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ABSTRACT 

Wireless sensor networks (WSNs) are comprised of hundreds to thousands of tiny battery 

powered sensor nodes constrained in energy and computation power. Because of limited 

energy source, economic utilization of energy is a critical issue in wireless sensor 

networks. Clustering techniques are most often used to reduce the consumption of energy 

by the sensor nodes due to data transmission. Partitioning the network into optimal number 

of clusters and selecting an optimal set of nodes as cluster heads is an NP-Hard problem. 

A widely used class of clustering techniques is probabilistic clustering in which a 

predetermined optimal probability is used to facilitate the cluster head selection process. In 

this work, we devised a new technique that improves the energy efficiency of existing 

probabilistic clustering algorithms by optimizing the number of clusters and the 

distribution of cluster heads in the network. We also presented two generic approaches to 

integrate our technique into the existing probabilistic clustering techniques. The simulation 

results show a considerable improvement in energy efficiency of probabilistic clustering 

protocols and consequently a prolonged network life time. 

The NP-Hard nature of clustering problem makes it a suitable candidate for the application 

of evolutionary algorithm and particle swarm optimization (PSO). In this work, we also 

suggest a PSO based solution to the optimal clustering problem by using residual energy 

and transmission distance of sensor nodes. Simulation results show a considerable 

improvement in network lifetime as compared to existing PSO based algorithms and other 

clustering protocols like LEACH and SEP. 

We also present a new hybrid Clustering protocol, EEHCP for Multi-level heterogeneous 

wireless sensor networks. In this protocol, some nodes transmit data directly to base station 

while some use clustering technique to send data to base station. The proposed protocol 
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aims to conserve energy by keeping three key design factors into consideration: (1) 

Finding the optimal distance up to which a node can directly send the data to base station, 

(2) electing an appropriate node as cluster head and (3) limiting the number of clusters in 

the network. The simulation results show that EEHCP enhanced the stability period by 

approximately 75% and almost tripled the throughput when compared to existing protocols 

like LEACH and SEP. 
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Chapter 1: Introduction 

1.1 Wireless Sensor Network (WSN) 

A wireless Sensor Network is composed of hundreds to thousands of tiny battery powered 

sensors that are constrained in energy and computation power. In WSN, a large number of 

sensor nodes are deployed randomly to monitor physical or environmental conditions such 

as temperature, sound, vibration, pressure, motion or pollutants at different locations [1]. 

Advancement in wireless communications, electronics and technological evolution has 

enabled the development in the field of WSNs due to their low cost and variety of 

applications such as health, home and military etc. Research is going on to solve different 

technical issues in various application areas [2], [5].  

Sensor nodes consist of components capable of: sensing data, processing data and also 

communication components to further transmit or receive data. Nodes sense and send their 

reports toward a processing centre which is called “sink” or “base station” [3]. 

Communication in WSNs occurs in different ways which totally depends on the 

application. Generally, there are three main types of communication: 

Clock Driven: In this type of communication sensors sense and gather data constantly but 

communicate periodically. 

Event Driven: In event driven WSN, communication is triggered by occurrence or non 

occurrence of a particular event. 

Query Driven: In query driven WSN, communication occurs in response to a query. 

In all three types of communication, efficient use of energy is of concern while studying, 

designing or deploying such networks to prolong the sensing time and overall lifetime of 

the network. 

 

1.2 Radio Energy Model 

For energy dissipation inside a sensor node for transmitting the data, the first order radio 

energy model as described in [4] and others is used. 

Transmitter inside radio hardware dissipates energy to run transmit electronics and 

amplifier. Similarly for receiving data energy is dissipated to run receive electronics as 

shown in figure 1.1. 
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In order to achieve an acceptable SNR to transmit an L bit message to a node situated at 

distance d, the energy consumed by radio is given by- 

 

𝐸𝑇𝑥(𝐿, 𝑑) = {
𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. 𝜀𝑓𝑠. 𝑑2           𝑖𝑓 𝑑 ≤ 𝑑0 

 
𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. 𝜀𝑚𝑝. 𝑑4       𝑖𝑓 𝑑 > 𝑑0

                                                   (1.1) 

sss 

Where, 𝐸𝑒𝑙𝑒𝑐 is the energy, dissipated per bit to run the transmitter or the receiver circuit; 

𝜀𝑓𝑠 and 𝜀𝑚𝑝 depend on the transmitter amplifier model and d is the distance between the 

sender and the receiver. 

By equating the two expressions at 𝑑 = 𝑑0, we get 𝑑0 = √
𝜀𝑓𝑠

𝜀𝑚𝑝
. 

To receive an L−bit message the radio expends- 

 

𝐸𝑅𝑥 = 𝐿. 𝐸𝑒𝑙𝑒𝑐                                                                                                            (1.2) 

 

1.3 Research Objective 

The nature of wireless sensor networks is quite different from general wireless networks 

because of various constraints on sensors such as limited battery power and computation 

power. WSNs are highly application specific in nature. In practice, cost and other 

application specific issues affect the communication properties of WSN system. For 

example, radio communication range of WSNs is short in comparison to other wireless 

networks. The system performance characteristics vary considerably even though the same 

Fig. 1.1 Radio Energy Model 
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basic principles of wireless communication are used. The size, power, cost and their 

tradeoffs are fundamental constraints in WSNs. 

Efficient utilization of power is one of the most critical issue in design and operations of 

WSNs. The main objective of this work is to develop energy efficient communication 

techniques that can lower the energy consumption and consequently can improve the 

network life time. Clustering techniques are widely used to reduce the energy consumption 

in transmission. In this research work we tried to develop the techniques to improve the 

performance of existing algorithms and tried to explore biologically inspired optimization 

methods such as particle swarm optimization (PSO) to solve the problem of clustering that 

is NP-hard otherwise. 

 

1.4 Thesis Organization 

In this chapter we have given a brief introduction of wireless sensor networks and radio 

energy model that serve as basis for many popular protocols for WSNs. 

In Chapter 2 we will present a detailed survey on different types of clustering algorithms 

available in literature and their variants that are used in practice with an insight to their 

classification. 

In Chapter 3 we will propose two viable modifications in existing probabilistic clustering 

algorithms to improve their energy efficiency. We will also provide extensive simulation 

study to show the relevance of our proposed modifications. 

In Chapter 4 we will propose a particle swarm optimization based solution to the clustering 

problem. Simulation results will also be presented to evaluate the performance of our 

proposed solution. 

In chapter 5 we will propose an Energy Efficient Hybrid Clustering Protocol (EEHCP) for 

multilevel heterogeneous wireless sensor networks and will compare the performance of 

our proposed algorithm with some popular algorithms such as LEACH and SEP. 
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Chapter 2: Clustering in Wireless Sensor Networks 

In most wireless sensor network (WSN) applications nowadays the entire network must 

have the ability to operate unattended in harsh environments in which pure human access 

and monitoring cannot be easily scheduled or efficiently managed or it’s even not feasible 

at all [1]. Based on this critical expectation, in many significant WSN applications the 

sensor nodes are often deployed randomly in the area of interest by relatively uncontrolled 

means and they form a network in an ad hoc manner [2], [3]. Moreover, considering the 

entire area that has to be covered, the short duration of the battery energy of the sensors 

and the possibility of having damaged nodes during deployment, large populations of 

sensors are expected; it’s a natural possibility that hundreds or even thousands of sensor 

nodes will be involved. In addition, sensors in such environments are energy constrained 

and their batteries usually cannot be recharged. Therefore, it’s obvious that specialized 

energy-aware routing and data gathering protocols offering high scalability should be 

applied in order that network lifetime is preserved acceptably high in such environments. 

Naturally, grouping sensor nodes into clusters has been widely adopted by the research 

community to satisfy the above scalability objective and generally achieve high energy 

efficiency and prolong network lifetime in large-scale WSN environments. The 

corresponding hierarchical routing and data gathering protocols imply cluster-based 

organization of the sensor nodes in order that data fusion and aggregation are possible, 

thus leading to significant energy savings. In the hierarchical network structure each 

cluster has a leader, which is also called the cluster head (CH) and usually performs the 

special tasks referred above (fusion and aggregation), and several common sensor nodes 

(SN) as members. 

The cluster formation process eventually leads to a two-level hierarchy where the CH 

nodes form the higher level and the cluster-member nodes form the lower level. The sensor 

nodes periodically transmit their data to the corresponding CH nodes. The CH nodes 

aggregate the data and transmit them to the base station (BS) either directly or through the 

intermediate communication with other CH nodes. However, because the CH nodes send 

all the time data to higher distances than the common nodes, they naturally spend energy at 

higher rates. A common solution in order to balance the energy consumption among all the 

network nodes is to periodically re-elect new CHs thus rotating the CH role among all the 

nodes over time in each cluster. A typical example of the implied hierarchical data 
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communication within a clustered network assuming single hop intra-cluster 

communication and multi-hop inter-cluster communication is illustrated in Figure 2.1. 

 

 

 

 

The BS is the data processing point for the data received from the sensor nodes, and where 

the data is accessed by the end user. It is generally considered fixed and at a far distance 

from the sensor nodes. The CH nodes actually act as gateways between the sensor nodes 

and the BS. The function of each CH, as already mentioned, is to perform common 

functions for all the nodes in the cluster, like aggregating the data before sending it to the 

BS. In some way, the CH is the sink for the cluster nodes, and the BS is the sink for the 

CHs. Moreover, this structure formed between the sensor nodes, the sink (CH), and the BS 

can be replicated as many times as it is needed, creating (if desired) multiple layers of the 

hierarchical WSN (multi-level cluster hierarchy).  

 

2.1 Objective of clustering 

As was mentioned at the beginning, hierarchical clustering in WSNs can greatly contribute 

to overall system scalability, lifetime, and energy efficiency. Hierarchical routing is an 

Fig. 2.1 Data Communication in Clustered Network 
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efficient way to lower energy consumption within a cluster, performing data aggregation 

and fusion in order decrease the number of transmitted messages to the BS. On the 

contrary, a single-tier network can cause the gateway to overload with the increase in 

sensors density. Such overload might cause latency in communication and inadequate 

tracking of events. In addition, the single-tier architecture is not scalable for a larger set of 

sensors covering a wider area of interest because the sensors are typically not capable of 

long-haul communication. Hierarchical clustering is particularly useful for applications 

that require scalability to hundreds or thousands of nodes. Scalability in this context 

implies the need for load balancing and efficient resource utilization. Applications 

requiring efficient data aggregation are also natural candidates for clustering. Routing 

protocols can also employ clustering [9], [27]. In Ref. [50], clustering was also proposed 

as a useful tool for efficiently pinpointing object locations. 

