
MULTIPLE STRING PATTERN MATCHING ALGORITHMS

MAJOR PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF DEGREE OF

Master of Technology

In

Information Systems

Submitted By:

Punit Kanuga

(2K12/ISY/21)

Under the Guidance of

Ms. Anamika Chauhan

(Asst. Prof., Department of IT)

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(2013-2014)

ii

ABSTRACT

Multiple string pattern matching is an approach to find all occurrences of a set of patterns in given

text. With evolution of computation capacity along with storing capacity, we are in quest of

analysing large data sets for search of information in terms of patterns. Efficiency of searching

algorithms depends on development of an accurate & precise shift table. In case of a mismatch

between text and pattern, shift table determines maximum length of part of text which can be

skipped without missing any pattern match. However, with increase in size of data to be searched,

there is a constant urge to reduce search time. Thus, we need a faster searching algorithm.

This study extends Boyer Moore concept to cultivate a new shift table algorithm which works on

multiple variable length patterns and can cohesively be used with various searching techniques.

Run-time complexity of the presented algorithm is O(N) where N denotes sum of lengths of all

variable length patterns. This study also presents a new hashing based algorithm for fast search of

multiple variable length patterns in large data sets. It can accommodate patterns which come up

during search time. Furthermore, its speed enhances as the minimum pattern length P increases

for data set of length n taking O(n/P) time during search.

Further, idea of clustering the pattern set prior to searching phase is proposed which

experimentally speed up search time by factor of 4 in concerned case study. This case study

consists of search set with more than 420,000 characters with number of patterns ranging from 50

to 100 and pattern length varying from 4 to 26. It also identifies various factors which effects

searching time and establishes mathematical relationship among them.

iii

ACKNOWLEDGEMENT

I take the opportunity to express my sincere gratitude to my project mentor Ms. Anamika

Chauhan, Assistant Professor, Department of Information Technology, Delhi Technological

University, Delhi for providing valuable guidance and constant encouragement throughout the

project. It is my pleasure to record my sincere thanks towards her for her constructive criticism

and insight without which the project would not have shaped as it has. I would like to thank her

especially for constant confidence she had in me throughout the time.

I humbly extend my words of gratitude to other faculty members of this department for

providing their valuable help and time whenever it was required.

Punit Kanuga

Roll No. 2K12/ISY/21

M.Tech (Information Systems)

E-mail: punitkanuga@gmail.com

mailto:punitkanuga@gmail.com

iv

CERTIFICATE

This is to certify that Punit Kanuga (2K12/ISY/21) has carried out the major project titled

“Multiple String Pattern Matching Algorithms” in partial fulfillment of the requirements for

the award of Master of Technology degree in Information Systems by Delhi Technological

University.

The major project is a bona fide piece of work carried out and completed under my supervision

and guidance during the academic session 2012-2014. To the best of my knowledge, the matter

embodied in the thesis has not been submitted to any other University / Institute for the award of

any Degree or Diploma.

Ms. Anamika Chauhan

Assistant Professor

Department of Information Technology

Delhi Technological University

Delhi-110042

v

Table of Contents

ABSTRACT .. ii

ACKNOWLEDGEMENT ... iii

CERTIFICATE .. iv

Figures .. viii

Tables ... ix

Chapter 1 ... 1

INTRODUCTION .. 1

1.1 Overview ... 1

1.2 Motivation ... 1

1.3 Present Work ... 2

1.3.1 New Shift Table Algorithm .. 2

1.3.2 New Adaptive Hashing Based Search Algorithm .. 3

1.3.3 Cohesive Clustering ... 3

1.3.4 Mathematical Relationships ... 3

1.4 Thesis Organization ... 3

Chapter 2 ... 5

LITERATURE REVIEW .. 5

2.1 Overview ... 5

2.2 Boyer Moore Concept ... 6

2.2.1 Bad Character Heuristics .. 7

2.2.2 Good Suffix Heuristics ... 8

2.2.3 Searching Algorithm .. 9

2.2.4 Proposed Extension of Boyer Moore Concept ... 9

2.3 Hashing ... 10

2.3.1 Suffix Search .. 10

vi

2.3.2 Suffix Prefix Search ... 12

2.3.3 Suffix Middle Prefix Search ... 14

Chapter 3 ... 16

PROBLEM STATEMENT ... 16

Chapter 4 ... 18

PROPOSED METHODOLOGY: SHIFT TABLE ALGORITHM ... 18

4.1 Concept ... 18

4.2 Shift Table Algorithm ... 20

4.3 Shift Table Construction ... 22

Chapter 5 ... 25

PROPOSED METHODLOGY: ADAPTIVE HASHING BASED SEARCH ALGORTIHM 25

5.1 Concept ... 25

5.1.1 Window Length .. 26

5.1.2 Hashing .. 27

5.2 Algorithms... 28

5.3 Searching ... 31

Chapter 6 ... 37

PROPOSED ALGORITHM: COHESIVE CLUSTERING .. 37

6.1 Clustering .. 37

6.2 Redundancy Function .. 38

6.3 Parameters Affecting Search Time .. 39

6.3.1 Window Size .. 39

6.3.2 ConPair Repeatition Ratio .. 39

6.4 Mathematical Relationships .. 40

Chapter 7 ... 42

EXPERIMENTAL SETUP ... 42

7.1 Language and Implementation .. 42

7.2 Language of Base String and Patterns ... 43

vii

7.3 Base String .. 43

7.4 Patterns .. 43

Chapter 8 ... 46

EXPERIMENTAL RESULTS .. 46

8.1 Shift Table Result .. 46

8.2 Adaptive Hashing Based Search Result .. 49

8.2.1 Performance Analyis: Varying Base String Length ... 49

8.2.2 Performance Analyis: Varying Number of Patterns ... 50

8.3 Cohesive Clustering Result ... 51

8.3.1 ConPairs ... 51

8.3.2 Search Time ... 53

8.4 Post Experiment Clustering Analysis .. 54

8.5 Theoretical Clustering Analysis .. 56

8.6 Experimental Result vs. Theoretical Equations ... 57

8.7 Runtime Analysis .. 59

8.7.1 New Shift Table Algorithm .. 59

8.7.2 New Adaptive Hashing Based Search Algorithm .. 60

8.7.3 Cohesive Clustering ... 60

Chapter 9 ... 61

CONCLUSION ... 61

REFERENCES .. 63

viii

Figures

Figure 2.1 Extended Boyer Moore Algorithm ... 10

Figure 2.2 Flowchart for Suffix Search Algorithm ... 11

Figure 2.3 Flowchart for Suffix Prefix Search Algorithm ... 13

Figure 2.4 Flowchart for Suffix Middle Prefix Search Algorithm .. 15

Figure 6.1 Sections of Redundancy Function .. 38

Figure 8.1 Performance Analysis on Variable BaseString... Length……………………………..49

Figure 8.2 Performance Analysis on Varying Number of Patterns….…………………….……..50

Figure 8.3 Relation among number of patterns, ConPair types and time taken (in ms)…...……..51

Figure 8.4 Variation of ConPairs with number of patterns………………………………………52

Figure 8.5 Search time vs. number of patterns………………………………………………..…53

Figure 8.6 Search time for cluster 1 vs. number of patterns………………………………...…...53

Figure 8.7 Search time for cluster 2 vs. number of patterns………………………………...…...54

Figure 8.8 Search Time Comparison………………………………………………………...…..55

Figure 8.9 Prs with number of patterns……………………………………………………....….55

Figure 8.10 Prs and Ths vs. number of patterns……………………………………......…………58

Figure 8.11 Accuracy Factor vs. Number of patterns……………………………….….……….59

ix

Tables

Table 5.1 Base String for Example 1…………...……...………………………………………....31

Table 5.2 Hash Table for Example 1…………………...………………………………………...31

Table 5.3 Match Table for Example 1………………….………………………………………...32

Table 5.4 Table for Example 2…………………………………………………………………...36

Table 7.1 Pattern distribution for Cluster 1……………….……………………………………...44

Table 7.2 Pattern distribution for Cluster 2……………….……………………………………...45

Table 7.3 Pattern distribution for complete pattern set…………………………………………..45

Table 8.1 Result Comparison………………………...…………………………………………..46

Table 8.2 Result Comparison………………………...…………………………………………..47

Table 8.3 Proposed Algorithm’s Shift Values ……….…………………………………………..48

Table 8.4 CRR and W for each pattern set………………………………………………………56

1

Chapter 1

 INTRODUCTION

1.1 Overview

Multiple string pattern matching is one of the key areas of research in field of data structures and

algorithms. It focuses on finding existences of string set known as Patterns in a larger string or

data set. Patterns which have to be searched may be of variable lengths and are expected to be

searched simultaneously.

As technology advances, both data storing capacity and computation capability have evolved.

Storing capability in case of string pattern matching takes into account two types. First is main

memory or memory available to processor during computation. Second is storing capacity which

can scale up to huge data saved in warehouses. This affects the length of string which needs to be

searched as well as length and number of patterns which are to be searched. Computation

capability increases as quality of processors have evolved. It effects response time, throughput

and ability to implement complex data structures.

Advancement in both of these have now enabled us to analyze data like never before. For quick

analysis of data to provide real time results there is a constant quest for development of

algorithms which can search several patterns in large data sets in one go.

1.2 Motivation

Multiple string pattern algorithms can be used in variety of fields. Search is a tool which is

inherently used in every sphere of life. With number of options and opportunities increasing like

never before, traditional way of single specific keyword based search has evolved into complex

search systems involving variety of attributes or features. Multiple keyword use in evident from

2

searching product’s location from a large super market to matching complex DNA sequences

[13], [14].

