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ABSTRACT  

The dynamic growth of hidden units and the pruning strategy has been sufficiently 

investigated in case of Radial Basis Function (RBF) neural network but relatively less in the 

case of feedforward multilayer perceptron (MLP) due to similarity in the hidden units in the 

MLP. So in this study I present a dynamic neural network that dynamically grows the number 

of hidden layer neurons based on an increase in the entropy of the weights during training. 

Before computing the entropy value weights are normalized to probability values. The 

entropy which is used being referred is the non-extensive entropy proposed recently by Susan 

and Hanmandlu for the representation of structured data. Along with the description of 

dynamic growth of hidden layer neurons using the Susan and Hanmandlu non-extensive 

entropy, the results are also compared with the Shannon, Pal and Pal, the Tsallis entropies 

and various static neural network configurations, in terms of execution time of the set of 

training samples, growth of hidden layer neurons and the testing accuracy. The experiment is 

performed on basically three standard machine learning datasets and on synthetic dataset. 

Incrementally growing the hidden layer as per requirement leads to better tuning of network 

weights and high classification performance as proved by the empirical results. 
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In computer science and some more related fields Artificial Neural Network (ANN) is a 

computational model mainly inspired by animal central nervous system which is capable of 

machine learning and pattern recognition. So in simple way it can be well explained as an 

Artificial Neural Network is a network of well organised, interconnected neurons which takes 

inputs to train it-self and perform pattern recognition as well as classification. 

Artificial Neural Network architecture mainly consists of three layers. First layer termed as 

input layer, from where an input is provided to the network for training, Second layer is 

known as hidden layer which is sandwiched between input layer and output layer and third 

layer is called as output layer where the result is collected for classification as well as for 

pattern recognition. Neural network, with their remarkable ability, can be used to extract 

patterns and detect trends that are too complex to be noticed by either humans or other 

computer techniques. 

1.1 Dynamic neural Network 

A neural network which has fixed number of hidden layer neurons is known as static neural 

network. Due to non-adaptive nature of static neural network the concept of dynamic neural 

network comes in to the picture. The advent of dynamic neural network marks a significant 

advancement in the field of machine learning due to manifolds benefits it offers over the 

conventional neural network with a fixed architecture. The word dynamic in dynamic neural 

network refers to either dynamically changing the neural network architecture by adding or 

deleting some neurons [21] from hidden layer or incorporating dynamic units [22]. In 

Dynamic Neural Network mainly the network architecture is adaptive. And due to which it 

has several advantage over conventional or static neural network. Dynamic nature of neural 

network is mostly decided by the weights emanating from the training process. In [15] the 

neurons are added and weights are updated incrementally till the error is minimized. 

1.2 Problem statement 

It has been observed that when input data is little bit complex or multiple pattern has been 

observed among features of training data samples, the conventional neural network is not able 

to perform better due to its non-adaptive nature towards input pattern due to which it leads to 

more number of iteration than normal while training and which is responsible for increment 

in execution time as well as decrement in rate of convergence. So to overcome from all these 

problems it requires bringing the concept of dynamic neural network. In dynamic neural 
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network if input pattern is too complex, network dynamically insert a neuron in the hidden 

layer on one by one basis as per requirement or it depends upon the complexity of input 

pattern. Due to increment in number of hidden layer neurons in network, respond distribution 

of computation among multiple neurons due to which number of iteration will get decrease 

and rate of convergence will increase. In the field of machine learning it is necessary to have 

high convergence rate within a certain limit of time so up to certain extent it is better to use 

dynamic neural network instead conventional multi-layer perceptron or static neural network 

configurations.  

1.3 Proposed solution 

To decrease the execution time of training of input samples and make an enhancement in rate 

of convergence, some basic changes that have been done in conventional machine learning 

algorithm to make it dynamic. In my research work I incorporated the fusion of machine 

learning with statistics. Entropy part is taken from statistics and neural network is from 

machine learning, to bring the change in conventional multilayer perceptron. The use of 

statistical probability theory for improvisation in the performance of neural networks has 

been investigated before [23-25]. The scope of using statistics in neural network is due to the 

possibility of visualizing the neural network as a statistical model of non-linear regression 

and discriminant analysis. Since the entropy function is a measure of the chaos or uncertainty 

regarding an event, we use it to measure the state of chaos among the weights associated with 

the hidden layer in neural network. We grow the hidden layer dynamically by incrementing 

the hidden layer neurons by one if the chaos among the weights increases after a training 

session. Since we want that as the training progresses a declination in the calculated entropy 

must be there, so we use the Susan and Hanmandlu non-extensive entropy to measure 

uncertainty among the tuned weights, since it is proved successful for the representation of 

structured information in regular textures [31]. In short if present entropy is higher than the 

previous one then this states that there is chaos among the tuned weights and require 

increment in hidden layer neurons by one. 

1.4 Justification and need of the algorithm  

1. It decreases the number of iteration while training of input samples. 

2. Rate of convergence become faster as compared to conventional neural network. 

3. Network becomes dynamic or adaptive to decrease the execution time of algorithm. 

4.  It improves the efficiency and accuracy of dynamic neural networks. 



4 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

LITERATURE REVIEW  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

2.1 RBF Neural Network 

2.1.1 Radial functions 

Radial functions are a special class of function. Their characteristic feature is that their 

response decreases or increases monotonically with distance from a central point. The center, 

the distance scale and the precise shape of the radial function are parameters of the model, all 

fixed if it is linear. 

A typical radial function is Gaussian which in the case of scalar input is, 

2

2

(x c)
(x) exp( )h

r


      (1) 

Its parameters are its center c and its radius r. 

2.1.2 Radial Basis Neural Network 

Radial functions are simply a class of functions [1]. In principle, they could be employed in 

any sort of model (linear or nonlinear) and any sort of network (single layer or multi-layer). 

However, since Broomhead and Lowe’s 1988 seminal paper [2], radial basis function 

networks (RBF networks) have traditionally been associated with radial functions in a single-

layer network such as shown in figure. 

A RBF network is nonlinear if the basis functions can move or change size or if there is more 

than one hidden layer. 

2.1.3 Research on RBF 

The dynamic growth of hidden units and the pruning strategy has been sufficiently 

investigated in the case of the Radial Basis Function (RBF) neural network. 

Minimal Resource Allocation Network (M-RAN) has been proposed in [3]. M-RAN is a 

sequential learning radial basis function neural network which combines the growth criterion 

of the resource allocating network (RAN) of Platt with a pruning strategy based on the 

relative contribution of each hidden unit to the overall network output. The resulting network 

leads toward a minimal topology for the RAN. It presents a comprehensive comparison of the 

performance of M-RAN with MFN’s on established benchmark problems in the function 

approximation and pattern classification areas. Platt’s motivation for RAN stemmed from the 



6 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

fact that learning with a fixed-size network is a NP-complete problem and by allocating new 

resources, learning could be achieved in polynomial time. 

In [4], Supervisory Control of PV-Battery Systems is proposed using RBF neural network. It 

deals with a neural network based supervisor control system for a Photovoltaic (PV) plant. 

The aim of the work is to feed the power line with the 24 hours ahead forecast of the PV 

production. An on-line self-learning prediction algorithm is used to forecast the power 

production of the PV plant. The learning algorithm is based on a Radial Basis Function 

(RBF) network and combines the growing criterion and the pruning strategy of the minimal 

resource allocating network technique. The power feeding the electric line is scheduled by a 

Fuzzy Logic Supervisor (FLS) which controls the charge and discharge of a battery used as 

an energy buffer.  

Growing and pruning (GAP)-RBF proposed in [5] uses the concept of “Significance” of a 

neuron and links it to the learning accuracy. “Significance” of a neuron is defined as its 

contribution to the network output averaged over all the input data received so far. Using a 

piecewise-linear approximation for the Gaussian function, a simple and efficient way of 

computing this significance has been derived for uniformly distributed input data. In the 

GAP-RBF algorithm, the growing and pruning are based on the significance of the “nearest” 

neuron. The growing and pruning criteria allows adding and pruning of neurons only when it 

is significant to the overall performance of the network. This results in a smooth growth of 

neurons and a compact network. Further, only the nearest neuron needs to be checked for 

growing and pruning. 

In [6], architecture of dynamic fuzzy neural networks (D-FNN) implementing Takagi–

Sugeno–Kang (TSK) fuzzy systems based on extended radial basis function (RBF) neural 

networks is proposed. A novel learning algorithm based on D-FNN is also presented. The 

salient characteristics of the algorithm are: 1) hierarchical on-line self-organizing learning is 

used; 2) neurons can be recruited or deleted dynamically according to their significance to the 

system’s performance; and 3) fast learning speed can be achieved. Comparing with standard 

RBF neural networks, the term “extended RBF neural networks” implies that: 1) there are 

more than three layers; 2) no bias is considered; and 3) the weights may be a function instead 

of a real constant. Each node in layer 1 represents an input linguistic variable. Each node in 

layer 2 represents a membership function (MF) which is in the form of Gaussian functions. 

Each node in layer 3 represents a possible IF-part for fuzzy rules. Layer 4 represents 
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normalized nodes. Each node in layer 5 represents an output variable as the summation of 

incoming signals. Neuron generation depends upon system errors and accommodation 

boundary. Hierarchical learning is used where the accommodation boundary of each RBF 

unit is not fixed but adjusted dynamically in the following way: initially, the accommodation 

boundaries are set large for achieving rough but global learning. Then, they are gradually 

reduced for fine learning. The key idea of the hierarchical learning is to first find and cover 

the most troublesome positions, which have large errors between the desired and the actual 

outputs but are not properly covered by existing RBF units. This is called coarse learning. 

Thus in this based on the D-FNN, a hierarchical on-line self-organizing learning algorithm, 

whereby both the structure and parameter identification can be achieved quickly and 

simultaneously without iterative learning and initialization of the structure and parameters. 

2.2 Multi-Layer Perceptron 

A multi-layer perceptron (MLP) is a feedforward artificial neural network model that maps 

sets of input data onto a set of appropriate outputs. A MLP consists of multiple layers of 

nodes in a directed graph, with each layer fully connected to the next one. Except for the 

input nodes, each node is a neuron (or processing element) with a nonlinear activation 

function. MLP utilizes a supervised learning technique called back-propagation for training 

the network. MLP is a modification of the standard linear perceptron and can distinguish data 

that are not linearly separable.
  

2.2.1 Activation function 

A multilayer perceptron has a linear activation function in all neurons, that is, a linear 

function that maps the weighted inputs to the output of each neuron, then it is easily proved 

with linear algebra that any number of layers can be reduced to the standard two-layer input-

output model. What makes a multilayer perceptron different is that each neuron uses 

a nonlinear activation function which was developed to model the frequency of action 

potentials, or firing, of biological neurons in the brain. This function is modeled in several 

ways.  

The two main activation functions used in current applications are both sigmoid, and are 

described by  

(v ) tanh(v )i iy 
   

   (2) 

http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Perceptron
http://en.wikipedia.org/wiki/Linear_separability
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Action_potentials
http://en.wikipedia.org/wiki/Action_potentials
http://en.wikipedia.org/wiki/Sigmoids
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1y(v ) (1 e )iv

i

  
 

  (3)
  

 

The former function is a hyperbolic tangent which ranges from -1 to 1, and the latter, 

the logistic function, is similar in shape but ranges from 0 to 1. Here iy  is the output of the 
th

 

node (neuron) and iv  is the weighted sum of the input synapses. Alternative activation 

functions have been proposed, including the rectifier and soft-plus functions. 