In addition to supporting network scalability and decreasing energy consumption through 

data aggregation, clustering has numerous other secondary advantages and corresponding 

objectives [1]. It can localize the route setup within the cluster and thus reduce the size of 

the routing table stored at the individual node. It can also conserve communication 

bandwidth because it limits the scope of inter-cluster interactions to CHs and avoids 

redundant exchange of messages among sensor nodes. Moreover, clustering can stabilize 

the network topology at the level of sensors and thus cuts on topology maintenance 

overhead. Sensors would care only for connecting with their CHs and would not be 

affected by changes at the level of inter-CH tier. The CH can also implement optimized 

management strategies to further enhance the network operation and prolong the battery 

life of the individual sensors and the network lifetime. A CH can schedule activities in the 

cluster so that nodes can switch to the low-power sleep mode and reduce the rate of energy 

consumption. Furthermore, sensors can be engaged in a round-robin order and the time for 

their transmission and reception can be determined so that the sensors reties are avoided, 

redundancy in coverage can be limited, and medium access collision is prevented. 

 

2.2 Design Challenges of Clustering in WSNs 

WSNs also present several particular challenges in terms of design and implementation. 

Similar challenges and design goals have also been faced earlier in the field of mobile ad 

hoc networks (MANETs), and naturally a lot of related ideas considering clustering 

protocols etc. have been borrowed from that field. In WSNs, however, the limited 
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capabilities such as battery power, transmission range, processing hardware and memory,  

etc. of the sensor nodes combined with the special location-based conditions such as not 

easily accessed in order recharge the batteries or replace the entire sensors make the 

energy efficiency and the scalability factors even more crucial. Moreover, the challenge of 

prolonging network lifetime under the above restrictions is difficult to be met by using 

only traditional techniques. Consequently, it becomes unavoidable to follow alternative 

techniques leading to more efficient protocols with a lot of differences compared to the 

ones designed for MANETs. 

Beyond the typical challenges mentioned above some additional important considerations 

in the design process of clustering algorithms for WSNs should be the following: 

Cluster formation: The CH selection and cluster formation procedures should generate the 

best possible clusters. However they should also preserve the number of exchanged 

messages low and the total time complexity should, if possible remain constant and 

independent to the growth of the network. This yields a very challenging trade-off. 

Application Dependency: When designing clustering and routing protocols for WSNs, 

application robustness must be of high priority and the designed protocols should be able 

to adapt to a variety of application requirements. Secure communication: As in traditional 

networks, the security of data is naturally of equal importance in WSNs too. 

The ability of a WSN clustering scheme to preserve secure communication is ever more 

important when considering these networks for military applications. Synchronization: 

Slotted transmission schemes such as TDMA allow nodes to regularly schedule sleep 

intervals to minimize energy used. Such schemes require corresponding synchronization 

mechanisms and the effectiveness of this mechanisms must be considered. Data 

aggregation: Because this process makes energy optimization possible it remains a 

fundamental design challenge in many sensor network schemes nowadays. However its 

effective implementation in many applications is not a straightforward procedure and has 

to be further optimized according to specific application requirements. 

 

2.3 Clustering Parameters 

It is worth to know some important parameters with regard to the whole clustering 

procedure in WSNs. These parameters serve as the basic means for further comparison and 

categorization of the presented clustering protocols throughout this chapter. 
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A. Number of clusters: In most recent probabilistic and randomized clustering 

algorithms the CH election and formation process lead naturally to variable number 

of clusters. In some published approaches, however, the set of CHs are 

predetermined and thus the number of clusters is preset. The number of clusters is 

usually a critical parameter with regard to the efficiency of the total routing 

protocol. 

B. Intra-cluster communication: In some initial clustering approaches the 

communication between a sensor and its designated CH is assumed to be direct 

(one-hop communication). However, multi-hop intra-cluster communication is 

often required, i.e., when the communication range of the sensor nodes is limited or 

the number of sensor nodes is very large and the number of CHs is bounded. 

C. Nodes and CH mobility:   If we assume stationary sensor nodes and stationary 

CHs we are normally led to stable clusters with facilitated intra-cluster and inter-

cluster network management. On the contrary, if the CHs or the nodes themselves 

are assumed to be mobile, the cluster membership for each node should 

dynamically change forcing clusters to evolve over time and probably need to be 

continuously maintained. 

D. Nodes types and roles:  In heterogeneous network models the CHs are assumed to 

be equipped with significantly more computation and communication resources 

than others. In most usual homogeneous network models all nodes have the same 

capabilities and just a subset of the deployed sensors is designated as CHs. 

E. Cluster formation methodology:  In most recent approaches, when CHs are just 

regular sensors nodes and time efficiency is a primary design criterion, clustering is 

being performed in a distributed manner without coordination. In few earlier 

approaches a centralized or hybrid approach is followed; one or more coordinator 

nodes are used to partition the whole network off-line and control the cluster 

membership. 

F. Cluster-head selection:  The leader nodes of the clusters in some proposed 

algorithms mainly for heterogeneous environments can be preassigned. In most 

cases, in homogeneous environments, the CHs are picked from the deployed set of 

nodes either in a probabilistic or completely random way or based on other more 

specific criteria such as residual energy, connectivity etc. 

G. Algorithm complexity: In most recent algorithms the fast termination of the 

executed protocol is one of the primary design goals. Thus, the time complexity or 
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convergence rate of most cluster formation procedures proposed nowadays is 

constant or just dependent on the number of CHs or the number of hops. In some 

earlier protocols, however, the complexity time has been allowed to depend on the 

total number of sensors in the network, focusing in other criteria first. 

H. Multiple levels:  In several published approaches the concept of a multi-level 

cluster hierarchy is introduced to achieve even better energy distribution and total 

energy consumption instead of using only one cluster level. The improvements 

offered by multi-level clustering are to be further studied, especially when we have 

very large networks and inter-CH communication efficiency is of high importance. 

I. Overlapping:  Several protocols give also high importance on the concept of node 

overlapping within different clusters either for better routing efficiency or for faster 

cluster formation protocol execution or for other reasons. Most of the known 

protocols, however, still try to have minimum overlap only or do not support 

overlapping at all. 

 

2.4 Classification of Clustering Protocols 

There have been several different ways based directly on the above-mentioned parameters 

to initially distinguish and further classify the algorithms used for WSNs clustering, [4].  

Two of the most early and common classifications in the bibliography are 

(i) Clustering algorithms for homogeneous or heterogeneous networks 

(ii) Centralized or distributed clustering algorithms. 

The first of the above classifications is based on the characteristics and functionality of the 

sensors in the cluster, whereas the other one is based on the method used to form the 

cluster. In heterogeneous sensor networks [6], [10] there are generally two types of 

sensors, sensors with higher processing capabilities and complex hardware, used generally 

to create some sort of backbone inside the WSN being preset as the CH node and also 

serve as data collectors and processing centres for data gathered by other sensor nodes, and 

common sensors, with lower capabilities, used to actually sense the desired attributes in 

the field. In homogeneous networks, all nodes have the same characteristics, hardware and 

processing capabilities. In this case which is the most usual in nowadays applications 

every sensor can become a CH. Moreover, the CH role can be periodically rotated among 

the nodes in order achieve better load balancing and more uniform energy consumption. 

Also, when all the nodes have the same capabilities (homogeneous environments), a 
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distributed CH election and formation process is the most appropriate technique to gain 

increased flexibility and fast execution-convergence time, independent of the number of 

nodes of the WSN. 

 There are also a few approaches using centralized or hybrid techniques as described in [5], 

[6], [12] where one or more coordinator nodes or the BS is responsible to partition the 

whole network off-line and control the cluster membership, however they are naturally not 

suitable for practical general-purpose large-scale WSNs applications. They may be suitable 

only for special purpose limited-scale applications where high-quality connectivity and 

network partitioning is required. Here we mainly focus on distributed clustering protocols 

that are the most efficient, especially for large networks and are the most general purpose 

and widely used nowadays. 

Another common classification is between static and dynamic clustering. A cluster 

formation procedure is regarded as dynamic when it includes regular (periodic or event 

driven) CH re-election or cluster reorganization procedures, either to effectively react to 

network topology changes and adjust appropriately the cluster topology, or simply aiming 

at the appropriate rotation of the CH role among the nodes to gain in energy efficiency. 

Dynamic cluster architectures make a better use of the sensors in a WSN and naturally lead 

to improved energy consumption management and network lifetime. 

Most of the known clustering algorithms for WSNs can be further distinguished into two 

main categories, depending on cluster formation criteria and parameters used for CH 

election: 

(i) Probabilistic clustering algorithms 

(ii) Non probabilistic clustering algorithms 

In the category of probabilistic selection clustering algorithms [11–24], a priori probability 

assigned to each sensor node is used to determine the initial CHs or some other type of 

random election procedure is used. The probabilities initially assigned to each node often 

serve as the primary criterion in order for the nodes to decide individually on their election 

as CHs in a flexible, uniform, fast and completely distributed way; however other 

secondary criteria may also be considered either during CH election process such as the 

residual energy or during the cluster formation process such as the proximity or the 

communication cost in order achieve better energy consumption and network lifetime. 

Beyond the high energy efficiency which is facilitated also from the periodic CH re-

election scheme usually adopted, the clustering algorithms of this category usually achieve 

faster execution/convergence times and reduced volume of exchanged messages. 
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In the category of non probabilistic clustering algorithms [25–43], more specific and 

deterministic criteria for CH election and cluster formation are primarily considered, 

which are mainly based on the node’s proximity, connectivity, degree etc. and on the 

information received from other closely located nodes. The cluster formation procedure 

here is mainly based on the communication of nodes with their neighbours (one or multi-

hop neighbours) and generally requires more intensive exchange of messages and probably 

graph traversing in some extent, thus leading sometimes to worse time complexity than 

probabilistic clustering algorithms. On the contrary these algorithms are usually more 

reliable toward the direction of extracting robust and well-balanced clusters. In addition to 

node proximity, some algorithms [37–40] also use a combination of metrics such as the 

remaining energy, transmission power, mobility, etc., forming corresponding combined 

weights to achieve more generalized goals than single-criterion protocols. In the same 

category we also address a relatively new and quite challenging class of clustering 

algorithms for WSNs, namely, the biologically inspired protocols [41–43], based on 

swarm intelligence which are probably the most promising alternative approaches for 

clustering in WSNs nowadays. 

Furthermore, there is a special-purpose class of clustering protocols, those that are suitable 

for Reactive Networks [44–49]. These protocols have clearly different objectives 

compared to the most common category of proactive clustering algorithms to which all the 

other above-mentioned protocols belong. They are specifically oriented to applications 

with timing restrictions and usually take advantage of user queries for the sensed data or of 

specific triggering events that occur in the WSN. 

There is another class of protocols that consider mobility of sensor nodes in network. The 

number of applications that require mobile nodes is considerably limited; also there is not 

much specialized work in the literature till now. We find some relevant information and 

specific related work in [51] and [52]. 

 

2.5 Earliest Clustering Protocols 

Before the detailed presentation of the main clustering categories introduced above, we 

want to discuss the former protocols used before the last decade for clustering in WSNs. 

