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ABSTRACT 

Changes are always inevitable. As the software evolves changes might occur due to some 

defect or when some additional functionality is added to the software. Change proneness is 

the probability of changing some part of software. The requirement modification is needed if 

some changes occur. If there are more changes needed in the software, then this means that 

there is a problem of design quality and therefore it’s design needs to be improved. In such 

cases, it is very important to discover change prone classes in the software in early phases of 

software development so that testing resources can be planned to reduce the maintenance 

effort. As a result testing becomes more qualitative because more focus will be laid on those 

classes that are more prone to changes. By doing so, the probability of occurrence of defects 

can be reduced which can thereby lead to better maintenance. Our study analyzes the 

relationship between object oriented metrics and change proneness. Statistical and machine 

learning methods have been studied for predicting change prone classes. These methods have 

been applied on five open source java projects namely ABRA, ABBOT, APOLLO, 

AVISYNS and JMETER. The performance has been analyzed on the basis of receiver 

operating characteristics. Results have shown that the performance of machine learning 

techniques is comparable to statistical methods.  
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CHAPTER 1 

INTRODUCTION  

As the software evolves, lot of changes occurs in the software. There can be a lot of reasons 

that can lead to changes in software. Some of the reasons can be defects, adaptive or 

perfective maintenance etc where defect can be described as lack of some features that leads 

to accomplish the desired goal. Adaptive maintenance can be defined as change in the 

software programs after delivering it to the customer because of changing some requirements 

or if some functionality is not performing well and predictive maintenance is a technique that 

is designed to determine the current condition of software which is in service and prediction 

of when maintenance is required. So these days management of software system should be 

given more priority than increasing its completion goal. However there is more competition 

in software world that is why one should try to make software more correct in all aspects like 

outcomes, requirements, design etc so that there would be less maintenance cost or effort 

after delivering the software to its customer. 

Software maintainability is most important aspect for all the organisations that are involved 

in development of large software. From the past decades it can be seen that maintenance of 

software includes 40-60% cost of the overall cost in development of software. Because of this 

reason maintainability of software is believed to be more challengeable problem in software 

organisations. So we should do something such that maintenance cost would be less. 

Maintainability of software means how we should modify the software code to remove the 

fault and improve the software’s performance. We can also cop up with the changed 

environment. There are many factors that can lead to change the software product and these 

are: correction of identified faults, accommodate changed environment, to improve the 

performance of software or to increase the software source code understandability.   

Extensive research has been done to show the relationship between various object oriented 

metrics and fault proneness of a software. These studies help in efficient utilization of 

resources. Here object oriented metrics are the basic unit to determine the characteristics of 

software. Fault proneness is defined as the probability of being fault in software. The 

question arises why change proneness prediction is needed? The answer is if we do not 

predict the change prone classes then maintenance cost will be high and customer satisfaction 

level will be less. So it will be always beneficial for developer to have some technique or 

some model so that it can be applied to detect software change prone classes. Here object 
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oriented metrics can be used to predict change prone classes. We need to examine the 

software metrics from the design phase as time and cost that is incorporated in maintenance 

of software is high. Because of these software metrics it will be easy for software developer 

to improve the various aspects like design of software, coding and implementation of 

software otherwise this could lead increase in maintenance cost in later phases of software 

development life cycle. Change proneness means the probability of changing certain part of 

software is high and it requires assessment. It can also be defined as probability of change 

that can occur. For software some parts may be more change prone than other part of 

software. Change proneness prediction may be very helpful since it demonstrate the 

software’s design quality. If very high changes is needed in the modification of the software 

that means there is a design quality problem and it design needs to be improved. Some time 

there may be a probability to redesign the model also and again evaluate it. Prediction of 

classes that are prone to changes can help in maintenance and testing activities of software 

development life cycle. Maintenance consumes around 40-80% of the effort to develop a 

particular software. Testing of a change-prone class should be done very carefully when the 

software changes or some additional functionality is added to the software. 

Our study analyzes the relationship between object oriented metrics and change proneness of 

a class. The performance of various machine learning algorithms and logistic regression to 

predict change prone classes have also been analyzed. For the purpose of validation we have 

taken five open source software namely ABRA, ABBOT, APOLLO, AVISYNS and 

JMETER. All these software are written in java language. Two versions of each software 

have been taken. Changes have been analyzed in term of number of lines added, deleted and 

modified in the new version as compared to previous version. The object oriented metrics for 

all the software are generated by using a tool named understand for java. We also generated 

change statistics by using a tool named CMS tool [16]. We merged these two files i.e. metric 

and change statistics file to yield the data points. The main objective of this study is to predict 

the change prone classes which would result in effective planning of testing activity. Here we 

will predict the best model for prediction of change proneness.   
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1.1 Motivation of Work 

As we have seen above that, now-a-days maintenance is a challenging job. Software 

maintainability means how easily software can be modified so that an error can be removed 

or some extra functionality can be incorporated. From the past it can be seen that 

maintenance consumes 40-60% cost of the entire cost involve in software development. So 

we can say that software maintenance needs to be more taken care of as compared to other 

phases of software development and it is also challenging job. There is one more reason 

because of which maintenance is important and that is maintenance requires 40-80% effort to 

develop software. Sometimes because of a very little risk or fault software needs very high 

maintenance cost which causes customer dissatisfaction. So maintainability is needed as to 

remove the fault, add some new functionality etc. The reason of changing the requirement is 

adapt new environment, adapt new technology, performance improvement etc. Testing of a 

change-prone class should be done very carefully when the software changes or some 

additional functionality is added to the software.  

For the above reason, we have done our study. So that we can find the change proneness 

prediction model so that it can be used to reduce the maintenance cost and effort both. In this 

study we analyses the relationship between object oriented metrics and change proneness of a 

class. The performance of various machine learning algorithms and logistic regression to 

predict change prone classes have also been analyzed. 

1.2 Aim of Work 

As it can be seen that these days two factors: maintenance and cost aspects and has to be 

examined more than other activities so that cost and effort should be reduced and also 

software can be delivered on time. Sometimes because of a very little risk or fault software 

needs very high maintenance cost which causes customer dissatisfaction. So to get rid of this 

problem we need to apply best method to predict the change proneness so that if any changes 

required in future, it can be done easily without taking more time and maintenance cost. 

So the main purpose of our study is an empirical validation. Here we examine the relationship 

in change proneness of a class and object oriented metrics and analyze the performance of 

various machine learning methods and logistic regression to predict the change proneness 

classes. We have taken five open source software for the purpose of validation and the 

software names are: ABRA, ABBOT, APOLLO, AVISYNS and JMETER and all these are 

written in java language. Each software can have many versions but we have taken only two 
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version of each software. Changes have been analyzed in term of number of lines added, 

deleted and modified in the new version as compared to previous version. In this study we 

used a tool named ‘understand for java’ to object oriented metrics for each software. And we 

also used CMS tool to generate change report or statistics. And finally we merge the above 

two files to get the complete dataset. The objective of this study is to analyse the performance 

of various machine learning methods and logistic regression. If we successfully predict the 

change proneness then this result can helps us to do the effective planning of testing activity. 

Here we will predict the best model for prediction of change proneness.   

 

1.3 Organisation of Thesis 

This paper is organized as follows. Section 2 summarizes the related work. Section 3 

summarizes research background in which we first describe our independent and dependent 

variables thereby empirical data collection process and then descriptive statistics of every 

software has been described with the help of tables. Section 4 describes research 

methodology in which we first describe all the machine learning methods and statistical 

method (logistic regression). In section 5 we explain our result analysis which we have done 

in our study. This chapter 5 includes univariate LR results and model evaluation using ROC 

curve. The last is Section 6, which describes conclusion and future work of our study.  
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CHAPTER 2 

LITERATURE SURVEY 

Han et al. [1] worked on improving the quality of design by predicting change proneness in 

UML 2.0 models. Here a method is used for rating classes according to probability of change. 