2.2.2 Layers 

The multilayer perceptron consists of three or more layers (an input and an output layer with 

one or more hidden layers) of nonlinearly-activating nodes and is thus considered a deep 

neural network. Each node in one layer connects with a certain weight 
ijw  to every node in 

the following layer. 

2.2.3 Applications of MLP 

Object extraction has been done using MLP and fuzziness measures [7]. A self-organizing 

multilayer neural network architecture suitable for image processing is proposed. The 

proposed architecture is also a feedforward one with back-propagation of errors; but like 

MLP it does not require any supervised learning. Each neuron is connected to the 

corresponding neuron in the previous layer and the set of neighbours of that neuron. The 

output status of neurons in the output layer is described as a fuzzy set. A fuzziness measure of 

this fuzzy set is used as a measure of error in the system (instability of the network). Neural 

networks are designated by the network topology, connection strength between pairs of 

neurons, node characteristics, and the status updating rules. The neurons operate in parallel, 

thereby providing output in real time. Since there are interactions among all the neurons, the 

collective computational property inherently reduces the computational task. 

 Image segmentation and edge detection has been done using MLP [37]. The system consists 

of a multilayer perceptron (MLP)-like network that performs image segmentation by adaptive 

thresholding of the input image using labels automatically pre-selected by a fuzzy clustering 

technique. The proposed architecture is feed forward, but unlike the conventional MLP the 

learning is unsupervised. The output status of the network is described as a fuzzy set. Fuzzy 

entropy is used as a measure of the error of the segmentation system as well as a criterion for 

determining potential edge pixels. 

http://en.wikipedia.org/wiki/Hyperbolic_tangent
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Rectifier_(neural_networks)
http://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
http://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
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Image Restoration is another application of MLP [38]. The problem of restoring a blurred and 

noisy image having many gray levels, without any knowledge of the blurring function and the 

statistics of the additive noise, is considered. A multilevel sigmoidal function is used as the 

node nonlinearity. The same number of nodes as in the case of a binary image is sufficient for 

an image with multiple gray levels. Restoration is achieved by exploiting the generalization 

capabilities of the multilayer perceptron network. 

2.3 The Shannon Entropy 

In information theory, entropy is a measure of the uncertainty in a random variable. In this 

context, the term usually refers to the Shannon entropy, which quantifies the expected values 

of the information contained in a message. Shannon entropy is basically the average 

unpredictability in a random variable, which is equivalent to its information content. Shannon 

entropy provides an absolute limit on the best possible lossless encoding or compression of 

any communication, assuming that the communication may be represented as a sequence of 

independent and identically distributed random variables.  

Shannon entropy is may be used globally, for the whole data, or locally, to evaluate entropy 

of probability density distributions around some points. This notion of entropy can be 

generalized to provide additional information about the importance of specific events. 

Shannon [1]-[2] defined the entropy of an n-state system as 

    
1

log( )
n

i i

i

H p p


     (4) 

Where ip  is the probability of occurrence of the event i  and  

    
1

1
n

i

i

p


      0 1ip  .    (5) 

It is concluded that the gain in the information from an event is inversely related to its 

probability of occurrence. Shannon used as the measure for such a gain.   

    1log( ) log( )
ip iI p        (6) 

. The expected value of the gain function is taken as the entropy, i.e. 

    H = E ( I ) = 
1

log( )
n

i i

i

p p


     (7)     

2.4 The Pal and Pal Entropy 



10 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

Unlike the logarithmic behaviour of Shannon’s entropy, the gain function considered here is 

of exponential nature. Based on the new concept, three definitions (e.g., global, local and 

conditional) of entropy of an image are then introduced and applied to formulate four 

algorithms for image segmentation. One of the algorithms assumes a passion distribution to 

describe the gray level variation within the object and background.  

New definition of entropy: 

Before giving any explanation about new entropy the following important points should be 

noted. 

1. It is to be noted from the logarithmic entropic measure that as pi0,  I ( ip )   

and  I ( ip ) = -log ( ip ) is not defined for ip = 0. Om the other hand, as ip 1,  I (

ip ) 0 and  I ( ip  = 1) = 0. In practice, the gain in information from an event, 

whether highly probable or highly unlikely, is expected to lie between two finite 

limits. 

2. In Shannon’s theory the measure of ignorance or the gain in information is taken as 

log (1/ ip ). But statically ignorance can be better represented by (1- ip ) than log (1/ ip

).  The gain in information corresponding to the occurrence of 
thi event can be defined 

as follows: 

 I ( ip ) = log (1- ip ) or –log (1- ip )   (8) 

Then  I < 0 or increases with ip , which is intuitively unappealing. 

The above problem can be circumvented by considering an exponential function of (1- ip ).  

Definition: here are some of the basic properties of new entropic function. 

P1:  I ( ip ) is defined at all points in [0, 1]. 

P2: Lim
ip  0  I ( ip ) =  I ( ip  = 0) = k1, k1 > 0 and finite. 

P3: Lim
ip  1  I ( ip ) =  I ( ip  = 1) = k2, k2 > 0 and finite. 

P4: k2 < k1 

P5: with increase in
ip ,  I ( ip ) decrease exponentially. 

P6:  I ( ip ) and H, the entropy, are continuous for 0  p  1. 

P7: H is max when all
ip ,’s equal. 
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In other words H ( 1,..., np p )   H ( 1 1,...,
n n

) 

The gain in information from an event with probability ip  as 

    I ( ip ) = 
(1 )ip

e


  (9) 

And the entropy 

  H = E ( I) = (1 )

1

i

n
p

i

i

p e




   (10)    

The normalized entropy H nor can be defined as 

   H nor = k (H-1)   (11) 

Where k = 11
1

( 1)ne



. 

2.5 The Tsallis entropy  

The Tsallis entropy [39] is a generalization of the standard Boltzmann–Gibbs entropy in 

physics. It was introduced in 1988 by Constantino Tsallis as a basis for generalizing the 

standard statistical mechanics. In the scientific literature, the physical relevance of the Tsallis 

entropy was occasionally debated. However, from the years 2000 on, an increasingly wide 

spectrum of natural, artificial and social complex systems have been identified which confirm 

the predictions and consequences that are derived from this non-additive entropy, such as 

non-extensive statistical mechanics, which generalizes the Boltzmann–Gibbs theory. Tsallis 

introduced a new definition for entropy which successfully describes the statistical feature of 

complex systems: 

    1
1

1

N q

ii
q

p
S k

q




 



   (12)  

Where k is a positive constant, ip  stands for probability for occupation of 
thi  state of the 

system, N counts the known microstates of the systems and q is appositive real parameter. In 

my experiment q=1.5. Tsallis entropy is non-extensive entropy, which means that if two 

identical systems combine the entropy, the entropy of combined system is not equal to 

summation of entropy of its subsystems. Non-extensive statistical mechanics which is 

established by optimization of Tsallis entropy in presence of appropriate constraints, can 

interpret properties of many physical systems [40–43]. 

http://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)
http://en.wikipedia.org/wiki/Constantino_Tsallis


12 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

The more generalized equation of Tsallis entropy can be defined as  

    
1

( )
1

qn
i i

i

p p
H P

q





   (13) 

Where q = 1.5.   

2.6 Non-extensive entropy function having Gaussian information measure 

This entropy is proposed in [21].In a quest for increasing the nonlinearity of the exponential 

family of entropies, the authors proposed non-extensive entropy function having exponential 

information gain with a quadratic exponent. Consider a random variable 1 2{x ,x ,....., x }nX   

with associated probabilities 1 2{p ,p ,.....,p }nP  . Assume that the probability distribution is 

complete, i.e., pi[0,1] and 
1

1
n

i

i

p


  for i=1,2,….n where, n is the number of probabilistic 

experiments.   

Let the information gain on the i
th

 event of X with an associated probability pi be defined by 

the Gaussian function: 

2

(p ) e ip

iI



   

  (14)   
         

 

The entropy of X is defined as 

2

1 1

( ) ( ( )) ( ) i

n n
p

i i i i

i i

H P E I p p I p p e


 

      (15)      

The normalized entropy HN is of the form: 

 

  (16) 

 

i.e. 

2

1

1

1

(H e )
N

n

H

e e











  (17) 

min

max min

( )

( )
N

H H
H

H H





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The entropy in (17) is non-additive or non-extensive since for two random variables X and Y, 

the sum of individual entropies is always greater than the joint entropy of X and Y, i.e., 

H(X) + H(Y) > H(X, Y) 

As proved in [44]. Unlike Shannon entropy, the equality condition is not satisfied for the 

statistically independent case. The non-extensive entropy has certain inherent advantages as 

compared with the other forms of entropy for the detection of anomalies or deviants from 

normal behaviour. The main reason behind its success is the nonlinearity of its Gaussian 

information gain function which ensures that low probability events fall inside the bell of the 

Gaussian and high probability events are rejected as being non-relevant or carrying less 

information. This leads to a better detection of anomalies or deviants from the normal 

behaviour. In the presence of highly correlated fields, the non-additive Gaussian information 

is more apt than the logarithmic information measure. 

2.6.1 Weighted sum of non-extensive entropies 

The entropy associated with each state x is computed using the set of conditional probabilities

(y )p x . The entropy of the source S is defined as the weighted average of the entropies 

( (y ))NH p x  associated with the set of states in X, where the entropy of each state xX is 

weighted by its probability p(x). 

The entropy of the source S is defined by, 

       

  (18) 

 

Where the sum of probabilities of the various states x is one, i.e. 

(x) 1
x X

p


  

The entropy HN (p (y |x)) in (18) is the normalized non extensive entropy associated with state 

x and is computed using (17) as, 

2( / )
( ( / )) ( / )

p y x

y Y

H p y x p y x e




   (19) 

( ) ( ) ( ( / ))
x X

H S p x H p y x



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Where, the sum of probabilities of all y leading from state x is one, i.e. 

1
1

1

N q

ii
q

p
S k

q




 



     (20) 

Here, both p(x) ∈ [0, 1] and p(y |x) ∈ [0, 1]. 

2.7 Extreme Learning Machine 

The single hidden layer feedforward neural network (SLFN) that has several practical 

applications [15-16] and uses a random number of hidden nodes [28] was improvised by 

Huang et al in [29] to devise a three step learning methods called the Extreme Learning 

Machine (ELM) that does not use back-propagation (BP) or other iterative techniques. ELM 

is a unified SLFN with randomly generated hidden nodes independent of the training data [8], 

[9]. The output of an SLFN with hidden nodes (which may not be neuron alike [9]) can be 

represented by  

1

(x) (a ,b , x), ,
L

n n

L i i i i

i

f G x R a R


     (21) 

where ai and bi are the learning parameters of hidden nodes and i  
the weight connecting the 

i
th

 hidden node to the output node. Here (a ,b , x)i iG
 
is the output of the i

th
 hidden node with 

respect to the input. SLFNs with a wide type of random computational hidden nodes have the 

universal approximation capability as long as SLFNs with this type of adjustable hidden 

nodes (tuned by some learning algorithms) can be universal approximators. Such 

computational hidden nodes include additive/radial basis function (RBF) hidden nodes, 

multiplicative nodes, fuzzy rules, etc. It was established that ELM is an extremely fast batch 

learning algorithm and can provide good generalization performance. The key advantages of 

ELM as compared to other classical methods[10] (such as back-propagation algorithm (BP) 

and support vector machine (SVM) [11]) are that ELM needs no iteration when determining 

the hidden node parameters, which dramatically reduces the computational time for training 

the model, and it is very simple and easy to implement ELM. However, the preliminary ELM 

[12, 13] does not provide an effective solution for architectural design of the network. For 

ELM, in most cases, the suitable number of hidden nodes is pre-determined by a trial and 

error method, which may be tedious in some applications. Hence, some researchers have 

advocated that the network structure should not be determined by a trial and error method but 
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should instead be computed by the learning algorithm [14]. There are normally two heuristic 

approaches to modify the structure of SLFNs: constructive methods (or growing methods) 

and destructive methods (or pruning methods). 