The first clustering algorithms for WSNs were naturally inspired from or entirely based on 

corresponding algorithms already studied and used in the field of wired sensor networks 
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or, later, in the field of mobile ad hoc networks. Uniformly assigned unique identifiers 

were usually the key parameter for selecting CHs in those algorithms. 

One of the first such clustering algorithms, initially developed for wired sensor networks 

was the Linked Cluster Algorithm (LCA) [7]. LCA was a distributed ID based, one-hop, 

static clustering algorithm, trying to maximize network connectivity. 

The main disadvantage of LCA was that usually led to excessive number of clusters. An 

improved LCA-based approach, generating smaller number of clusters was given in [8] 

(LCA2). Both algorithms [7] and [8] had limited scope as clustering algorithms for WSNs 

because they did not consider the problem of limited energy of WSNs. Additionally, both 

protocols construct one-hop clusters and their time complexity is O(n) which is rather 

unacceptable for large size WSNs. Similarly, an early example of clustering protocols 

initially developed for mobile ad hoc networks and then applied also to WSNs was the 

adaptive clustering algorithm presented in [9]. Other classical paradigms of clustering 

algorithms designed initially for MANETs, were the MAX-MIN [29], HC [28] and WCA 

[38] algorithms. Finally, some of the initial clustering schemes proposed for WSNs were 

based on some sort of manual formation of the clusters and are mostly applicable to 

heterogeneous environments. Such a representative algorithm can be found in [10]. These 

manual-based clustering formation schemes are not applicable to general-purpose WSNs 

of our days, unless specific conditions are met.  

 

2.6 Probabilistic Clustering Approaches  

As the need for efficient use of WSNs on large regions increased in the last decade 

dramatically, more specific clustering protocols were developed to meet the additional 

requirements such as increased network lifetime, reduced and evenly distributed energy 

consumption, scalability etc. The most significant and widely used representatives of this 

category such as LEACH, EEHC, HEED, SEP and their most valuable extensions will be 

described in this section. They are all probabilistic in nature and their main objective was 

to reduce the energy consumption and prolong the network lifetime. Some of them follow 

a random approach for CH election, the initially assigned probabilities serve as the basis 

for the random election of the CHs, whereas others like HEED follow a hybrid 

probabilistic methodology, secondary criteria such as residual energy etc. are also 

considered during CH election.  
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2.6.1 Low Energy Adaptive Clustering Hierarchy (LEACH) 

One of the first and most popular clustering protocols proposed for WSNs was LEACH 

[11], [12]. It is probably the first dynamic clustering protocol which addressed specifically 

the WSNs needs, using homogeneous stationary sensor nodes randomly deployed, and it 

still serves as the basis for other improved clustering protocols for WSNs. It’s a 

hierarchical, probabilistic, distributed, one-hop protocol, with main objectives (a) to 

improve the lifetime of WSNs by trying to evenly distribute the energy consumption 

among all the nodes of the network and (b) to reduce the energy consumption in the 

network nodes by performing data aggregation and thus reducing the number of 

communication messages. It forms clusters based on the received signal strength and also 

uses the CH nodes as routers to the BS. All the data processing such as data fusion and 

aggregation are local to the cluster. LEACH forms clusters by using a distributed 

algorithm, where nodes make autonomous decisions without any centralized control. All 

nodes have a chance to become CHs to balance the energy spent per round by each sensor 

node. Initially a node decides to be a CH with a probability “p” and broadcasts its decision. 

Specifically, after its election, each CH broadcasts an advertisement message to the other 

nodes and each one of the other non-CH nodes determines a cluster to belong to, by 

choosing the CH that can be reached using the least communication energy based on the 

signal strength of each CH message. 

The role of being a CH is rotated periodically among the nodes of the cluster to balance the 

load. The rotation is performed by getting each node to choose a random number r’ 

between 0 and 1. A node becomes a CH for the current rotation round if the number is less 

than the following threshold: 

𝑇(𝑛) = {

𝑝

1 − 𝑝 (𝑟 𝑚𝑜𝑑 
1
𝑝)

                               𝑖𝑓 𝑛 𝜖 𝐺

 
                    0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where, p is the desired percentage of CH nodes in the sensor population, r is the current 

round number, G is the set of nodes that have not been CHs in the last 1/p rounds. The 

clusters are formed dynamically in each round and the time to perform the rounds is also 

selected randomly. Generally, LEACH can provide a quite uniform load distribution in 

one-hop sensor networks. Moreover, it provides a good balancing of energy consumption 

by random rotation of CHs. 
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LEACH has also some clear drawbacks. Because the decision on CH election and rotation 

is probabilistic, there is still a good chance that a node with very low energy gets selected 

as a CH. Due to the same reason it is possible that the elected CHs will be concentrated in 

one part of the network and some nodes will not have any CH in their range. Also, the CHs 

are assumed to have a long communication range so that the data can reach the BS 

directly. This is not always a realistic assumption because the CHs are usually regular 

sensors and the BS is often not directly reachable to all nodes. Moreover, LEACH forms in 

general one-hop intra-cluster and inter-cluster topology where each node should transmit 

directly to the CHs and thereafter to the BS, thus normally it cannot be used effectively on 

networks deployed in large regions. 

2.6.2 Energy Efficient Hierarchical Clustering (EEHC) 

EEHC, another significant probabilistic clustering algorithm was proposed earlier in [13]. 

The main objective of this algorithm was to address the shortcomings of one-hop random 

selection algorithms such as LEACH by extending the cluster architecture to multiple 

hops. It is a distributed, k-hop hierarchical clustering algorithm aiming at the maximization 

of the network lifetime. 

Initially, each sensor node is elected as a CH with probability “p” and announces its 

election to the neighbouring nodes within its communication range. The above CHs are 

now called the “volunteer” CHs. Next, all the nodes that are within k-hops distance from a 

“volunteer” CH, are supposed to receive the election message either directly or through 

intermediate forwarding. Consequently, any node that receives such CH election message 

and is not itself a CH, becomes a member of the closest cluster. Additionally, a number of 

‘forced’ CHs are elected from nodes that are neither CH nor belong to a cluster. 

Specifically, if the election messages do not reach a node within a preset time interval t, 

the node becomes a “forced” CH assuming that it is not within k hops of all volunteer 

CHs. 

However, the most challenging feature of the EEHC algorithm is the direct extension to a 

corresponding multi-level clustering structure. The initial clustering process is recursively 

repeated at the level of CHs making it possible to build multiple levels of cluster hierarchy. 

Assuming that an h-level cluster hierarchy has been constructed in that way with 

corresponding preset CH election probabilities 𝑝1, 𝑝2,· · · , 𝑝ℎ for each level, the algorithm 

ensures the efficient h-level communication between common sensor nodes and the BS, as 

follows : Common sensor nodes transmit their collected data to the corresponding first-
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level CHs, the CHs of the first-level clusters transmit the aggregated data to the second-

level CHs and so on, till the top (#h) level of the clustering hierarchy is reached; the CHs 

of those h-level clusters transmit their final aggregated data reports to the BS. This multi-

level protocol has a time complexity of  𝑂(𝑘1  +  𝑘 2 + · · ·  + 𝑘ℎ), where 𝑘𝑖 is the 

corresponding parameter (for each level) to the above-mentioned “k” parameter. That was 

a significant improvement over the O(n) time complexity that many of the existing 

algorithms till then like LCA had, and made this algorithm quite suitable for large 

networks. 

2.6.3 Hybrid Energy Efficient Distributed clustering (HEED) 

Another improved and very popular energy-efficient protocol is HEED [14]. HEED is a 

hierarchical, distributed, clustering scheme in which a single-hop communication pattern is 

retained within each cluster, where as multi-hop communication is allowed among CHs 

and the BS. The CH nodes are chosen based on two basic parameters, residual energy and 

intra-cluster communication cost. Residual energy of each node is used to probabilistically 

choose the initial set of CHs. On the other hand, intra-cluster communication cost reflects 

the node degree or node’s proximity to the neighbour and is used by the nodes in deciding 

to join a cluster or not. Thus, unlike LEACH, in HEED the CH nodes are not selected 

randomly. Only sensors that have a high residual energy are expected to become CH 

nodes. Also, the probability of two nodes within the transmission range of each other 

becoming CHs is small. Unlike LEACH, this means that CH nodes are well distributed in 

the network. 

Moreover, when choosing a cluster, a node will communicate with the CH that yields the 

lowest intra-cluster communication cost. In HEED, each node is mapped to exactly one 

cluster and can directly communicate with its CH. Also, energy consumption is not 

assumed to be uniform for all the nodes. The algorithm is divided into three stages. At the 

beginning, the algorithm sets an initial percentage of CHs among all sensors. This 

percentage value, Cprob, is used to limit the initial CHs announcements to the other 

sensors. Each sensor sets its probability of becoming a CH, CHprob, as follows: 

𝐶𝐻𝑝𝑟𝑜𝑏 =  𝐶𝑝𝑟𝑜𝑏 ∗  𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/𝐸𝑚𝑎𝑥, here 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the current energy in the sensor, 

and 𝐸𝑚𝑎𝑥 is the maximum energy, which corresponds to a fully charged battery. CHprob is 

not allowed to fall below a certain threshold pmin, which is selected to be inversely 

proportional to 𝐸𝑚𝑎𝑥. The main body of the algorithm consists of a constant number of 

iterations. Every sensor goes through these iterations until it finds the CH that it can 
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transmit to with the least transmission power (cost). If it hears from no CH, the sensor 

elects itself to be a CH and then sends an announcement message to its neighbours 

informing them about the change of status. Finally, each sensor doubles its CHprob value 

and goes to the next iteration of this phase. It stops executing this phase when its CHprob 

reaches 1. Therefore, there are two types of CH status that a sensor could announce to its 

neighbours: (a) The sensor becomes a tentative CH if its CHprob is less than 1; it can 

change its status to a regular node at a later iteration if it finds a lower cost CH (b) The 

sensor permanently becomes a CH if its CHprob has reached 1. At the end, each sensor 

makes a final decision on its status. It either picks the least cost CH or announces itself as 

CH. Note also that for a given sensor’s transmission range, the probability of CH selection 

can be adjusted to ensure inter-CH connectivity. 

Generally, HEED’s mechanism to select the CHs and form the clusters produces a uniform 

distribution of cluster heads across the network through localized communications with 

little overhead. It also clearly outperforms LEACH with regard to the network lifetime and 

the desired distribution of energy consumption. However, synchronization is required and 

the energy consumed during data transmission for far away cluster heads is significant, 

especially in large-scale networks. 