Development of a fast algorithm enables us to find patterns in large data sets (like data

warehouses) which we couldn’t imagine earlier [12]. Similarly, network intrusion detection

system offers consistent monitoring and tracking of networks and computer systems to ensure

security [8]. Patterns have to be matched for various intrusions and virus or malware program

signature. Novel approaches to analyse & search data patterns are used in various other fields

such as multi keyword ranked search over encrypted cloud data [11], peer to peer networks [10],

search engines [9], palm print matching [22] and many more.

1.3 Present Work

Present work can be chiefly divided into four broad categories:

i. New shift table algorithm for multiple variable length string pattern matching

ii. New adaptive hashing based multiple variable length pattern search algorithm

iii. Cohesive use of clustering with adaptive hashing based algorithm

iv. Mathematical relations to determine theoretical search time speed up and comparisons

with practical results

1.3.1 New Shift Table Algorithm

A shift table is a table which reflects maximum number of characters which can be skipped in text

when mismatch happens while searching pattern in it ensuring that no possible match is missed.

Overall, shift table reduces search time for searching patterns in text. Presented algorithm for shift

table generation determines correlations among patterns depending on characters constituting

them. Empirical results show it has better accuracy in comparison to existing algorithms in

generating shift table for each character.

3

1.3.2 New Adaptive Hashing Based Search Algorithm

A new hashing based multiple string pattern matching algorithm is presented. . It rules out

traditional way of generation of shift table for each character present in pattern. Instead of

focusing on each character to generate shift table, it focuses on characteristics inherited in pattern

by taking two consecutive characters. This enables it to concentrate on character as well as its

neighborhood. Additionally, it is capable of adding new patterns as search proceeds and from

point of insertion of new patterns, it can adapt to search them too.

1.3.3 Cohesive Clustering

Idea of clustering the pattern set on basis on length of patterns prior to performing new adaptive

hashing based search in presented. It is observed that it significantly condenses the search time.

Thus, this combination proves to be of substantial use when length of patterns within the pattern

set varies by large scale.

1.3.4 Mathematical Relationships

Intense analysis of results obtained by various experiments has led to identification of various

parameters that effect search time of algorithm. This inspired us to relate proportional dependency

among parameters and successfully formulate mathematical relationships.

It helps to theoretically determine the speed up in search time in comparison to that taken by using

non-clustering approach. Experimental results show that practical results are synchronous with

respect to theoretical predictions hence proves accuracy of the mathematical relationship.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: chapter two is Literature Review. It consists

of summary of work related and used as background in presented work. Without efforts of those

researchers, this work would not be possible. This section specially emphasizes on two concepts.

First is Boyer Moore concept as it is used in carving new shift table algorithm. Second is hashing

concept and its usage in earlier work. Chapter three defines the problem statement. In other

words, in defines what exactly multiple string matching problem is. It also gives brief description

4

of terms common to this problem. Chapter four explains development of new shift table

generation algorithm. It covers the concept behind it, the algorithm and the process by which it

generates shift table. Process is explained clearly with use of an example. Chapter five explains

development of new adaptive hashing based search algorithm. It covers its concept, various

parameters, definitions and algorithms used. Searching mechanism is explained using an

example. Chapter six describes how clustering is merged with newly developed search

algorithm. It covers concepts involved along with new definitions and parameters to measure

effectiveness of algorithm. It also determines relationships of various parameters with search

time and help to deduce mathematical relationships. Chapter seven explains experimental setup

used. It describes conditions under which results are measured so that recreation of same can be

easily done. It covers technical as well as logical aspects of implementations. Useful of any

experimental result depend on two things. Firstly, how clearly the result is recorded. Secondly,

how well it is understood. Chapter eight records experimental results and further performs

analysis on them. It determines correctness of developed mathematical relationships with

practical results and help to understand nature of searching process and effect of clustering

process. Additionally, it provides runtime analysis of various implementations. Chapter nine

presents final conclusion of presented work. It covers advantages, bottlenecks and scope of

future work.

5

Chapter 2

LITERATURE REVIEW

Work done in this field is immense and enormous both in terms of concepts and implementations.

It is not practically possible to sum it all up here in few pages. However, best effort has been put

in to categorize it highlighting the path breaking concepts.

2.1 Overview

Pattern matching has been one of the evolving fields in algorithmic arena. Initially oriented

towards matching single pattern in less time and memory has now progressed to multiple pattern

matching. As memory of systems increase, memory constraint for this algorithm has reduced

opening window for faster algorithms using fast data structures.

Initial solution was recommended by Rabin Karp algorithm [2] along with its generalizations.

Further KMP algorithm reduced the time taken for searching [3]. It did so by skipping the already

matched characters. On the contrary, it pro-processed each character beforehand to determine

degree of skipping it could provide during the actual searching phases. Boyer Moore provided a

major breakthrough is this field when they presented their idea to match patterns from end in

order to save time [1]. Two major concepts introduced by them were bad character and good

suffix heuristics. All three combined enabled searching pattern with rapid pace due to large jumps

in could take when a mismatch occurred. These scientists laid the foundation which enabled

future work in this field.

Aho-Corasick proposed an algorithm in which they extended earlier work with automata theory

and carved a process in which search time was independent of number of pattern to be searched

[4]. This process reduced the runtime logarithmically. Comments Walter progressed the work by

using Aho-Corasick algorithm [4] and Boyer Moore concepts [1]. Solution were proposed by

Commentz Walter in 1979 [5] and Navarro, Raffinot in 2002 [6]. Both offered sub linear time

solutions for single pattern matching. Shift table were majorly used in many of the above

6

mentioned works to identify amount of shift that could be taken in case of mismatch. Years later,

Khancome and Boonjing proposed algorithms which used shift table algorithms are core to their

searching techniques for multiple pattern matching [7],[15].

A variety of data structures have been used by different researchers in this development process

either to store data in significantly sorted manner or to enable fast access to data. Ordered tree

data structure or trie was used in Aho-Corasick algorithm for accommodating pattern in linear

time [4]. Crochemore and Czumaj used this data structure for multiple pattern matching in 1993

and 1999 [16],[17]. Navarro and Raffinot used trie for flexible multiple string pattern matching in

2002 [6]. However, memory requirement for ordered tree data structure was large. It was

improved to reduce search time but then search process became difficult [6],[18].

Patterns were also accommodated in form of bits. These algorithms were known as Bit-parallel

based algorithms. However, it was restricted by computer word and additionally bit conversion

took significant time [19]. Use of hash table is gaining popularity as it provides match result in

order of O(1). Details of hashing concept are provided later.

2.2 Boyer Moore Concept

It is one of the initial path breaking concepts which changed traditional perspective towards the

string pattern matching problem. The algorithm of Boyer and Moore compares the pattern with

the text from right to left. If the text symbol that is compared with the rightmost pattern symbol

does not occur in the pattern at all, then the pattern can be shifted by m positions behind this text

symbol. The following example illustrates this situation.

7

Example:

0 1 2 3 4 5 6 7 8 9 ...

a B b a d a b a C B a

b A b a c

b a b A C

The first comparison d-c at position 4 produces a mismatch. The text symbol d does not occur in

the pattern. Therefore, the pattern cannot match at any of the positions 0,…, 4, since all

corresponding windows contain a d. The pattern can be shifted to position 5.

The best case for the Boyer-Moore algorithm is attained if at each attempt the first compared text

symbol does not occur in the pattern. Then the algorithm requires only O(n/m) comparisons.

2.2.1 Bad character heuristics

If the bad character, i.e. the text symbol that causes a mismatch, occurs somewhere else in the

pattern, then this method can be applied. Then the pattern can be shifted so that it is aligned to this

text symbol. The next example illustrates this situation.

Example:

0 1 2 3 4 5 6 7 8 9 ...

a b b a b a b a C B a

b a b a c

b a b a c

Comparison b-c causes a mismatch. Text symbol b occurs in the pattern at positions 0 and 2. The

pattern can be shifted so that the rightmost b in the pattern is aligned to text symbol b.

8

2.2.2 Good suffix heuristics

Sometimes the bad character heuristics fails. In the following situation the comparison a-b causes

a mismatch. An alignment of the rightmost occurrence of the pattern symbol a with the text

symbol a would produce a negative shift. Instead, a shift by 1 would be possible. However, in this

case it is better to derive the maximum possible shift distance from the structure of the pattern.

This method is called good suffix heuristics.

Example:

0 1 2 3 4 5 6 7 8 9 ...

a b a a b a b a c B A

c a b a b

c a b a b

The suffix ab has matched. The pattern can be shifted until the next occurrence of ab in the

pattern is aligned to the text symbols ab, i.e. to position 2.

In the following situation the suffix ab has matched. There is no other occurrence of ab in the

pattern. Therefore, the pattern can be shifted behind ab, i.e. to position 5.

Example:

0 1 2 3 4 5 6 7 8 9 ...

a b c a b a b a c B A

c b a a b

c b a a B

In the following situation the suffix bab has matched. There is no other occurrence of bab in the

pattern. But in this case the pattern can’t be shifted to position 5 as before, but only to position 3,

since a prefix of the pattern (ab) matches the end of bab. We refer to this situation as case 2 of the

good suffix heuristics.

9

Example:

0 1 2 3 4 5 6 7 8 9 ...

a a b a b a b a c B A

a b b a b

a b b a b

The pattern is shifted by the longer of the two distances that are given by the bad character and the

good suffix heuristics.