The ELM algorithm which only consists of three steps can be summarized as: 

ELM algorithm: Given a training set, activation function g(x), and hidden node Number L 

(1) Assign random hidden nodes by randomly generating learning parameters (ai, bi), i=1…L. 

(2) Calculate the hidden layer output matrix H . 

(3) Calculate the output weight †: H T   , where 
†H  

T, where 
†H  is the Moore–Penrose generalized inverse of the hidden layer output matrix H. 

The singular value decomposition (SVD) method is used to calculate the Moore–Penrose 

generalized inverse
†H in ELM and most of the implementations of ELM. 

Error Minimized Extreme Learning Machine with growth of hidden nodes is proposed in 

[15].  In the paper, a simple and efficient method to automatically determine the number of 

hidden nodes in generalized SLFNs is proposed. Computational hidden nodes adopted in 

such SLFNs include additive/RBF hidden nodes, multiplicative nodes, fuzzy rules [16], fully 

complex nodes [17], [18], hinging functions etc. Unlike the other 

sequential/incremental/growing learning algorithms such as I-ELM, RAN, and MRAN, 

which add hidden nodes on by one, our new approach allows the random hidden nodes to be 

added one by one or group by group (with varying group size). The output weights can be 

incrementally updated efficiently during the growth of the networks. The simulation results 

on sigmoid type of hidden nodes show that the new approach can significantly reduce the 

computational complexity of ELM.  

Constructive hidden nodes selection of extreme learning machine for regression has been 

proposed in [19].The main idea of CS-ELM is to identify the significance of each hidden 

node and select the optimal subset of hidden nodes when the stopping criterion reaches its 

minimum. The hidden node is selected one-by-one from the candidate reservoir. The 

proposed algorithm achieves a compact network structure with competitive generalization 

performance when compared to the preliminary ELM. In addition, CS-ELM selects the 
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hidden nodes based on the correlation between hidden nodes and the current residual, while 

EM-ELM adds the randomly generated hidden nodes without any selection. 

Growing neural network has been proposed in [20].In the growing NN with hidden neurons, 

the growth is formulated as an extension of BP learning. At first, the output and the error are 

calculated, and the error signal is propagated backward. If the output neuron does not have 

enough connections, the neuron diffuses the signal as a chemical substance. Then, the 

concentration gradient is formed by the diffusion around the output neuron. The growing 

neuron extends its axon according to the concentration gradient. The hidden neurons that do 

not have enough connections diffuse another substance constantly not depending on the error. 

By the diffusion of the hidden neurons, the input neurons extend its axons and make 

connections to the hidden neurons at first. After that, the weight is increased gradually until 

the hidden neuron makes a connection to an output neuron. The hidden neuron that has 

formed the connections with the input neurons extends its axon to an output neuron referring 

to the input signals. From just after making the connection (synapse), the learning according 

to the regular BP algorithm begins. 
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The dynamic growth of hidden units and the pruning strategy has been sufficiently 

investigated in the case of Radial Basis Function (RBF) neural network but relatively less in 

the case of feed forward multilayer perceptron (MLP). So in my research work I used MLP 

instead of RBF in dynamic neural network.  

3.1 Architecture 

In dynamic neural network the architecture we used is basically 3 layer architecture. First 

layer is called as input layer from where input is given to the network for training of input 

samples. Second layer is called as hidden layer where multiple layers sandwiched between 

input layer and output layer, mainly used to process information from input to output layer. 

And third and last layer is called as output layer where output is collected for further 

classification. The number of nodes or neurons present in the input layer is depends upon the 

number of features in the input training samples. So architecture may differ according to 

training samples. Number of neurons in the hidden layer has been taken three for initiation, 

but as training progresses it will increases automatically as per complexity of the training 

samples or as per requirement. Output layer contains only one neuron for classification which 

is nothing but our aim.  

The main computing takes place in these three layers only. Associated with each hidden 

neuron is a set of weights that are scales of connection between the hidden layer neurons and 

the neurons in the input and output layers. There is no connection between neurons of same 

layer in the network. These weights are significant since they are responsible for the fraction 

of the input that is fed in to the activation function of the hidden neurons and thereby 

influence its output.  Activation function is mainly calculated on every other node of hidden 

layers as well as output layer, which is responsible to processes information forward. The 

hidden layer units are significant due to their ability to interpret data in a meaningful way.  

3.2 Flow of information in the neural networks 

Initially first input sample has been provided to the input layer in start of the training process. 

Individual input values then multiplied with corresponding weights and we get sum of the 

product of input value with weights associated with each hidden layer neurons. This sum of 

product values goes through activation function attached with each hidden layer neurons. 

Output of activation function will act as an input for further information processes. This 

whole process will continue till information will reach up to output layer. This process will 
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work according to the feed-forward algorithm to process information to the output layer. At 

output layer it is necessary to calculate error difference between resultant output and desired 

output. If error difference is greater than the given threshold value then it require to back-

propagate up to the input layer for clear classification. Back-propagation is an algorithm 

which is used to process information backwards up to input layer and updates the weights 

associated with neurons. These feed forwards and back-propagation algorithms 

simultaneously used to propagate information from input layer to output layer and vice-versa 

and weights get tuned for classification. 

3.3 Feed-forward algorithm  

In feed-forward neural network information is moved only in forward direction and weights 

are not updated during this step. Features of input training samples are passed in to the input 

layer. These features value then multiplied with corresponding weights which is associated 

with hidden layer neurons to input layer neurons called as input layer weights. At the hidden 

layer neurons the sum of product of features value to the corresponding weight, is passed in 

to the activation function. Though if there are multiple layers in a hidden layer then the 

process of forwarding of information between two layers will be done as per feed-forward 

neural network algorithm. That’s why the output of activation function is acting as an input in 

next information sharing process.  

Let x1, x2, x3……..xn are features of input training samples.  

Fig. 3.1 Shows the connection of input along with its weights. 

                               I1     W1j              J 

         X1        

                               I2    W2j    

         X2 

         I3       W3j            

          X3 

 

i

i 
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As shown above I1, I2, I3……In are input layer neurons which is equal to the number of 

features in input training samples. W1j, W2j, W3j……Wnj are the weights associated with 

input layer neurons to hidden layer neurons.  Neuron ‘J’ is a hidden layer neuron which has 

an activation function along with it.  Now sum of product of input values with corresponding 

weights can be calculated as follows: 

'j ij i ji
x w x w    (21) 

 Here Wj is well known for biased weight which is a fixed value throughout the training 

process.   

fig. 3.2 Description of activation function inside a hidden layer neuron or output layer 

    W1j         X 

               W2j          

               W3j 

     

            Node J 

In the above diagram xj’ represents the sum of product of input with corresponding weights. 

Now xj, which is the output of activation function in the hidden layer neuron, can be 

calculated as follows: 

(x ') tanh( ')j j jx f x          (22) 

Here tanh( ')jx  is hyperbolic tangent activation function, used in every hidden layer nodes. 

So this process of forward feeding of information will continue up to last layer of neural 

network.  

3.4 Back-propagation algorithm 

The backward error propagation, also called as the back-propagation (BP) or the 

generalized delta rule (GDR) is mainly used to feed information back up to the input layer 

and on the basis of error gradient which is calculated at output layer, update the weights 

   Xj’ 
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associated with neurons to minimizing the error. But first, a squared error measure for the p
th

 

input-output pair is defined as 

2(d x )p k k

k

E     (23)

 

Where dk  is the desired output for node k, and xk  is the actual output for node k when the 

input part of the pth data pair is presented. To find the gradient vector, an error term 'i for 

node i is defined as 

'
'

p

i

i

E

x






   (24)

    

According to the chain rule the recursive formula for above equation can be written as 

follows.   
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 

(25)

 

else  

The above two equations are used for calculating the error gardient which is further used in 

updation of weights. Weight updation in back propagation algorithm can be done as follows 

  

'
'

'

p p i
ki i k

ki i ki

E E x
w x

w x w
  

   
      

  
 (26)

 

    
ki ki kiw w w     (27) 

Where   is a learning rate that affect the convergence speed and stability of the weight 

during learning. The update formula for the bias of each node can derived similarly. kiw  is a 

connection weight between kth hidden layer node to ith output layer node if node i is output 

node.  Here kiw  is change in weight which is calculated using error gradient in back-

propagation algorithm.  

If node i is a output node 
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Feed-forward and back-propagation are two basic algorithm which are used to tarin any 

neural network. But in my proposed work I introduced a concept of Susan and Hanmandlu  

non-extensive entropy which is mainly used to make decision about weather number of 

neurons in the hidden layer should increased or to keep stable. 

3.5 Dynamic growth of hidden units

 

The growth or pruning of the hidden units is mostly decided by the weights emanating from 

the training process and in Susan and Hanmandlu non-extensive entropy, normalized weights 

are used as a probabilistic values. As explained above the susan and hanmandlu non-

extensive etropy was propaosed as a feature for texture identification and classification[31].  

Its speciality lies in identifying regular textures containg repetative patterns that translate to 

high co-occurrence probabilities. But in my work the weighted sum of non-extensive 

entropies is used to identify the irregular patterns among features of input tarining samples. 

The weighted sum of non-extensive entropies over two consecutive frame pairs was used in 

[35] for the detection of video anomalies. The significant of this weighted sum of non-

extensive entropy is that any significant departur from normal will result in a positive spike 

indicating an anomaly. The positive spike in the weighted sum of non-extensive entropy is 

due to more information gain. Because as we know that if there are similar patterns in a input 

training samples the new information gathering is less due to similarity in features and 

resulting less information gain but if there is no repetitive pattern among features then 

information gathering is high resulting higher information gain and result in a positive spike.  

So in my work I computed over time the weighted sum of non-extensive entropies associated 

with the trained weights of a feedforward network, tuned by back-propagation algorithm. So 

by using weighted sum of non-extensive entropy, as a decision factor to increment the 

neurons, if a positive spike or increase in te weighted sum indicate a kind of chaos or 

uncertainty among tarining input features and increments the number of hidden layer neurons 

by one. The weighted sum of non-extensive entropies, also called as the entropy of the source 

H(S) is defined  as 
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        (28)                       

Solving for the entropy H(p(y/x))   using [above equation number], we have 

                                         (29) 

 

Here p(x) denotes the probability associated with the weight between the output neurons and 

the x
th 

hidden unit. Before applying non-extensive entropy to the network weights must be 

normalized in to the range of [0, 1], then it is converted in to probabilistic values. The set 

{p(y/x)} indicates the probabilities associated with the input connection weights of the x
th 

hidden unit, and H (p(y/x)) is non-extensive entropy associated with {p(y/x)} computed using 

(29). To calculate weighted sum of non-extensive entropy it is necessary normalized the 

weights for converting them in to probabilistic values then non-extensive entropy should be 

calculated on the basis of weights associated with input layer neurons to hidden layer 

neurons. Now sum of the product of the probabilities associated with the weights between 

hidden layer neurons to output layer neuron and non-extensive entropy calculated on the 

basis of probabilities associated with the weights between input layer neurons to hidden layer 

neurons. Resulting weighted sum of non-extensive entropies, also called as entropy of the 

source. 