2.6.4 Other variants 

On the basis of the probabilistic nature of LEACH, several other protocols were developed 

aiming at better energy consumption and overall performance. First, the LEACH-C and the 

LEACH-F protocols were proposed in [12], introducing slight modifications to the initial 

LEACH cluster formation procedure. LEACH-C is a centralized version of LEACH, in the 

sense that the responsibility of the cluster creation is transferred to the BS. Each node is 

initially obligated to perform a direct communication with the BS in order that a global 

view of the network is formed. As a result an improved cluster formation procedure is 

performed and a slightly better overall performance of the network is achieved. LEACH-F 

is also a centralized protocol and is based initially on the same global clustering scheme as 

in LEACH-C. The main difference lies on the fact that all clusters are fixed once when 

they are formed, thus reducing the overhead of cluster formation in the network. However, 

the above design directive prevents the use of the protocol in networks with any kind of 

mobility. A valuable extension to LEACH has been proposed in [15], a two-level LEACH, 

where the key idea of probabilistic CH election is extended to construct a two-level 

clustering scheme. The outer level consists of the “primary” CHs where as the inner level 
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consists of the “secondary” CHs. The “primary” CHs in each outer-level cluster 

communicate directly with the corresponding “secondary” CHs and the “secondary” CHs 

in each inner level cluster communicate directly with the corresponding nodes in that sub 

cluster. Data fusion as well as communication within a cluster is performed like in 

LEACH, in TDMA schedules. The selection of the “primary” and the “secondary” CHs is 

performed also in the same way as in LEACH, by setting corresponding a priori 

probabilities for each node. The “primary” CHs are selected first and the “secondary” CHs 

are selected next from the remaining nodes. The probability to become a “primary” CH is 

normally less than the probability to become a “secondary” CH. Generally, the two-level 

clustering scheme of this algorithm achieves a significant reduction on the percentage of 

nodes that have to transmit data to the BS in each round. Thus, it is normally expected to 

reduce the total energy spent. 

Most of the published probabilistic clustering algorithms construct disjoint clusters. On the 

contrary, in [16] the authors argue that allowing some degree of overlap among clusters 

can be quite effective for many tasks like inter-cluster routing, topology discovery and 

node localization, recovery from CH failure, etc. Specifically, they introduce a 

probabilistic, distributed Multi-hop Overlapping Clustering Algorithm (MOCA) for 

organizing the sensors into overlapping clusters. The goal of the clustering process is to 

ensure that each node is either a CH or within k hops from at least one CH, where k is a 

preset cluster radius. The algorithm initially assumes that each sensor in the network 

becomes a CH with probability p. Each CH then advertises itself to the sensors within its 

radio range. This advertisement is forwarded to all sensors that are no more than k hops 

away from the CH. A node sends a request to all CHs that it heard from to join their 

clusters. In the join request, the node includes the ID of all CHs it heard from, which 

implicitly implies that it is a boundary node. The CH election probability p is used to 

control the number of clusters in the network and the degree of overlap among them. The 

authors also provide extensive simulation work to validate appropriate values of p to 

achieve particular cluster count and overlapping degree. 

Beyond the pure use of a priori probabilities to elect the initial CHs, another significant 

parameter additionally used (like in HEED) is the residual energy of each node. Two such 

recent algorithms, similar also to LEACH with regard to the overall clustering process 

were proposed in [17] and [18]. In Time Controlled Clustering Algorithm (TCCA) [17], 

the whole operation is divided into rounds trying to achieve better load distribution among 

sensor nodes. In each round initially the CH selection procedure takes place and overall 
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cluster formation process follows. Each node decides to elect itself as a CH or not based on 

the suitable combination of two basic criteria, its residual energy and a preset probability 

p. Actually in this step TCCA applies a direct combination of LEACH and HEED 

algorithms by having the energy fraction 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/𝐸𝑚𝑎𝑥 participating directly in the 

computation of the (LEACH inspired) CH-election threshold 𝑇𝑖 in each round. When a CH 

is selected, it announces its selection to the neighbouring nodes by sending a message 

which includes its node id, initial time-to-live, its residual energy, and a time stamp. The 

time-to-live parameter is selected according to the residual energy and it is used to restrict 

the size of the clusters that are formed. On the other hand, in [18] Energy Efficient 

Clustering Scheme (EECS), a constant number of CHs are elected (i) based on their 

residual energy (as the main criterion) and (ii) using localized competition process without 

iteration to complete the cluster formation process. Specifically, the candidate CHs 

compete for their chance to be elected at any given round by broadcasting their residual 

energy to neighbouring candidates. If a given node does not find a node with more residual 

energy, it becomes the CH. Additionally clusters are then formed by retaining variable 

sizes dynamically, mainly depending on the distance of each cluster from the BS. As a 

result, the corresponding algorithm can effectively lead to better energy consumption and 

uniform load distribution having a clearly better behaviour compared to LEACH in 

simulated experiments, based on the fact that clusters at a greater distance from the BS 

require more energy for transmission than those that are closer. 

Also, considering the HEED algorithm a slight however effective modification was also 

proposed in [20]. Specifically, the difference here is the treatment of nodes that eventually 

did not hear from any CH; during the finalization phase of the initial protocol all these 

nodes become CHs themselves. On the contrary, in [20] the authors claim that re-executing 

the algorithm for just those orphaned nodes could lead to significant improvements. 

Furthermore, this slight modification was shown to significantly decrease the CHs’ count 

which then leads to reduced size of the routing tree needed during inter-CH 

communication which finally results in faster data gathering procedures. 

Similarly, considering the multi-level EEHC algorithm, a valuable extension, EEMC that 

includes additional CH election criteria is proposed in [19], where the expected number of 

CHs at each level is previously determined by analytical formulas. The authors generalize 

the analysis given in [13] and present results about the optimal number of CHs at a certain 

level. Considering the formation process, they follow a top-down approach starting from 

the formation of level-1 clusters. The CHs at each level are randomly selected according to 
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a certain probability. The probability of a node becoming a CH is proportional to the 

residual energy of the node as well as the distance of this node to the sink node or to the 

CH it belongs to at lower levels. The distance is taken into account as each CH should 

transmit the aggregated data on behalf of its member nodes to its next level CH and a large 

distance between these two nodes contributes to fast energy consumption in the 

transmitting CH. The probabilities are also normalized so that the expected number of CHs 

at each level is according to the optimal values determined in their analysis. Extensive 

simulation work is also provided, in which the EEMC protocol is shown to achieve longer 

network lifetime and less latency compared to LEACH and EEHC protocols. 

Finally, some random selection protocols have also been developed that follow an even 

more clearly random CH election procedure by randomly waiting or by generating a 

random competition, etc. Such an early proposed algorithm was RCC [21], which was 

initially designed for MANETs and applies the ‘First Declaration Wins’ rule. In [22], 

another completely randomized clustering algorithm CLUBS was proposed, where each 

node participates in the election procedure by choosing a random number from a fixed 

integer range and then it counts down from that number silently. Two more recent and 

quite efficient (converging in constant time) completely randomized protocols were 

proposed in [23] and [24]. In [23] Fast Local Clustering service (FLOC), a distributed 

protocol that produces approximately equal sized clusters with minimum overlap is 

presented. 

 

2.7 Non Probabilistic Clustering Approaches  

Alternatively to the probabilistic algorithms described in the previous section, another 

basic class of clustering algorithms for WSNs primarily adopt more specific and 

deterministic criteria for CHs election and cluster formation, which are mainly based on 

the nodes’ proximity (connectivity, degree, etc.) and on the information received from 

other closely located nodes. The cluster formation procedure here is mainly based on the 

communication of nodes with their neighbours and generally requires more intensive 

exchange of messages and probably graphs traversing in some extent. The use of 

additional metrics including the remaining energy, transmission power, mobility, etc. in 

the form of combined weighted values is also a quite promising technique followed to 

achieve more generalized goals than other single-metric protocols. Furthermore, an even 

more challenging and promising non probabilistic clustering approach is based on the use 
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of swarm intelligence and has led to the construction of corresponding biologically 

inspired clustering protocols that already have been shown to extend network lifetime in 

WSNs. 

2.7.1 Node Proximity and Graph Based Protocols 

A proximity-traversing-based algorithm, Hierarchical Control Clustering (HCC) was 

earlier proposed in [27]. It is a distributed multi-hop hierarchical clustering algorithm 

which also efficiently extends to form a multi-level cluster hierarchy. Any node in the 

WSN can initiate the cluster formation process. The algorithm proceeds in two phases 

namely, Tree Discovery and Cluster Formation.”The tree discovery phase is basically a 

distributed formation of a Breadth-First-Search (BFS) tree rooted at the initiator node. 

Each node, u, broadcasts a signal once every p units of time, carrying the information 

about its shortest hop distance to the root, r. A node v that is neighbour of u will choose u 

to be its parent and will update its hop distance to the root, if the route through u is shorter. 

The broadcast signal carries the parent ID, the root ID, and the sub tree size. Every node 

updates its sub tree size when its children sub tree size change. The cluster formation 

phase starts when a sub tree on a node crosses the size parameter, k. The node initiates 

cluster formation on its sub tree. It will form a single cluster for the entire sub tree if the 

sub tree size is less than 2k, or else, it will form multiple clusters. The cluster size and the 

degree of overlap are also considered. 

Two other early proposed algorithms of this category can be found in [28] and [29]. In 

Highest Connectivity (HC) [28] a connectivity-based heuristic is proposed, in which the 

sensor node with maximum number of one-hop neighbours is elected as a CH in its 

neighbourhood. The formation of one-hop clusters and the clock synchronization 

requirement limit the practical usage of this algorithm nowadays. On the other hand, in 

Max-Min D-Cluster algorithm [29], a distributed algorithm is proposed, in which the 

clusters consist of nodes that are no more than d-hops away from the CH. It does not 

require clock synchronization and it provides a better load balancing compared to LCA 

and HC algorithms. 

Other more recent examples of proximity-connectivity and neighbour’s information based 

algorithms have been proposed in [30–32]. In [30] a typical centralized, graph-based 

clustering approach (EEDC) is presented. To minimize the number of clusters and 

therefore maximize the energy saving, EEDC models the cluster creation process as a 

clique-covering problem and uses the minimum number of cliques to cover all vertices in 
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the graph. The sink also dynamically adjusts the clusters based on spatial correlation and 

the received data from the sensors. The algorithm produces robust and well-balanced 

clusters; however it is centralized and thus not suitable for large-scale WSNs. 

In [31] Clustering Algorithm via Waiting Timer (CAWT), a distributed proximity-

connectivity-based algorithm for constructing cluster hierarchy has been proposed for 

homogeneous sensors with the same transmission range. Once sensors are deployed, each 

sensor broadcasts a “hello” message to show its presence to the neighbours while listening 

to the others. The sensors that hear a significant number of “hello” messages (meaning that 

are nodes with high connectivity) organize into clusters while others are waiting to form 

clusters. The performance of the algorithm was evaluated using simplified simulations 

leading to quite good results with regard to network lifetime. 

However, as it is clearly observed, the generalization of the algorithm is subject to detailed 

evaluation with respect to load balancing, CH re-election, and energy usage across the 

network. 