2.2.3 Searching Algorithm

The searching algorithm compares the symbols of the pattern from right to left with the text. After

a complete match the pattern is shifted according to how much its widest border allows. After a

mismatch the pattern is shifted by the maximum of the values given by the good-suffix and the

bad-character heuristics.

2.2.4 Proposed Extension of Boyer Moore Concept

Boyer Moore algorithm has been used as a guide to carve shift table algorithm for multiple string

pattern matching. Proposed idea to generate shift table for multiple string pattern matching is

given in Figure 2.1. Atomically, it combines shift distances for each pattern calculated

individually to construct shift table for more than one patterns.

10

Figure 2.1: Extended Boyer Moore Algorithm

2.3 Hashing

Admiration of hashing expanded as it provides match result in order of O(1). It becomes more of

use as size of string to be matched increases. It use in pattern matching was initiated when Rabin

and Karp used it in searching phase [2]. Wu and Manber then formulated an algorithm for same

purpose which was much quicker than other solutions present at that time [20]. Their idea was

evolved and used in Network Intrusion Detection System [8]. Recently, Khancome and Boonjing

have used hashing extensively to improve runtime efficiency of their algorithms in subsequent

versions of their work [7],[15]. Three important hashing search algorithms proposed are given

below to give idea of what it is capable of doing.

2.3.1 Suffix search

This algorithm works as following:

1. A Prefix-pattern (PPT) table in made. It holds prefix all the patterns.

2. Window is set from the first character of the text.

3. Last character of window is hashed into Shifting Table (ST).

4. If hash match is found, rest of pattern is hashed into PPT, else go to step 6.

5. If hash match if found, a hash match is recorded, else go to step 6.

11

6. Shift the window by shifting value of the current last character of the window.

7. Repeat the process till full text is exhausted.

Flowchart for Suffix search algorithm is shown in Figure 2.2.

Figure 2.2: Flowchart for Suffix Search Algorithm

12

2.3.2 Suffix-prefix search

This algorithm works as following:

1. Suffix-prefix pattern (S-PPT) & Middle of pattern (MPT) table in made. They hold suffix-

prefix & remaining part respectively of all the patterns.

2. Window is set from the first character of the text.

3. First & last character of window is hashed into S-PPT.

4. If hash match is found, rest of pattern is hashed into MPT, else go to step 6.

5. If hash match if found, a hash match is recorded, else go to step 6.

6. Shift the window by shifting value of the current last character of the window.

7. Repeat the process till full text is exhausted.

Flowchart for Suffix-prefix search algorithm is given in Figure 2.3.

13

Figure 2.3: Flowchart for Suffix Prefix Search Algorithm

14

2.3.3 Suffix-middle-prefix search

This algorithm works as following:

1. Suffix middle prefix pattern (S-M-PPT) & before and after middle of pattern (BM-AMPT)

table in made. They hold suffix, middle, prefix and part before & after middle respectively

of all the patterns.

2. Window is set from the first character of the text.

3. First, middle & last character of window is hashed into S-M-PPT.

4. If hash match is found, before & after of middle pattern is hashed into BM-AMPT,

else go to step 6.

5. If hash match if found, a hash match is recorded, else go to step 6.

6. Shift the window by shifting value of the current last character of the window.

7. Repeat the process till full text is exhausted.

Flowchart for Suffix-middle-prefix search algorithm is given in Figure 2.4.

15

Figure 2.4: Flowchart for Suffix Middle Prefix Search Algorithm

16

Chapter 3

PROBLEM STATEMENT

Multiple strings pattern matching simultaneously searches for all occurrences of patterns

 P = {p1, p2, p3,..,pr} which appeared in a given text T={t1,t2,t3…tn} over a finite alphabet set.

This primarily requires the following:

i) Set of patterns: More than one data pattern which is required to be searched. A pattern,

from the French word patron, is a type of theme of recurring events or objects,

sometimes referred to as elements of a set of objects.

The elements of a pattern repeat in a predictable manner. Patterns can be based on a

template or model which generates pattern elements, especially if the elements have

enough in common for the underlying pattern to be inferred, in which case the things

are said to exhibit the unique pattern. There are many different patterns in the world.

ii) Text: the data domain in which set of patterns have to be searched.

iii) Window: It is the part of text under consideration. In other words, it is the sub-set of text in

which currently pattern is being searched. Size of window plays an important role in

performance of searching techniques. It generally is more than the longest pattern

which is expected to be searched.

iv) Simultaneous searching capability: It is the property of a searching procedure enabling it

to search more than more data patterns at the same time. In other words, at every step

in searching, it is open to find any of the data patterns which can be detected.

v) Powerful search: Powerful search is a search takes minimal attempting time. Its further

speed primarily depends on rate at which data can be accessed & performance of

algorithm being used.

http://en.wikipedia.org/wiki/French_language
http://en.wikipedia.org/wiki/Set_(mathematics)

17

vi) Shifting mechanism: It is the extent to which the window is to be shifted to further

continue the searching procedure. It could be a shift value which has to precisely

chosen depending on the characteristics of data patterns being searched so as to

optimize both the searching time & number of matches. A shifting table is maintained

which holds shifting value of each character. However, concept of shifting mechanism

is not restricted to consideration of a single character at a time.

18

Chapter 4

PROPOSED METHODOLOGY: SHIFT TABLE ALGORITHM

This section contains thought and theory behind development of new shift table algorithm. It

works well on patterns of variable lengths. It takes into account each character in every pattern

and overall presents a shift table which could be used for searching pattern in given pattern set.

4.1 Concept

Let string which has to be searched be called pattern. Let string in which searching has to be done

be called text. Character in pattern where matching fails be called mismatch. Part of pattern

matched before mismatch be called join and part of pattern which remained to match after

mismatch be called leftover. Thus, overall pattern will be sum of leftover, mismatch and join.

Bad character heuristics in Boyer Moore algorithm [1] decides the shifting of text with respect to

pattern in case of mismatch. This is done by finding the rightmost occurrence of text’s character

which causes mismatch in pattern and aligning both of them. However, in case of dynamic text

generation text is not available during the generation of shift table. Objective here is to develop a

shift table which works well in searching phase whether text is available statically or it appears

dynamically as in case of network intrusion detection systems.

Good suffix heuristics aims to search join in leftover. Best case would be finding a complete

match of join in leftover. Alternatively, a sub-part of join can be searched in leftover starting from

right end of join. Worst case is seen when even first character of join doesn’t appear in leftover.

19

For multiple patterns, consider window of len-1 length, where len is the length of smallest pattern

to be searched. We process window from right to left direction to ensure minimum comparisons.

We process each pattern one by one and calculate shift distance for each of the character.

Maximum shift value for any character appearing in pattern would be len-1. We maintain the

minimum shift value among all values for each character as we process each pattern. This shift

value for each character guarantees the maximum possible shift with which we can skip text when

a mismatch occurs due to that character.

We will consider every possible situation when a character at any position of window may cause a

mismatch and we will calculate shift distance for each case. If mismatch occurs at last character of

window with text, we will check possibility of match with the first character which is not same as

last character of the window moving from right to left within window. In order to align text with

that character of window, we consider shift value for mismatch at last character to be equal to

distance between those two characters. In order words, we exhaustively calculate shift value for

each character of pattern considering that it will cause mismatch with text during actual searching

phase. Then, we will take minimum of possible set of shift values for each character. Here we

assume all mismatching cases because we do not have text while generating shift table.

We take window of len-1 length instead of minimum length of pattern. Doing so ensures that in

the worst case either beginning or end part of smallest pattern is considered as part of window.

This guarantees finding of smallest pattern in the text. If we take window of length len and if we

suppose that the last character of pattern creates mismatch and further never appears in leftover

again then we would take shift value as len. This will rule out any matching of patterns which

would start from that particular last character in next len number of characters. Specifically, it

may lead to missing possible match of pattern of shortest length only. Thus, to avoid this problem,

we take window length of len-1 and maximum shift distance for all character appearing in any

pattern to be len-1. This is further explained in Example 1. Shift value for all characters which do

20

not appear in any pattern will be taken as len because there will be no possible match for such

character and thus all combination of windows with this character can be solely avoided.

4.2 Shift Table Algorithm

Consider a shift table shift with two columns. First is the character column and second is the value

column corresponding to each character. Let value column be initialized by length of smallest

pattern (l).

Consider Insert_shift(char, n) function to enter value n corresponding to character char in shift

table.

Consider value(char) function to give existing shift value of character char from shift table.

Consider window being the characters being considered in pattern.

Consider windowlength = length of smallest pattern-1

Consider matching starts from right to left position inside window, ie, character at last position of

window is matched first, followed by last two characters combined and so on.

Consider join to be the part of pattern which is assumed to be matched with text till a mismatch

occurs.

Consider leftover be the part of pattern which is still to be matched after a mismatch occurs.

Consider L to be length of pattern being processed.

21

Algorithm:

1. For each pattern

2. For 1 to (L - windowlength +1)

3. Consider window of windowlength characters starting from left of pattern

4. If (let) mismatch occurs at last character char of window

5. Insert_shift(char, distance with first different character)

6. Else if (let) mismatch occurs at any other character char

7. X = length of join

8. pos = position of mismatch + 1

9. while (X > 0)

10. find match of string[pos,window end] with any part of leftover moving from right to left

11. if match found

12. calculate Y

13. Where Y is the shift needed to align string with leftover

14. if(Y < value(char))

15. Insert_shift (char, Y)

16. Endif

17. Break out of while loop

18. else

19. X = X – 1

20. pos = pos + 1

21. End if

22. End while

23. end if

24. if(X = 0)

25. Insert_shift (char, windowlength)

26. End if

27. Move window by one position towards right till end of pattern is reached

28. End for

29. End for

22

4.3 Shift Table Construction

Consider set of patterns P {aaba, aabab, aababc, aababcd, aababcde, abcb, zmnd, qope,jmqfm}.