The method is named as BDM(Behavioural Dependency Measure).The evaluation of results 

is done on JFreechart which is a  multiversion medium sized open source project. The final 

result of this work indicates that Behavioural Dependency Measure is an effective measure 

for prediction of change proneness. 

 

Ambros et al. [2] used correlation and regression analysis in order to study the relationship 

between change coupling and software defects .Change coupling means the degree of 

dependency of the artifacts on each other because they emerge together. There is always a 

probability that a change that occur in one part of software might lead to changes in other part 

of the software. Inorder  to study this three large software have been analyzed. Study shows 

that there exists a strong correlation between change coupling and defects that occur in 

software. Also change coupling has a strong correlation with severe defects as compared to 

minor defects. 

 

Sharafat et al. [3] proposed a probabilistic model to predict the probability of a change in 

each class. This approach is based on probability calculates the change in a particular class 

based on its source code and change history. The source code is analyzed over different 

software releases using reverse engineering techniques in order to collect the code metrics. 

This proposed technique is analyzed on a medium sized system i.e  JFlex which is a lexical 

analyzer for java codes. 

 

Chaumum et al. [4] defined a change impact model to study the consequences of changes 

made to classes of the system. This model was defined in C++ language. There are mainly 

two factors on which the impact of change depends: (a) The type of change which can 

propagate to other classes and (b) The type of link that binds different classes. Two classes 

can be linked by association, aggregation or inheritance. The study in this case was done on 

telecommunication system. 
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Jhou et al. [5] shows that class size should be taken as a confounding variable while we are 

validating the impact of object oriented metrics on fault- proneness. For this purpose, they 

used three size metrics out of which two metrics are used in high level design. These two 

metrics are also used to determine the confounding effect of class size on association between 

object oriented metrics and change proneness of classes. 

 

Design patterns are keys to common design complications [6]. Bieman et al. [6] examined 

five evolving systems to analyze the relation between design patterns and change proneness. 

The classes of four patterns out of five were less change prone. Only one design pattern was 

more change prone. Therefore, the study helps us in studying design patterns that are more 

adaptable. 

 

Tsantalis et al. [7] Amongst all the benefits of object oriented paradigms ,flexibility is the 

most important as our requirements keep on changing. But it is very difficult to quantify 

flexibility. So this study defines a probabilistic approach to estimate the change proneness of 

an object-oriented design by evaluating the probability that each class of the system will be 

affected when new functionality is added or when existing functionality is modified. This 

study uses two multiversion open source projects to evaluate the proposed model. Here java 

is used to automate the whole process and statistical analysis is used to improve the 

correlation between extracted probability of each class and the actual changes in each classes. 

 

In the paper by Lindvall [8], researcher monitors and measures the capability of experienced 

software developers to predict software change caused by new requirements to an existing 

software system (i.e. impact analysis) at different levels of granularity. 

 

Malhotra et al. [9] investigated the relationship between object oriented metrics and change 

proneness. So change proneness classes of software can be identified using software 

prediction model which is based on the results obtained from this study. By using this model 

we will get better result. This paper uses statistical and machine learning methods to predict 

the software quality. They evaluate and compare the performance of these machine learning 

methods with statistical method (logistic regression). Thus, the developed models can be used 

to reduce the probability of defect occurrence and better maintenance can be achieved. 
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The paper by Ingram et al. [10] shows that software requirement and design can also be used 

to make prediction. They define a set of metrics to obtain data from software requirement and 

design phases and used a case study project to obtain the value of these metrics. Here it can 

be seen that there is a significant difference in change proneness between the components 

with high or low value of these metrics. 

 

Romano et al. [11] find that anti-patterns are poor solutions to design and implementation 

problems and due to this reason object oriented system becomes difficult to maintain. So this 

paper focused on these problems by considering fine-grained source code changes (SSC) 

which are obtained from 16 java open source systems. 

 

Malhotra et al. [12] used adaptive neuro-fuzzy inference system (ANFIS) to calculate the 

change proneness for the two commercial open source software systems. The performance of 

adaptive neuro- fuzzy inference system (ANFIS) can be compared with the other statistical 

and machine learning methods. These methods can be logistic regression, bagging, decision 

tree, multilayer perceptron, k-star etc. The effectiveness of the model can be determined by 

using receiver operating curve (ROC). According to this study ANFIS shows best result as 

compared to all other methods (statistical and machine learning methods). 

 

Malhotra et al. [13] worked on improvement the software quality by using machine learning 

and statistical methods. They some metrics are used to predict a model to evaluate fault 

proneness. The metrics are object oriented CK metrics and QMOOD metrics. They used 6 

machine learning methods and one statistical method. Area under curve (AUC) is used to 

analyse the result which is obtained from receiver operating curve (ROC). According to this 

paper the model predicted using random forest and bagging methods are best and they 

outperformed other methods.   

    

Malhotra et al. [15] worked on reuse of generated prediction model of one project and 

validates it on another project. This study used two open source project for evaluation. Both 

the project is written in java language. Receiver operating curve (ROC) is used to examine 

the performance of predicted model. The final result of this work indicates that training sets 

are successfully applied for validation of inter project. Time and effort can be optimized 

using these results which are required to create training data for each project. The advantage 

of this work is that resources and time can be effectively utilised.  
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CHAPTER 3 

RESEARCH BACKGROUND 

3.1 Independent and Dependent Variable 

In this section, we describe independent and dependent variable used in our study. 

3.1.1 Independent Variable 

In this study, Object Oriented metrics are used as independent variables. Since single metric 

is insufficient to discover all the characteristic of software under development so we have 

used fifteen metrics. In this study we have selected only those metrics which are most 

significant to exhibit the software characteristics like inheritance, cohesion, coupling etc.  All 

the metrics and values of these metrics are obtained by using a tool named ‘understand for 

java’. All the fifteen metrics i.e. independent variables are described in Table 3.1. 

 

Table 3.1 Object Oriented Metrics 

Serial No. Metric name Description 

1 Coupling between object(CBO) CBO is count of number of other 

classes to which a class is coupled. 

2 Number of children(NOC) NOC is defined as the number of 

immediate subclasses from a given 

class. 

3 Number of class method (NOM) It is defined as the total number 

methods in a given class. 

4 Number of class variable (NOA) It is defined as the total number of 

variables in a given class 

5 Number of instance method(NIM) It is the count of total number of 

instance method. 

6 Number of instance variable(NIV) It is defined as the total number of 

instance variable. 

7 Number of local methods(NLM) NLM is defined as the total number of 

local variable of a given class. 

8 Response for a class(RFC) It is the count of number of methods 

that can be executed when a message 

from an object of a given class is 

received.  
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9 Number of local private methods 

(NPRM) 

It is defined as the total number of 

local private methods which are not 

inherited. 

10 Number of local protected 

methods (NPROM) 

It is the total number of local protected 

methods which are not inherited. 

11 Number of local public methods 

(NPM) 

It is the total number of local public 

methods which are not inherited. 

12 Lines of code (LOC) Total number of lines of code in a 

given class.  

13 Depth of inheritance tree(DIT) DIT is defined as the maximum length 

from a class node to the root of the 

inheritance tree. 

14 Lack of cohesion in methods 

(LCOM) 

Total count of pair wise local methods 

in a class having no variable or 

attribute in common.  

15 Weighted method per class 

(WMC) 

WMC is defined as the total number of 

sum of cyclomatic complexity of all 

methods in a given class.  

 

3.1.2 Dependent Variable 

In software development, maintainability requires necessary modifications. So advance 

knowledge of change prone classes can help us to minimize extra maintainability cost of 

software. In this study, we have taken CHANGE as dependent variable. Change can be 

analysed as number of lines added, number of lines deleted or number of lines modified. In 

this paper, we examine the relationship between change proneness and object oriented 

metrics. To examine the change proneness we use receiver operating characteristic (ROC) 

analysis. 