The multilayer perceptron architecture 4-3-1 with the actual weights associated with each 

layer is shown in fig. 3, is a basic architecture used in dynamic neural network. The 

multilayer perceptron is a neural network having multiple layers in a hidden layer, but in my 

architecture there is only one layer in the hidden layer with randomly initialized 3 neurons. 

Let Wki
t 
denote the weight associated with the connection between the k

th
 input dimension and 

the i
th

 hidden layer neuron after the training of the i
th

 training data sample. The computation 

of weighted sum of non-extensive entropy in [28] from the network weights {Wki
t
} and {Wij

t
} 

is explained below. The normalized weights  {WkiN
t
} are obtained from {Wki

t
} by 

transforming the value of the weights {Wki
t
} in the range of 0 to 1, and dividing by the total 

sum of weights as shown in (30) to (31). 

      

      , k=1, 2… M  (30)   
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        (31)    

   

 

Fig. 3.3 The multi-layer perceptron (MLP) neural and connection weights during 

training 
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Here M is the number of connection weights between the input layer and the hidden neuron i. 

The normalized weights {W1iN
t
, W2iN

t
… WMiN

t
} are equal to probability values {p(y/x)} for a 

given x, with values in the range of 0 to 1 and
1

1
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t

kiN
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W


 . This probability distribution can 

be used for the computation of the entropy H (p(y/x)) using [equation]. The probabilities 

{p(x)} associated with the H hidden neurons and the single output neuron (j=1) are the 

normalized weights {WijN
t
} which are computed from {Wij

t
} in a similar manner. The 

weighted sum of non-extensive entropies given by (28) is generalized for O significant 

outputs as  

     

          (32)  

 

In our example O=1. The entropy value computed using (32) for the t
th 

training sample is 

compared with the entropy value for the previous training data samples t-1. If incoming 

entropy value is higher than the previous input training samples entropy then it is assumed 
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that there is a positive spike in entropy H(S), the number of hidden layer neuron is increased 

by one and the training proceeds for sample t+1 . A single memory storage for the previous 

entropy value is only required for comparison purpose.  

The steps of proposed methods are summarized below. 

1. Initialize the neural network architecture with initially 3 hidden neurons. For input 

layer number of neurons should be equal to the number of features in input training 

samples. Number of neuron at output layer is always remains one. Hidden layer 

weights initialized to 0.11 and output layer weights initialized to 0.13. 

2. Tuning of the weights for a training inputs will be done by feed-forward and back-

propagation algorithm until error goes below to the given threshold value. 

3. To calculate the probabilistic value it is necessary to normalize the weights in the 

range of 0 to 1 and then divide the individual weight by the sum of all the weights. So 

to get probability of the tuned weights of each layer using (30) and (31). 

4. After tuning of all weights through back-propagation compute the weighted sum of 

non-extensive entropies using (32). We called it weighted sum of non-extensive 

entropy because individual weights multiplied with corresponding neuron’s entropy.  

5. Though we are storing the entropy of previously executed input training sample, so if 

current calculated weighted sum of non-extensive entropy value is higher than the 

previous training sample’s entropy then increment the number of hidden layer 

neurons by one, and weight corresponding to newly added neuron being initialized to 

0.11. 

6. Repeat the training process for the next sample using the tuned weights of the existing 

neurons and the newly added neuron. 

7. Repeat above steps 2-6 until the training is complete. 

 

The highlight of our method is thus that a new computation unit is added whenever an 

unusual pattern occurs in the training. This trend was also observed before in the case of the 

resource allocating network in [36] which however requires memorizing of specific input 

patterns that perform poorly, in order to achieve desired accuracy. 
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Fig. 3.4 flow chart of working of single layer feedforward multilayer perceptron 
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4.1 Experiment performed on synthetic data set  

   

4.1.1 Description about synthetic data set: 

The synthetic data set I used in my experiment is basically having four features and total 

numbers of data samples are 100 in numbers. Basically it is not inspired with any other data 

set but simply classified itself in two different classes as 0 and 1. Features of class 1 are in the 

range of 0 to 15 and of class 0 are in the range of 100 to 200. Among data set of 100 samples 

40 samples are used for training and 60 samples are used for testing purpose. Total number of 

samples belongs to class 1 are 60 and number of samples in class 0 are 40. None of the 

features in any sample are missing in synthetic data set. 

 

4.1.2 Experimental results of synthetic data set 

The single hidden layer feed forward multilayer perceptron 4-3-1 shown in fig. 3, is used as 

the initial configuration for experiment on synthetic data set, with a learning rate   of 0.02 

and an error threshold ‘ ’ of 0.01. The error threshold is basically different for different data 

sets. The number of hidden layer units is initialized to 3 at the beginning of training 

procedure and is grown dynamically as explained in section 3.5. The result of dynamic 

growth of hidden layer neurons as training progresses is shown in table no.1. When 

consecutive training pattern follows a similar pattern irrespective of the actual range of 

values, the non-extensive entropy of the weights decreases (or remain stable) indicating a 

decline in in chaos in the weights as some weights are assigned higher values than other due 

to higher significance their connections. As explained above in Susan and Hanmandlu non-

extensive entropy that its specialty lies in identifying regular texture containing repetitive 

patterns that translate to high co-occurrence probabilities. So whenever an unnatural training 

pattern is said to be encountered when it is different from its predecessors in its relationship 

between the features. In any training sample if there is similar pattern like equal difference 

between features or if numbers are in the range of 0 and 1 only then how many non-zero and 

zero values are there. So this is what a pattern called on the basis of number of neurons will 

increases. The concept of information gain works here in the way that if there are multiple 

sample following similar pattern in among its features it means pattern is well known by 

algorithm, so if a next input training sample has same pattern as previous one it mean 

information gain is less because nothing is new in that, but pattern has changed or it differs 

from previous sample’s pattern it means some is new encountered by the algorithm and 
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information gain is high. Due to high information gain the weighted sum of non-extensive 

entropy will also become high and there will be a positive spike which indicates a chaos 

among the weights or weighted sum of non-extensive entropy is higher than the previous one 

and number of hidden layer neurons increment by one. For example feature number 2 and 3 

of training samples 9 and 34 are closer than the usual. The distinct training inputs are 

detected correctly by the non-extensive entropy in synthetic data set (4, 9, 34, and 36) while 

the Shannon entropy is highly sensitive and includes lots of false alarms ( 2, 5, 7, 18, 33, 35, 

39), for instance sample 2 is normally occurring pattern in the dataset. The same kinds of fact 

were also observed for video anomaly example in [35] where Shannon entropy gives rise to 

false alarm due to random crowd movement.  

The results are summarized in Table 2 for proposed dynamic neural network and the static 

neural network with fixed number of hidden layer neurons. We observed a slow and steady 

rise of the number of hidden neurons for the non-extensive entropy (hidden neurons=7), 

while Shannon entropy results in growth of 11 hidden neurons, Pal and Pal entropy results in 

growth of 8 hidden neurons and Tsallis entropy results in growth of 7 hidden layer neurons. 

Though Pal and Pal and Tsallis entropies are results in approx. similar number of hidden 

layer neurons but they took more execution time required to train a given set of input samples 

than non-extensive entropy. Apart from a reduced MLP architecture with only 7 hidden layer 

nodes, the overall training time required by the proposed method is much less than the 

equivalent fixed neurons architecture, while its classification performance is (98.33%) is 

higher than any possible static neural network configuration. As it is clearly derived from the 

Table 2 that static growth of neurons up to 22 can only give you approximate efficiency equal 

to non-extensive entropy, but this can be easily achieved by dynamic neural network with 

non-extensive entropy having only 7 hidden layer neurons. 
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Table 4.1: Dynamic growth of hidden layer neurons using the Susan and Hanmandlu 

non-extensive, Shannon, Pal and Pal and Tsallis entropies based on synthetic dataset. 

 

Input 

training 

Sample 

number 

 

 

Training 

feature 

1 

 

 

Training 

feature 

2 

 

 

Training 

feature 

3 

 

 

Training 

feature 

4 

 

    

Class 

Growth 

of 

neurons 

using 

non-

extensive 

entropy 

Growth 

of 

neurons 

using 

Shannon 

Entropy 

Growth 

of 

neurons 

using 

Pal and 

Pal 

Entropy 

Growth 

of 

neurons 

using 

Tsallis 

entropy 

1 0.01 0.02 0.03 0.04 1 3 3 3 3 

2 0.4 0.5 0.6 0.7 1 3 4 3 3 

3 0.10 0.11 0.12 0.13 1 3 4 3 3 

4 0.12 0.1 0.16 0.18 1 4 4 4 4 

5 0.35 0.25 0.45 0.55 1 4 5 4 4 

6 0.55 0.40 0.56 0.65 1 4 5 5 4 

7 0.05 0.06 0.07 0.08 1 4 6 5 5 

8 0.61 0.63 0.67 0.69 1 4 6 5 5 

9 0.71 0.73 0.74 0.77 1 5 6 5 5 

10 0.94 0.91 0.93 0.95 1 5 7 5 5 

11 2.3 2.5 2.57 2.9 1 5 7 5 5 

12 3.1 3.25 3.7 3.9 1 5 7 5 5 

13 4.3 4.5 4.7 4.9 1 5 7 5 5 

14 5.1 5.4 5.6 5.9 1 5 7 5 5 

15 6.7 6.9 6.4 6.45 1 5 7 5 5 

16 8.0 8.5 8.3 8.4 1 5 7 5 5 

17 7.5 7.7 7.9 7.2 1 5 7 5 5 

18 1.2 1.3 1.5 1.7 1 5 8 5 5 

19 9.2 9.3 9.5 9.7 1 5 8 5 5 

20 3.9 24 5.4 5.9 1 5 8 5 5 

21 10.0 11.1 12.2 13.3 1 5 8 5 5 
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22 5.2 5.5 5.7 5.9 1 5 8 5 5 

23 5.1 5.3 5.4 5.7 1 5 8 5 5 

24 3.2 3.4 3.6 3.8 1 5 8 5 5 

25 3.9 3.1 3.5 3.7 1 5 8 5 5 

26 7.9 7.4 7.2 7.5 1 5 8 5 5 

27 3.2 7.7 7.5 9.2 1 5 8 5 5 

28 2.3 2.5 2.7 2.9 1 5 8 5 5 

29 7.3 7.9 7.7 7.5 1 5 8 5 5 

30 4.7 4.55 4.3 4.1 1 5 8 5 5 

31 1.2 1.9 1.59 1.7 1 5 8 5 5 

32 104.5 109.6 108.7 107.8 0 5 8 5 5 

33 100 101 102 103 0 5 9 5 5 

34 110 113 114 117 0 6 9 5 5 

35 121 123 125 127 0 6 10 6 5 

36 131 121 141 151 0 7 10 6 6 

37 141 143 147 149 0 7 10 7 6 

38 80.1 85.11 87.2 84.9 0 7 10 7 7 

39 70.0 70.2 70.3 70.7 0 7 11 8 7 

40 67.2 65.5 75.5 85.0 0 7 11 8 7 

 

 

 

 

 

 

 

 

 

 



32 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

Table 4.2: Performance analysis of the proposed dynamic neural network, Shannon, Pal 

and Pal, Tsallis entropies and various static neural network configurations, in terms of 

training time in seconds (s), number of hidden nodes and the testing accuracy in (%), 

based on Synthetic data set.  

 

 

 

 

 

Methods  

Growth of 

hidden 

layer 

neurons 

using 

Susan and 

Hanmandlu 

Non-

extensive 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Shannon 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Pal and 

Pal 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Tsallis 

Entropy. 

