 FY 7.29
17 FY 7.29
18 FY 7.29
19 FY 7.29
20 FY 7.29
21 FY 7.29
22 FY 7.29

23 FY 7.29
24 FY 7.29
25 FY 7.29
26 FY 220.187
27 FY 272.646
28 FY 236.409
29 FY 115.404
30 FY 352.938
31 FY 349.267
32 FY 293.953
33 FY 126.557
34 FY 242.602
35 FY 243.454
36 FY 369.985
37 FY 279.239
38 FY 93.671
39 FY 196.047
40 FY 198.889
41 FY 78.968
42 FY 137.696
43 FY 253.012
44 FY 326.209
45 FY 333.074
46 FY 220.614
47 FY 362.96
48 FY 384.079
49 FY 329.414
50 FY 111.796
51 FY 238.803
52 FY 199.885
53 FY 155.291

54 FY 189.936
55 FY 244.505
56 FY 118.872
57 FY 201.572
58 FY 236.769
59 FY 301.155
60 FY 175.18
61 FY 202.665
62 FY 243.027
63 FY 229.023
64 FY 249.606
65 FY 97.112
66 FY 255.836
67 FY 188.688
68 FY 34.91
69 FY 280.8
70 FY 142.003
71 FY 186.845
72 FY 214.141
73 FY 172.02
74 FY 305.407
75 FY 206.408
76 FY 179.647
77 FY 120.221
78 FY 178.379
79 FY 151.525
80 FY 159.922
81 FY 180.604
82 FY 146.778
83 FY 241.746
84 FY 145.938

85 FY 241.308
86 FY 202.448
87 FY 214.892
88 FY 178.075
89 FY 163.936
90 FY 225.228
91 FY 203.131
96 FY 152.751
97 FY 187.876
98 FY 243.372
99 FY 118.827
100 FY 200.466
101 FY 237.682
102 FY 298.979
104 FY 162.951
105 FY 186.159
108 FY 203.966
109 FY 228.178
110 FY 208.359
111 FY 230.553
112 FY 146.473
113 FY 241.898
114 FY 175.345
115 FY 98.809
116 FY 255.6
117 FY 177.331
118 FY 34.178
119 FY 212.736
120 FY 248.131
121 FY 145.764
122 FY 241.276

123 FY 272.383
124 FY 141.745
125 FY 153.349
126 FY 280.643
127 FY 239.527
128 FY 205.754
129 FY 162.093
130 FY 175.55
131 FY 180.835
132 FY 163.733
133 FY 121.132
134 FY 185.127
135 FY 162.572
136 FY 157.753
137 FY 132.653
139 FY 153.822
140 FY 186.866
141 FY 245.051
142 FY 118.8
143 FY 201.419
144 FY 235.098
145 FY 306.78
147 FY 162.154
148 FY 184.767
151 FY 231.431
153 FY 208.482
154 FY 229.493
155 FY 146.962
156 FY 230.098
157 FY 173.533
158 FY 236.428

159 FY 249.01
161 FY 148.556
162 FY 213.564
163 FY 246.861
164 FY 145.963
165 FY 235.852
166 FY 282.809
167 FY 147.317
168 FY 154.027
169 FY 282.036
170 FY 237.539
171 FY 206.697
172 FY 161.456
173 FY 175.309
174 FY 178.999
175 FY 163.493
176 FY 122.606
177 FY 184.175
178 FY 161.914
179 FY 156.807
180 FY 133.677
182 FY 176.964
183 FY 163.82
184 FY 115.836
185 FY 157.633
186 FY 137.288
187 FY 66.148
188 FY 168.337
189 FY 222.518
190 FY 175.381
192 FY 171.002

193 FY 196.994
196 FY 178.839
197 FY 201.811
198 FY 150.363
199 FY 254.797
200 FY 153.792
201 FY 94.701
202 FY 171.954
203 FY 194.295
204 FY 181.595
205 FY 219.397
206 FY 149.526
207 FY 250.487
208 FY 177.433
209 FY 214.969
210 FY 182.576
211 FY 181.356
212 FY 116.946
213 FY 218.958
214 FY 216.817
215 FY 175.017
216 FY 169.74
217 FY 183.067
218 FY 191.97
219 FY 166.297
220 FY 82.127
221 FY 196.039
222 FY 170.419
223 FY 159.795
224 FY 115.77
226 FY 166.669