3.2 Empirical Data Collection 

In this section, we describe data sources and give detailed description of each data sources 

and data collection method.  

We analyzed five open source software which are written in java. We found all five software 

from ‘sourceforge.net’. We downloaded two different version of each open source code used. 

In this study, we analyze changes in every class of both versions of all five software. 

Software we studied are ABRA, ABBOT, APOLLO, AVISYNC, JMETER and are summarized 
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in table 3.2. Table 3.2 shows the programming language, version number, number of changed 

classes, number of unchanged classes, total number of common classes and percentage of 

changed classes.  

Table 3.2: Description of each software 

Dataset Programming 

language 

Version 

1 

Version 

2 

Number 

of 

changed 

classes 

Number of 

unchanged 

classes 

Total 

Number of 

common 

classes 

% of 

changed 

classes 

Abra Java 0.9.8 0.9.9 33 147 180 18.3 

Abbot Java 1.0.0rc1 1.0.0rc3 86 241 327 26.3 

Apollo Java 0.1 0.2 69 183 252 27.4 

Avisync Java 1.1 1.2 27 46 73 36.9 

Jmeter  Java 2.8 2.9 537 363 900 59.7 

 

 

Fig 3.1 Data Collection Process 
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From the figure it can be seen that we have to take software with two different versions. For 

example we take ABOT software with version v1 and v2. After applying metric collection 

process for which we used understand tool and after that we get a file which contains all the 

metrics with their values. We also compare both the versions of software to get change 

statistics or change report and this work is done by using CMS tool. Then we combine both 

these files to get final dataset. 

3.2.1 Data Collection Method 

In this section we will explain how to collect data points for all five software. Since we have 

to examine all the changes in every class files of both versions (previous and current version) 

and values for all the metrics we have used in our study and then merge both the files (change 

report and metric file). To obtain complete dataset we follow some steps and these steps are: 

Step1. Metric Generation Process:  

As we know metric is the basic unit to examine the characteristics of software. In this process 

we downloaded source code of two different version of five open source software (one 

previous and one current) as shown in Table 2 from ‘Sourceforge.net’. We generated metrics 

for the first version of all five software (ABRA-0.9.8, ABBOT- 1.0.0rc1, APOLLO-0.1, 

AVISYNC-1.1, JMETER-2.8) with the help of “understand tool” for java. The metric file 

obtained in this contains metric for all classes (because in this study we are analysing changes 

in the classes of both version of software), methods and unknown classes which we discard 

while we make dataset. At the end of this stage we now have metric file for all software we 

have used above.  

Step2. Pre-processing Step: 

Since we have to find only common classes so in this step, we perform data filter to extract 

common classes which are common in both the versions of each software (current and 

previous version).  

Step3. Change Report Generation: 

To generate change report we used CMS tool [16] for java. CMS tool works as follows: first 

we open CMS tool, then we click run button, it will display a popup window which demands 

both the versions of software [16]. Then we click on compare button and finally it will 
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generate change report of CSV extension. We repeat this process for other four software and 

we get change report of all five software. 

 

Step4. Merging Files: 

In this step, we combine metric file obtained in step 1 and change report file obtained in step 

3 to yield complete dataset. Here we search common java classes in both the files and then 

merge them. At the end of this step we have complete dataset of all five software. 

3.3 Descriptive Statistics  

Here we will describe statistics results of each software. Tables 3.3, 3.4, 3.5, 3.6 and 3.7 

shown below are the descriptive results that contain mean, median, mode, standard deviation, 

variance, minimum, maximum and percentiles for each metrics of all software used. From 

tables 3.3, 3.4, 3.5, 3.6  and 3.7, we can see that the mean value of number of children (NOC) 

for software (ABRA-0.73, ABBOT-0.73, APOLLO-0.69, AVISYNC-0.56, JMETER-0.52) 

which is very low for each software, so we can conclude that number of children are very less 

i.e. inheritance is not much used in all five systems. LCOM metric which is defined as the 

total count of classes having no attribute or variable in common has greater value in all the 

systems (approximately 100). Similar results have been shown by other researchers [17, 18, 

19].     
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Table 3.3 Descriptive Statistics Result for ABRA Dataset 

  Mean Median Mode Std. Deviation Variance Minimum Maximum 

Percentiles 

25 75 

 

CBO 3.27 2.00 0 4.286 18.367 0 24 1.00 4.00 

 

NOC .73 0.00 0 2.234 4.990 0 13 0.00 0.00 

 

NOM .90 0.00 0 1.658 2.750 0 7 0.00 1.00 

 

NOA 1.03 0.00 0 2.574 6.625 0 23 0.00 1.00 

 

NIM 7.99 5.00 0 11.161 124.559 0 67 2.00 9.00 

 

NIV 3.04 2.00 0 5.065 25.658 0 36 0.00 4.00 

 

NLM 8.89 6.00 3 10.745 115.451 0 67 3.00 9.00 

 

RFC 18.71 10.00 6 23.461 550.430 0 95 6.00 17.00 

 

NPRM .60 0.00 0 2.315 5.359 0 14 0.00 0.00 

 

NPROM 2.19 0.00 0 6.626 43.901 0 51 0.00 1.00 

 

NPM 5.82 4.00 4 6.471 41.871 0 64 3.00 7.00 

 

LOC 81.44 35.50 16 158.811 25220.941 2 932 18.00 63.75 

 

DIT 1.81 2.00 1 .908 .824 1 4 1.00 2.00 

 

LCOM 
49.32 60.00 0 35.421 1254.644 0 100 0.00 80.00 

 

 

WMC 17.77 8.00 5 31.917 1018.694 0 165 5.00 14.75 
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Table 3.4 Descriptive Statistics Result for ABBOT Dataset 

  Mean Median Mode Std. Deviation Variance Minimum Maximum 

Percentiles 

25 75 

 

CBO 23.06 5.00 113 40.384 1630.893 0 113 2.00 13.00 

 

NOC .73 0.00 0 2.867 8.222 0 44 0.00 1.00 

 

NOM 1.98 0.00 0 5.829 33.972 0 55 0.00 3.00 

 

NOA 3.89 1.00 0 5.999 35.985 0 28 0.00 5.00 

 

NIM 27.43 8.00 112 39.814 1585.173 0 112 3.00 29.00 

 

NIV 11.51 2.00 0 18.765 352.122 0 52 0.00 10.00 

 

NLM 29.42 9.00 115 40.999 1680.907 0 115 4.00 29.00 

 

RFC 60.05 30.00 115 64.276 4131.430 0 221 8.00 115.00 

 

NPRM 15.59 1.00 0 31.077 965.788 0 85 0.00 6.00 

 

NPROM 1.72 1.00 0 3.583 12.835 0 32 0.00 2.00 

 

NLM 10.34 6.00 19 12.162 147.906 0 86 2.00 19.00 

 

LOC 574.21 106.00 2656 949.358 ######## 2 2656 39.00 485.00 

 

DIT 2.24 2.00 1 1.387 1.923 1 6 1.00 3.00 

 

LCOM 59.32 72.00 0 37.294 1390.825 0 98 19.00 93.00 

 

WMC 86.20 19.00 369 133.556 17837.243 0 369 7.00 72.00 
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Table 3.5 Descriptive Statistics Result for APOLLO Dataset 

  Mean Median Mode Std. Deviation Variance Minimum Maximum 

Percentiles 

25 75 

 

CBO 5.74 5.00 0 5.242 27.475 0 35 2.00 9.00 

 

NOC .69 0.00 0 3.630 13.177 0 44 0.00 0.00 

 

NOM .71 0.00 0 2.025 4.101 0 11 0.00 0.00 

 