Minimum length of pattern here is 4. Thus, size of window would be 3. Let us observe how

processing of two of the above patterns is done.

Consider pattern aababc.

Window 1: aab

If mismatch happens at last character b, then we can shift this window by 1 towards right with

respect to text to get nearest different character. Thus we consider shift table as {(b,1)}, ie, shift

value of character b is 1.

If mismatch happen at middle character a, join = b and leftover is a. Here we are sure that last

character that was matched in text was b. There is no match of any part of join in leftover. So now

shift table would be {(a,3), (b,1)}.

If mismatch happens at first character a, join = ab and leftover is NULL. There is no match of any

part of join in

leftover, neither ab or b alone. Now shift table remains as {(a,3), (b,1)}.

Window 2: aba

If mismatch happens at last character a, shift value for a will be 1 which is smaller than existing

value for a in table. Thus, shift table will update as {(a,1), (b,1)}.

If mismatch happen at middle character b, join = a and leftover is a. Last matched character in text

was a. Thus, we can shift pattern by 2 position to get align a (of join) with a (of text). But existing

shift value for a is 1 which is less than 2. Thus, shift table remains as {(a,1), (b,1)}.

If mismatch happens at first character a, join = ba and leftover = NULL. There is no match of any

part of join in leftover. So shift table remains as {(a,1), (b,1)}.

23

Window 3: bab

If mismatch occurs at last character b, shift will be 1. If mismatch occurs at a, shift will be 2 to

align leftover b with matched text character b.

If mismatch occurs at first character b, join ab cannot be found. Further, join b cannot be found.

So shift will be 3. Thus, shift table will be {(a,1), (b,1)}.

Window 4: abc

If mismatch occurs at last character c, shift will be 1. If mismatch occurs at b, join will be c and

leftover will be a. We cannot find join in leftover. So shift value will be 3.

If mismatch occurs at a, join will be bc and leftover will be NULL. So shift value will be 3. Thus,

shift table will be {(a,1), (b,1),(c,1)}.

Consider pattern jmqfm.

Window 1: jmq

If mismatch occurs at last character q, shift will be 1. If mismatch occurs at m, join will be q and

leftover will be j. We cannot find join in leftover. So shift value will be 3.

If mismatch occurs at j, join will be mq and leftover will be NULL. So shift value will be 3. Thus,

shift table will be {(q,1), (m,3),(j,3)}.

Window 2: mqf

If mismatch occurs at last character f, shift will be 1. If mismatch occurs at q, join will be f and

leftover will be m. We cannot find join in leftover. So shift value will be 3. But this is greater than

existing (q,1). So no change will be made in shift table.

If mismatch occurs at m, join will be qf and leftover will be NULL. So shift value will be 3. Thus,

shift table will be {(q,1), (m,3),(j,3),(f,1)}.

Window 3: qfm

24

If mismatch occurs at last character m, shift will be 1. This is smaller than (m,3). So it will

change. If mismatch occurs at f, join will be m and leftover will be q. We cannot find join in

leftover. So shift value will be 3 but already lesser shift value is assigned.

If mismatch occurs at q, join will be fm and leftover will be NULL. So shift value will be 3. Thus,

shift table will be {(q,1), (m,1),(j,3),(f,1)}.

This illustrates the calculation procedure for various conditions that appear during the process.

Shift table for complete pattern set P can be calculated in similar manner.

Example 1: This example demonstrates need of taking window length equal to one short of

smallest pattern length.

Let there be a pattern zmnd and z appears only here in this pattern together will all other patterns.

Let shift value of z be 4 (assuming we take maximum shift distance equal to l instead of l-1). Let

there be a text (…aababcdezmndjmq…) with current window consisting of cdez. Shift value for z

is 4. Thus, next window will be mndj. Thus, we can see that pattern zmnd is missed. Thus, we take

maximum shift value for any character appearing across all patterns to be l-1.

25

Chapter 5

PROPOSED METHODOLOGY: ADAPTIVE HASHING BASED

SEARCH ALGORITHM

This section contains thought and theory behind development of new adaptive hashing based

search algorithm. It works well on variable length patterns and also works well if new patterns

appear to be added into search at runtime.

5.1 Concept

Let the string in which patterns are to be search be called BaseString. This process first creates a

Match Table containing hash value of various unique consecutive character pairs across all

patterns. Let this consecutive character pair be called ConPair. Along with the hash values, Match

Table will contain one or more set of following four values depending on number of matches of

ConPair found in patterns:

i) Offset of pattern in which ConPair is found. Each pattern will be uniquely identified by its

offset number.

ii) Position of last character of ConPair (Pos).

iii) Distance of last character of ConPair from left extremity of pattern (LExt).

iv) Distance of last character of ConPair from right extremity of pattern (RExt).

It must be noted that length of pattern at Offset is equal to Pos+RExt+1 in that set value. Here we

are considering first character of pattern to be at zero position.

After creation of Match Table we will consider a window of p-1 characters of Base String starting

from first character where p is the length of smallest pattern. We will match hash of last two

characters of each window with the Match Table. If a match (or multiple matches) is found we

will process corresponding sets of values present in table for each match one by one before

26

proceeding further. The processing is explained later in this section. After processing of all

possible matches, we will move to next window of p-1 characters till Base String terminates.

Processing of corresponding set value for each match will be as follows:

i) Check validity of LPos of set value. LPos is start position of possible match. This is calculated

using current position of considered character in Base String (CurPos) and LExt. It is equal to

CurPos - LExt. Each LPos must be larger than or equal to the minimum possible value which is 0.

We call this minimum value LPosMin. Otherwise processing for this set value is over.

ii) Check validity of RPos of set value. RPos is the end position of possible match. This is

calculated as CurPos + RExt. Each RPos must be smaller than or equal to the maximum value

which is length L of Base String. We call this maximum value RPosMax. Otherwise processing

for this set value is over.

iii) Check to remove redundant entry of same match. This is explained in Redundancy Check

algorithm. If a match already exists processing for this set value is over.

iv) Match hash value of Base String from LPos to RPos with hash value of pattern associated with

the offset value. If they match a pattern is found. Otherwise processing of this set value is over.

v) If match is found its entry has to be made in Master Record structure. This will keep track of all

found matches. This helps in step iii.

Master Record is a tabular structure where each entry contains a pair of values. These will be the

start and end position in Base String where a match is found. For instance, entry (12, 16) signifies

that a match is found from position 12 to 16 in Base String of length 5 (both values inclusive).

5.1.1 Window length

It is kept one short of minimum pattern length and not equal to minimum pattern length. This is

because keeping it equal to later may lead to exclusion of possible matches for smallest pattern.

This will happen when CurPos will point to start of minimum length pattern in Base String. Here

we are considering only last two characters. And next window will start just after termination of

smallest pattern. Both these ConPair will not consider any part of pattern. Thus, this pattern would

get excluded. This is further explained in Example 2.

27

The above process explains how this algorithm works when we have complete pattern set before

searching initiates. This is known as Offline or Static Search as pattern set is statically available.

Suppose we have already searched a part of BaseString and we wish to include more patterns in

search from that point. Here earlier generated Match Table needs to be only updated with

ConPairs as per newly added patterns. Earlier Match Table constructed will still be of use.

However, window length may decrease if any of the newly added patterns is smaller than all other

existing pattern. This enables us to search added patterns from that point and provides adaptive

nature to algorithm as pattern set updates at run time. Thus, it is called Online Search or Dynamic

Search.

5.1.2 Hashing

Hashing is dominantly used in both pre-processing as well as search phase of proposed work. This

is because match result for m length string can be calculated in O(1) time using hashing. It doesn’t

depend on length of m after hash value is calculated once. Hashing is used here in two areas. First

is using hash values of ConPairs to find match of terminal ConPair present in window to those

present in Match Table. Implementation is done in such a way that time taken to match hash value

of ConPair will include time taken to search presence of that ConPair in Match Table as well. No

additional time will be required. This has helped in reducing search time.

Second use is made in matching hash values of expected match in Base String with those present

in PHash table. Here values of all patterns in pattern sets (or clusters) are calculated beforehand

and saved in PHash table. Implementation of PHash table is ordered. Thus, here also we do not

have to waste time in searching which entry of PHash table needs to be matched as each

quadruplet already stores information regarding that. This also reduces search time further. We

can conclude that use of hashing combined with way of implementation has led to significant

reduction in search time.

28

5.2 Algorithms

This section contains the searching algorithm and its subsidiary algorithms.

Algorithm 1: Create PHash

This algorithm will create a table containing a pair of values. First is Hvalue which is hash value

of each pattern. Second is Offset which maps pattern to its corresponding hash value. This means

each pair (X,i) will signify that hash value of pattern number i is equal to X.

Input: Pattern set P {P1, P2, …., Pn}

Output: Pattern Hash Table (PHash)

1. Initiate the empty PHash

2. For i = 1 to n

3. PHash[i].Hvalue = Hash(P[i])

4. PHash[i].Offset = i

5. End For

6. Return PHash

Algorithm 2: Create MTable

This algorithm will create a table which will contain hash value of various uniquely possible

ConPair across all patterns along with their Offset, Pos, LExt and RExt. We are using hash values

to reduce the time taken to match ConPair during searching.