227 FY 7.29
228 FY 7.29
229 FY 133.457
230 FY 136.832
231 FY 136.063
232 FY 273.146
233 FY 107.258
234 FY 105.716
235 FY 106.295
236 FY 106.679
237 FY 106.57
238 FY 106.404
239 FY 7.29
240 FY 7.29
241 FY 7.29
242 FY 7.29
243 FY 190.653
244 FY 254.359
245 FY 213.068
246 FY 175.922
247 FY 193.222
248 FY 256.407
249 FY 241.84
250 FY 200.034
251 FY 193.422
252 FY 256.701
253 FY 241.471
254 FY 199.964
255 FY 193.28
256 FY 256.505
257 FY 242.017

258 FY 200.257
259 FY 115.277
260 FY 156.177
261 FY 144.844
262 FY 113.516
1 FZ 7.29
2 FZ 7.29
3 FZ 7.29
4 FZ 7.29
5 FZ 7.29
6 FZ 7.29
7 FZ 7.29
8 FZ 7.29
9 FZ 7.29
10 FZ 7.29
11 FZ 7.29
12 FZ 7.29
13 FZ 7.29
14 FZ 7.29
15 FZ 7.29
16 FZ 7.29
17 FZ 7.29
18 FZ 7.29
19 FZ 7.29
20 FZ 7.29
21 FZ 7.29
22 FZ 7.29
23 FZ 7.29
24 FZ 7.29
25 FZ 7.29
26 FZ 220.187

27 FZ 272.646
28 FZ 236.409
29 FZ 115.404
30 FZ 352.938
31 FZ 349.267
32 FZ 293.953
33 FZ 126.557
34 FZ 242.602
35 FZ 243.454
36 FZ 369.985
37 FZ 279.239
38 FZ 93.671
39 FZ 196.047
40 FZ 198.889
41 FZ 78.968
42 FZ 137.696
43 FZ 253.012
44 FZ 326.209
45 FZ 333.074
46 FZ 220.614
47 FZ 362.96
48 FZ 384.079
49 FZ 329.414
50 FZ 111.796
51 FZ 238.803
52 FZ 199.885
53 FZ 155.291
54 FZ 189.936
55 FZ 244.505
56 FZ 118.872
57 FZ 201.572

58 FZ 236.769
59 FZ 301.155
60 FZ 175.18
61 FZ 202.665
62 FZ 243.027
63 FZ 229.023
64 FZ 249.606
65 FZ 97.112
66 FZ 255.836
67 FZ 188.688
68 FZ 34.91
69 FZ 280.8
70 FZ 142.003
71 FZ 186.845
72 FZ 214.141
73 FZ 172.02
74 FZ 305.407
75 FZ 206.408
76 FZ 179.647
77 FZ 120.221
78 FZ 178.379
79 FZ 151.525
80 FZ 159.922
81 FZ 180.604
82 FZ 146.778
83 FZ 241.746
84 FZ 145.938
85 FZ 241.308
86 FZ 202.448
87 FZ 214.892
88 FZ 178.075

89 FZ 163.936
90 FZ 225.228
91 FZ 203.131
96 FZ 152.751
97 FZ 187.876
98 FZ 243.372
99 FZ 118.827
100 FZ 200.466
101 FZ 237.682
102 FZ 298.979
104 FZ 162.951
105 FZ 186.159
108 FZ 203.966
109 FZ 228.178
110 FZ 208.359
111 FZ 230.553
112 FZ 146.473
113 FZ 241.898
114 FZ 175.345
115 FZ 98.809
116 FZ 255.6
117 FZ 177.331
118 FZ 34.178
119 FZ 212.736
120 FZ 248.131
121 FZ 145.764
122 FZ 241.276
123 FZ 272.383
124 FZ 141.745
125 FZ 153.349
126 FZ 280.643

127 FZ 239.527
128 FZ 205.754
129 FZ 162.093
130 FZ 175.55
131 FZ 180.835
132 FZ 163.733
133 FZ 121.132
134 FZ 185.127
135 FZ 162.572
136 FZ 157.753
137 FZ 132.653
139 FZ 153.822
140 FZ 186.866
141 FZ 245.051
142 FZ 118.8
143 FZ 201.419
144 FZ 235.098
145 FZ 306.78
147 FZ 162.154
148 FZ 184.767
151 FZ 231.431
153 FZ 208.482
154 FZ 229.493
155 FZ 146.962
156 FZ 230.098
157 FZ 173.533
158 FZ 236.428
159 FZ 249.01
161 FZ 148.556
162 FZ 213.564
163 FZ 246.861