NOA 1.33 0.00 0 2.826 7.984 0 14 0.00 1.00 

 

NIM 8.29 5.00 5 8.804 77.512 0 82 4.00 11.00 

 

NIV 3.69 2.00 0 4.201 17.649 0 30 1.00 6.00 

 

NLM 9.00 5.00 5 9.131 83.371 0 82 4.00 11.00 

 

RFC 15.23 13.00 5 11.594 134.417 0 83 5.00 23.75 

 

NPRM .39 0.00 0 1.018 1.035 0 7 0.00 0.00 

 

NPROM .42 0.00 0 1.028 1.057 0 9 0.00 0.00 

 

NPM 7.94 5.00 5 8.213 67.451 0 74 3.00 10.00 

 

LOC 110.82 49.00 17a 144.418 20856.508 2 1024 26.00 130.00 

 

DIT 1.85 2.00 2 .737 .543 1 4 1.00 2.00 

 

LCOM 47.44 50.00 0 33.241 1104.949 0 100 13.00 77.75 

 

WMC 18.73 12.00 5 22.862 522.678 0 229 5.00 24.00 
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Table 3.6 Descriptive Statistics Result for AVISYNC Dataset 

  Mean Median Mode Std. Deviation Variance Minimum Maximum 

Percentiles 

25 75 

 

CBO 3.74 1.00 0 5.273 27.806 0 27 0.00 8.00 

 

NOC .56 0.00 0 1.472 2.166 0 9 0.00 0.00 

 

NOM .22 0.00 0 1.170 1.368 0 9 0.00 0.00 

 

NOA 2.27 1.00 0 3.568 12.729 0 17 0.00 2.00 

 

NIM 8.05 6.00 1 7.612 57.941 0 32 1.00 11.00 

 

NIV 2.08 2.00 0 2.707 7.326 0 14 0.00 3.00 

 

NLM 8.27 7.00 1 7.653 58.563 0 32 1.00 11.00 

 

RFC 15.08 9.00 5a 12.246 149.965 0 44 6.00 24.00 

 

NPRM 1.85 0.00 0 4.300 18.491 0 23 0.00 2.00 

 

NPROM .07 0.00 0 .585 .342 0 5 0.00 0.00 

 

NLM 6.36 6.00 1 6.005 36.066 0 32 1.00 8.50 

 

LOC 61.23 36.00 5 71.205 5070.209 4 359 6.50 87.50 

 

DIT 2.26 2.00 1 1.334 1.779 1 5 1.00 3.00 

 

LCOM 70.73 85.00 100 34.751 1207.646 0 100 59.00 98.00 

 

WMC 12.05 9.00 1 13.197 174.164 0 68 1.50 15.00 

 

 

 

 

 

 

 



17 

 

Table 3.7 Descriptive Statistics Result for JMETER Dataset 

  Mean Median Mode Std. Deviation Variance Minimum Maximum 

Percentiles 

25 75 

 

CBO 5.37 4.00 1 6.072 36.874 0 41 1.00 7.00 

 

NOC .52 0.00 0 2.710 7.347 0 51 0.00 0.00 

 

NOM 1.10 0.00 0 4.593 21.096 0 67 0.00 0.00 

 

NOA 3.94 2.00 1 7.539 56.844 0 75 1.00 4.00 

 

NIM 10.02 6.00 1 12.856 165.267 0 111 3.00 13.00 

 

NIV 3.25 1.00 0 5.928 35.143 0 55 0.00 4.00 

 

NLM 11.11 7.00 5 13.446 180.800 0 116 4.00 15.00 

 

RFC 30.56 16.00 3 32.982 1087.840 0 206 6.00 43.00 

 

NPRM 1.84 1.00 0 3.175 10.082 0 20 0.00 2.00 

 

NPROM .58 0.00 0 1.958 3.832 0 32 0.00 0.00 

 

NPM 8.53 5.00 2 11.553 133.477 0 102 3.00 10.00 

 

LOC 114.20 65.00 5 145.005 21026.482 2 1095 28.00 134.75 

 

DIT 2.27 2.00 2 1.199 1.437 1 5 1.00 3.00 

 

LCOM 67.00 76.00 0 29.875 892.494 0 100 58.00 88.00 

 

WMC 21.45 12.00 5 28.657 821.238 0 230 5.00 26.00 

 

 

 

 

 



18 

 

CHAPTER 4 

RESEARCH METHODOLOGY 

4.1 METHODS 

4.1.1 NAIVE BAYES (NB) 

It is a probability based classifier and makes use of bayes theorem of probability. Here 

supervised learning technique is used and they can be trained very efficiently. One of the 

greatest advantages of using naive Bayesian classifier is that they require very small amount 

of training data. Naive bayes classifier reduces the complexity by assumption of conditional 

independency.  

Conditional independency is defined as follows: 

Suppose we are given three variables randomly x, y and z. We can say that x is conditionally 

independent of y given z if and only if the probability distribution determining x is 

independent of value of y given z [23].    

Naive Bayes classifier is a combination of parameters and structure. It has a star like structure 

and this structure need not to learn. So the core objective of NB classifier is to estimate the 

parameters using complete data so that it can be used to learn the classifier. The structure of 

this classifier is shown below in figure 4.1.1. 

 

Fig 4.1.1 Naive Bayes Architecture 

 

In the above figure x1, x2,.....xn are attribute variables which are independent of each other for 

a given class variable C. 

C 

X1 
X2 

Xn 
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�(�k) = �(�̌k) = (Nck)/N 

Where, 

Nck  is the number of evidence of ck
th

 class. 

Advantages of Naive Bayes 

 It is very fast and space efficient method used for training (single scan) and also fast 

to classification. We can take the example of database in which we can look for the 

probability with single scan in the database and it can be stored into a table, this 

storing process can taken as classification.  

 Irrelevant features have no impact on this method. 

 It can handle real as well as discrete data. 

 Streaming data can be handled by it efficiently. 

 

4.1.2 MULTILAYER PERCEPTRON (MLP) 

Multilayer perceptron is the most famous neural network. We can use this model estimation/ 

computation. Multilayer perceptron is used for finding the patterns into data by analysing 

relationship between input to the neurons and their corresponding outputs. The relationship 

can be simple or complex.  

It is a feed-forward artificial neural network model where there is mapping done from set of 

particular inputs to outputs. Single output is computed from inputs by forming a linear 

equation in accordance with the weight of links and then passing that linear equation through 

non-linear activation function. It contains multiple layers (more than one). Each layer 

contains multiple nodes which are fully connected to the next layer to it in a directed graph. 

Each layer receives input from its immediate preceding layer and provides output to just next 

succeeding layer to it. The overall result of network is the total output from each neuron in 

the output layer of network. MLP uses supervised learning method named Back Propagation 

which is very general learning paradigm to train the network. It comprises two passes, 

forward pass and backward pass. In the forward pass a set of input is supplied to the network 

and a set of output is produced as actual result from the network. Here synaptic weight is 

used which is kept fixed and the impact of this weight is propagated though every layer in the 

network. And in backward pass, it prompt/indicate an error which is the difference between 

the desired and actual response of the feed forward network. This error signal is propagated 

back so that we can readjust the weight to make desired response closer to the actual 
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response. MLP is an extension of linear perceptron. Non-linearly separable data can be 

distinguished by using this method.  

Activation Function for MLP: 

In the case where MLP uses linear activation function where this function maps input to 

output of neuron, we can reduce a network with more than two layers into two layer model 

with the help of linear algebra theory. It uses two activation functions: 

 

 Where,  

The first activation function is known as hyperbolic tangent having range -1 to 1 and the 

second activation function is known as logistic function with range 0 to 1. 

yi is output of ith neuron. 

vi is weighted sum of neurons. 

