

Electronics and Communication Engineering Department Delhi Technological University Delhi-110042 www.dce.edu

# **CERTIFICATE**

This is to certify that the dissertation titled "**Comparative Study of Analog Filters Using Analog Building Block**" is a bonafide record of work done by **Gurdeep Singh, Roll No. 2K12/VLS/07** at **Delhi Technological University** for partial fulfilment of the requirements for the degree of Master of Technology in VLSI and Embedded System Design. This project was carried out under my supervision and has not been submitted elsewhere, either in part or full, for the award of any other degree or diploma to the best of my knowledge and belief.

Date: \_\_\_\_\_

(Mr. Alok Kumar Singh) Assistant Professor Department of Electronics and Communication Engineering Delhi Technological University

#### **ACKNOWLEDGEMENTS**

I would like to express my deep sense of respect and gratitude to my project supervisor **Mr**. **Alok Kumar Singh,** Assistant Professor, Electronics and Communication Engineering Department, DTU for providing the opportunity of carrying out this project and being the guiding force behind this work. I am deeply indebted to him for the support, advice and encouragement he provided without which the project could not have been a success.

I am also grateful to **Prof. Rajeev Kapoor**, HOD, Electronics and Communication Engineering Department, DTU for his immense support.

A special thanks to **Dr.Neeta Pandey**, Associate Professor, Electronics and Communication Engineering Department, DTU for giving me valuable guidance and support. Her enormous knowledge and investigation has helped me unconditionally to solve various problems.

I would also like to acknowledge Delhi Technological University for providing the right academic resources and environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and my colleagues for constantly encouraging me during the completion of work.

Gurdeep Singh University Roll no: 2K12/VLS/07 M.Tech (VLSI and Embedded System Design) Department of Electronics & Communication Engineering Delhi Technological University Delhi – 110042

#### ABSTRACT

In recent years, the current conveyor is receiving considerable attention as they offer analog designers some significant advantages over the conventional op-amp. The current conveyor is a good choice for low voltage applications. It provides some notable features like high gainbandwidth product ,flexibility of driving current or voltage signal output at its two terminals, relatively high slew rate, reduced supply voltage. Also, it requires less number of passive components to perform a specific function. Hence, it is suitable for both current and voltage mode devices. Current mode design technique offers voltage independence, high bandwidth in analog circuits with properties of accuracy and versatility in a wide range of applications. Here, I present a study on current conveyors, especially second generation current conveyor (CCII). Various applications of current conveyors are highlighted in literature survey such as integrator, differentiator, amplifier, filters, oscillator etc. Then detailed study of various current conveyor (CCII) topologies such as translinear loop based current conveyor, Differential Amplifier Based current conveyor, Wide band current conveyor, flipped current conveyor is done. Different properties of topologies such as voltage and current bandwidth, port resistances, voltage and current gains ,transient behavior, offset voltage value, offset current value etc. are also studied comparatively. AC and DC port analysis is also done for these topologies in order to study their behaviour with frequency. By analysis parasitic impedance values for each topology are also calculated. This study of different second generation current conveyor topologies helps in further designing of current conveyor based applications such as filters. So, low pass filters are designed using above mentioned four topologies of CCII and various properties of these filters are studied for each of the topology.

# **TABLE OF CONTENTS**

| CERTIFICATE                         | i    |
|-------------------------------------|------|
| ACKNOWLEDGEMENTS                    | ii   |
| ABSTRACT                            | iii  |
| TABLE OF CONTENTS                   | iv   |
| LIST OF FIGURES                     | viii |
| LIST OF TABLES                      | xi   |
| ABBREVIATIONS                       | xii  |
| 1. INTRODUCTION                     | 1    |
| 1.1. Motivation                     | 1    |
| 1.2. Voltage and Current modes      | 1    |
| 1.3. Current mode design            | 2    |
| REFERENCES                          | 5    |
| 2. LITERATURE SURVEY                | 6    |
| 2.1. Current Conveyors              | 6    |
| 2.1.1. Classification of CCs        | 7    |
| 2.1.1.1 Port Y based Classification | 7    |
| 2.1.1.2 Port X based Classification | 10   |
| 2.1.1.3 Port Z based Classification | 11   |
| 2.1.2. CCII Applications            | 12   |
| 2.1.2.1 Current output Amplifier    | 12   |
| 2.1.2.2 Voltage Amplifier           | 14   |
| 2.1.2.3 Oscillators                 | 16   |
| 2.1.2.4 Filters                     | 17   |
| REFERENCES                          | 19   |