Similarly, in  [32]  a distributed clustering procedure, EACLE which beyond the proximity 

takes also in account the residual energy of each node, is followed. It is mainly based on 

the information of 2-hop neighbours with a practical transmission power control scheme, 

and then builds a broadcast tree only by cluster heads. Initially, each sensor is in a 

‘waiting’ state and waits for time T1 which is a monotonous decreasing function on the 

residual energy of the node. When the timer expires, the waiting node becomes a CH and 

broadcasts two packets with different transmission power each, which contain the list of 

the neighbour-IDs received before broadcasting. When a waiting node receives a power-

low packet it becomes a member node, whereas when it receives a power-high packet, it 

compares its own neighbour list with the list of IDs in the receiving packet, to decide if it 

should continue waiting or become a CH. Also, each node executes the clustering process 

periodically. Once a node becomes a CH in a specific round, its timer is then set to a 

longer value to avoid becoming a CH again in the next round. 

A quite valuable alternative Algorithm for Cluster Establishment (ACE) was given in 

[33].Unlike other distributed clustering schemes, ACE employs an emergent algorithm. 

Emergent algorithms much like artificial neural networks evolve to optimal solution 

through a mix of local optimization steps. Initially, a node decides to become a 

“candidate” CH, and then it broadcasts an invitation message. Upon getting the invitation, 

a neighbouring sensor joins the new cluster and becomes a follower of the new CH. At any 

moment, a node can be a follower of more than one cluster. Next, the migration phase 
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takes place in order the best candidate for being CH to be selected. Each CH periodically 

checks the ability of its neighbours for being a CH and decides to step down if one of these 

neighbours has more followers than it does. A node that has the largest number of 

followers and the least overlap with other clusters will be considered as the best final 

candidate for CH.  

2.7.2 Biologically Inspired Clustering Approaches 

In the last few years some new algorithms have also been proposed based on swarm 

intelligence techniques which model the collective behaviour of social insects such as ants. 

They have shown very promising results in simulated experiments when compared to 

protocols like LEACH and HEED with regard to network lifetime. In [41] the authors 

propose such a swarm intelligence-based clustering algorithm based on the ANTCLUST 

method. ANTCLUST is a model of an ant colonial closure to solve clustering problems. 

In colonial closure model, when two objects meet together they recognize whether they 

belong to the same group by exchanging and comparing information about them. In the 

case of a WSN, initially the sensor nodes with more residual energy become CHs 

independently. Then, randomly chosen nodes meet each other, exchange information, and 

clusters are created, merged, and discarded through these local meetings and comparison 

of their information. Each node with less residual energy chooses a cluster based on 

specific criteria, like the residual energy of the CH, its distance to the CH, and an 

estimation of the cluster size. Eventually, energy efficient clusters are formed that result in 

an extension of the lifetime of the WSN. 

Another related approach that ensures the good distribution of CHs and high energy 

efficiency, can be found in [42]. Also, in [43], a protocol that has the objective of 

minimizing the intra-cluster distance and optimizing the energy consumption of the 

network using Particle Swarm Optimization (PSO) is presented and evaluated via 

simulations. Generally, biologically inspired clustering algorithms show that they can 

dynamically control the CH selection while achieving quite uniform distribution of CHs 

and energy consumption. However, they have to be studied further as it is pointed out in 

the literature. 

2.7.3 Clustering Protocols for Reactive Networks 

Reactive algorithms respond to specific triggering events that occur in the WSN. Nodes 

may react instantly to sudden and drastic changes in the value of a sensed attribute. This 
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approach is useful for time-critical applications, but not particularly suited for applications 

where data retrieval is required on a regular basis. 

The Threshold sensitive Energy Efficient sensor Network protocol (TEEN) [44] forms a 

hierarchical clustered structure, grouping nearby nodes within the same cluster. The 

protocol defines two thresholds: the hard threshold is a threshold value for the sensed 

attribute, while the soft threshold is a threshold value for change in the sensed attribute. 

The concept of threshold is highly significant in a variety of WSN applications, such as 

fire alarm, temperature monitoring etc. The nodes transmit sensor readings only when they 

fall above the hard threshold and change by given soft threshold. 

The Adaptive Periodic-TEEN (APTEEN) [45] is a variation of TEEN which addresses the 

main shortcomings of TEEN. It is a hybrid routing protocol wherein the nodes still react to 

time-critical situations, but also give an overall picture of the network at periodic intervals 

in an energy efficient manner. 

More recently, the Clustered Aggregation (CAG) [46], mechanism was proposed, which 

utilizes the spatial correlation of sensory data to further reduce the number of 

transmissions by providing approximate results to aggregate queries. CAG guarantees the 

result to be within a user-specified error-tolerant threshold. 

The Updated CAG algorithm [47] extends CAG defining two operation modes, depending 

on the dynamics of the environment. In the interactive mode, users issue a one-shot query 

and the network generates a single response. On the other hand, in the streaming mode, the 

CHs transmit a stream of response for a query that is issued just once. 

Recently, Guo and Li proposed Dynamic-Clustering Reactive Routing (DCRR) algorithm 

[49]. It borrows ideas from biological neuron networks, following the observation that the 

latter also employ a many-to-one (neurons-to-brain) communication paradigm, similarly to 

the nodes of a WSN. In DCRR, once an incident emerges, the CH is dynamically selected 

in the incident region according to the nodes’ residual energy. 
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Chapter 3: A Technique to Improve the Energy 

Efficiency of Probabilistic Clustering Algorithms 

 

3.1 Objective 

Probabilistic clustering algorithms are widely used in wireless sensor networks to reduce 

the energy consumption by the sensors nodes in data transmission. The main objective of 

this study is to devise a new technique to improve the energy efficiency of existing 

probabilistic clustering algorithms by optimizing the number of clusters and the 

distribution of cluster heads in the network. Our main focus here is to suggest a widely 

applicable technique that can be seamlessly integrated into the existing algorithms in the 

class of probabilistic clustering algorithms rather than proposing a new clustering 

algorithm. Some of the existing probabilistic clustering algorithms operate in centralized 

manner while some operate in distributed manner so we shall propose two generic 

frameworks, one for distributed algorithms and one for centralized algorithms to 

seamlessly integrate our proposed modifications into existing algorithms. 

 

3.2 Motivation 

In this section we will explain in detail the reasoning behind our proposed improvements 

in cluster head selection process of probabilistic clustering algorithms. We are using the 

same radio energy model for power consumption in radio transmission as used in most of 

the probabilistic clustering algorithms as in [11] [12 ] [13] etc. 

3.2.1 Requirement of Clusters of Almost same size 

Probabilistic clustering techniques usually do not take into account the relative positions of 

selected cluster heads; as a result there is a fair chance that in several rounds a 

considerable number of the cluster heads will be either in close proximity or very far from 

each other. In case, when a considerable number of cluster heads are in close proximity, 

the number of nodes in the clusters associated with these cluster heads will be considerably 

low in comparison to other clusters which will give rise to uneven clustering. While a well 

balanced clustering i.e. nearly same sized clusters is crucial for reasonable performance of 

probabilistic clustering techniques such as LEACH [11], TEEN [44] etc. On the contrary if 

selected cluster heads are very far from each other, there will be a significant wastage of 

energy in inter-cluster communication in protocols such as HEED [14], EEHC [13] etc. 
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Therefore a uniform distribution of cluster heads over entire network region is desirable to 

achieve a well balanced clustering. 

3.2.2 Maintaining the Optimal Number of Clusters in Each Round 

Apart from the distribution of cluster heads in the network there is one more issue with 

probabilistic clustering algorithms which is the number of clusters formed in each round. 

For a reasonable performance all the probabilistic clustering algorithms require that the 

number of clusters formed in each round should be as close to an analytically 

predetermined optimal value as possible. There are high chances that the number of 

clusters formed in each round, vary considerably from the optimal value because of the 

probabilistic nature of these algorithms. 

Therefore maintaining the optimal number of clusters in each round is unavoidable for the 

better performance of clustering algorithms. 

 

3.3 Proposed Modifications 

Based on above discussion we proposed two modifications in the existing clustering 

algorithms. 

3.3.1 The Closeness Parameter ξ 

As our first improvement, we want to introduce a parameter ξ to denote the closeness of 

two cluster heads and its value will depend on size, node density of network and number of 

cluster heads to be selected. If in a particular round the distance between any two selected 

cluster heads will be smaller than ξ, they will be considered too close to each other and one 

of them has to drop its decision of becoming cluster head. This way we can ensure that 

cluster heads will not be very close to each other and will be well distributed across the 

network. 

 

 

 

 

 

  

 

 

𝑖𝑓 𝑑 < 𝜉 d 

Fig. 3.1 Effect of ξ-Closeness on Cluster Formation 
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3.3.2 The Threshold Increment Factor σ 

Though the above proposed improvement in cluster head selection process causes a 

significant improvement in the performance of probabilistic clustering algorithms, it has a 

small drawback. Consider the case when a large number of potential cluster heads (the 

nodes for which the value of generated random number is less than the threshold value) in 

a round of a particular epoch are in close proximity then many of them will drop their 

decision to become cluster head. In such a situation the number of selected cluster heads 

would be significantly lesser than the optimal number of cluster heads. This will lead to 

bigger size clusters and consequently more energy consumption in intra-cluster 

communication. Also in the last round of the epoch all the nodes that have not become 

cluster head so far in that particular epoch will have to become cluster head and so chances 

will be higher for the selection of more cluster heads than optimal number of cluster heads. 

This will increase the long distance transmission to the sink. To deal with this situation we 

want to increase the number of potential cluster heads in each round so that the number of 

selected cluster heads after dropping some of  potential CHs because of ξ-closeness be as 

near to optimal value as possible. For this, we need to raise the threshold value in equation 

(2.1) so that more nodes than usual will be eligible to become cluster head. 

So as our second improvement we want to introduce another parameter σ, denoting the 

threshold increment factor. The increment in the threshold value given by equation (2.1) 

will not be same for each round in an epoch as original threshold value itself increase in 

each subsequent round of an epoch and becomes equal to 1 in last round but we want to 

keep σ constant in each round so we can calculate new increased threshold using 

 

𝑇𝑁𝐸𝑊(𝑛) = 𝑇(𝑛) +  𝜎(1 − 𝑇(𝑛))                                                                                (3.1) 

 

In our assumption σ will be constant for a particular configuration of network and a 

particular choice of closeness factor ξ. 

3.3.3 Determination of Closeness Factor ξ and Threshold Increment Factor σ 

The value of ξ and σ is very crucial for better performance of clustering algorithms. The 

value of ξ depends on the network configuration, i.e. size of the network, number of nodes 

deployed in the network, density of nodes, optimal number of cluster heads etc. The value 

of σ depends on the value of ξ but it also depends on network configuration. We will 

calculate the optimal values of ξ and σ experimentally by running multiple instances of the 
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algorithm for different combinations of ξ and σ while keeping all other network parameters 

constant. 

3.4 Framework for Integrating into Existing Probabilistic Algorithms 

We can easily integrate these two proposed improvements into existing probabilistic 

clustering techniques to improve their energy efficiency. We will present two generic 

approaches of integration, one that requires little intervention of centralized authority such 

as base station and other follows a completely distributed approach. 