164 FZ 145.963
165 FZ 235.852
166 FZ 282.809
167 FZ 147.317
168 FZ 154.027
169 FZ 282.036
170 FZ 237.539
171 FZ 206.697
172 FZ 161.456
173 FZ 175.309
174 FZ 178.999
175 FZ 163.493
176 FZ 122.606
177 FZ 184.175
178 FZ 161.914
179 FZ 156.807
180 FZ 133.677
182 FZ 176.964
183 FZ 163.82
184 FZ 115.836
185 FZ 157.633
186 FZ 137.288
187 FZ 66.148
188 FZ 168.337
189 FZ 222.518
190 FZ 175.381
192 FZ 171.002
193 FZ 196.994
196 FZ 178.839
197 FZ 201.811
198 FZ 150.363

199 FZ 254.797
200 FZ 153.792
201 FZ 94.701
202 FZ 171.954
203 FZ 194.295
204 FZ 181.595
205 FZ 219.397
206 FZ 149.526
207 FZ 250.487
208 FZ 177.433
209 FZ 214.969
210 FZ 182.576
211 FZ 181.356
212 FZ 116.946
213 FZ 218.958
214 FZ 216.817
215 FZ 175.017
216 FZ 169.74
217 FZ 183.067
218 FZ 191.97
219 FZ 166.297
220 FZ 82.127
221 FZ 196.039
222 FZ 170.419
223 FZ 159.795
224 FZ 115.77
226 FZ 166.669
227 FZ 7.29
228 FZ 7.29
229 FZ 133.457
230 FZ 136.832

231 FZ 136.063
232 FZ 273.146
233 FZ 107.258
234 FZ 105.716
235 FZ 106.295
236 FZ 106.679
237 FZ 106.57
238 FZ 106.404
239 FZ 7.29
240 FZ 7.29
241 FZ 7.29
242 FZ 7.29
243 FZ 190.653
244 FZ 254.359
245 FZ 213.068
246 FZ 175.922
247 FZ 193.222
248 FZ 256.407
249 FZ 241.84
250 FZ 200.034
251 FZ 193.422
252 FZ 256.701
253 FZ 241.471
254 FZ 199.964
255 FZ 193.28
256 FZ 256.505
257 FZ 242.017
258 FZ 200.257
259 FZ 115.277
260 FZ 156.177
261 FZ 144.844

262 FZ 113.516

SPECTRUM CQC 1893 TOR X 0.036 ACC SCALE 1 DAMP 0.05 LIN MIS SOIL TYPE 2

LOAD 2 EQZ
 SPECTRUM CQC 1893 TOR Z 0.036 ACC SCALE 1 DAMP 0.05 SOIL TYPE 2

LOAD 3 WALL

SELFWEIGHT Y -1

MEMBER LOAD
13569 TO 1215 TO 17202226283132346264666770 TO 7376 TO 78 81838789929395123 TO 125128130132135137144147149151153154 -157 158160163 TO 165168170174176179180182210211214216218 $221-223230233235237239240243246249256260262265266268296$ 297 300-302304307309316319321 TO 323325427428458 TO 460 UNI GY - 14.3

247813141923242930333663656869747580848590919497 -126 129131133134136140142150152155156159161162167169171172 175177178181184212215217219220222236238241242245247248252 -255257258261263264267270298301303305306308324423 -424 UNI GY-8.1

25 UNI GY -9.8
327 TO 329332335337340343346347349352353355 TO 357384387389 -391 394396403410412 UNI GY -5.8

LOAD 4 DL

FLOOR LOAD
**
*TERRACE LVL
YRANGE 2.0 3.0 FLOAD -4.75 XRANGE 0 15.7 ZRANGE 033.1

*ADD TOILET

YRANGE 2.0 3.0 FLOAD -14.75 XRANGE 9 15.7 ZRANGE 06.7
**

* FIRST FLOOR LVL

**
YRANGE 5.55 5.55 FLOAD -4.75 XRANGE 0 15.7 ZRANGE 033.1
*ADD TOILET
YRANGE 5.55 5.55 FLOAD -14.75 XRANGE 9 15.7 ZRANGE 06.7
**