| 3. | SECOND GENERATION CC AND PARASITIC ELEMENTS      | 20 |
|----|--------------------------------------------------|----|
|    | 3.1. Ideal CC                                    | 21 |
|    | 3.2 Real Conveyor and its parasitic elements     | 22 |
|    | 3.3 Determination of parameters of real CCII     | 24 |
|    | 3.4 Analysis of CCII characteristics             | 26 |
|    | REFERENCES                                       | 30 |
| 4. | TRANSLINEAR LOOP BASED CCII                      | 31 |
|    | 4.1. Sub circuits of Translinear CCII            | 31 |
|    | 4.1.1Typical parameter values                    | 32 |
|    | 4.1.2 MOS translinear loop                       | 32 |
|    | 4.1.3 Current mirror                             | 33 |
|    | 4.2. Simulation results of translinear CCII      | 35 |
|    | DC analysis                                      | 36 |
|    | AC analysis                                      | 37 |
|    | Transient analysis                               | 39 |
|    | Parameter Table                                  | 40 |
|    | REFERENCES                                       | 41 |
| 5. | DIFFERENTIAL AMPLIFIER SURAKAMPONTORN'S CCII     | 42 |
|    | 5.1. Differential pair based CCII                | 42 |
|    | 5.2. Sub circuit                                 | 44 |
|    | 5.2.1.Typical parameter values                   | 45 |
|    | 5.3. Simulation results of Surakampontorn's CCII | 45 |
|    | DC analysis                                      | 46 |
|    | AC analysis                                      | 47 |
|    | Transient analysis                               | 49 |
|    | Parameter Table                                  | 50 |
|    | REFERENCES                                       | 51 |
|    |                                                  |    |

| 6. | WIDEBAND CMOS CCII                          | 52 |
|----|---------------------------------------------|----|
|    | 6.1. Wide band CCII                         | 52 |
|    | 6.1.1 Sub circuit description               | 53 |
|    | 6.1.2.Typical parameter values              | 54 |
|    | 6.2. Simulation results of Wideband CCII    | 55 |
|    | DC analysis                                 | 56 |
|    | AC analysis                                 | 57 |
|    | Transient analysis                          | 59 |
|    | Parameter Table                             | 60 |
|    | REFERENCES                                  | 61 |
|    |                                             |    |
| 7. | FLIPPED VOLTAGE FOLLOWER BASED CCII         | 62 |
|    | 7.1. Flipped voltage follower(FVF)          | 62 |
|    | 7.2. Low voltage current mirror             | 63 |
|    | 7.3. CCII based on FVF based current mirror | 64 |
|    | 7.4. Simulation results of FVF based CCII   | 65 |
|    | DC analysis                                 | 66 |
|    | AC analysis                                 | 67 |
|    | Transient analysis                          | 69 |
|    | Parameter Table                             | 70 |
|    | REFERENCES                                  | 71 |
| 0  | FILTER DESIGNING USING CCII TOPOLOGIES      | 72 |
| 8. |                                             |    |
|    | 8.1. Filter theory                          | 72 |
|    | 8.1.1.Low pass filer                        | 72 |
|    | 8.1.2.High pass filer                       | 73 |
|    | 8.1.3.Band pass filer                       | 73 |
|    | 8.1.4.All pass filer                        | 74 |

| 8.2. LPF design                                           | 75 |
|-----------------------------------------------------------|----|
| 8.3. Simulation results                                   | 76 |
| 8.4. Comparison table for filter output                   | 80 |
| 8.5. Comparison table of parameters of various topologies | 81 |
| REFERENCES                                                | 82 |
|                                                           |    |

# 9. CONCLUSIONS AND FUTURE PROSPECTIVE 83

# **LIST OF FIGURES**

| Figure 1.1    | Current conveyor block diagram           | 3  |
|---------------|------------------------------------------|----|
| Figure 2.1    | First generation current conveyor symbol | 7  |
| Figure 2.2    | Principle of second generation CCII      | 9  |
| Figure 2.3    | Positive and negative CCII blocks        | 11 |
| Figure 2.4    | Dual output CCII                         | 12 |
| Figure 2.5(a) | Current Amplifier                        | 13 |
| Figure 2.5(b) | V-I converter                            | 13 |
| Figure 2.5(c) | Current Integrator                       | 14 |
| Figure 2.5(d) | Current Differentiator                   | 14 |
| Figure 2.6(a) | Voltage Amplifier                        | 15 |
| Figure 2.6(b) | Voltage Integrator                       | 15 |
| Figure 2.6(c) | Voltage Differentiator                   | 16 |
| Figure 2.7    | CCII based oscillator                    | 16 |
| Figure 2.8(a) | CCII+ based LPF                          | 17 |
| Figure 2.8(b) | CCII+ based HPF                          | 18 |
| Figure 3.1    | Single output Translinear CCII           | 20 |
| Figure 3.2    | Double output Translinear CCII           | 21 |
| Figure 3.3    | Ideal CCII                               | 21 |
| Figure 3.4    | Real CCII                                | 22 |
| Figure 3.5(a) | DC voltage characteristics at port X     | 26 |
| Figure 3.5(b) | DC voltage characteristics at port Z+    | 27 |
| Figure 3.6    | Voltage transient characteristics        | 28 |
| Figure 3.7    | Frequency response of voltage gain       | 29 |
| Figure 4.1    | Translinear second generation CC         | 31 |
| Figure 4.2    | Mixed translinear loop                   | 33 |