3.4.1 Centralized Approach 

 In Fig. 3.2 we are giving a centralized approach of integration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use existing Algorithm’s cluster head selection mechanism 
with modified threshold values as per equation (3.1) to select 

M candidate CHs. 
 

       𝑀 > 𝐾 ? 

If any two candidate CHs are ξ-close to each other discard 
one of them based on some predefined performance metric 

and select M′ candidate CHs. 
 

𝑀′ > 𝐾 ? 

Select best K candidates based on some predefined 
performance metric as final CHs 

 

Use this selected set of CHs for further operations of the 
existing algorithm 

 

Each of M candidates will send its id and QoS parameters to 
centralized authority for further decision 

 

Fig. 3.2 A centralized approach for integrating proposed improvements to existing algorithms 

Yes 

Yes 

No 

No 
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Here K is the optimal number of CHs that is precalculated using analytical methods as 

described in [5]. The predefined performance metric can include QoS factors such as 

quality of link between candidate node and base station, congestion, node density around 

the candidate node, its residual energy etc. 

3.4.2 Distributed Approach 

In distributed approach, each node autonomously takes its decision of becoming a cluster 

head or not without intervention of any central authority. The following figure explains a 

distributed approach for integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here E(i) is the residual energy of node i and c(ξ) is a function whose value depends only 

on closeness factor ξ. Waiting for 
𝑐(𝜉)

𝐸(𝑖)
 time ensures that among all the candidate CHs that 

Calculate the value of TNew as defined in equation (2.1) 

                         For each node i: 

Generate a random number 𝑟𝑖 in [0, 1] 
  

 

 
     𝑟𝑖 < 𝑇𝑁𝑒𝑤? 

Wait for 
𝑐(𝜉)

𝐸(𝑖)
  time 

 

 

Drop its decision of 
becoming CH 

 

In mean time get any 
CH_ELECTION message? 

Broadcast CH_ELECTION 
message 

 
Fig. 3.3 A distributed approach for integrating proposed improvements to existing algorithms 

Yes 

No Yes 
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are in ξ-closeness  range of each other only the node with highest residual energy  will be 

chosen as cluster head. 

Both centralized and distributed approaches have their own advantages. Centralized 

approach offers better QoS implementation mechanism and more tolerant to variance of 

values of σ and ξ from optimal value. On the other hand distributed approach requires 

minimal message exchange among nodes for cluster head election. Here we consider c as a 

function of ξ only but for QoS implementation we can make c as a function of other QoS 

parameters with ξ as well. 

 

3.5 Simulation Results 

We conducted a rigorous simulation study to evaluate the performance of our proposed 

modifications in probabilistic clustering. We evaluate the performance of some 

representative probabilistic clustering algorithms such as LEACH [11], SEP [52], TEEN 

[44], HEED [14] in their original version and with integration of our proposed 

modifications. 

We assume a square network field of dimension 100m X 100m with 100 sensors deployed 

in it and Matlab is used for the purpose of simulation. Simulation parameters are shown in 

Table 1. 

Description Parameter Value 

Initial energy 𝐸0 0.5J 

Electronic circuitry energy 𝐸𝑒𝑙𝑒𝑐  50nJ/bit 

Multi-path co-efficient 𝜀𝑚𝑝  10 pJ/bit/m2 

Free space co-efficient 𝜀𝑓𝑠 0.0013 pJ/bit/m4 

Data aggregation energy 𝐸𝐷𝐴  5 nJ/bit/signal 

Data packet size 𝑃𝑝𝑘𝑡 30 bytes 

Total no. of nodes 𝑁 100 

Optimal percentage of CHs  𝑃𝑜𝑝𝑡  0.1 

 Table 3.1:  Simulation Parameters  
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Determination of ξ and σ: To determine optimal values of ξ and σ we run our algorithm 

multiple times for different combinations of ξ and σ for a given configuration of network 

and choose best values. Table 3.2 shows energy consumption for different combinations of 

ξ and σ for two different network configurations. 

 

ξ σ 
Energy Consumption in 

Configuration 1 

(Joule) 

Energy Consumption in 

Configuration 2 

(Joule) 

 

0 0.00 14.69 119.65 

5 

5 

5 

0.05 

0.09 

0.17 

14.56 

14.66 

14.27 

117.74 

117.80 

119.46 

10 

10 

10 

0.05 

0.15 

0.20 

13.62 

13.73 

13.91 

119.43 

116.77 

115.99 

11 

11 

11 

0.05 

0.15 

0.19 

13.54 

13.46 

13.27 

115.54 

115.54 

115.54 

12 

12 

12 

0.05 

0.15 

0.20 

13.22 

13.47 

13.67 

115.59 

114.91 

115.67 

13 

13 

13 

0.05 

0.15 

0.20 

13.22 

13.08 

13.17 

115.27 

115.13 

115.17 

14 

14 

14 

0.05 

0.15 

0.20 

13.10 

13.01 

12.93 

115.76 

115. 58 

115.58 

15 

15 

15 

15 

15 

15 

 

0.00 

0.05 

0.10 

0.11 

0.13 

0.15 

 

13.23 

13.01 

12.66 

12.61 

12.63 

12.54 

 

116.44 

116.01 

116.62 

116.49 

116.49 

116.32 
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15 

15 

15 

0.16 

0.17 

0.19 

12.51 

12.84 

12.73 

117.51 

117.96 

116.59 

16 

16 

16 

17 

17 

17 

18 

18 

18 

19 

19 

19 

20 

20 

20 

22 

22 

22 

25 

25 

25 

27 

27 

27 

29 

29 

29 

29 

29 

 

0.05 

0.15 

0.20 

0.05 

0.15 

0.25 

0.05 

0.10 

0.20 

0.05 

0.15 

0.20 

0.05 

0.20 

0.25 

0.05 

0.10 

0.15 

0.05 

0.15 

0.20 

0.05 

0.15 

0.25 

0.02 

0.04 

0.05 

0.07 

0.09 

 

12.87 

12.69 

12.67 

12.95 

12.83 

12.83 

12.87 

12.67 

12.68 

12.93 

13.11 

13.09 

13.83 

13.59 

13.77 

13.69 

13.62 

13.71 

14.20 

14.25 

14.19 

14.30 

14.67 

14.83 

14.55 

14.07 

14.34 

14.39 

14.94 

 

116.87 

116.76 

116.14 

116.97 

116.52 

117.01 

116.66 

117.67 

116.19 

114.93 

114.27 

114.81 

115.36 

116.94 

116.27 

115.07 

115.21 

114.71 

112.52 

112.65 

111.19 

111.69 

112.74 

111.73 

110.88 

110.86 

110.47 

110.39 

110.43 
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29 

29 

29 

29 

29 

29 

29 

29 

30 

30 

30 

0.10 

0.13 

0.14 

0.15 

0.16 

0.20 

0.21 

0.25 

0.05 

0.10 

0.20 

14.99 

14.21 

14.69 

15.12 

14.99 

14.45 

14.56 

14.74 

14.69 

15.67 

15.19 

110.59 

110.04 

110.54 

110.87 

110.51 

112.68 

112.37 

114.90 

114.12 

115.07 

115.43 

 

 

We calculated the optimal value of ξ and σ for two Network configurations. In first 

configuration we assumed a 50 X 50 network field with 30 sensors deployed in it. In 

second configuration we assumed a 100 X 100 network field with 100 sensors deployed in 

it. We found 15m and 0.16 to be optimal values for ξ and σ respectively for first 

configuration. Similarly for second configuration optimal values are 29m and 0.13 

respectively. 

In Figure 3.4 to 3.9 we will show the performance of a probabilistic clustering algorithm in 

its original version and after the application of our proposed modifications. We can see in 

figure 3.4 that after applying our suggested modification there is an increase of 43% in 

stability period of HEED and an overall 66 % increment in total lifetime of network in 

simulated environment. 

Similarly in case of SEP, in Figure 3.6 and 3.7 we can see a considerable increase in the 

energy efficiency and network life time. We can also observe that after application of our 

proposed modification there is significant improvement in the no. of clusters formed in 

each round. 

Similarly in LEACH, there is a significant improvement of in overall lifetime of the 

network. There is also an increase of around 37 % in stability period of Network. 

Table 3.2 Determination of Optimal Values of ξ and σ using simulation 



Page | 34  

 

 

 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Rounds

A
lli

v
e
 N

o
d
e
s

 

 

HEED(Original)

HEED(After Modification)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

Rounds

N
o
. 

o
f 

C
lu

s
te

r 
H

e
a
d
s

 

 

HEED(Original)

HEED(After Modification)

Fig. 3.4 No. of Alive Nodes per Round in HEED 

Fig. 3.5 No. of CHs per Round in HEED 
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3.6 Conclusion 

In this work we proposed two changes in existing probabilistic clustering algorithms to 

ensure more or less optimal number of clusters and well distributed CHs across the 

network in each round. We also proposed two ways to apply suggested changes to existing 

clustering algorithm. Simulation results show a considerable improvement in the 

performance of existing algorithms after applying the suggested changes. In this work we 

focused on probabilistic clustering algorithms but in future we can extend this to make it 

applicable to other classes of clustering Algorithms. 

.
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    Chapter 4: Discrete PSO Based Clustering Algorithm 

 

4.1 Objective 

Clustering is a widely used mechanism in wireless sensor networks to reduce the energy 

consumption by sensor nodes in data transmission. Partitioning the network into optimal 

number of clusters and selecting an optimal set of nodes as cluster heads is an NP-Hard 

problem. The NP-Hard nature of clustering problem makes it a suitable candidate for the 

application of evolutionary algorithms and particle swarm optimization (PSO). In this 

work, we shall suggest a PSO based solution to the optimal clustering problem by using 

residual energy and transmission distance of sensor nodes to define a fitness function. We 

will modify the existing PSO that assumes a continuous search space to create a new PSO 

that can work with discrete search space.  

 

4.2 Particle Swarm Optimization  

Particle swarm optimization (PSO), developed by Dr. Eberhart and Dr. Kennedy  in 1995 

and inspired by social behaviour of bird flocking or fish schooling is a population based 

stochastic technique to solve continuous and discreet optimization problems,. 

PSO learned from the scenario and used it to solve the optimization problems. In PSO, 

each single solution is a "bird" in the search space. We call it "particle". All of particles 

have fitness values which are evaluated by the fitness function to be optimized, and have 

velocities which direct the flying of the particles. The particles fly through the problem 

space by following the current optimum particles [55].  

PSO is initialized with a group of random particles (solutions) and then searches for 

optima by updating generations. In every iteration, each particle is updated by following 

two "best" values. The first one is the best solution (fitness) it has achieved so far. (The 

fitness value is also stored.) This value is called pbest. Another "best" value that is tracked 

by the particle swarm optimizer is the best value, obtained so far by any particle in the 

population. This best value is a global best and called gbest. When a particle takes part of 

the population as its topological neighbours, the best value is a local best and is called lbest 

[56]. 