* SECOND FLOOR LVL
**
YRANGE 8.85 8.85 FLOAD -4.75 XRANGE 0 15.7 ZRANGE 033.1

*ADD TOILET

YRANGE 8.85 8.85 FLOAD -14.75 XRANGE 9 15.7 ZRANGE 06.7
**

* THIRD FLOOR LVL
**
YRANGE 12.15 12.15 FLOAD -4.75 XRANGE 0 15.7 ZRANGE 033.1

*ADD TOILET

YRANGE 12.15 12.15 FLOAD -14.75 XRANGE 9 15.7 ZRANGE 06.7
**

* TERRACE LVL
**
YRANGE 15.45 15.45 FLOAD -8 XRANGE 0 15.7 ZRANGE 033.1
MEMBER LOAD
*STAIR
429 UNI GY -18.6
85172258458 TO 460 UNI GY -24
LOAD 5 LL
FLOOR LOAD
**
*TERRACE LVL
YRANGE 2.0 3.0 FLOAD -3 XRANGE 0 15.7 ZRANGE 033.1
*ADD CORRIDOR

YRANGE 2.0 3.0 FLOAD -3 XRANGE 6.5 9.1 ZRANGE 033.1 YRANGE 2.0 3.0 FLOAD -3 XRANGE 9 12.7 ZRANGE 9.616 .4 *ADD STORE
YRANGE 2.0 3.0 FLOAD -3 XRANGE 9 15.7 ZRANGE 6.59 .75
YRANGE 2.0 3.0 FLOAD -3 XRANGE 0 6.7 ZRANGE 2326.5
YRANGE 2.0 3.0 FLOAD -3 XRANGE 9 15.7 ZRANGE 29.633 .1
*DEDUCT TOILET
YRANGE 2.0 3.0 FLOAD 3 XRANGE 9 15.7 ZRANGE 06.7

* FIRST FLOOR LVL
**
YRANGE 5.55 5.55 FLOAD -3 XRANGE 0 15.7 ZRANGE 033.1
*ADD CORRIDOR
YRANGE 5.55 5.55 FLOAD -3 XRANGE 6.5 9.1 ZRANGE 033.1
YRANGE 5.55 5.55 FLOAD -3 XRANGE 9 12.7 ZRANGE 9.6 16.4
*ADD STORE
YRANGE 5.55 5.55 FLOAD -3 XRANGE 9 15.7 ZRANGE 6.59 .75
YRANGE 5.55 5.55 FLOAD -3 XRANGE 0 6.7 ZRANGE 2326.5
YRANGE 5.55 5.55 FLOAD -3 XRANGE 9 15.7 ZRANGE 29.633 .1
*DEDUCT TOILET
YRANGE 5.55 5.55 FLOAD 3 XRANGE 9 15.7 ZRANGE 06.7
**
* SECOND FLOOR LVL
**
YRANGE 8.85 8.85 FLOAD -3 XRANGE 0 15.7 ZRANGE 033.1

*ADD CORRIDOR

YRANGE 8.85 8.85 FLOAD -3 XRANGE 6.5 9.1 ZRANGE 033.1
YRANGE 8.85 8.85 FLOAD -3 XRANGE 9 12.7 ZRANGE 9.6 16.4

*ADD STORE

YRANGE 8.85 8.85 FLOAD -3 XRANGE 9 15.7 ZRANGE 6.5 9.75 *DEDUCT TOILET

YRANGE 8.85 8.85 FLOAD 3 XRANGE 9 15.7 ZRANGE 06.7
**

* THIRD FLOOR LVL
**
YRANGE 12.15 12.15 FLOAD -3 XRANGE 0 15.7 ZRANGE 033.1
*ADD CORRIDOR
YRANGE 12.15 12.15 FLOAD -3 XRANGE 6.5 9.1 ZRANGE 033.1
*ADD STORE
YRANGE 12.15 12.15 FLOAD -3 XRANGE 9 15.7 ZRANGE 6.59 .75
*DEDUCT TOILET
YRANGE 12.15 12.15 FLOAD 3 XRANGE 9 15.7 ZRANGE 06.7
**
* TERRACE LVL
**
YRANGE 15.45 15.45 FLOAD -3 XRANGE 0 15.7 ZRANGE 033.1
MEMBER LOAD
*STAIR
429 UNI GY -10
85172258458 TO 460 UNI GY -13.2
LOAD COMB 6 (DL +EQ.LL)
31.041 .050 .5