Layers of Multilayer Perceptron 

The fig.4.1.4 shows the organisation of multilayer perceptron layers. The figure shows that 

there are three layers: 

1. Input layer (left one) with three neurons 

2. Hidden layer (middle one) which contains three neurons 

3. Output layer (the right one) with three neurons 

These three layers are explained as follows: 

 

 

 
 

         

 
 

         

          

          

          

        

 

 

          

         

          

          

          

          

          

          

                    

          Fig 4.1.2 Multilayer Perceptron Architecture 



21 

 

Input Layer 

A set of predictor variable (values x1, x2, x3,... xi,.....,xp) are given as an input to the input 

layer. These values are processed so that these can be standardised to make the range of 

variables from -1 to 1. The values of each neuron is distributed in the hidden layer by the 

input layer. Here one more constant named bias other than predictor variable is used with 

value 1.0 given to the hidden layer. The value of bias is multiplied by weight factor and total 

sum (uj) is fed into the hidden layer. 

Hidden Layer 

Hidden layer receives input which is the output of input layer. The input to each neuron in the 

hidden layer is multiplied by weight factor. These multiplication are added corresponding to 

each input which produces output as uj . This uj is fed into a transfer function σ which 

produce an output hj . The output of hidden layer is given to the output layer. 

Output Layer 

In output layer, the input received from hidden layer is multiplied by weight factor wkj and 

the resulting values are added to produce a combined value vk this vk value is fed to the 

transfer function σ and we get yk as an output. These values of y are the output of the 

multilayer feed forward network. 

Applications of MLP: 

Regression analysis: If we perform regression analysis with continuous variables, then output 

layer contains single neuron and single y value is generated by the network. 

Classification: If we perform Classification with categorical variables, then output layer 

contains N neuron and in this case network produces N value (one for each category) as an 

output. 

Advantages of MLP 

 Adaptivity 

  Non-linearity 

  Parallel architecture  

  Fault tolerance. 
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4.1.3 K-STAR 

K-Star is basically an instance based learning algorithm. The underlying assumption is that 

similar instances will have similar class. K-star can be considered as a class which contains 

test instances. Here K-nearest neighbour algorithm is used to calculate the degree of 

similarity. There is a difference between K-Star and other instance-based learning methods 

and the difference is K-Star uses a function named entropy based distance function and others 

does not do this. K-Star uses the concept of entropy for distance measure.  To work with 

symbolic attribute K-Star uses the concept of entropy distance measure in ad-hoc/ 

unstructured manner. When classifier deals with missing data then this type of problem 

occurs. We can handle this problem either by treating each of the missing values as separate 

value and handle them differently means there should be maximum difference in each values 

as much as possible and replace values with average value, or simply ignore the missing 

values. For distance measure we use entropy, here distance will be computer between two 

instances. We can define the distance between two instances in the form of complexity of 

mapping one instance to another instance. The complexity can be calculated via two steps: 

1. A finite number of transformations transform instances to instances. 

2. We use a program that maps one instance to another instance. This program is a 

sequence of mapping that starts at A and terminates at B.   

 

4.1.4 BAGGING 

Bagging is also known as bootstrap aggregating. It creates various versions of training set to 

improvise classification models. It is a technique that gets data (using replacement method) 

from learning dataset by using a method named uniform probability distribution. Since we get 

data by using replacement method, it may be possible that some of the instances may present 

many times in the same training dataset and some of the others may be omitted from the 

dataset. It is a machine learning meta-algorithm which is used to improve the accuracy and 

precision of machine learning algorithms. It uses the concept of reducing variance and hence 

overfitting is avoided to a great extent. Usually it is used with decision tree methods. The 

main idea is to create different similar type of training sets and train develop new function for 

each of the training data. In case of class prediction majority of result will be selected. In 

classification, bagging uses majority vote on classification result while in regression it 

considers average of predicted values. For creation of multiple versions, we can go through 

the following steps: 
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1) Create bootstrap duplicates of learning set. 

2) Use these learning sets as a new learning set. 

Success behind bagging is its changeability of prediction method. If we do some changes in 

learning sets and it is causing critical changes in predictor developed, in such case bagging 

gives good results. 

Suppose we have a training set Tn which contains N instances from population P. We also 

have a bootstrap set BSi which would contain N instances. Size of each bootstrap set is equal 

to the size of original data. For each instances of BSi, we can elicit any examples/ instances 

from the training set T individually and with repetition. As a result we may see that some 

instances are repeated in BSi and some examples are present in T but they are not present in 

BSi. So on average, we can say that bootstrap set BSi can include 63% data of original 

training dataset because each of the instances has the probability of 1-(1-1/N)N so that it can 

be selected in each of the BSi. If N is large enough, the above probability converges to 1-1/e= 

0.632.  Thus we can say that BSi is more likely as Tn but it is derived from T instead of P. 

We can combined all the bootstrap learning sets by taking average of all the outputs and in 

this way we can get an aggregated predictor [20, 21]. After training the k classifiers, a test 

instance is assigned to the class that receives the highest number of votes [22].    

Bagging algorithm can be explained as follows: 

 We are given training set with N instances and a class of learning methods for 

example, neural network, decision tree, naive bayes etc. 

 We train multiple methods (more than one method) on various samples (obtained by 

data spliting) and calculate the average of predictions results of selected trained 

models (for example k models). 

 The goal is to improve accuracy of one method with the help of its various copies and 

it gives quite better result in prediction capability of learning method when we take 

average of misclassification.   

Advantages of Bagging Method 

1) Bagging can provide significant gain to determine the accuracy of classification in 

comparison to other regression models. 

2) It reduces variance. 

3) Overfitting can be avoided by using bagging. 
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4.1.5 RANDOM FOREST (RF) 

Random forest is a type of decision tree classification algorithm and it is developed by 

Breiman. Random forests are the methods used for learning and these methods work by 

constructing a series of decision trees at the time of training. Each tree of the random forest is 

made up of training sets which are selected randomly by using replacement algorithm. 

Random forest is a collection of tree predictor in which each tree of forest is relies on the 

value of random vector. The random vectors are handled independently for every tree in the 

forest. And also these vectors will be sampled with same distribution. So we can say that 

random forest is as a classifier which contains many decision trees. Finally, the final output 

class is taken as the mode of the output classes of each individual tree. To build a random 

forest, we initially mention how many decision tree we want to have in the forest and each 

tree should be fully grown means it should be of its maximum size. 

In random forest, tree can be constructed using the following algorithm: 

Suppose we are given N learning/ training samples and M variables in classifier. Here we 

declare a variable m such that m<<M. In the tree m demonstrate the total count of input (in 

the form of decision node) at the node of the tree. We also select a bootstrap learning sample. 

All the remaining training samples will be employed for estimation of error in the tree. This 

can be done by the prediction of their classes. The error rate of random forest depends on the 

two factors: 

1) Correlation: correlation can be found between any of the two trees of forest. If 

correlation increases that means error rate also increases. 

2) Strength: each individual tree of the random forest has its own strength. If a tree has 

low error rate will be considered as stronger classifier. While increasing the strength it 

will decrease the error rate. 

If we decrease the value of m, it decreases the correlation and strength both. And both will be 

increases if we increase m. 

To build the decision tree we use random subset of variables which are available. For each 

node in the tree m can be chosen randomly. All m variables which we have chosen help us to 

find the best split in training samples. These variables help us how data samples can be best 

partitioned at every node of the tree. We demonstrate the final result by majority. Each of the 

trees in the forest gives its own result in the form of vote and majority will be selected and 

that tree wins. By using above method we are able to get a tree which is fully grown and it is 

not pruned also. 
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Random forest algorithm can be understood stepwise as follows: 

Let N is the number of trees which we want to build. For each of N trees, do the folloing 

iterations: 

1) Select a bootstrap set from the given training sample. 

2) Grow/increase the un-pruned tree by using this bootstrap sample. 