Input: Pattern set P {P1, P2, …., Pn}

Output: Match Table (MTable)

1. Initiate empty MTable

2. For i = 1 to n

3. For j = 0 to l-2 // where l is length of current pattern

29

4. Calculate val = Hash(j,j+1)

5. If val does not exist in MTable

6. Add new column in MTable

7. Add val in first column

8. Else go to column with val

9. Add set (Offset, Pos, LExt, RExt) in second column

10. End If

11. End For

12. End For

13. Return MTable

Algorithm 3: Redundancy Check

This algorithm search presence of value pair (LPos, RPos) in Master Record. It returns 1 when no

match of value pair is found in Master Record indicating that first entry of this value should be

made in Master Record. If value pair exists in Master Record it means that this match is already

found in Base String thus it should not be further processed. This case comes up when a pattern is

found in Base String which is substantially larger than the minimum length pattern.

Input: ValuePair(LPos, RPos)

Output: 0/1

1. Initiate flag to 1

2. While (MasterRecord exhauts)

3. If(MasterRecord.entry = ValuePair)

4. Return flag-1

5. End If

6. MasterRecord.get_Next_Entry

7. End While

8. Return flag

30

Algorithm 4: Search

This algorithm will search BaseString for all patterns. It will return MasterRecord.

Input: Base String, PHash, MTable

Output: MasterRecord

Set variables:

Lmin = length of smallest pattern

CurPos = Lmin -2

LPosMin = 0

RPosMax = L-1

Assuming first character to be at position 0

1. While (CurPos <= RPosMax)

2. If (Hash(CurPos, CurPos+1) found in MTable)

3. For all set values of Hash(CurPos, CurPos+1)

4. LPos = CurPos - LExt

5. If (LPos < LPosMin)

6. Goto next set value

7. End If

8. RPos = CurPos + RExt

9. If (RPos > RPosMax)

10. Goto next set value

11. End If

12. If (Redundancy Check(LPos, RPos))

13. If (Hash(BaseString, LPos, RPos) = PHash[Offset])

14. Add (LPos, RPos) in MasterRecord

15. End If

16. End If

31

17. Goto next set value

18. End For

19. End If

20. CurPos = CurPos + Lmin – 1

21. End While

22. Return MasterRecord

5.3 Searching

Example 1: This example shows searching of pattern set in given BaseString.

Consider set of pattern P {scare, care,arch}. Here P[0] is {scare}, P[1] is {care}, P[2] is {arch}.

Consider Base String (BS) of length 24 shown in Table 5.1.

Table 5.1: Base String for Example 1

0 1 2 3 4 5 6 7 8 9 10 11

a r e s c a r e h s t a

12 13 14 15 16 17 18 19 20 21 22 23

r c h s r a r c h s c a

We get Table 5.2 for Example 1 hash table PHash as per the algorithm 1.

Table 5.2: Hash Table for Example 1

Hvalue Offset

Hash(scare) 0

Hash(scar) 1

Hash(arch) 2

32

Consider first pattern scare. Here first ConPair will be sc with c being the last character of

ConPair. It belongs to P[0]. Thus, Offset will be 0. Position of c in P[0] is 1. Thus Pos is 1.

Distance of c from left extremity and right extremity of P[0] is 1 and 3 respectively. Thus, LExt is

1 and RExt is 3. Thus, set value for this ConPair will be (0,1,1,3). Same ConPair is again found in

P[1] with set value (1,1,1,2). Similarly generating set values for all ConPair will generate Table

5.3 MTable from Algorithm 2.

Table 5.3: Match Table for Example 1

ConPair Set Value (Offset, Pos, LExt, RExt)

sc (0,1,1,3), (1,1,1,2)

ca (0,2,2,2), (1,2,2,1)

ar (0,3,3,1),(1,3,3,0),(2,1,1,2)

re (0,4,4,0)

rc (2,2,21)

ch (2,3,3,0)

Actual hash value should be stored in ConPair column of MTable. Here we are using character

pair for ease of understanding. However, other implementations are also possible.

After creation of PHash and MTable, we start the search phase. MasterRecord is built as search

phase proceeds. Algorithm 3 will be used for Redundancy Check in search phase.

Initiate the following variable as:

Lmin: 4, length of minimum pattern

33

CurPos: 2, current position of consideration in BS. It is one short of Lmin but here we are taking

first character position as 0. So, effectively it equals 2.

LPosMin: 0

RPosMax: 23

L: 24, length of string

Consider the following notations:

P: Present in MTable(X)

X: Number of entries

NP: Not present in MTable

RCV: Redundancy Check Value

Step 1: CurPos = 2

 ConPair (re): P (1)

 (0,4,4,0)

 LPos: 2-4 = -2

 LPos < LPosMin

 CurPos = 2 + 4 – 1

CurPos = 5

Step 2: CurPos = 5

 ConPair (ca): P(2)

i) (0,2,2,2)

 LPos: 3

 RPos: 7

34

 RCV(3,7) = 1

 Hash(BS,3,7),PHash(0)

 Hash(scare) = Hash(scare)

 MasterRecord={(3,7)}

ii) (1,2,2,1)

 LPos: 3

 RPos: 6

 RCV(3,6) = 1

 Hash(scar)=Hash(scar)

 MasterRecord={(3,7), (3,6)}

CurPos = 5 + 3

Step 3: CurPos = 8

 ConPair (eh): NP

CurPos = 8 + 3

Step 4: CurPos = 11

 ConPair (ta): NP

CurPos = 11 + 3

Step 5: CurPos = 14

 ConPair (ch): P(1)

 (2,3,3,0)

 LPos: 11

 RPos: 14

35

 RCV(11,14) = 1

 Hash(arch) = Hash(arch)

 MasterRecord={(3,7), (3,6),(11,14)}

CurPos = 14 + 3

Step 6: CurPos = 17

 ConPair (ra): NP

CurPos = 17 + 3

Step 7: CurPos = 20

 ConPair (ch) : P(1)

 LPos: 17

 RPos: 20

 RCV(17,20) = 1

 Hash(arch) = Hash(arch)

 MasterRecord={(3,7), (3,6),(11,14),(17,20)}

CurPos = 20 + 3

Step 8: CurPos = 23

 ConPair (ca): P(2)

i) (0,2,2,2)

 LPos: 21

 RPos: 25

ii) (1,2,2,1)

 LPos: 21

36

 RPos: 24

CurPos = 23 + 3

CurPos = 26 > RPosMax

Searching Over

Example 2: This example shows need of taking window size equal to one short of minimum

pattern length.

Consider ear to be one of the pattern and minimum pattern length be 3. Let window size should be

equal to minimum pattern length, 3. Consider Table 5.4. Part of BaseString is under consideration

during of the intermediate steps with CurPos at 17. Suppose ConPairs {ea,ar} appears only in

pattern ear.

Table 5.4: Table for Example 2

16 17 18 19 20

i e a r t

At position 17, ConPair under consideration will be (ie). After processing, next value of CurPos

would be 17+3=20. At postion 20, ConPair (rt) will be considered. Thus, patter ear is missed

during search phase and this happens because it is the smallest pattern and CurPos happened to be

at its initial position. This lead to two ConPairs (ie,rt) none of which were part of pattern ear.

Thus, to make sure pattern gets identified in such cases, we reduce window size to one short of

smallest pattern. If this were the case, second ConPair under consideration would be (ar). Thus,

pattern ear would get searched.

37

Chapter 6

PROPOSED APPROACH: COHESIVE CLUSTERING

This section contains thought and theory behind merging concept of clustering along with newly

developed adaptive hashing based search algorithm. Basic definitions used are same as defined in

previous chapter.

6.1 Clustering

Irrespective to the frequency of length of patterns appearing in pattern set P, window of searching

phase is solely determined by length of smallest pattern only. Searching phase completes in order

O(n/k) where k is the length of smallest pattern. Thus, we can deduce that smallest pattern

determines the searching time of the entire process. Problem with this approach is even if there is

only one pattern of comparatively smaller length in comparison to all other patterns then this

small pattern alone determines the speed of search phase. To solve this problem, we propose that

clusters should be made of patterns of near about same length prior to pre-processing phase itself.

Then entire process should be carried out separately for each cluster. Finally, results can be

merged. Here emphasis is more on acknowledging the need of generating clusters rather than the

process followed to generate clusters. Several clustering algorithm are present which can be used

for this task. Number of generated clusters will depend on frequency of lengths of various patterns

of different as well as same length. Intention is to make sure range of pattern lengths within a

cluster is not very drastic. Thus it enables us to achieve overall minimized searching time with

respect to searching process that does not use clustering. Following gives the above proposed

process step by step.

i. Generate clusters of patterns with nearly same length.

ii. Make Match Table for all clusters separately.

iii. Perform search process for each cluster separately.

38

iv. Combine result for several clusters to get final result.

Here we generate separate Match Table for each cluster because Match Table is generated by

ConPairs and ConPairs are intrinsic property of pattern. Thus, each cluster of pattern may result

in separate set of ConPairs which may or may not be present in other clusters.

6.2 Redundancy Function

Redundancy functions come across cases which can be categorised under three sections as shown

in Figure 6.1. Section A are those cases when a new pattern is found at that place for the first

time. These are the ordered values which are later added into Master Record. Section C consists

of cases where hash value of expected pattern doesn’t match with that of expected pattern. Thus,

these are the failed expectations of patterns. Cases in Section B are the tricky ones. These are the

patterns which are already found at the same place due to identification of pattern by a ConPair

earlier in search. Thus, these patterns now need to be rejected to avoid duplicate entry in Master

Record which would return in duplication of search result. This is case which motivated

formulation of Redundancy Function. Thus, Redundancy function is calculated prior to hash value

check so that time taken in calculating hash value for redundant entries can be saved.