 

 

 

 

Static 

3 

Hidden 

neurons 

 

 

 

Static 

7 

Hidden 

neurons 

 

 

 

Static 

11 

Hidden 

neurons 

 

 

 

Static 

22 

Hidden 

neurons 

 

 

 

Static 

34 

Hidden 

neurons 

 

 

 

Static 

40 

Hidden 

neurons 

Total 

training 

time ( 

for  40 

samples) 

 

 

0.39 sec 

 

 

0.78 sec 

 

 

0.589sec 

 

 

0.602sec 

 

 

0.25sec 

 

 

0.51sec 

 

 

0.58sec 

 

 

0.6sec 

 

 

0.62sec 

 

 

0.62sec 

Number 

of 

hidden 

nodes 

 

7 

 

11 

 

 

8 

 

7 

 

3 

 

7 

 

11 

 

22 

 

34 

 

40 

Testing 

accuracy 

(for 60 

samples) 

 

98.33% 

 

98.33% 

 

98.33% 

 

98.33% 

 

83.43% 

 

83.4% 

 

93.4% 

 

93.4% 

 

83.4% 

 

83.4% 
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4.2 Experiment performed on dermatology dataset 

 

4.2.1 Description about dermatology data set. 

This database contains mainly 34 attributes 33 of which are linear valued and one of them is 

nominal. The differential diagnosis of erythemato-squamous diseases is a real problem in 

dermatology. They all share the clinical features of erythema and scaling, with very little 

differences. The deceases in this group are psoriasis, seboreic dermatitis, lichen planus, 

pityriasis rosea, cronic dermatitis, and pityriasis rubra pilaris. Usually a biopsy is necessary 

for the diagnosis but unfortunately these diseases share many histopathological features as 

well. Another difficulty for the differential diagnosis is that a disease may show the features 

of another disease at the beginning stage and may have the characteristic features at the 

following stages. Patients were first evaluated clinically with 12 features. Afterwards, skin 

samples were taken for the evaluation of 22 histopathological features. The values of the 

histopathological features are determined by an analysis of the samples under a microscope. 

In the dataset constructed for this domain, the family history feature has the value 1 if any of 

these diseases has been observed in the family and 0 otherwise. The age feature simply 

represents the age of the patient. Every other feature (clinical and histopathological) was 

given a degree in the range of 0 to 3. Here, 0 indicates that the feature was not present, 3 

indicates the largest amount possible, and 1, 2 indicate the relative intermediate values. 

The name and id numbers of the patients were recently removed from the database. 

No. of instances: 366 

No. of attributes or features: 34 

Attribute Information: 

Clinical Attributes: (take values 0, 1, 2, 3, unless otherwise indicated) 

      1: Erythema 

      2: Scaling 

      3: Definite borders 

      4: Itching 

      5: Koebner phenomenon 

      6: Polygonal papules 
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      7: Follicular papules 

      8: Oral mucosal involvement 

      9: Knee and elbow involvement 

     10: Scalp involvement 

     11: Family history, (0 or 1) 

     34: Age (linear) 

Histopathological Attributes: (take values 0, 1, 2, 3) 

     12: Melanin incontinence 

     13: Eosinophils in the infiltrate 

     14: PNL infiltrate 

     15: Fibrosis of the papillary dermis 

     16: Exocytosis 

     17: Acanthosis 

     18: Hyperkeratosis 

     19: Parakeratosis 

     20: Clubbing of the rete ridges 

     21: Elongation of the rete ridges 

     22: Thinning of the suprapapillary epidermis 

     23: Spongiform pustule 

     24: Munro microabcess 

     25: Focal hypergranulosis 

     26: Disappearance of the granular layer 

     27: Vacuolisation and damage of basal layer 

     28: Spongiosis 

     29: Saw-tooth appearance of retes 

     30: Follicular horn plug 

     31: Perifollicular parakeratosis 

     32: Inflammatory monoluclear inflitrate 

     33: Band-like infiltrate 

Class distribution: 

Class code:   Class:                  Number of instances: 

       1             Psoriasis   112 

       2             Seboreic dermatitis                   61 
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       3             Lichen planus                   72 

       4             Pityriasis rosea                  49 

       5             Cronic dermatitis                52     

       6             Pityriasis rubra pilaris            20 

 

4.2.2 Experimental results of dermatology data set: 

The experiments are conducted on data set containing 366 data samples distributed among 6 

different classes as described above. But in single layer feed forward multilayer perceptron 

has only one single output neurons which can only able to classify the datasets having two 

classes, so to match the compatibility criteria the classes 1,2 and 3 are merged in to class 1 

and classes 4, 5 and 6 are merged in class 0. The total numbers of data samples in class 1 are 

245 and in class 0 are 121. Among the dataset of 366 data samples alternate samples (ex. 1, 3, 

5…365) are used for training purpose and remaining (2, 4,…366) for testing purpose, this 

way total 183 samples has been taken for training as well for testing also. The experiment 

were performed on dynamic neural network using non-extensive, Shannon, Pal and pal, 

Tsallis and various static neural network configurations, in terms of training time in seconds 

(s), number of hidden nodes and the testing accuracy in (%). As it is depicted from Table 3 

that growth of hidden layer neurons in the case of non-extensive entropy and Shannon 

entropy are same but time required to train 183 input training data samples is less (0.192 sec) 

in the case of non-extensive entropy as compared to Shannon (0.242 sec), Pal and Pal (0.196 

sec), and Tsallis (0.198 sec) entropies. In terms of accurate classification, the Susan and 

Hanmandlu non-extensive entropy classify the testing input data samples more accurately 

(85.80%) as compare to Shannon (80.0%), Pal and Pal (84.16%) and Tsallis (83.61%) 

entropies. If we talk about various static neural network configurations in that case also the 

Susan and Hanmandlu non-extensive entropy works better as compared to static neural 

network configuration having hidden layer neurons 3, 7, etc. This whole discussion concludes 

that the dynamic growth of hidden layer neurons using the Susan and Hanmandlu non-

extensive entropy as proposed in my work not only gives the optimal number of hidden layer 

neurons for a data set, at the same time it provides a better tuning of weights and faster 

training than any other non-extensive, extensive and static neural network configurations. 

Though the pattern of growth of hidden layer neuron using the Susan and Hanmandlu non-

extensive entropy is quite different with other entropies it means definitely there must be 

some false alarms given by other entropies because other entropies have more number of 

hidden layer neurons as compared to the Susan and Hanmandlu non-extensive entropy.   
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Table 4.3: Dynamic growth of hidden layer neurons using the Susan and Hanmandlu 

non-extensive, Shannon, Pal and Pal and Tsallis entropies based on Dermatology 

dataset. 

 

 

Serial 

number 

 

 

Sample 

number 

 

 

Class  

Growth of 

hidden neurons 

using the non- 

extensive Susan 

and Hanmandlu 

entropy 

Growth of 

hidden 

neurons 

using the 

Shannon 

entropy 

Growth of 

hidden 

neurons 

using the 

Pal and 

Pal 

Growth of 

hidden 

neurons 

using the 

Tsallis 

entropy 

1 1 1 3 3 3 3 

2 3 1 3 3 3 3 

3 5 1 4 4 4 4 

4 7 1 4 4 4 4 

5 9 1 5 4 4 5 

6 11 1 5 5 5 5 

7 13 1 6 5 5 6 

8 15 1 6 5 5 6 

9 17 1 6 6 6 6 

10 19 1 7 6 6 7 

11 21 1 7 6 6 7 

12 23 1 8 7 7 8 

13 25 1 8 7 7 8 

14 27 1 9 7 7 9 

15 29 1 9 8 8 9 

16 31 1 10 8 8 10 

17 33 1 10 8 8 10 

18 35 1 11 9 9 11 

19 37 1 11 9 9 11 

20 39 1 12 9 10 12 

21 41 1 12 10 10 12 
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22 43 1 12 10 11 12 

23 45 1 13 11 11 13 

24 47 1 13 11 12 13 

25 49 1 13 12 12 13 

26 51 1 13 12 12 13 

27 53 1 14 13 13 14 

28 55 1 14 13 13 14 

29 57 1 14 13 13 14 

30 59 1 14 14 14 14 

31 61 1 15 14 14 15 

32 63 1 15 14 15 15 

33 65 1 15 14 15 15 

34 67 1 16 15 16 16 

35 69 1 16 15 16 16 

36 71 1 17 15 17 17 

37 73 1 17 15 17 17 

38 75 1 18 16 17 18 

39 77 1 18 16 18 18 

40 79 1 19 16 18 18 

41 81 1 19 17 18 18 

42 83 1 20 17 19 19 

43 85 1 20 18 19 19 

44 87 1 20 18 19 19 

45 89 1 20 18 19 19 

46 91 1 21 19 19 19 

47 93 1 21 19 20 19 

48 95 1 22 19 20 19 
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49 97 1 22 20 20 20 

50 99 1 22 20 20 20 

51 101 1 22 20 21 20 

52 103 1 22 20 21 21 

53 105 1 22 21 21 21 

54 107 1 22 21 22 21 

55 109 1 22 21 22 21 

56 111 1 22 21 22 21 

57 113 1 22 21 22 21 

58 115 1 23 22 22 21 

59 117 1 23 22 23 21 

60 119 1 23 22 23 22 

61 121 1 23 22 23 22 

62 123 1 24 23 24 22 

63 125 1 24 23 24 22 

64 127 1 25 23 24 23 

65 129 1 25 23 25 23 

66 131 1 25 24 25 23 

67 133 1 25 24 25 23 

68 135 1 25 25 25 23 

69 137 1 25 25 25 23 

70 139 1 25 26 25 24 

71 141 1 25 26 25 24 

72 143 1 25 27 25 24 

73 145 1 25 27 25 25 

74 147 1 26 27 25 25 

75 149 1 26 28 25 25 
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76 151 1 26 28 25 25 

77 153 1 27 28 25 25 

78 155 1 27 28 26 25 

79 157 1 27 28 26 25 

80 159 1 27 29 26 25 

81 161 1 27 29 27 26 

82 163 1 27 29 27 26 

83 165 1 27 30 27 26 

84 167 1 28 30 28 26 

85 169 1 28 30 28 26 

86 171 1 29 30 28 26 

87 173 1 29 30 28 26 

88 175 1 29 30 28 26 

89 177 1 29 30 28 26 

90 179 1 29 30 28 26 

91 181 1 29 30 28 26 

92 183 1 29 30 28 27 

93 185 1 30 30 28 27 

94 187 1 30 30 28 27 

95 189 1 30 30 28 28 

96 191 1 30 30 28 28 

97 193 1 30 30 28 29 

98 195 1 30 30 28 29 

99 197 1 30 30 28 29 

100 199 1 30 30 28 29 

101 201 1 30 30 28 29 

102 203 1 30 30 28 29 
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103 205 1 30 30 28 29 

104 207 1 30 30 28 29 

105 209 1 30 30 28 29 

106 211 1 30 30 28 29 

107 213 1 30 30 28 29 

108 215 1 30 30 28 29 

109 217 1 30 30 28 29 

110 219 1 30 30 28 29 

111 221 1 30 30 28 29 

112 223 1 30 30 28 29 

113 225 1 30 30 28 29 

114 227 1 30 30 28 29 

115 229 1 30 30 29 29 

116 231 1 30 30 29 29 

117 233 1 30 30 29 29 

118 235 1 30 30 29 29 

119 237 1 30 30 29 29 

120 239 1 30 30 29 29 

121 241 1 30 30 29 29 

122 243 1 30 30 29 29 

123 245 1 30 30 29 29 

124 247 0 30 31 29 30 

125 249 0 30 31 30 30 

126 251 0 30 32 30 31 

127 253 0 30 32 30 31 

128 255 0 30 32 30 31 

129 257 0 31 33 30 32 
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130 259 0 31 33 31 32 