LOAD COMB 7 1.5(DL + LL) 100%
31.541 .551 .5

LOAD COMB 12 1.2(EQX + DL + 0.5LL)
11.231 .241 .250 .6

LOAD COMB 13 1.2(-EQX + DL + 0.5LL)
1-1.231.241.250.6
LOAD COMB 14 1.2(EQZ + DL + 0.5LL)
21.231 .241 .250 .6

LOAD COMB 15 1.2(-EQZ + DL + 0.5LL)
$2-1.231 .241 .250 .6$

LOAD COMB 16 1.5(EQX + DL)
11.531 .541 .5

LOAD COMB 17 1.5(-EQX + DL)
$1-1.531 .541 .5$
LOAD COMB 18 1.5(EQZ + DL)
21.531 .541 .5

LOAD COMB 19 1.5(-EQZ + DL)
$2-1.531 .541 .5$
LOAD COMB 20 (1.5^{*} EQX +0.9* DL)
11.530 .940 .9

LOAD COMB 21 (1.5*-EQX + 0.9*DL)
1-1.530.940.9
LOAD COMB 22 ($1.5 * \mathrm{EQZ}+\mathbf{0 . 9 * D L}$)
21.530 .940 .9

LOAD COMB 23 (1.5*-EQZ + 0.9*DL)
2 -1.5 30.940 .9
LOAD COMB 24 (DL + LL)
31.041 .050 .7

LOAD COMB 31 ($\mathrm{DL}+\mathrm{LL}$)
31.041 .051 .0

LOAD COMB 32 (EQX + DL + 0.5LL)
11.031 .041 .050 .5

LOAD COMB 33 (-EQX + DL + 0.5LL)
$1-1.031 .041 .050 .5$
LOAD COMB 34 (EQZ + DL + 0.5LL)
21.031 .041 .050 .5

LOAD COMB 35 (-EQZ + DL + 0.5LL)
$2-1.031 .041 .050 .5$
LOAD COMB 36 (EQX + DL)
11.031 .041 .0

LOAD COMB 37 (-EQX + DL)

1-1.031.041.0
LOAD COMB 38 (EQZ + DL)
21.031 .041 .0

LOAD COMB 39 (-EQZ + DL)
2-1.0 31.041 .0
LOAD COMB 40 (EQX +0.9* DL)
11.030 .940 .9

LOAD COMB 41 (-EQX + 0.9*DL)
1-1.0 30.940 .9
LOAD COMB 42 (EQZ + 0.9*DL)
21.030 .940 .9

LOAD COMB 43 (-EQZ + 0.9*DL)
2-1.0 30.940 .9

PERFORM ANALYSIS

LOAD LIST 24
PRINT SUPPORT REACTION ALL
LOAD LIST 32 TO 43
PRINT SUPPORT REACTION ALL
LOAD LIST 31 TO 43
PRINT JOINT DISPLACEMENTS LIST 184 TO 190192193196 TO 224 226

LOAD LIST 712 TO 23
START CONCRETE DESIGN
CODE INDIAN
UNIT MMS NEWTON
FC 25 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228230233 -
235 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370 -
372 TO 374376 TO 401403406408 TO 455458 TO 463
FYMAIN 415 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228230
233235 -236 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO
370-372 TO 374376 TO 401403406408 TO 455458 TO 463

FYSEC 415 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228230 233235 -236 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370-372 TO 374376 TO 401403406408 TO 455458 TO 463
MINMAIN 16 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228230 233235 -236 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370-372 TO 374376 TO 401403406408 TO 455458 TO 463
MAXMAIN 32 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228 230233235 -236 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370-372 TO 374376 TO 401403406408 TO 455458 TO 463
RATIO 6 MEMB 11 TO 8587 TO 142144147149 TO 172174 TO 228230233 235-236 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370 -372 TO 374376 TO 401403406408 TO 455458 TO 463

TRACK 1 MEMB 1 TO 8587 TO 142144147149 TO 172174 TO 228230233 -235 TO 243245 TO 249252255 TO 258260 TO 314316319321 TO 370 -372 TO 374376 TO 401403406408 TO 455458 TO 463

RFACE 2 MEMB 414 TO 419
RFACE 3 MEMB 37 TO 6198 TO 122185 TO 209271 TO 295358 TO 370372 TO 374-376 TO 382450 TO 455461462485 TO 504

DESIGN COLUMN 37 TO 6198 TO 122185 TO 209271 TO 295358 TO 370 372 TO 374-376 TO 382414 TO 419450 TO 455461462485 TO 504

DESIGN BEAM 1 TO 3662 TO 8587 TO 97123 TO 142144147149 TO 172 -174 TO 184210 TO 228230233235 TO 243245 TO 249252255 TO 258 -260 TO 270296 TO 314316319321 TO 357383 TO 401403406408 TO 413420 421 TO 449458 TO 460463

END CONCRETE DESIGN

PRINT STORY DRIFT

FINISH