3) At every internal node, select m variables/predictors randomly and analyse best split 

using these predictors. 

4) Do not perform pruning. Consider the tree as it has been build so far. 

Estimate the result/output as overall prediction by taking the majority (classification) or 

average response (regression) from all the trees which are trained individually. 

 

Advantages of Random Forest  

 Random forest is simple classifier. 

 It can be simply parallelized. 

 It is resilient to noise and also for outliers. 

 They provide evaluation of strength, error, variable importance and correlation. 

 In random forest learning is very fast than other decision tree classification algorithm. 

 They develop a classifier with very high accuracy for numerous datasets. 

 It requires very few initial/pre-processing data. 

 There is no need to select any variable before building of model starts. 

 Random forest can be used to generate cluster identification using training sample 

proximity/relationship. 

 

4.1.6 PART ALGORITHM 

PART is based on divide and conquers strategy. PART algorithm produces decision lists. 

Decision lists are basically set of rules. New data is compared with each rule in the list and is 

assigns category according to first matching rule. A default category is assigned incase no 

rules in the list matches. 

PART algorithm is a partial decision tree algorithm which is developed version of C4.5 and 

RIPPLE algorithm. The best thing in part algorithm is, there is no need to perform global 

optimization like j48 algorithm to generate the rules.  

We can represent PART as a neural network which is known as PART neural network. 

Architecture consists of two layers: 
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1. Input layer (comparison layer) also called processing layer 

2. Output layer (clustering, recognition layer) 

 The structure of this network is shown below in fig.4.1.6 

 

 
 

          

           

           

           

           

           

           

           

       

 

   

       

 

   

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           Fig 4.1.6 Architecture of PART Neural Network 

From the figure, it can be seen that nodes in input layer (F1) are represented by vi, where i = 

1, 2, 3,.....,m and nodes of clustering layer (F2) are represented by vj, where j = m+1, 

m+2,....,m+n. In this architecture two connections are available having their own weight. The 

first connection connects the neurons in F1 layer to neurons in F2 layer by weight wij, weight 

is known as bottom-up weight. Second connection is used to connect the neurons in F2 layer 

to F1 layer with weight wji, weight is known as top-down weight. These connections may be 

changed according to the learning rule. hij which is the output signal sends signal only from 

node vi in F1 layer to node vj in F2 layer. Similarity check can be evaluated by using the 

function f1(xi) produced in vi and top-down weight (zji). Hence we can say that main focus of 

PART is only on those dimensions where information is available. 
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PART controls the degree of similarity by using two parameters which are independent of 

each other, distance σ and vigilance p. These parameters are used to control the degree of 

similarity and dimension’s size. If PART has input with suitable range then it can helps us to 

find the number of clusters and the centre of each clusters. 

 

4.1.7 LOGISTIC REGRESSION (LR) 

Logistic regression is used to form prediction model and its quite similar to ordinary Least 

Square Regression. Whenever, we wish to use logistic regression an algebraic conversion is 

required to form usual linear regression equation. In case of logistic regression we do not get 

standard solutions and such solutions are not easily interpretable. 

Logistic regression (LR) is a method which is used for prediction of change proneness 

(dependent variable) with the help of independent variables (object oriented metrics). These 

are used to determine how much variance present in the dependent variable that is expressed 

by the independent variables. The probability of an event to occur is predicted by placing the 

data in logistic regression curve. Logistic regression comes under statistical model which is 

used to deal with evaluation of mathematical models and showing the relationship between 

variables. Logistic regression is a standard technique which is based upon maximum 

likelihood evaluation for regression analysis. This model can be used to find the values of 

independent variables. To analyse the change proneness of class we need a prediction model 

and this model can be constructed by multivariate linear regression. Multivariate LR uses a 

group of metrics. Multivariate formula can be defined by following equation (univariate 

analysis is special case of this multivariate)  

Prob (X1, X2,.... Xn) = e
(A

0
+A

1
X

1
+.....+A

n
X

n
)
 /(1+e

(A
0

+A
1

X
1

+.....+A
n

X
n

)
)  

where, 

Xi , i=1,2,3,.....n are known as independent variables also called covariate. 

Prob is the probability for finding a class has been changed or not. Prob is a dependent 

variable which is a conditional probability. Conditional probability is defined as the 

probability of failure/ fault found in a particular class.  

The most general form of multivariate linear regression is represented as: 

yi
^ 
= a0+a1xi1+a2xi2+a3xi3+........+amxim 
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yi= a0+a1xi1+a2xi2+..........+amxim+ei 

where, 

xi1,xi2,.....xim – independent variables 

a0,a1,a2,.....am- parameters which we have to estimate 

yi
^ 
 - dependent variable which we have to predict 

yi – dependent variable with actual value 

ei  - error in prediction of i
th

 case 

Logistic regression provides two stepwise selection methods: 

1) Forward stepwise selection method 

2) Backward stepwise elimination method 

In forward stepwise selection method, we select a set of independent variables which is 

optimal. In every step of this model, we either add independent variables or delete it from 

regression model. 

While in backward stepwise elimination method, it uses a model that adds all the independent 

variable. After adding, these are deleted one at a time till the converging/ stopping criteria is 

found.  

Both of these methods do not guarantee that it will find the estimation criterion. Once we 

determine the independent variables that mean we have selected the model. And once the 

model is selected, the parameters a0, a1,......,am can be estimated with the help of least square 

method. We use these estimated values of parameters to minimize error Σi=1
n
 ei

2
, where n is 

number of consideration/observations in the dataset. 
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4.2 PERFORMANCE EVALUATION MEASURES 

4.2.1 Sensitivity: The total percentage of change prone classes that are correctly classified is 

known as sensitivity. 

4.2.2 Specificity: The total percentage of change prone classes that are not correctly 

classified i.e. percentage of non-occurrences of correctly predicted classes. 

4.2.3 Receiver Operating Characteristics (ROC): We evaluate the performance and 

accuracy of output of predicted model using area under curve (AUC). ROC curve (AUC) is 

defined as a plot of sensitivity on y-axis and 1- specificity on x-axis. The ROC curve, which 

is defined as a plot of sensitivity on the y-coordinate versus its 1-specificity on the x 

coordinate, is an effective method of evaluating the quality or performance of predicted 

models [19, 20]. While constructing ROC curves, we selected many cut-off points between 0 

and 1, and calculated sensitivity and specificity at each cut off point. The optimal choice of 

the cut-off point (that maximizes both sensitivity and specificity) can be selected from the 

ROC curve [19, 20]. Hence, by using the ROC curve one can easily determine optimal cut-off 

point for a predicted model [12]. ROC curve can be drawn using SPSS tool. 

4.2.4 Validation Method: In order to predict the accuracy of the model it should be applied 

to different data sets. We therefore performed a ten-cross validation of the models. The ten- 

cross is performed using WEKA tool. In this tool, complete dataset is divided into ten subsets 

randomly and each time one of the ten subsets is treated as testing set and other nine subsets 

are treated as training sets. Hence we obtain change proneness for all ten subsets. 
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CHAPTER 5 

RESULT ANALYSIS 

5.1 Univariate LR Results: Univariate is done as one to one correspondence. It is performed 

to examine significant and insignificant metrics. It is done by using SPSS tool and performed 

between one independent variable and one dependent variable. The same process is repeated 

of all metrics used. The same is performed for all software and we get univariate result for all 

software used. The univariate results of software ABRA, ABBOT, APOLLO, AVISYNC, 

JMETER are shown below in Table 5.1.1, 5.1.2, 5.1.3, 5.1.4 and 5.1.5. 