131 261 0 32 33 31 33 

132 263 0 32 34 32 33 

133 265 0 32 34 32 33 

134 267 0 33 34 32 34 

135 269 0 33 35 32 34 

136 271 0 34 35 33 34 

137 273 0 34 35 33 35 

138 275 0 35 36 33 35 

139 277 0 35 36 34 35 

140 279 0 36 37 34 36 

141 281 0 36 37 35 36 

142 283 0 36 37 35 36 

143 285 0 36 37 36 36 

145 287 0 37 38 36 37 

146 289 0 37 38 36 37 

147 291 0 37 38 37 38 

148 293 0 38 38 37 38 

149 295 0 38 39 38 38 

150 297 0 38 39 38 39 

151 299 0 38 40 39 39 

152 301 0 39 40 39 40 

153 303 0 39 41 40 40 

154 305 0 39 41 40 40 

155 307 0 39 41 40 41 

156 309 0 39 41 41 41 

157 311 0 40 42 41 42 
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158 313 0 40 42 41 42 

159 315 0 41 43 42 42 

160 317 0 41 43 42 43 

161 319 0 42 44 43 43 

162 321 0 42 44 43 43 

163 323 0 42 44 44 43 

164 325 0 43 44 44 44 

165 327 0 43 44 44 44 

166 329 0 44 45 45 44 

167 331 0 44 45 45 45 

168 333 0 45 45 45 45 

169 335 0 45 46 46 45 

170 337 0 46 46 46 46 

171 339 0 46 47 47 46 

172 341 0 47 47 47 47 

173 343 0 47 47 47 47 

174 345 0 47 47 48 48 

175 347 0 48 48 48 48 

176 349 0 48 48 49 48 

177 351 0 48 48 49 49 

178 353 0 48 48 50 49 

179 355 0 49 48 50 50 

180 357 0 49 49 50 50 

181 359 0 50 49 51 51 

182 361 0 50 50 51 51 

183 363 0 51 50 52 52 

184 365 0 51 51 52 52 
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Table 4.4: Performance analysis of the proposed dynamic neural network, Shannon 

entropy, Pal and Pal entropy, Tsallis entropy and various static neural network 

configurations, in terms of training time in seconds (s), number of hidden nodes and the 

testing accuracy in (%), based on Dermatology dataset. 

                             

                                             

                                              

          

Methods          

Method       

                      Methods         

Method       

                       

 

 

 

 

 

 

Growth of 

hidden layer 

neurons 

using Susan 

and 

Hanmandlu 

Non-

extensive 

Entropy. 

 

 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Shannon 

Entropy. 

 

 

 

Growth 

of 

hidden 

layer 

neurons 

using 

pal n pal 

entropy. 

 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Tsallis  

Entropy. 

 

 

 

 

 

Static 3  

Hidden 

neurons 

 

 

 

 

 

Static 7 

Hidden 

neurons 

 

 

 

 

 

Static 11 

Hidden 

neurons 

 

 

 

 

 

Static 22 

Hidden 

neurons 

 

 

 

 

 

Static 34 

Hidden 

neurons 

 

 

 

 

 

Static 40 

Hidden 

neurons 

 

 

 

 

 

Static 50 

Hidden 

neurons 

Total 

training 

time ( for 

183 

samples) 

 

 

0.192 sec 

 

 

0.242sec 

 

 

0.196sec 

 

 

0.198sec 

 

 

0.198sec 

 

 

0.198sec 

 

 

 

0.156sec 

 

 

 

0.184sec 

 

 

 

0.236sec 

 

 

 

 

0.472sec 

 

 

 

2.793sec 

 

Number 

of hidden 

nodes 

 

51 

 

51 

 

52 

 

52 

 

3 

 

7 

 

11 

 

22 

 

34 

 

40 

 

50 

Testing 

accuracy 

(for 183 

samples) 

 

85.80% 

 

80.00% 

 

84.16% 

 

83.61% 

 

67.22% 

 

67.22% 

 

 

67.59% 

 

 

82.52% 

 

 

83.07% 

 

 

84.16% 

 

 

84.70% 
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4.3 Experiment performed on Iris dataset 

 

4.3.1 Description about Iris dataset: 

This dataset contains 3 classes of 50 instances each, where each class refers to a type of iris 

plant. One class is linearly separable from the other 2. 

Attribute predicted: Class of Iris plant. 

This data differs from the data presented in Fishers article (identified by Steve Chadwick, 

spchadwick@espeedaz.net). The 35th sample should be: 4.9, 3.1, 1.5, 0.2, "Iris-setosa" where 

the error is in the fourth feature and 38th sample: 4.9, 3.6, 1.4, and 0.1, "Iris-setosa" where 

the errors are in the second and third features. 

Number of attributes: 4 numeric, predictive attributes and the class. 

Attribute Information: 

   1. Sepal length in cm 

   2. Sepal width in cm 

   3. Petal length in cm 

   4. Petal width in cm 

Class:  

      -- Iris Setosa 

      -- Iris Versicolour 

      -- Iris Virginica 

 

4.3.2 Experimental results of Iris data set: 

The experiment is conducted on linearly separable Iris data set containing 150 data samples 

distributed among 3 different classes, 50 samples each. The single layer feedforward 

multilayer perceptron as shown in fig. 3 is used as the initial configuration for the 

experiments, with a leaning rate   of 0.02 and an error threshold ‘ ’ of 0.01. The error 

threshold is basically different for different data sets. The number of hidden layer units is 

initialized to 3 at the beginning of training procedure and is grown dynamically as explained 

in [section number]. The result of dynamic growth of hidden layer neurons as training 

progresses is shown in Table 5.  Though in single layer feedforward multilayer perceptron 

has only one neuron in the output layer which can able to classify only two different classes, 

so to match the compatibility criteria class 1 and 2 are merged in to class 0 and class 3 

mailto:spchadwick@espeedaz.net
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renamed as class 1. This way 100 input data samples belongs to class 0 and remaining 50 data 

samples belongs to class 1. The alternate input data samples of Iris data set are basically used 

for training and testing purpose. Among 150 input data set 75 data samples of dataset are 

used as training and remaining 75 input data samples are used as testing purpose. In testing 

data samples number 50 input training data samples are belongs to class 0 and 25 input 

training data samples are belongs to class 1. In Table 5, the dynamic growth of hidden layer 

neurons using the Susan and Hanmandlu non-extensive entropy is less as compared to 

Shannon, Pal and Pal and Tsallis entropies. The steady and slow rise of hidden layer neurons 

in the Susan and Hanmandlu non-extensive entropy shows that the MLP architecture will 

remain small as compared to other extensive and non-extensive entropies which will take less 

time to train a set of input training data samples, enhance the efficiency of neural network 

with good classification accuracy. The same thing what I explained above can easily 

concluded from Table 6, where the growth of hidden layer neurons in case of the Susan and 

Hanmandlu non-extensive entropy, are 18 and in case of Shannon, Pal and Pal and Tsallis 

entropy, are 20, 20, 21 simultaneously. In terms of execution time of training samples the 

Susan and Hanmandlu non-extensive entropy took less time (0.051 sec) as compared to the 

Shannon (0.136 sec), Pal and Pal (0.152 sec), Tsallis (0.168 sec) and various static neural 

network configurations. Though in terms of training time and growth of hidden nodes the 

Susan and Hanmandlu non-extensive entropy performed better as compared to all other 

entropies as well as various static neural network configurations but in terms of testing 

accuracy all entropies classify the testing data samples with accuracy of 93.44%. To make 

sure the correctness of the algorithm the cross validation also been done on Iris dataset by 

taking testing data samples as a training and training data samples as testing.   
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Table 4.5:  Dynamic growths of hidden layer neurons using the Susan and Hanmandlu 

non-extensive, Shannon, Pal and Pal and Tsallis entropy based on Iris dataset. 

 

 

 

Serial 

Number 

 

 

 

Training 

feature 

1 

 

 

 

Training 

feature 

2 

 

 

 

Training 

feature 

3 

 

 

 

Training 

feature 

4 

 

 

 

Class 

Growth 

of 

hidden 

neurons 

using 

the 

S&H 

non-

Ext. 

Entropy 

Growth 

of 

hidden 

neurons 

using 

the 

Shannon 

Entropy 

Growth 

of 

hidden 

neurons 

using 

the pal 

& Pal 

Entropy 

Growth 

of 

hidden 

neurons 

using 

the 

Tsallis 

entropy 

1 5.1 3.5 1.4 0.2 0 3 3 3 3 

2 4.7 3.2 1.3 0.2 0 3 3 3 3 

3 5 3.6 1.4 0.2 0 3 3 3 3 

4 4.6 3.4 1.4 0.3 0 3 3 3 3 

5 4.4 2.9 1.4 0.2 0 4 4 4 4 

6 5.4 3.7 1.5 0.2 0 4 4 4 4 

7 4.8 3 1.4 0.1 0 5 5 4 5 

8 5.8 4 1.2 0.2 0 5 5 4 5 

9 5.4 3.9 1.3 0.4 0 6 6 5 6 

10 5.7 3.8 1.7 0.3 0 6 6 5 6 

11 5.4 3.4 1.7 0.2 0 7 7 6 6 

12 4.6 3.6 1 0.2 0 7 7 6 7 

13 4.8 3.4 1.9 0.2 0 7 7 6 7 

14 5 3.4 1.6 0.4 0 7 8 7 7 

15 5.2 3.4 1.4 0.2 0 7 8 7 7 

16 4.8 3.1 1.6 0.2 0 7 9 7 7 

17 5.2 4.1 1.5 0.1 0 7 9 8 8 

18 4.9 3.1 1.5 0.2 0 7 9 8 8 

19 5.5 3.5 1.3 0.2 0 8 10 8 9 
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20 4.4 3 1.3 0.2 0 8 10 8 9 

21 5 3.5 1.3 0.3 0 8 10 9 9 

22 4.4 3.2 1.3 0.2 0 8 11 9 9 

23 5.1 3.8 1.9 0.4 0 9 11 9 10 

24 5.1 3.8 1.6 0.2 0 9 11 10 10 

25 5.3 3.7 1.5 0.2 0 9 11 10 10 

26 7 3.2 4.7 1.4 0 9 11 10 10 

27 6.9 3.1 4.9 1.5 0 10 12 10 10 

28 6.5 2.8 4.6 1.5 0 10 12 11 11 

29 6.3 3.3 4.7 1.6 0 10 12 11 11 

30 6.6 2.9 4.6 1.3 0 10 13 11 12 

31 5 2 3.5 1 0 10 13 11 12 

32 6 2.2 4 1 0 10 13 12 12 

33 5.6 2.9 3.6 1.3 0 11 13 12 13 

34 5.6 3 4.5 1.5 0 11 14 12 13 

35 6.2 2.2 4.5 1.5 0 11 14 13 13 

36 5.9 3.2 4.8 1.8 0 11 14 13 13 

37 6.3 2.5 4.9 1.5 0 12 15 13 14 

38 6.4 2.9 4.3 1.3 0 12 15 14 14 

39 6.8 2.8 4.8 1.4 0 12 15 14 14 

40 6 2.9 4.5 1.5 0 12 16 14 14 

41 5.5 2.4 3.8 1.1 0 12 16 14 15 

42 5.8 2.7 3.9 1.2 0 13 16 14 15 

43 5.4 3 4.5 1.5 0 13 16 14 15 

44 6.7 3.1 4.7 1.5 0 14 16 14 15 

45 5.6 3 4.1 1.3 0 14 17 14 15 

46 5.5 2.6 4.4 1.2 0 14 17 14 15 
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47 5.8 2.6 4 1.2 0 14 18 14 16 