Suppose, there is a group of K random particles in an n-dimension searching space, the 

position of the ith particle is 𝑋𝑖 = (𝑥𝑖1
,  𝑥𝑖2

, … … . , 𝑥𝑖𝑛
), the personal best value of the 

particle is  𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑝𝑖1
,  𝑝𝑖2

, … … . , 𝑝𝑖𝑛
), and the velocity of the particle is   𝑉𝑖 =

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/
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(𝑣𝑖1
,  𝑣𝑖2

, … … . , 𝑣𝑖𝑛
). The best value obtained so far by any particle in the population 

is  𝑔𝑏𝑒𝑠𝑡 = (𝑔1,  𝑔2, … … . , 𝑔𝑛). After finding the two best values, 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 the 

particle updates its velocity and positions as follows 

𝑣𝑖𝑗
= 𝑤. 𝑣𝑖𝑗

+ 𝑐1. 𝑟1 (𝑝𝑖𝑗
− 𝑥𝑖𝑗

) + 𝑐2. 𝑟2 (𝑔𝑗 − 𝑥𝑖𝑗
)                                                         (4.1) 

𝑥𝑖𝑗
=  𝑥𝑖𝑗

+ 𝑣𝑖𝑗
                                                                                                                       (4.2) 

Where w is inertia and used to control the trade-off between the global and the local 

exploration ability of the swarm, c1 and c2 are learning factors, r1 and r2 random numbers 

between 0 and 1. 

 

4.3 Proposed Algorithm 

In this section we describe in detail the working of our proposed algorithm. We assume a 

wireless sensor network with sensor nodes uniformly distribute across the network. We 

also assume that location of Base station is fixed inside or outside the sensor network and 

location of sensor nodes is also known to base station. 

4.3.1 Fitness Function 

Success of our proposed algorithm will depend greatly on the formulation of fitness 

function. So we are defining a fitness function that includes all optimization criteria. Our 

aim is to minimize the intra-cluster communication energy and energy loss due to cluster 

head and base station communication, so we can define the fitness of a particle i as 

 

𝐹(𝑃𝑖) = 𝐸1(𝑃𝑖) + 𝜇 𝐸2(𝑃𝑖)                                                                                              (4.3) 

𝐸1(𝑃𝑖) = ∑  ∑
𝑓(𝑛𝑘𝑗

,𝐶𝐻𝑘)−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−  𝐸𝑚𝑖𝑛

 
∀𝑛𝑘𝑗

∈𝐶𝑘

𝐾 
𝑘=1                                                                 (4.4) 

𝐸2(𝑃𝑖) = ∑
𝑔(𝐶𝐻𝑘,𝐵𝑆)−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−  𝐸𝑚𝑖𝑛

𝐾  
𝑘=1                                                                                     (4.5) 

𝑓 (𝑛𝑘𝑗
, 𝐶𝐻𝑘) = {

𝑠2 (𝑛𝑘𝑗
, 𝐶𝐻𝑘)      𝑖𝑓 𝑠 (𝑛𝑘𝑗

, 𝐶𝐻𝑘) ≤ 𝑑0

𝑠4 (𝑛𝑘𝑗
, 𝐶𝐻𝑘)      𝑖𝑓 𝑠 (𝑛𝑘𝑗

, 𝐶𝐻𝑘) > 𝑑0

                                               (4.6) 

𝑔(𝐶𝐻𝑘, 𝐵𝑆) = {
𝑑𝐶𝐻𝑘,𝐵𝑆

2           𝑖𝑓 𝑑𝐶𝐻𝑘,𝐵𝑆 ≤ 𝑑0

𝑑𝐶𝐻𝑘,𝐵𝑆
4           𝑖𝑓 𝑑𝐶𝐻𝑘,𝐵𝑆 > 𝑑0

                                                                 (4.7) 
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𝑠(𝑛𝑖 , 𝐶𝐻𝑘) =
min (𝑠𝑛𝑖,𝐶𝐻𝑘

)

∀𝑘 = 1,2, … , 𝐾 
                                                                                      (4.8)                                      

Where, 𝑑𝑖,𝑗 is the distance between node 𝑖 and node 𝑗; 𝑠 is a function that find the 

minimum distance cluster head for a given node; 𝑓 is a function whose value for a given 

node is proportional to the energy consumed in communication between the node and its 

cluster head; similarly g signifies the energy loss due to cluster head and base station 

communication; 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 are the maximum and minimum energy loss in the 

network. 𝐶𝑘 is kth cluster in a solution or particle. 

𝐸1 and 𝐸2 are two normalized functions that represent the energy dissipated in intra-cluster 

communication and due to communication between sink and CHs respectively. F is fitness 

function and our aim is to minimize this function. 

𝜇 is a controlling parameter that control the distance between base station and cluster 

heads. The higher the value of  𝜇 will be the closer will be the CHs from BS. 𝐾 is the 

optimal number of cluster heads. 

For each particle or solution we will choose k random nodes as cluster heads and 

remaining nodes will join the cluster whose CH is at minimum distance from it. Then we 

will evaluate the value of fitness function for each particle and will calculate 𝑝𝑏𝑒𝑠𝑡 and 

𝑔𝑏𝑒𝑠𝑡. Then we will update the velocity vector and position vector according to equation 

(4.1) and (4.2).  

4.3.2 A new operator ⊕𝑵𝑾 

We will define a new operator ⊕𝑁𝑊 that when applied on a location with respect to a 

network, will return a valid sensor node location in the network. In each iteration of our 

algorithm we will update the location of CHs in each particle or solution. Keeping this into 

consideration we define ⊕𝑁𝑊 as follows: 

Suppose �̇� = (𝑎1, 𝑎2) is any location with respect to a sensor network 𝑁𝑊 then 

⊕𝑁𝑊 �̇� will return a valid location in network 𝑁𝑊. The operator ⊕𝑁𝑊 will first check if 

�̇� is a valid location in network is. If �̇� is a valid location than it return �̇� as it is; if not then 

it will return nearest valid location in the network 𝑁𝑊 toward base station with highest 

residual energy. After calculating new velocity and position using equation (4.1) and (4.2) 

we will apply our operator to the calculated positions to get valid new positions. 
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4.3.3 Working of proposed PSO Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Simulation Results 

For simulation we assume a square network field of size 100m X 100m with 100 sensor 

nodes deployed uniformly in it. We assume that sink is at the centre of the field. We will 

compare the performance of our proposed algorithm with LEACH and its popular variant 

LEACH-C. We are using same simulation parameters are described in Table 3.1 in chapter 

3. Figure 4.2 shows the no. of alive nodes in each round of LEACH, LEACH-C and our 

proposed protocol PSOBC. Simulation results show a considerable improvement in 

network lifetime. We compare all protocols for different positions of base station.  

 

1. Create and initialize a K-dimensional swarm of P particles by choosing K CHs 

with residual energy higher than average energy of network for each particle. 

2. repeat 

3.      for each particle 𝑖 = 1,2, … , 𝑃 do 

4.           if 𝐹(𝑋𝑖) < 𝑙𝑏𝑒𝑠𝑡𝑖 then 

5.           𝑙𝑏𝑒𝑠𝑡𝑖 = 𝑋𝑖 

6.          end 

7.          if  𝐹(𝑋𝑖) < 𝑔𝑏𝑒𝑠𝑡  then 

8.               𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑖 

9.         end 

10.     end 

11.     for each particle 𝑖 = 1,2, … , 𝑃 do 

12.            update velocity 𝑉𝑖 using equation (4.1) 

13.            update  position vector 𝑋𝑖 using equation (4.2) 

14.          apply ⊕𝑁𝑊 operator to updated position 

15.     end 

16.  until the maximum number of iteration reached 

Fig. 4.1 Pseudo Code for PSO Based Clustering  
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Fig. 4.2 Alive Nodes per Round for BS position (50, 0) 

Fig. 4.3 Alive Nodes per Round for BS position (0, 50) 
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4.6 Conclusion 

In this work we proposed a PSO based solution to clustering problem. We used same PSO 

algorithm that is used for continuous search space with little modification. We defined a 

new operator and used it with original PSO algorithm to make it work with discrete search 

space. Simulation results show a considerable increment in Network lifetime as compared 

to LEACH and LEACH-C. The main drawback of this easy and efficient solution is that it 

requires the presence of a central authority for cluster setup but it is not always possible in 

practical applications. We can use base station as central authority if it is not power 

constrained. The basic idea here was to optimize intra cluster communication energy and 

energy loss due to communication between CHs and base station by using PSO and by 

using base station as centralized authority for cluster set up in the network. 
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Chapter 5: Energy Efficient Hybrid Clustering Protocol 

for Heterogeneous Wireless Sensor Networks 

 

5.1 Objective 

In this work, we will present a new hybrid Clustering protocol for Multi-level 

heterogeneous wireless sensor networks. In this protocol, some nodes transmit data 

directly to base station while some use clustering technique to send data to base station. 

The proposed protocol aims to conserve energy by keeping three key design factors into 

consideration: (1) the optimal distance up to which a node can directly send the data to 

base station, (2) electing an appropriate node as cluster head and (3) limiting the number of 

clusters in the network. The term heterogeneity here refers to the difference in the energy 

levels of the sensor nodes. In this protocol we will use the best available solutions to the 

problems like clustering and routing in the literature to create a new protocol that can 

perform reasonably well in comparison to existing protocols. We will also perform a 

rigorous simulation study to evaluate the performance of our proposed protocol. We will 

also compare the performance of our protocol with homogeneous protocol LEACH and 

heterogeneous protocol SEP. 

 

5.2 Motivation and Related Work 

Most of the early routing protocols proposed for wireless sensor networks do not consider 

heterogeneity in the network and therefore are not able to take advantage of the 

heterogeneity present in the network. This heterogeneity may present in network either 

from very start of the network or may occur as a result of network operations as network 

evolves in time. First Georgios Smaragdakis et al. studied the impact of heterogeneity in 

wireless sensor networks and proposed stable election protocol [52]. SEP judiciously 

consumes extra energy from the nodes having high energy and increase the stability period 

and life time of the network. 

5.2.1 Optimal Number of Clusters 

Optimal number of clusters Kopt can be found using simple analysis as in [11]. Let us 

assume an area of M X M square meters with base station situated at the centre and N 

sensor nodes are distributed over this area. 

The energy dissipated in the cluster head node assuming its distance from BS less than𝑑0, 

during a round can be given by the following formula: 
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𝐸𝐶𝐻 = (
𝑁

𝑘
− 1) 𝐿. 𝐸𝑒𝑙𝑒𝑐 +

𝑁

𝑘
. 𝐿. 𝐸𝐷𝐴 + 𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. 𝜀𝑓𝑠. 𝑑𝑡𝑜𝐵𝑆

2                                          (5.1) 

 

Where k is the number of clusters, EDA is the data aggregation cost of a bit per report to the 

base station, and dtoBS is the average distance between the cluster head and the base station.  