Figure 6.1: Sections of Redundancy Functions

39

6.3 Parameters Affecting Search Time

Advantage of performing clustering can be seen when length of patterns vary at high degree. Let

suppose the pattern set P be divided into two clusters c1 and c2. Let smallest pattern length in P,

c1 and c2 be l1, l1 and l2 respectively (because length of smallest pattern in P is same as that of

c1). Let time taken to search Base String is T1, T2, T3 in case of pattern set P, c1 and c2

respectively. Then, total search time T2+T3 turns out to be drastically lesser than T1 alone. This is

shown in Experimental Analysis section.

One may argue that time taken by combining both searches should be larger because entire Base

String is traversed separately in both cases. However, we have to also consider the fact that

different Match Table is created for both clusters individually. Thus, number of ConPairs

generated as well as number of entries per ConPair will be drastically reduced. Further, search for

a major section of patterns which belong to cluster with larger smallest pattern length will finish

very fast as compared to other. Thus, overall time will reduce drastically.

There could be other parameters as well which depend on implementation of the algorithm.

However, those are not considered because we consider factors which are intrinsic to algorithm

and are expected to be equally weighted across various implementations.

6.3.1 Window Size (W)

Search time largely depends on size of window which is one short of length of smallest pattern.

As length of window increases, number of characters skipped in Base String after each step

increases. Let search time be called ST and size of window be called W. Then we can assume that

ST is inversely proportional to W.

1ST
W

 (1)

6.3.2 ConPair Repeatition Ratio (CRR)

For every ConPair that is found at the terminal of window, one of three cases is probable. Firstly,

ConPair may not present in Match Table. Secondly, there may be only one entry in list

corresponding to that ConPair. Thirdly, there may be multiple entries corresponding to that

40

ConPair each of which needs to be checked. Third condition is of concern to us. During the

search phase, time taken to identify whether a ConPair is present in Match Table or not is O(1)

because we are using hashing. However, we have to process every element of list individually to

find whether a pattern match is there or not. Thus, time taken to traverse that particular ConPair

list grows linearly. Thus, search time increases as the number of repeated ConPairs increases. We

need to focus on number of ConPairs repeated per unique ConPair on average. Thus, we define

ConPair Repetation Ratio (CRR) as ratio of Repeated ConPairs in Match Table to Unique

ConPairs present in Match Table. As this ratio increases, search time will also increase. Thus, ST

is directly proportional to CRR.

ST CRR (2)

6.4 Mathematical Relationships

Combining equation 1 and 2, we can derive following mathematical relation.

*K CRRST
W

 (3)

where K is constant of proportionality.

However, in case of clustering based search we will have separate search time for each cluster.

Let there be n clusters with window size w1,w2,…,wn respectively with ConPair Repetation

Ratio values CRR1, CRR2,…,CRRn respectively. Let their individual search times be ST1,

ST2,…,STn repectively. Thus, we derive total search time relation for entire pattern set P as

follows:

1

n

Combined i

i

ST ST


 (4)

where CombinedST is combined search time after summation of search time of different clusters.

* i
i

i

K CRR
ST

W
 (5)

41

where iST is search time, iCRR is ConPair Repeatition Ratio and iW is window length for ith

cluster. Here we assume constant of proportionality (K) remains constant for different clusters or

pattern sets.

In order to compare search time taken for single patterns set with that of combined search time of

various clusters, we can take ratio of search time calculated by equation (3) and equation (4) to

give theoretical Speed Up Ratio (Ths) as follows:

1

(
*)set

set
Th n

i

i

CRR
K

Ws

ST





 (6)

where set represents pattern set P. Interestingly, we will never need value of K as it will cancel

out in ratio calculations.

42

Chapter 7

EXPERIMENTAL SETUP

The following system configuration has been used while conducting the experiments:

Processor: Intel Core i3

Clock Speed: 2.53 GHz

Main Memory: 4 GB (3.67 Usable)

Hard Disk Capacity: 512 GB

System Type: 64-bit Operating System

Software: Code::Blocks version 12.11

7.1 Language and Implementation

Implementation of proposed algorithm is done in C language on Code::Blocks version 12.11. C is

chosen as implementation language to efficiently design data structures and hashing functions as

desired. Execution time is measured as mean of several runs and is the amount of CPU time taken

in searching phase only. CPU time is different from time measured by clock for same duration. It

is time spent by CPU specifically on this program itself. It excludes time taken by CPU to execute

other applications running on system simultaneously. This helps us to have a closer look at

performance in terms of time taken in milliseconds in entire experimental setup. In C language,

we have inbuilt libraries which enable us to track time taken up to sectional level granularity. In

other words, we can precisely calculate CPU time taken by particular section of program. This is

one of the many reasons C was preferred as language of implementation.

The time taken may vary as per implementation of algorithm, architecture of machine used for

implementation and nature of patterns being searched (as it decides uniqueness of ConPairs).

However, intent of presenting these experimental results is to show the relative order of variation

43

among different parameters which are established under various running conditions and to prove

validity of the mathematical relation established.

7.2 Language of Base String and Patterns

Here language chosen is English. Entire alphabet set is considered for implementation and

analysis processes. Case sensitivity is not taken into account. No special characters have been

included. However, successful implementation of this prototype guarantee that proposed work can

be extended to any language with any number of special characters included.

7.3 Base String

Length of Base String for analysis of adaptive hashing based search is varied from 10,000 to

200,000 characters of English language. Length of Base String for clustering analysis is kept

constant at 420,138 of same language.

7.4 Patterns

In case of adaptive hashing based search, number of patterns varies from 3 to 21 keeping length of

the smallest pattern same across all variations.

For cohesive clustering, number of patterns is increased from 50 to 100 in steps of 10 to generate

data for analysis. Length of patterns varies from 4 to 26. For clustering analysis, pattern set is

divided into two clusters. It is necessary to ensure that as number of patterns increase,

characteristic features displayed by patterns in terms on ConPairs (both total number and unique

number), average length of patterns increase accordingly. Drastic increment, drastic decrement or

stagnancy in these features affect environment generated for analysis of algorithm. In affects all

parameters as ConPairs present in Match Table, search time taken by algorithm, generation of

clusters and search time taken when clustering is done beforehand.

Thus, efforts have been put in to make sure average length of patterns in all three scenarios of

search, i.e., single pattern set and two clusters remains constant across varying number of patterns.

This is done to ensure no drastic change in range of length in a cluster or in complete pattern set.

44

It ensures that variation of distance from centroid of cluster remains same even though number of

elements in cluster increase.

Since search algorithm proceeds in steps proportional to length of smallest pattern, doing this

guarantees that there is not much variation in length of patterns disturbing effect of window shifts

in search process. Additionally, at least one of the smallest patterns is added in smallest pattern set

from the beginning to make sure length of window remains same as number of patterns increases.

Details of pattern distribution for cluster 1 (cluster with small length patterns), cluster 2 (cluster

with comparatively larger length patterns) and complete pattern set P are shown in Table 7.1,

Table 7.2 and Table 7.3 respectively. Column 1 denotes the length of pattern, Column 2 and

onwards denotes frequency of patterns of length mentioned in Column 1.

Table 7.1: Pattern distribution for Cluster 1

Length of pattern 25 patterns 30 patterns 35 patterns 40 patterns 45 patterns 50 patterns

4 3 3 3 3 3 3

5 3 4 5 6 7 8

6 3 4 5 6 7 8

7 5 6 7 8 10 12

8 3 4 5 7 8 9

9 3 4 5 5 5 5

10 5 5 5 5 5 5

Average Length 7.24 7.2 7.17 7.13 7.07 7.02

45

Table 7.2: Pattern distribution for Cluster 2

Length of pattern 25 patterns 30 patterns 35 patterns 40 patterns 45 patterns 50 patterns

20 3 4 5 6 6 6

21 3 4 5 6 6 8

22 6 7 8 9 10 10

23 2 3 3 3 4 5

24 3 4 4 5 6 7

25 3 3 4 4 5 6

26 5 5 6 7 8 8

Average Length 23.12 22.93 22.91 22.88 23 22.98

Table 7.3: Pattern distribution for complete pattern set

 50 patterns 60 patterns 70 patterns 80 patterns 90 patterns 100 patterns

Average Length 15.18 15.07 15.04 15 15.03 15

Above tables show that average length of patterns for Cluster 1 is 7, for Cluster 2 is 23 and for

complete pattern set P is 15. This will help in controlling characteristics of search space as its size

grows.

46

Chapter 8

EXPERIMENTAL RESULTS AND ANALYSIS

Experimental results are divided into various sections.

8.1 Shift Table Result

Few multiple pattern shift table algorithms have been proposed. However, their implementation

results are in exception with their theoretical results. A shift table algorithm was proposed taking

patterns of equal lengths [7]. Comparison of theoretical result of this algorithm with respect to

experimental one is mentioned in Table 8.1.

There are many reasons of these variations. Algorithm used in this paper decreases shift value of

any particular character only when it is same as the last character of the pattern. Additionally, it

excludes last character from processing. Thus, value of characters which appear only as last

characters are not calculated.

Table 8.1: Result Comparison

Character Theoretical shift value Experimental shift value

a 2 3

b 1 3

c 1 4

d 1 4

e 1 -

f 1 -

m 2 4

n 4 4

o 3 4

p 1 4

47

q 3 4

j 3 4

z 3 4

* 4 4

Another shift table algorithm was proposed considering patterns of variable lengths [15].