48 5.6 2.7 4.2 1.3 0 15 18 15 16 

49 5.7 2.9 4.2 1.3 0 15 19 15 17 

50 5.1 2.5 3 1.1 0 16 19 16 17 

51 6.3 3.3 6 2.5 1 16 20 16 18 

52 7.1 3 5.9 2.1 1 16 20 16 18 

53 6.5 3 5.8 2.2 1 16 20 16 18 

54 4.9 2.5 4.5 1.7 1 16 20 16 18 

55 6.7 2.5 5.8 1.8 1 16 20 16 18 

56 6.5 3.2 5.1 2 1 16 20 16 18 

57 6.8 3 5.5 2.1 1 16 20 16 18 

58 5.8 2.8 5.1 2.4 1 16 20 16 18 

59 6.5 3 5.5 1.8 1 16 20 16 18 

60 7.7 2.6 6.9 2.3 1 16 20 16 18 

61 6.9 3.2 5.7 2.3 1 16 20 16 18 

62 7.7 2.8 6.7 2 1 16 20 16 18 

63 6.7 3.3 5.7 2.1 1 16 20 16 18 

64 6.2 2.8 4.8 1.8 1 16 20 16 18 

65 6.4 2.8 5.6 2.1 1 16 20 16 18 

66 7.4 2.8 6.1 1.9 1 16 20 16 18 

67 6.4 2.8 5.6 2.2 1 16 20 16 18 

68 6.1 2.6 5.6 1.4 1 17 20 16 18 

69 6.3 3.4 5.6 2.4 1 17 20 17 18 

70 6 3 4.8 1.8 1 17 20 17 19 

71 6.7 3.1 5.6 2.4 1 17 20 18 19 

72 5.8 2.7 5.1 1.9 1 17 20 18 20 

73 6.7 3.3 5.7 2.5 1 18 20 19 20 



49 | P a g e  
DYNAMIC GROWTH OF HIDDEN-LAYER NEURONS USING THE NON-EXTENSIVE ENTROPY 

74 6.3 2.5 5 1.9 1 18 20 19 21 

75 6.2 3.4 5.4 2.3 1 18 20 20 21 

 

 

 

Table 4.6: Performance analysis of the proposed dynamic neural network, Shannon 

entropy, Pal and Pal entropy, Tsallis entropy and various static neural network 

configurations, in terms of training time in sec (s), number of hidden nodes and the 

testing accuracy in (%), based on Iris dataset. 

 

 

 

 

 

Methods  

Growth of 

hidden 

layer 

neurons 

using 

Susan and 

Hanmandlu 

Non-

extensive 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Shannon 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Pal and 

Pal 

entropy. 

Growth 

of 

hidden 

layer 

neurons 

using 

Tsallis 

Entropy. 

 

 

 

Static 

3 

Hidden 

neurons 

 

 

 

Static 

7 

Hidden 

neurons 

 

 

 

Static  

11 

Hidden 

neurons 

 

 

 

Static  

22 

Hidden 

neurons 

 

 

 

Static 

 34 

Hidden 

neurons 

 

 

 

Static 

 40 

Hidden 

neurons 

Total 

training 

time ( 

for 75 

samples) 

 

 

0.051 sec 

 

 

0.136sec 

 

 

0.152sec 

 

 

0.168sec 

 

 

0.090sec 

 

 

0.082sec 

 

 

0.173sec 

 

 

0.129sec 

 

 

0.107sec 

 

 

0.116sec 

Number 

of 

hidden 

nodes 

 

18 

 

20 

 

20 

 

21 

 

3 

 

7 

 

11 

 

22 

 

34 

 

40 

Testing 

accuracy 

(for 75 

samples) 

 

93.44% 

 

93.44% 

 

93.44% 

 

93.44% 

 

89.44% 

 

89.44% 

 

90.77% 

 

93.44% 

 

93.44% 

 

90.77% 

 

4.3.3 Cross validation of Iris data set: 

In the cross validation of Iris data set, as explained above the training input data samples of 

Iris dataset will become testing data samples and testing data samples become training input 

data samples, to check the correctness of algorithm whether it is accurately classifying the 

dataset or not. The result of dynamic growth of hidden layer neurons as well explained in 

Table 7. And in terms of execution time of training samples along with the testing accuracy 

the results are shown in Table 8. In both the tables the dynamic growth of hidden layer 

neurons using the non-extensive entropy performed better as compared to other extensive, 
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non-extensive entropies which have been taken under experimental consideration and various 

static neural network configurations. 

Table 4.7:  Dynamic growths of hidden layer neurons using the Susan and Hanmandlu 

non-extensive, Shannon, Pal and Pal and Tsallis entropy based on Iris dataset.  

 

 

 

Serial 

Number 

 

 

 

Training 

feature 1 

 

 

 

Training 

feature 2 

 

 

 

Training 

feature 3 

 

 

 

Training 

feature 4 

 

 

 

Class 

Growth 

of 

hidden 

neurons 

using 

the 

S&H 

non-

Ext. 

Entropy 

Growth 

of 

hidden 

neurons 

using 

the 

Shannon 

Entropy 

Growth 

of 

hidden 

neurons 

using 

the pal 

& Pal 

Entropy 

1 4.9 3 1.4 0.2 3 3 3 3 

2 4.6 3.1 1.5 0.2 3 3 3 3 

3 5.4 3.9 1.7 0.4 3 3 3 4 

4 5 3.4 1.5 0.2 3 3 3 4 

5 4.9 3.1 1.5 0.1 3 4 4 4 

6 4.8 3.4 1.6 0.2 4 4 4 4 

7 4.3 3 1.1 0.1 4 4 5 5 

8 5.7 4.4 1.5 0.4 5 4 5 5 

9 5.1 3.5 1.4 0.3 5 5 5 5 

10 5.1 3.8 1.5 0.3 5 5 5 5 

11 5.1 3.7 1.5 0.4 5 5 6 5 

12 5.1 3.3 1.7 0.5 6 6 6 5 

13 5 3 1.6 0.2 6 6 6 5 

14 5.2 3.5 1.5 0.2 6 6 7 6 

15 4.7 3.2 1.6 0.2 7 7 7 6 

16 5.4 3.4 1.5 0.4 7 7 7 7 

17 5.5 4.2 1.4 0.2 7 7 7 7 

18 5 3.2 1.2 0.2 7 8 8 7 
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19 4.9 3.6 1.4 0.1 7 8 8 8 

20 5.1 3.4 1.5 0.2 7 9 9 8 

21 4.5 2.3 1.3 0.3 7 9 9 9 

22 5 3.5 1.6 0.6 8 10 9 9 

23 4.8 3 1.4 0.3 8 10 9 9 

24 4.6 3.2 1.4 0.2 8 11 9 9 

25 5 3.3 1.4 0.2 8 11 9 9 

26 6.4 3.2 4.5 1.5 9 12 10 9 

27 5.5 2.3 4 1.3 9 12 10 9 

28 5.7 2.8 4.5 1.3 9 13 10 10 

29 4.9 2.4 3.3 1 10 13 10 10 

30 5.2 2.7 3.9 1.4 10 13 11 11 

31 5.9 3 4.2 1.5 10 14 11 11 

32 6.1 2.9 4.7 1.4 11 14 12 12 

33 6.7 3.1 4.4 1.4 11 14 12 12 

34 5.8 2.7 4.1 1 11 14 13 12 

35 5.6 2.5 3.9 1.1 12 14 13 12 

36 6.1 2.8 4 1.3 12 15 13 13 

37 6.1 2.8 4.7 1.2 12 15 14 13 

38 6.6 3 4.4 1.4 12 15 14 14 

39 6.7 3 5 1.7 13 16 14 14 

40 5.7 2.6 3.5 1 13 16 15 14 

41 5.5 2.4 3.7 1 13 16 15 15 

42 6 2.7 5.1 1.6 14 16 15 15 

43 6 3.4 4.5 1.6 14 16 16 16 

44 6.3 2.3 4.4 1.3 14 16 16 16 

45 5.5 2.5 4 1.3 14 16 17 17 
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46 6.1 3 4.6 1.4 15 17 17 17 

47 5 2.3 3.3 1 15 17 17 17 

48 5.7 3 4.2 1.2 16 18 18 18 

49 6.2 2.9 4.3 1.3 16 18 18 18 

50 5.7 2.8 4.1 1.3 17 18 18 19 

51 5.8 2.7 5.1 1.9 17 19 19 19 

52 6.3 2.9 5.6 1.8 17 19 19 19 

53 7.6 3 6.6 2.1 17 19 19 19 

54 7.3 2.9 6.3 1.8 17 19 19 19 

55 7.2 3.6 6.1 2.5 17 19 19 19 

56 6.4 2.7 5.3 1.9 17 19 19 19 

57 5.7 2.5 5 2 17 19 19 19 

58 6.4 3.2 5.3 2.3 17 19 19 19 

59 7.7 3.8 6.7 2.2 17 19 19 19 

60 6 2.2 5 1.5 17 19 19 19 

61 5.6 2.8 4.9 2 17 19 19 19 

62 6.3 2.7 4.9 1.8 17 19 19 19 

63 7.2 3.2 6 1.8 17 19 19 19 

64 6.1 3 4.9 1.8 17 19 19 19 

65 7.2 3 5.8 1.6 17 19 19 19 

66 7.9 3.8 6.4 2 17 19 19 19 

67 6.3 2.8 5.1 1.5 17 19 19 19 

68 7.7 3 6.1 2.3 17 19 19 19 

69 6.4 3.1 5.5 1.8 17 19 19 19 

70 6.9 3.1 5.4 2.1 17 19 19 19 

71 6.9 3.1 5.1 2.3 18 20 20 20 

72 6.8 3.2 5.9 2.3 18 20 20 20 
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73 6.7 3 5.2 2.3 18 21 21 20 

74 6.5 3 5.2 2 19 21 21 20 

75 5.9 3 5.1 1.8 19 21 21 20 

 

Table 4.8: Performance analysis of the proposed dynamic neural network, Shannon 

entropy, Pal and Pal entropy, Tsallis entropy and various static neural network 

configurations, in terms of training time in sec (s), number of hidden nodes and the 

testing accuracy in (%), based on Iris dataset. 

 

 

 

 

 

 

Methods  

Growth of 

hidden 

layer 

neurons 

using 

Susan and 

Hanmandlu 

Non-

extensive 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Shannon 

Entropy. 

 

Growth 

of 

hidden 

layer 

neurons 

using 

Pal and 

Pal 

entropy. 

Growth 

of 

hidden 

layer 

neurons 

using 

Tsallis 

Entropy. 