| Figure 4.3    | Two stage current mirror                    | 34 |
|---------------|---------------------------------------------|----|
| Figure 4.4    | Schematic diagram of translinear loop CCII  | 35 |
| Figure 4.5(a) | DC voltage transfer plot                    | 36 |
| Figure 4.5(b) | DC Current transfer plot                    | 37 |
| Figure 4.6(a) | AC voltage plot at port X                   | 37 |
| Figure 4.6(b) | AC current plot at port Z                   | 38 |
| Figure 4.7    | Output voltage transient plot               | 39 |
| Figure 5.1    | Differential pair                           | 42 |
| Figure 5.2    | Surakampontorn CCII                         | 43 |
| Figure 5.3    | Schematic Diagram Of Surakampontorn's CCII+ | 45 |
| Figure 5.4(a) | DC voltage transfer plot                    | 46 |
| Figure 5.4(b) | DC Current transfer plot                    | 47 |
| Figure 5.5(a) | AC voltage plot at port X                   | 47 |
| Figure 5.5(b) | AC current plot at port Z                   | 48 |
| Figure 5.6    | Output voltage transient plot               | 49 |
| Figure 6.1    | Wide band CCII                              | 52 |
| Figure 6.2(a) | The flipped voltage follower                | 53 |
| Figure 6.2(b) | The modified voltage follower.              | 53 |
| Figure 6.3    | Schematic Diagram of Wide band CCII+        | 55 |
| Figure 6.4(a) | DC voltage transfer plot                    | 56 |
| Figure 6.4(b) | DC Current transfer plot                    | 56 |
| Figure 6.5(a) | AC voltage plot at port X                   | 57 |
| Figure 6.5(b) | AC current plot at port Z                   | 57 |
| Figure 6.6    | Output voltage transient plot               | 59 |
| Figure 7.1(a) | Common drain amplifier                      | 62 |
| Figure 7.1(b) | Flipped voltage follower                    | 62 |

| Figure 7.2    | FVF based current mirror                                            | 63 |
|---------------|---------------------------------------------------------------------|----|
| Figure 7.3    | Flipped voltage current mirror based CCII+                          | 64 |
| Figure 7.4    | Schematic Diagram of FVF based CCII+                                | 65 |
| Figure 7.5(a) | DC voltage transfer plot                                            | 66 |
| Figure 7.5(b) | DC Current transfer plot                                            | 66 |
| Figure 7.6(a) | AC voltage plot at port X                                           | 67 |
| Figure 7.6(b) | AC current plot at port Z                                           | 67 |
| Figure 7.7    | Output voltage transient plot                                       | 69 |
| Figure 8.1    | The gain-magnitude frequency response of a first-order LPF          | 72 |
| Figure 8.2 M  | lagnitude transfer function versus frequency for a band-pass filter | 73 |
| Figure 8.3    | Schematic of an Op Amp all-pass filter                              | 75 |
| Figure 8.4    | Low Pass Filter Circuit Using CCII                                  | 75 |
| Figure 8.5 L  | PF Output For Differntial Amplifier Based CCII                      | 76 |
| Figure 8.6 L  | PF Output For Wide Band CCII                                        | 77 |
| Figure 8.7 L  | PF Output For Translinear CCII                                      | 78 |
| Figure 8.8 L  | PF Output For Flipped Voltage CCII                                  | 79 |

### **LIST OF TABLES**

| Table 2.1 | Impedance level at different ports of CCI             | 8  |
|-----------|-------------------------------------------------------|----|
| Table 2.2 | Impedance level at different ports of CCII            | 9  |
| Table 3.1 | Impedance level of ports for Ideal CCII               | 22 |
| Table 4.1 | Parameters for Translinear Loop Based CCII+           | 40 |
| Table 5.1 | Parameters for Differential Amplifier Based CCII      | 50 |
| Table 6.1 | Parameters for Wide band CCII                         | 60 |
| Table 7.1 | Parameters for FVF Based CCII                         | 70 |
| Table 8.4 | Comparison Table for Filter Output                    | 80 |
| Table 8.5 | Comparison Table for Parameters of Various Topologies | 81 |

#### **ABBREVIATIONS**

- CC Current Conveyor
- CCI First Generation Current Conveyor
- CCII Second Generation Current Conveyor
- CCII+ Second Generation Current Conveyor positive output
- DOCCII Dual output current conveyor
- FVF Flipped voltage follower
- LPF Low pass filter
- HPF High pass filter
- BPF Band pass filter
- LVLP Low voltage Low power