The energy used in a non-cluster head node is equal to: 

𝐸𝑛𝑜𝑛𝐶𝐻 = 𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. 𝜀𝑓𝑠. 𝑑𝑡𝑜𝐶𝐻
2                                                                                      (5.2) 

Here 𝑑𝑡𝑜𝐶𝐻 is the average distance between a cluster member and its cluster head. 

Thus energy dissipated in a cluster per round:  

𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≈  𝐸𝐶𝐻 +
𝑁

𝑘
. 𝐸𝑛𝑜𝑛𝐶𝐻                                                                                            (5.3) 

The total energy dissipated in the network is equal to: 

𝐸𝑡𝑜𝑡 = 𝐿(2. 𝑁. 𝐸𝑒𝑙𝑒𝑐 + 𝑁. 𝐸𝐷𝐴 + 𝜀𝑓𝑠(𝑘. 𝑑𝑡𝑜𝐵𝑆
2 + 𝑁. 𝑑𝑡𝑜𝐶𝐻

2 )                                              (5.4) 

According to [7]: 

 dtoCH
2 = ∫ ∫ (𝑥2 + 𝑦2)𝜌(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑦=𝑦𝑚𝑎𝑥

𝑦=0

𝑥=𝑥𝑚𝑎𝑥

𝑥=0
=

𝑀2

2𝜋𝑘
                                               (5.5) 

And 

d2
toBS = ∮ √𝑥2 + 𝑦2 1

𝐴𝐴
. 𝑑𝐴 = 0.765

𝑀

2
                                                                             (5.6) 

Differentiating Etot with respect to k and equating to zero, the optimal number of 

constructed clusters can be found: 

𝐾𝑜𝑝𝑡 =√
𝑁

2𝜋
 

𝑀

𝑑𝑡𝑜𝐵𝑆
2  √

∈𝑓𝑠

∈𝑚𝑝
                                                                                                  (5.7) 

5.3 Proposed Protocol 

In this section we will discuss in detail the functioning of our proposed protocol. 

5.3.1 Network Deployment Model 

Most of the routing protocols for heterogeneous WSNs consider the random deployment of 

sensor nodes in the network space but to take advantage of heterogeneity present in the 

network in term of energy level we partitioned the network space into two zones: α- zone 

and β – zone. 
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This protocol assumes three levels of heterogeneity with three types of nodes: 

a) α-nodes 

b) β-nodes 

c) ω-nodes 

α-nodes have the highest energy among all the nodes, β-nodes have energy less than α-

nodes but greater than ω-nodes and ω-nodes are normal nodes. We assume that a small 

fraction of total nodes are α- or β-nodes while most of the nodes are ω-node. As in SEP, 

we consider that the base station is not mobile and coordinates of the base station are 

known. The area in network space near the base station is β-zone and β-nodes are deployed 

in this region while the α-nodes are deployed in the farthest region, i.e. α-zone and ω-

nodes are randomly deployed in the whole network space. 

The main reason behind this type of deployment is that nodes at the farthest positions from 

base station in network space require more energy to transmit the data to base station. 

5.3.2 Cluster Head Selection 

Let us assume that A is fraction of total nodes that are α-nodes and B is the fraction of total 

nodes that are β-nodes. The energy of a α-node is α times higher than an ω node while the 

energy of a β-node is β time higher than an ω node. If initial energy of an ω-node is E0 

then total energy of all the nodes will be: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑁(1 − 𝐴 − 𝐵)𝐸0 + 𝑁. 𝐴. 𝐸0(1 + 𝛼) + 𝑁. 𝐵. 𝐸0(1 + 𝛽)  

          = 𝑁. 𝐸0(1 + 𝐴. 𝛼 + 𝐵. 𝛽)                                                                                       (5.8) 

 

Optimal probability of cluster head selection in case of homogeneous network is given by 

[4]: 

𝑃𝑜𝑝𝑡 =
𝑘𝑜𝑝𝑡

𝑁
                                                                                                    (5.9) 

Where Kopt is optimal number of cluster heads as calculated above and N is total number of 

nodes in network. 

Now optimal probability of a node to be cluster head on the basis of residual energy can be 

calculated as: 
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(𝑃𝜔)𝑖 =  
𝑃𝑜𝑝𝑡 𝐸𝑖(𝑟)

(1+𝐴𝛼+𝐵𝛽)�̅�(𝑟)
                                                                                            (5.10)  

  

(𝑃𝛽)𝑖 =  
(1+𝛽)𝑃𝑜𝑝𝑡 𝐸𝑖(𝑟)

(1+𝐴𝛼+𝐵𝛽)�̅�(𝑟)
                                                                     (5.11) 

 

(𝑃𝛽)𝑖 =  
(1+𝛽)𝑃𝑜𝑝𝑡 𝐸𝑖(𝑟)

(1+𝐴𝛼+𝐵𝛽)�̅�(𝑟)
                                                                     (5.12) 

 

Here 𝐸𝑖(𝑟) is residual energy of ith node in rth round and �̅�(𝑟) is the average energy in the 

rth round. 

Depending on the weighted probabilities the threshold values can be calculated as follows 

 

𝑇𝜔 = {

𝑃𝜔

1−𝑃𝜔(1−𝑟 𝑚𝑜𝑑 
1

𝑃𝜔
)    

     𝑖𝑓 𝜔 𝜖 𝐺′′   

              0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
                                                    (5.13) 

 

𝑇𝛽 = {

𝑃𝛽

1−𝑃𝛽(1−𝑟 𝑚𝑜𝑑 
1

𝑃𝛽
)    

     𝑖𝑓 𝛽 𝜖 𝐺′   

              0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

                                                     (5.14) 

 

𝑇𝛼 = {

𝑃𝛼

1−𝑃𝛼(1−𝑟 𝑚𝑜𝑑 
1

𝑃𝛼
)    

     𝑖𝑓 𝜔 𝜖 𝐺   

              0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
                                                     (5.15) 

 

Where G, G’ and G’’ are the sets of α, β, ω-nodes that have not been the cluster head in 

last epoch respectively. 

Each node generates a number in interval [0, 1] randomly. If this random number is less 

then corresponding threshold the node will become cluster head. 

Once the cluster head is selected, the cluster head broadcasts an advertisement message to 

all the nodes. A node that receives such message decides on the basis of received signal 

strength that to which cluster head it will associate for the current round.  

5.3.3 Data Transmission 

In this protocol we use two techniques for data transmission: 
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a) Single-hop direct transmission 

b) Multi-hop transmission through cluster heads 

In single hop transmission a node n near the base station will directly send the data to base 

station if 

𝑑 𝑛 𝑡𝑜 𝐵𝑆   <  
𝑑0

𝑘′
⁄   

and 

Residual energy 𝐸𝑛(𝑟) ≥ 𝐸 ̅(𝑟) 

Here 𝑑𝑛 𝑡𝑜 𝐵𝑆 is distance between nth node and base station; 𝑘′ is a parameter which is used 

to control the single hop transmissions; 𝐸𝑛(𝑟) is residual energy of nth node in rth round; 

𝐸 ̅(𝑟) is average energy of whole network in rth round. 

If the above two conditions do not satisfy simultaneously, the node will send data to 

cluster head for further processing. Each cluster head create a schedule based on TDMA 

and nodes send data to their cluster head at their respective time slots as described in the 

schedule. 

We used Dijkastra’s shortest path algorithm to find the shortest route from a cluster head 

to base station through other cluster heads. For this we used the distance of nodes from 

each other and base station as weights. We can also use any predefined QoS metric as 

weight with distance. 

 

 

 

 

 

 

 

 

  

Formation of Inter-Cluster 

Communication Tree Using 

Dijkastra’s Algorithm 

Base 

Station 
Base 

Station 

Fig. 5.1 Formation of Inter-Cluster Communication Tree Using Dijkastra’s 

Algorithm 
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5.4 Simulation Results 

For simulation we assume a square network field of dimension 100m X 100m with 100 

sensors deployed in it. 20m X 20m area centred at (50, 50) is normal-zone and the area of 

width 20m surrounding the normal zone is β-zone and β-sensors have been deployed in 

this zone randomly. Similarly the reaming area  of width 20m that surrounds the β-zone is 

α-zone and α-sensors are deployed in the α-zone remaining ω-sensors are deployed 

randomly in whole network field. Matlab is used for the purpose of simulation. 

Following metrics is used to evaluate the performance of the protocol relative to LEACH 

and SEP: 

a) Stability Period: It is the time span between network boot time and first dead node. 

b) Number of nodes alive per round. 

c) Number of Cluster heads formed in each round. 

d) Throughput of the network. 

Simulation parameters are shown in the Table 1. 

 

 

DESCRIPTION PARAMETER VALUE 

Initial energy of normal nodes 𝐸0 0.5 J 

No. of 𝛼 nodes as fraction of total nodes 𝐴 0.1, 0.2 

No. of 𝛽 nodes as fraction of total nodes 𝐵 0.1, 0.2 

Energy coefficient for  𝛼 nodes 𝛼 2 

Energy coefficient for  𝛽 nodes 𝛽 1, 1.5 

Data aggregation energy 𝐸𝐷𝐴 5 nJ/bit/signal 

Electronic circuitry energy 𝐸𝑒𝑙𝑒𝑐  50 nJ/bit 

Free space co-efficient 𝜀𝑓𝑠 10 Pj/bit/m2 

Multi-path co-efficient 𝜀𝑚𝑝  0.013 pJ/bit/m4 

Optimal percentage of CHs  𝑃𝑜𝑝𝑡  0.1 

Initial Energy of 𝛼 nodes 𝐸𝛼  E0 (1+α) 

Initial Energy of 𝛽 nodes 𝐸𝛽  E0 (1+ β ) 

Total no. of nodes 𝑁 100 

Table 5.1:  Simulation Parameters  



Page | 50  

 

We performed simulation using different values of α, β, A and B. 
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Fig. 5.2 No. of Alive Nodes per Round for A = 0.1, α = 2, β = 1, B = 0.1 
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The above figure shows a comparison of HEED, LEACH, SEP and EEHCP for different 

numbers and energy levels of α, β and ω nodes. In each case EEHCP outperform LEACH 

and SEP.  We can see in above figure that EEHCP prolongs the stability period and 

network life time. EEHCP prolongs the stability period of network by approximately 75% 

and almost doubles the lifetime of network in comparison to stable election protocol.  

 

5.5 Conclusion 

In this work we describe a hybrid cluster head selection protocol in detail that use the 

heterogeneity in sensor node for an intelligent deployment of nodes in the network and use 

the residual energy of nodes in particular data transmission round to weight the optimal 

probability of cluster head selection. The simulation results show that proposed EEHCP 

performs better than protocols like SEP, LEACH and HEED and prolong the stability 

period and Network throughput. In future we can extend the protocol to work with a 

mobile base station. Also we can extend the protocol to consider the optimal probability 

wait change when residual energy of a node with higher initial energy become equal to the 

residual energy of a normal node.  
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