In this section, we analyze significant and insignificant metrics based on metric sig. value. If 

sig. value of any is less or equal to 0.01 in three or more dataset then that metric is significant 

otherwise metric is insignificant. So from tables 5.1.1, 5.1.2, 5.1.3, 5.1.4 and 5.1.5, we can 

see that CBO metric is significant because its sig. Value for ABRA dataset is 0.000, ABBOT- 

0.001, APOLLO- 0.000 and JMETER- 0.000. Similarly NIM, RFC, LOC, WMC are also 

significant metrics because the sig. value of all these metrics is less than or equal to 0.01 and 

remaining metrics are insignificant.        
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Table 5.1.1 Univariate Result for ABRA Dataset                                                                                          

Metrics  B S.E. Sig. Exp(B) 

 CBO 
.215 .047 .000 1.240 

NOC 
.152 .070 .031 1.164 

NOM 
-.462 .221 .036 .630 

NOA 

.071 .063 .256 1.074 

NIM 

.035 .015 .018 1.035 

NIV 

.043 .032 .181 1.044 

NLM 

.033 .015 .031 1.033 

RFC 

.027 .007 .000 1.028 

NPRM 

.021 .078 .790 1.021 

NPROM 

.109 .036 .003 1.115 

NPM 

-.024 .039 .535 .976 

LOC 

.002 .001 .046 1.002 

DIT 

.395 .204 .053 1.484 

LCOM 

.013 .006 .029 1.013 

WMC 
.010 .005 .050 1.010 
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Table 5.1.2 Univariate Result for ABBOT Dataset 

Metrics B S.E. Sig. Exp(B) 

CBO 
-.017 .005 .001 .983 

NOC 

.000 .044 .995 1.000 

NOM 

.118 .038 .002 1.125 

NOA 

-.029 .023 .205 .972 

NIM 

-.011 .004 .005 .989 

NIV 
-.035 .010 .001 .966 

NLM 

-.008 .004 .027 .992 

RFC 

.002 .002 .426 1.002 

NPRM 

-.023 .007 .001 .977 

NPROM 
.091 .036 .011 1.096 

NPM 

.021 .010 .030 1.021 

LOC 
-.001 .000 .003 .999 

DIT 
.039 .090 .667 1.039 

LCOM 
.004 .003 .239 1.004 

WMC 
-.003 .001 .023 .997 
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Table 5.1.3 Univariate Result for APOLLO Dataset 

Metrics  B S.E. Sig. Exp(B) 

CBO 

.117 .029 .000 1.124 

NOC 

.005 .038 .904 1.005 

NOM 

.054 .066 .415 1.055 

NOA 

.054 .047 .253 1.055 

NIM 

.027 .015 .079 1.028 

NIV 

.042 .032 .190 1.043 

NLM 

.028 .015 .061 1.028 

RFC 

.040 .013 .001 1.041 

NPRM 
.022 .137 .871 1.022 

NPROM 

.543 .150 .000 1.722 

NPM 
.021 .016 .195 1.021 

LOC 

.001 .001 .108 1.001 

DIT 
.015 .192 .938 1.015 

LCOM 

.010 .004 .023 1.010 

WMC 
.019 .007 .005 1.020 
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Table 5.1.4 Univariate Result for AVISYNC Dataset 

Metrics  B S.E. Sig. Exp(B) 

CBO 

.142 .056 .012 1.152 

NOC 

-.168 .202 .405 .845 

NOM 

.129 .209 .538 1.137 

NOA 
.071 .067 .294 1.073 

NIM 

.136 .042 .001 1.146 

NIV 

.453 .146 .002 1.573 

NLM 

.138 .042 .001 1.148 

RFC 

.034 .020 .093 1.034 

NPRM 

.186 .096 .052 1.205 

NPROM 

-4.138 8038.594 1.000 .016 

NPM 

.147 .054 .007 1.159 

LOC 

.011 .004 .008 1.011 

DIT 

-.589 .225 .009 .555 

LCOM 

.004 .007 .597 1.004 

WMC 

.093 .030 .002 1.098 
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Table 5.1.5 Univariate Result for JMETER Dataset 

Metrics  B S.E. Sig. Exp(B) 

CBO 
.179 .020 .000 1.196 

NOC 
.212 .071 .003 1.236 

NOM 

-.038 .018 .032 .963 

NOA 

.040 .013 .002 1.040 

NIM 
.061 .010 .000 1.063 

NIV 

.140 .022 .000 1.150 

NLM 

.042 .008 .000 1.043 

RFC 
.013 .002 .000 1.013 

NPRM 

.154 .030 .000 1.167 

NPROM 

.061 .041 .140 1.063 

NPM 

.039 .009 .000 1.040 

LOC 
.004 .001 .000 1.004 

DIT 

.215 .059 .000 1.240 

LCOM 
.018 .002 .000 1.019 

WMC 
.016 .003 .000 1.016 

 

From Table [5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5] which are presented in chapter 5, we can 

conclude the table explained below which shows the relationship between object oriented 

metrics and the software we have taken or we can say that this table 5.1.6 is the significance 

table.  
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Table 5.1.6 Relationship between Object Oriented Metrics and Software 

 ABRA ABBOT APPOLO AVISYNC JMETER 

CBO Y Y Y  Y 

NOC     Y 

NOM  Y    

NOA     Y 

NIM  Y  Y Y 

NIV  Y  Y Y 

NLM    Y Y 

RFC Y  Y  Y 

NPRM  Y   Y 

NPROM Y  Y   

NPM    Y Y 

LOC  Y  Y Y 

DIT    Y Y 

LCOM     Y 

WMC   Y Y Y 

 

 

From table 5.1.6, we can see that CBO, NIM, NIV, RFC, LOC, WMC metrics are the best 

significance metrics because these five metrics are significant in three or more than three 

software. The metrics NLM, NPRM, NPROM, NPM and DIT are the average significant 

metrics because they are significant in two software. And the metrics NOC, NOM, NOA, 

LCOM are the least significant metrics because these metrics are significant either only in 

one software or none.   
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5.2 MODEL EVALUATION USING ROC CURVE 

Here we evaluate best model using ROC curve. The model having largest area under curve 

(AUC) will be the best model for a dataset. The tables below show the validation results on 

various datasets. Table 5.2.1 shows the validation result on ABRA dataset. Similarly Table 

5.2.2, 5.2.3, 5.2.4 and 5.2.5 shows the validation result on ABBOT, APOLLO, AVISYNS 

and JMETER respectively. In table 5.2.1, NAIVE gave best result among all models having 

AUC 0.774, sensitivity and specificity are 0.727 and 0.728 respectively and its cut-off point 

is 0.054. In Table [5.2.2, 5.2.3], KSTAR shows the best result for both ABBOT and 

APOLLO software among all models having AUC 0.758, 0.779 respectively sensitivity and 

specificity are 0.709, 0.725 and 0.705, 0.723 respectively and cut-off point is 0.256, 0.112. 

Table 5.2.4 has MLP model as the best model which outperformed other method has AUC 

0.783, sensitivity and specificity are 0.667 and 0.605 respectively and its cut-off point is 

0.378. Table 5.2.5 shows that RANDOM FOREST (RF) is best model because it has AUC 

0.831, sensitivity and specificity are 0.795 and 0.741 respectively and cut-off point is 0.568. 

These best models of each dataset can be used to predict change prone classes. The advance 

knowledge of change prone classes would help us to plan the test resources for the classes in 

phase of software development process. These change prone classes needs to be allocated 

more resources than other non change prone classes because these classes needs to be tested 

many times. If a class is more change prone it means it needs greater effort in maintenance 

phase of software development. Thus if we will predict the change prone classes in beginning 

phases it will reduce the maintenance and testing efforts. Figure 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 

5.2.5 shows the ROC curve of best models of all five software. 