 

 

 

Static 

3 

Hidden 

neurons 

 

 

 

Static 

7 

Hidden 

neurons 

 

 

 

Static  

11 

Hidden 

neurons 

 

 

 

Static  

22 

Hidden 

neurons 

 

 

 

Static 

 34 

Hidden 

neurons 

 

 

 

Static 

 40 

Hidden 

neurons 

Total 

training 

time ( 

for 75 

samples) 

 

 

 0115sec 

 

 

0.163sec 

 

 

0.186sec 

 

 

0.170sec 

 

 

0.1122sec 

 

 

0.194sec 

 

 

0.199sec 

 

 

0.190sec 

 

 

0.141sec 

 

 

0.199sec 

Number 

of 

hidden 

nodes 

 

19 

 

21 

 

21 

 

20 

 

3 

 

7 

 

11 

 

22 

 

34 

 

40 

Testing 

accuracy 

(for 75 

samples) 

 

90.77% 

 

89.44% 

 

89.44% 

 

90.77% 

 

88% 

 

89.44% 

 

89.44% 

 

90.77% 

 

90.77% 

 

90.77% 
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4.4 Experiment performed on SPECT Heart dataset 

 

4.4.1 Description of SPECT Heart dataset: 

The dataset describes diagnosing of cardiac Single Proton Emission Computed Tomography 

(SPECT) images. Each of the patients is classified into two categories: normal and abnormal. 

The database of 267 SPECT image sets (patients) was processed to extract features that 

summarize the original SPECT images. As a result, 44 continuous feature patterns were 

created for each patient. The pattern was further processed to obtain 22 binary feature 

patterns. The CLIP3 algorithm was used to generate classification rules from these patterns. 

The CLIP3 algorithm generated rules that were 84.0% accurate (as compared with 

cardiologist diagnoses).  

 Number of Instances: 267 

 Number of Attributes: 23 (22 binary + 1 binary class) 

 Attribute Information: 

   1.  OVERALL_DIAGNOSIS: 0, 1 (class attribute, binary) 

   2.  F1:  0, 1 (the partial diagnosis 1, binary) 

   3.  F2:  0, 1 (the partial diagnosis 2, binary) 

   4.  F3:  0, 1 (the partial diagnosis 3, binary) 

   5.  F4:  0, 1 (the partial diagnosis 4, binary) 

   6.  F5:  0, 1 (the partial diagnosis 5, binary) 

   7.  F6:  0, 1 (the partial diagnosis 6, binary) 

   8.  F7:  0, 1 (the partial diagnosis 7, binary) 

   9.  F8:  0, 1 (the partial diagnosis 8, binary) 

   10. F9:  0, 1 (the partial diagnosis 9, binary) 

   11. F10: 0, 1 (the partial diagnosis 10, binary) 

   12. F11: 0, 1 (the partial diagnosis 11, binary) 

   13. F12: 0, 1 (the partial diagnosis 12, binary) 

   14. F13: 0, 1 (the partial diagnosis 13, binary) 

   15. F14: 0, 1 (the partial diagnosis 14, binary) 

   16. F15: 0, 1 (the partial diagnosis 15, binary) 

   17. F16: 0, 1 (the partial diagnosis 16, binary) 

   18. F17: 0, 1 (the partial diagnosis 17, binary) 

   19. F18: 0, 1 (the partial diagnosis 18, binary) 

   20. F19: 0, 1 (the partial diagnosis 19, binary) 
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   21. F20: 0, 1 (the partial diagnosis 20, binary) 

   22. F21: 0, 1 (the partial diagnosis 21, binary) 

   23. F22: 0, 1 (the partial diagnosis 22, binary) 

   -- Dataset is divided into: 

 -- Training data (80 instances) 

 -- Testing data (187 instances) 

8. Missing Attribute Values: None 

9. Class Distribution: 

   -- Entire data 

 Class  # examples 

   0    55 

   1    212 

   -- Training dataset 

 Class  # examples 

   0    40 

   1    40 

   -- Testing dataset 

 Class  # examples 

   0    15 

   1    172 

 

4.4.2 Experimental results of SPECT Heart dataset: 

The experiment is conducted on linearly separable SPECT Heart data set containing 267 data 

samples distributed among 2 different classes.  Among 267 samples of SPECT Heart dataset 

55 input data samples are belongs to class 0 and remaining 212 input data samples belongs to 

class 1. The single layer feedforward multilayer perceptron as shown in fig. 3, is used as the 

initial configuration for the experiments, with a leaning rate   of 0.02 and an error threshold 

‘ ’ of 0.11. The single layer feed forward multilayer perceptron is used as an initial 

configuration for this experiment with initial 3 hidden layer neurons and is grown 

dynamically as explained above in section [section]. The SPECT Heart dataset is well 

structured data set, that’s why the Susan and Hanmandlu non-extensive entropy works better 

as compare to other extensive entropies. The number of hidden layer neurons in the case of 

the Susan and Hanmandlu non-extensive entropy, are 38 which is quite lesser as compared to 
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the Shannon (43), Pal and Pal (42) and Tsallis (49) entropies. Less number of hidden layer 

neurons shows that the neural network architecture will also become small and execution 

time required for training the given set of input data samples will also decrease. The results of 

execution time of training data along with testing accuracy in Table 10, is also shows that the 

Susan and Hanmandlu non extensive entropy took less execution time (0.136 sec) while 

training of 80 input training data samples as compared to the Shannon (0.287 sec), Pal and 

Pal (0.187 sec), Tsallis (0.186 sec) and various other static neural network configurations. In 

terms of testing accuracy the Susan and Hanmandlu non-extensive entropy and Tsallis 

entropy classify the given input testing data samples up to 93.05%, which is higher than the 

any non-extensive, extensive and any possible static neural network configuration. This 

suggest that the dynamic growth of hidden layer as proposed in my work not only gives the 

optimal number of hidden neurons for a dataset, at the same time it provides a better tuning of 

weights and faster training than any static neural network configuration. 

 

Table: 4.9 Dynamic growths of hidden layer neurons using the Susan and Hanmandlu 

non-extensive, Shannon, Pal and Pal and Tsallis entropy based on SPECT Heart 

dataset. 

 

 

Serial 

number 

 

 

Sample 

number 

 

 

Class 

Growth of 

hidden neurons 

using the non- 

extensive Susan 

and Hanmandlu 

entropy 

Growth of 

hidden 

neurons 

using the 

Shannon 

entropy 

Growth of 

hidden 

neurons 

using the 

Pal and Pal 

Growth of 

hidden neurons 

using the 

Tsallis entropy 

1 S. N. 1 1 3 3 3 3 

2 S. N. 2 1 4 4 4 4 

3 S. N. 3 1 4 4 4 4 

4 S. N. 4 1 4 5 4 5 

5 S. N. 5 1 5 5 5 5 

6 S. N. 6 1 5 5 5 6 

7 S. N. 7 1 6 6 6 6 

8 S. N. 8 1 6 6 6 7 

9 S. N. 9 1 6 6 6 7 
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10 S. N. 10 1 7 6 7 7 

11 S. N. 11 1 7 7 7 8 

12 S. N. 12 1 8 7 8 8 

13 S. N. 13 1 8 7 8 9 

14 S. N. 14 1 8 8 8 9 

15 S. N. 15 1 8 8 8 10 

16 S. N. 16 1 9 8 9 10 

17 S. N. 17 1 9 9 9 10 

18 S. N. 18 1 9 9 9 11 

19 S. N. 19 1 10 10 10 11 

20 S. N. 20 1 10 10 10 11 

21 S. N. 21 1 10 11 10 12 

22 S. N. 22 1 10 11 10 12 

23 S. N. 23 1 10 11 10 12 

24 S. N. 24 1 11 11 11 12 

25 S. N. 25 1 11 11 11 12 

26 S. N. 26 1 11 12 11 12 

27 S. N. 27 1 11 12 11 12 

28 S. N. 28 1 11 12 11 12 

29 S. N. 29 1 11 13 12 13 

30 S. N. 30 1 11 13 12 13 

31 S. N. 31 1 12 13 13 13 

32 S. N. 32 1 12 13 13 14 

33 S. N. 33 1 13 13 14 14 

34 S. N. 34 1 13 13 14 15 

35 S. N. 35 1 13 14 14 15 

36 S. N. 36 1 14 14 15 16 
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37 S. N. 37 1 14 14 15 16 

38 S. N. 38 1 14 15 16 16 

39 S. N. 39 1 14 15 16 16 

40 S. N. 40 1 15 16 17 16 

41 S. N. 41 0 15 16 17 16 

42 S. N. 42 0 15 16 17 17 

43 S. N. 43 0 15 16 17 17 

44 S. N. 44 0 15 16 17 18 

45 S. N. 45 0 16 17 17 18 

46 S. N. 46 0 16 17 18 18 

47 S. N. 47 0 16 17 18 19 

48 S. N. 48 0 17 17 18 19 

49 S. N. 49 0 17 17 18 19 

50 S. N. 50 0 17 17 19 20 

51 S. N. 51 0 17 17 19 20 

52 S. N. 52 0 18 18 20 21 

53 S. N. 53 0 18 18 20 22 

54 S. N. 54 0 19 19 21 23 

55 S. N. 55 0 19 20 22 24 

56 S. N. 56 0 20 21 23 25 

57 S. N. 57 0 20 22 24 26 

58 S. N. 58 0 21 23 25 27 

59 S. N. 59 0 21 23 25 28 

60 S. N. 60 0 22 24 26 29 

61 S. N. 61 0 23 25 27 30 

62 S. N. 62 0 23 26 27 31 

63 S. N. 63 0 24 27 28 32 
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64 S. N. 64 0 25 28 29 33 

65 S. N. 65 0 26 29 30 34 

66 S. N. 66 0 27 30 31 35 

67 S. N. 67 0 28 31 32 36 

68 S. N. 68 0 28 32 32 37 

69 S. N. 69 0 29 33 33 38 

70 S. N. 70 0 29 34 33 39 

71 S. N. 71 0 30 35 34 40 

72 S. N. 72 0 31 36 35 41 

73 S. N. 73 0 32 37 36 42 

74 S. N. 74 0 33 38 37 43 

75 S. N. 75 0 34 38 37 44 

76 S. N. 76 0 34 39 38 45 

77 S. N. 77 0 35 40 39 46 

78 S. N. 78 0 36 41 40 47 

79 S. N. 79 0 37 42 41 48 

80 S. N. 80 0 38 43 42 49 
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Table 4.10: Performance analysis of the proposed dynamic neural network, Shannon 

entropy, Pal and Pal entropy, Tsallis entropy and various static neural network 

configurations, in terms of training time in sec (s), number of hidden nodes and the 

testing accuracy in (%), based on SPECT Heart dataset. 
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In this study the dynamic growth of hidden units is proposed that is based on the non-

extensive entropy of the network weights that are normalized to probability values. A 

decrease in entropy of eights is observed as the training progresses and if this criterion is not 

met the number of hidden units is incrementally increased. As shown in the experimental 

results section, the dynamic growth of hidden layer neurons using non-extensive entropy is 

less as compared with other extensive, non-extensive entropies which are considered for 

experiment. In terms of testing accuracy and execution time required for set of training 

samples, the Susan and Hanmandlu non-extensive entropy performed better in comparison of 

other entropies and various static neural network configurations. It is observed that a slow 

and steady rise of the number of hidden layer neurons for the non-extensive entropy, while 

Shannon, Pal an Pal and Tsallis entropies result in growth of more hidden layer neurons as in 

compare with Susan and Hanmandlu non-extensive, taking more training time than the non-

extensive entropy. Apart from a reduced MLP architecture with less number of hidden layer 

neurons, the overall training time required by the proposed method is much less than the 

equivalent fixed neurons architecture, while its classification performance is much higher 

than any possible static neural network configuration. This suggest that the dynamic growth 

of hidden layer as proposed in this study not only gives the optimal number of hidden 

neurons for a dataset, at the same time it provides a better tuning of associated weights and 

faster training than any static neural network configuration. The highlight of our approach is 

that it can grow the hidden layer dynamically while training and the weights are tune better 

than any configuration of the static neural network leading to high classification performance. 
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