Comparison of theoretical result of this algorithm with respect to experimental one is mentioned

in Table 8.2.

Reason for negative values in implementation of this algorithm is because there is no restriction

on decreasing shift value. Further, here only first n characters of any pattern are processed where

n is the length of smallest pattern. Thus, it does not take into account of any character and its

order of appearance after n characters. Here also shift value decreases only when any character

matches with nth character of pattern. Also, last character is excluded from processing. This

algorithm deals with patterns of variable length but it provides no consideration for different

lengths of various patterns.

Table 8.2: Result Comparison

Character Theoretical shift value Experimental shift value

a 2 -5

b 1 3

c 1 4

d 1 -

e 1 -

f 1 -

m 2 4

n 4 4

o 3 4

p 1 4

48

q 3 4

j 3 4

z 3 4

* 4 4

In order to see accuracy of proposed algorithm let us consider set of patterns P = {aaba, aabab,

aababc, aababcd, aababcde, abcb, zmnd, qope, jmqfm}.

Using shift table algorithm mentioned in this paper, shift values for various characters were

obtained which are mentioned in Table 8.3.

Table 8.3: Proposed Algorithm’s Shift Values

Character Experimental shift value

a 1

b 1

c 1

d 1

e 1

f 1

m 1

n 1

o 3

p 1

q 1

j 3

z 3

* 4

49

The advantage of this algorithm is that it takes into account number of occurrence as well as

relative order of appearance of characters. Thus, it successfully differentiates between patterns

abba and abab. It takes into account the length of individual patterns and thus processing of each

character is done depending on its position and neighbourhood. Additionally, it aims at finding

biggest length match between join and leftover to ensure maximum shift distance possible. This

enables it to reduce searching time which is crucial is situations where text is of unknown length

or is generated dynamically at run time.

Using these values of shift table, we search pattern set P in text T =

aababcdezmndjmqfmaababcd using two hashing table technique [11]. We are able to search all

patterns successfully. Time taken by this algorithm can be further reduced by use of fast access

data structures such as hash table. It will reduce order of time taken because matching of join

with leftover will take O(1) time. This algorithm works well for variable size of patterns as

illustrated in the example above.

8.2 Adaptive Hashing Based Search Result

8.2.1 Performance Analysis: Varying Base String Length

Number of patterns is kept fixed and length of BaseString is varied from 10,000 to 200,000.

Figure 8.1: Performance Analysis on Variable BaseString Length

50

Figure 8.1(a) shows variation of BaseString length (in thousands) with searching time measured

in milliseconds. Figure 8.1(b) shows dependent variation of the same. Both figures show that

searching time taken increases linearly as BaseString length increases thus proving that this

algorithm takes searching time of O(n/P) for BaseString of length n.

8.2.2 Performance Analysis: Varying Number of Patterns

BaseString length is kept fixed (100,000) and number of patterns are increased from 3 to 21

keeping length of smallest pattern same among all sets.

Figure 8.2: Performance Analysis on Varying Number of Patterns

Figure 8.2(a) shows variation of number of patterns to be searched in BaseString with searching

time (in milliseconds). Figure 8.2(b) shows dependent variation of the same. It can be seen that

time is increasing with number of patterns. This is so because instead of number of patterns,

searching time atomically depends on nature of ConPairs found. They can be unique as well as

repetitive.

51

Figure 8.3: Relation among number of patterns, ConPair types and time taken (in ms)

Figure 8.3 shows increase in number of uniquely generating ConPairs and total ConPairs as

number of patterns to be searched in BaseString increases. Overall, increase in searching time is

also evident. This also signifies the fact that searching time depends on whether a ConPair exists

for the given position. If it does then it further depends on number of patterns in which that

ConPair is found.

8.3 Cohesive Clustering Result

This section provides the result obtained in various runs across various parameters. Three kinds of

searches are performed. Firstly, search is done on pattern set P. Secondly, search is done on

cluster 1 and lastly search is done on cluster 2. Each kind of search is repeated while changing

total number of patterns from 50 to 100. Results across various parameters are mentioned below.

8.3.1 ConPairs

This considers both unique and total number of ConPairs generated across various runs. Figure

8.4 shows variation both as number of patterns increase.

52

Figure 8.4: Variation of ConPairs with number of patterns

Linear increment in all the lines in Figure 8.4 proves that uniqueness of patterns is maintained as

number of patterns is increased. This helps in ensuring that patterns are not anagrams of each

other as there number is increased. This guarantees constant updating in search environment

keeping good mix of repeating as well as new ConPairs. Thus, domain of search space increases

along with proportional increase in characteristic which defines the search space. Figure 8.4

shows constant rate of growth in unique as well as total number of ConPairs as number of

patterns increases.

We can observe that number of total ConPairs increase much rapidly with respect to number of

unique ConPairs. We have to focus on fact that language we have chosen for implementation of

algorithms is English. Number of ConPairs possible in English language is fixed to 676 (26

ConPairs starting with each of 26 characters, like aa, ab, ac to zx, zy, zz). Thus, we must see

direct proportional growth in number of total ConPairs (as seen practically). This makes ConPair

Repeatition Ration (CRR) a crucial factor in speed up of runtime because as number of patterns

increase CRR will also increase. On the other hand, as number of patterns increase to high

numbers, we should see constant number of unique ConPairs due to inherent upper limit for it.

53

8.3.2 Search Time

This section show variation in search time as number of patterns is increased keeping the Base

String constant. Search time variation is shown for all three searches. Figure 3 shows variation of

search time for pattern set P with elements in set increasing from 50 to 100. Time taken is in

milliseconds.

Figure 8.5: Search time vs. number of patterns

Figure 8.5 shows that search time in directly proportional to number of patterns. This can also be

drawn from Figure 8.4 which depicts that uniqueness of patterns keep on increasing as there count

increases. Since uniqueness increases, so does the search time.

Figure 8.6 shows the variation of search time as number of patterns increase from 25 to 50 in

cluster 1 which consists of smaller lengths patters. Figure 8.7 shows the variation of same for

cluster 2 which consists of comparatively larger patterns.

Figure 8.6: Search time for cluster 1 vs. number of patterns

54

Figure 8.7: Search time for cluster 2 vs. number of patterns

Figure 8.6 and Figure 8.7 shows that search time in milliseconds is roughly in direct proportion to

number of patterns. This is because as number of patterns increase, total number of ConPairs

increases (as shown in Figure 8.4) which results in increase in CRR ratio too.

8.4 Post Experiment Clustering Analysis

Both Figure 8.6 and Figure 8.7 shows that search time are approximately proportional to the

number of patterns. However, one thing to observe here is that time taken to search equal number

of larger patterns is always much lesser than that of smaller patterns for same Base String. This

proves that window length plays a significant role in reduction of search time. In order to analyse

effect of clustering we add search time for cluster 1 and cluster 2 and compare it with search time

of pattern set. Figure 8.8 shows comparison of the two.

55

Figure 8.8: Search Time Comparisons

Figure 8.8 shows that clustering has drastically reduced the search time for every pattern set. It is

mainly because difference in window size for clusters in considerable thus reducing search time

for independent clusters individually which further reduces it collectively. It shows that clustering

should be used prior to pre-processing phase. Let us further analyse degree to which clustering

has speed up the search time in Figure 8.9.

Figure 8.9: Prs with number of patterns

Figure 8.9 shows that practical Speed Up Ratio (Prs) in search time is almost constant for all

pattern sets ranging from 4.1 to 4.5. This is the practical ratio that we are getting. Since this ratio

is almost constant we can conclude that our strategy to configure a search domain for series of

56

practical such that characteristic parameters of search space grow in proportion to growth of its

size has been successful.

8.5 Theoretical Clustering Analysis

We have established some equations earlier based on factors affecting search time. However,

values fed in to these equations are not theoretical but they are practical parameters as measured

among during run time. Motivation behind these calculations is to get an idea of speed up ratio

prior to performing clustering process followed by searching process. Recall that there were two

factors responsible for determining search time. We need to combine search time for cluster 1 and

cluster 2 as per equation (4). Table 8.4 provides details of both the factors as observed.

Table 8.4: CRR and W for each pattern set

Nature Number of Patterns ConPair Repeatition Ratio (CRR) Window Length (W)

Complete Pattern Set 50 2.593908629 3

Complete Pattern Set 60 2.957746479 3

Complete Pattern Set 70 3.345132743 3

Complete Pattern Set 80 3.899563319 3

Complete Pattern Set 90 4.360169492 3

Complete Pattern Set 100 4.733606557 3

Cluster 1 25 0.534653465 3

Cluster 1 30 0.697247706 3

Cluster 1 35 0.706349206 3

Cluster 1 40 0.848484848 3

57

Cluster 1 45 0.98540146 3

Cluster 1 50 1.068965517 3

Cluster 2 25 1.989189189 19

Cluster 2 30 2.340101523 19

Cluster 2 35 2.741463415 19

Cluster 2 40 3.180952381 19

Cluster 2 45 3.597222222 19

Cluster 2 50 3.95045045 19

Table 8.4 shows that ConPair Repeatition Ratio (CRR) increases as number of patterns increase.

This shows there is tendency of having same ConPairs as pattern set increases. This holds true

because number of possible ConPair is English language is 676 (26 starting for each of 26

characters). We will use the above data to verify the mathematical relationship we established in

equation (4).