Table 5.2.1 Model Evaluation Result of ABRA Dataset     

Machine Learning 

Methods 

AUC CUTOFF 

POINT 

SENSITIVITY SPECIFICITY 

Naïve Bayes 0.774 0.054 0.727 0.728 

 MLP 0.766 0.092 0.697 0.707 

K-Star 0.611 0.065 0.545 0.565 

Bagging 0.742 0.102 0.727 0.721 

Random Forest 0.642 0.104 0.576 0.592 

PART 0.726 0.075 0.697 0.667 

LR 0.756 0.139 0.727 0.721 
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Table 5.2.2 Model Evaluation Result of ABBOT Dataset     

Machine 

Learning 

Methods 

AUC CUTOFF 

POINT 

SENSITIVITY SPECIFICITY 

Naive Bayes 0.608 0.426 0.581 0.577 

MLP 0.656 0.270 0.593 0.593 

K-Star 0.758 0.256 0.709 0.705 

Bagging  0.755 0.245 0.674 0.676 

Random Forest 0.707 0.162 0.686 0.647 

PART 0.655 0.326 0.581 0.581 

LR 0.675 0.266 0.593 0.589 

 

 

Table 5.2.3 Model Evaluation Result of APOLLO Dataset     

Machine 

Learning 

Methods 

AUC CUTOFF 

POINT 

SENSITIVITY SPECIFICITY 

Naive Bayes 0.672 0.118 0.638 0.628 

MLP 0.660 0.215 0.638 0.639 

K-Star 0.779 0.112 0.725 0.723 

Bagging  0.769 0.253 0.696 0.694 

Random Forest 0.764 0.209 0.725 0.727 

PART 0.721 0.299 0.638 0.656 

LR 0.694 0.245 0.623 0.623 
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Table 5.2.4 Model Evaluation Result Of AVISYNC Dataset     

Machine 

Learning 

Methods 

AUC CUTOFF 

POINT 

SENSITIVITY SPECIFICITY 

Naive bayes 0.766 0.111 0.704 0.796 

MLP 0.783 0.378 0.667 0.609 

K-Star 0.771 0.414 0.704 0.713 

Bagging  0.760 0.689 0.630 0.630 

Random Forest 0.742 0.281 0.778 0.609 

PART 0.721 0.375 0.630 0.630 

LR 0.717 0.326 0.741 0.609 

 

 

Table 5.2.5 Model Evaluation Result of JMETER Dataset     

Machine 

Learning 

Methods 

AUC CUTOFF 

POINT 

SENSITIVITY SPECIFICITY 

Naive Bayes 0.722 0.108 0.672 0.672 

MLP 0.762 0.610 0.732 0.722 

K-Star 0.797 0.629 0.758 0.755 

Bagging  0.827 0.632 0.762 0.758 

Random Forest 0.831 0.568 0.795 0.741 

PART 0.790 0.654 0.708 0.736 

LR 0.771 0.567 0.719 0.713 
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Fig 5.2.1 ABRA (Naive Bayes) 

 

 

 

 

Fig 5.2.2 ABBOT (K-Star) 
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Fig 5.2.3 APOLLO (K-Star) 

  

 

Fig 5.2.4 AVISYNC (MLP) 
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Fig 5.2.5 JMETER (Ramdom Forest) 

  

Table 5.2.6 Relationship between Software and Machine Learning Methods 

 NAIVE 

BAYES 

MLP K-STAR BAGGING RANDOM 

FOREST 

PART 

ABRA 0.77      

ABBOT   0.758    

APPOLO   0.779    

AVISYNC  0.783     

JMETER     0.831  

 

Table 5.2.6 shows the relationship between machine learning methods and software we have 

taken. We can analyze best model for each software from this table. So from the above table 

we can conclude that naive bayes method is the best model for ABRA software, K-STAR 

method is the best change proneness prediction model for two software namely ABBOT and 

APPOLO. Multilayer perceptron method is the best prediction model for AVISYNC software 

and RANDOM FOREST is the best model for JMETER software.     
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ROC Curves of Every Methodology of All the Software: 

In this section we present receiver operating curve of every method like naive bayes, 

multilayer perceptron, k-star, bagging, random forest, PART machine learning methods for 

every software one by one. These are shown in figures presented below: 

 

 

Naive Bayes     Multilayer Perceptron 

 

 

   K-Star         Bagging  



44 

 

 

  Random Forest      PART 

 

Fig 5.2.6 ROC Curve for ABRA Software 

 

 

 

 

  Naive bayes        Multilayer perceptron 
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   K-Star      Bagging 

 

 

 
 

     Random forest     PART 

 

Fig 5.2.7 ROC Curve for ABBOT Software 
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    Naive bayes       Multilayer perceptron 

 

 

K-Star       Bagging 
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Random Forest              PART 

 

Fig 5.2.8 ROC Curve for APPOLO Software 

 

 

     Naive bayes       multilayer perveptron 

 



48 

 

 

           K-Star            Bagging  

 

 

      Random forest         PART 

 

Fig 5.2.9 ROC Curve for AVISYNC Software 
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       Naive bayes       Multilayer perceptron 

 

 

   K-Star         Bagging 
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       Random forest         PART 

 

 Fig 5.2.10 ROC Curve for JMETER Software 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

Our main objective of this study is to evaluate the relationship between change proneness and 

object oriented metrics for a class. We analyze and compare machine learning methods, 

logistic regression method for performance evaluation which will help us in prediction of 

change proneness of classes. As we have shown that in our study we have used five software 

namely ABRA, ABBOT, APPOLO, AVISYNC, JMETER and also obtained dataset for these 

software and evaluated performance of these software on the basis of receiver operating 

curve analysis.    

The main results are shown below: 

1. CBO, NIM, NIV, RFC, LOC, WMC metrics are the best significance metrics because 

these five metrics are significant in three or more than three software. The metrics 

such as NLM, NPRM, NPROM, NPM and DIT are the average significant metrics 

because they are significant in two software. And the metrics NOC, NOM, NOA, 

LCOM are the least significant metrics because these metrics are significant either 

only in one software or none.   

 

2. From our study, we can conclude that Naive Bayes method is the best method for 

ABRA software, K-STAR method is the best method for change proneness prediction 

model corresponding to two software namely ABBOT and APPOLO. Multilayer 

perceptron method is the best method for AVISYNC software and RANDOM 

FOREST is the best method for JMETER software.     

 

3. The above results can be used in initial phases of software development to reduce the 

cost and maintenance effort once the software has been delivered to the customer. 

Also the best models predicted from our study can help us to plan test resources 

efficiently and effectively. 

In future, we intend to replicate our study on similar datasets in order to get more generalized 

results. In this study we have used WEKA and SPSS tool but in future we will try to apply 

one more tool named KEEL. KEEL is a tool that includes all the evolutionary methods such 

as Genetic Algorithm, fuzzy logic, evolutionary neural network etc. evolutionary methods are 
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the best methods and have many advantages such as: 1. We can apply evolutionary 

algorithms to that problem where no good method is available, for example discontinuities 

problem. 2. Somewhere, we required multiple solutions so in that case also we can use 

evolutionary methods. 3. Parallel implementation of these algorithms are also easy. 
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ABBRAVIATIONS 

Serial number Keywords  Description  

1 CBO Coupling between object 

2 NOC Number of children 

3 NOM Number of class methods 

4 NOA Number of class variables 

5 NIM Number of instance methods 

6 NIV Number of instance variables 

7 NLM Number of local methods 

8 RFC Response for a class 

9 NPRM Number of local private methods 

10 NPROM Number of local protected methods 

11 NPM Number of local public methods 

12 LOC Lines of code 

13 DIT Depth of inheritance tree 

14 LCOM Lack of cohesion in methods 

15 WMC Weighted method per class 

16 LR Logistic regression 

17 MLP Multilayer perceptron 

18 RF Random forest 

19 NB Naive bayes 

20 RFC Receiver operating curve 

21 AUC Area under curve 

22 WEKA Waikato Environment for knowledge analysis 

23 SPSS Statistical package for the social science 

24 OO Object oriented 
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