8.6 Experimental Result vs. Theoretical Equations

We now need to calculate accuracy of our theoretical equations. Ths denotes the theoretical factor

by which search time has been reduced by clustering. Ths is calculated using equations fed with

data provided in table 8.4. Prs denotes the practical factor by which search time has been reduced

by clustering. It is calculated using the search time that we recorded during experiments up to the

order of milliseconds. Figure 8.10 shows variation of practical speed up ratio (Prs) with respect to

theoretical speed up ratio (Ths).

58

Figure 8.10: Prs and Ths vs. number of patterns

Though values of practical runtime speed up ratio is not exactly equal to mathematically

calculated runtime speed up ratio as shown in Figure 810. However, it is evident from the above

figure that nature of increment or decrement in speed up ration is significantly equal. In other

words, the rise and dip of both values are similar in nature. This proves the following:

i. The factors which we expect to be of significant importance actually hold expected degree of

importance.

ii. The nature of relationship of factors with search time (like directly proportional or inversely

proportional) are correct.

This closeness in nature of both plots proves that equations defined are correct. The ratio

determining degree of correctness of our equations is called Accuracy Factor (AF) and is

calculated by ratio of theoretical speed up ratio (Ths) to practical speed up ratio(Prs).

Pr

Ths
AF

s
 (7)

The Accuracy Factor should give a better view of degree of correctness.

59

Figure 8.11: Accuracy Factor vs. Number of patterns

Figure 8.11 shows the ratio thus obtained are in the range 0.66 to 0.72, ideally it should be unity.

Variation that this ratio has from unity shows that it our mathematical relationships need to be

improved. However, closeness among values in all cases show that factors which we have

considered are appropriate and mathematical relationships hold correct up to a large extent.

8.7 Runtime Analysis

8.7.1 New Shift Table Algorithm

For a single pattern with,

P: Length of single pattern

W: Size of window

Mathematically runtime of this algorithm on single pattern will be O(P-W+1). Effectively,

runtime complexity will be O(P) considering pattern to be much larger than window.

For a set of variable length patterns with,

X: Number of pattern

N: Sum of lengths of all patterns

M: Average pattern length

L: Smallest pattern length, thus W=L-1

Mathematically runtime of generating shift table by presented algorithm is O(N/M*(M-W+1)).

Considering, N is much larger in comparison to L, effectively runtime complexity for presented

algorithm can be given as O(N).

60

8.7.2 New Adaptive Hashing Based Search Algorithm

Match Table generation time is linearly proportional to summation of lengths of every element in

pattern set P. Let summation of all elements equate to L and number of elements be p then time

taken to generate Match Table will be of order O(L-p).

Consider length of Base String to be n and length of smallest pattern in set P be k, then search

time be of the order O(n/k). This has been proved in search time vs number of patterns plot shown

above in Figure 8.5, Figure 8.6 and Figure 8.7.

8.7.3 Cohesive Clustering

Generation of clusters prior to entire process doesn’t change runtime order of either Match Table

generation or search time. However, it significantly condenses the search time as shown in Figure

8.8 and Figure 8.9.

61

Chapter 9

CONCLUSION

A shift table algorithm which is able to solve problem of variable length multiple string pattern

matching is presented. This is inspired by Boyer Moore concept for single pattern matching. It

further successfully enhances that concept to gain promising results. With use of hash table to

search occurrence of join in leftover this algorithm takes O(|P|) time where |P| defines sum of all

pattern lengths. As shown in results section, it produces better shift table than existing algorithms

in terms of calculation of shift value for each character and its accurate value to gain maximum

shift. This shift table algorithm ensures that we are able to pre-process pattern set for successful

search in case of both static as well as dynamic text.

A hashing based search algorithm is presented in this paper which is capable of searching multiple

variable length patterns. Also, it can adapt itself to new pattern made available to it during search.

Match Table evolves as the number of pattern increase dynamically and need not to be rebuilt

completely. It also avoids need of shift table and takes uniform jumps over the BaseString taking

O(n/P) time exactly in all cases. Further this algorithm can be effectively used in two cases. First

is where BaseString is available prior to search. Second case is when BaseString generates

dynamically like in case of network analysis. However, RPosMax will not be available in this

case. Then terminating condition of search algorithm will be till end of BaseString.

A concept of merging clustering with adaptive hashing based multiple pattern matching algorithm

is presented in this paper. This works well keeping adaptive nature of algorithm alive. Results

have shown speed up in search time by factor of 4. We have identified parameters which affect

the speed up in search time. Mathematical relations have been successfully carved out from those

parameters. This mathematical relation is significant for us to get an idea of speed up in search

time of using clustering beforehand merging it with algorithm. Additionally, closeness in result as

62

well as in nature of increment or decrement in speed up of search time can now be predicted

before the actual run which will save a lot of runtime cost. Thus, it will optimize both cost and

time of our experiments.

However, major areas of improvement which appear as of now are also identified. Firstly, section

B of redundancy check function is aimed to be further reduced. This will improve search time

both in case of clustered and non-clustered algorithms. Secondly, there is scope of improvement

in mathematically calculated speed up ratio.

There are various dimensions in which future work in this field can be directed. However, it

majorly revolved round reducing section C of redundancy check function. Additionally,

weightage of parameters affecting search time needs to be defined theoretically and verified

practically. Further, there is also scope for finding new parameter affecting search time.

63

REFERENCES

[1] R.S. Boyer, and J.S. Moore, “A fast string searching algorithm”, Communications of the

ACM, 20(10), 1977, pp.762-772.

[2] K. M. Karp, and M.O. Rabin, “Efficient randomized pattern matching algorithms”, IBM

Journal of Research and Development, 31(2), 1987, pp.249-260.

[3] D.E. Knuth, J.H. Morris, V.R Pratt, “Fast pattern matching in strings”, SIAM Journal on

Computing 6(1), 1997, pp.323-350.

[4] A. V. Aho, and M. J. Corasick, “Efficient string matching: An aid to bibliographic search”,

Comm. ACM, 1975, pp.333-340.

[5] B. Commentz-Walter, “A string matching algorithm fast on the average”, In Proceedings of

the Sixth International Collogium on Automata Languages and Programming, 1979, pp.118-132.

[6] G. Navarro, and M. Raffinot, “Flexible Pattern Matching in Strings”, The press Syndicate of

The University of Cambridge. 2002.

[7] C. Khancome and V. Boonjing, “New Hashing-Based Multiple String Pattern Matching

Algorithms”, 2012 Ninth International Conference on Information Technology- New Generations,

(ITNG 2012), LasVegas, USA, 2-4 April 2012, pp.195-200.

[8] P.C. Bosnjak, and S. M. Cisar, “EWMA based threshold algorithm for intrusion detection”,

Computing and Informatics, Vol. 29 No. 6+, 2010, pp. 1089-1101.

[9] Z. Wu, V. Raghavan, H. Qian, V. Rama, W. Meng, H. He and C. Yu, “Towards Automatic

Incorporation of Search engines into a Large-Scale Metasearch Engine”, IEEE/WIC International

Conference on Web Intelligence (WI’03), 13-17 Oct. 2003, pp. 658-661.

64

[10] C. Zhu, T. Liu, W. Zhang, D. Yang, “Greedy-search based service location in P2P

networks”, Journal of Systems Engineering and Electronics, Volume 16, Issue 4, December 2005,

pp. 886- 89.

[11] N. Cao, C. Wang, M. Li, K. Ren, W. Lou, “Privacy preserving multi keyword ranked search

over encrypted cloud data”, IEEE transactions on Parallel and Distributed Systems, Vol. 25, No.

1, January 2014, pp. 222- 233.

[12] S.P. Bora, “Data mining and ware housing”, 3rd International Conference on Electronics

Computer Technology (ICECT), 8-10 April 2011, Vol. 1, pp. 1-5.

[13] L. Chen, S. Lu and J. Ram, “Compressed Pattern Matching in DNA Sequences”, IEEE

Computational and Systems Bioinformatics Conference (CBS 2004), 16-19 Aug 2004, pp. 62-68.

[14] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel “Iterative dictionary construction

for compression of large DNA data sets”, IEEE/ACM transactions on Computational Biology and

Bioinformatics, Vol. 9, No. 1, Jan. - Feb. 2012, pp. 137- 149.

[15] C. Khancome, V. Boonjing and P. Chanvarasuth, “A Two-Hashing Table Multiple String

Pattern Matching Algorithm”, 2013 Tenth International Conference on Information Technology-

New Generations, (ITNG 2013), LasVegas, USA, 15-17 April 2013, pp.696-701.

[16] M. Crochemore, A. Czumaj, L. Gąsieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W.

Rytter, “Fast practical multi-pattern matching”, Report 93-3, Institute Gaspard Monge, Universitĕ

de Marne-la-Vallĕe, 1993.

[17] M. Crochemore, A. Czumaj, L. Gąsieniec, T. Lecroq, W. Plandowski, and W. Rytter, “Fast

practical multi-pattern matching”, Information Processing Letters, 71(3/4), 1999, pp.107-113.

[18] L. Gongshen, L. Jianhua, and L. Shenghong, “New multi-pattern matching algorithm”,

Journal of Systems Engineering and Electronics, Vol. 17, No. 2, 2006, pp.437-442.

65

[19] H. HYYRO, K. F. SSON, and G. Navarro, “Increased Bit-Parallelism for Approximate and

Multiple String Matching”, ACM Journal of Experimental Algorithms, Vol.10, Article No. 2.6,

2005, pp.1-27.

[20] S. Wu, and U. Manber, “A fast algorithm for multi-pattern searching”, Report tr-94-17,

Department of Computer Science, University of Arizona, Tucson, AZ, 1994.

[21] P. Kanuga, A. Chauhan, “Adaptive Hashing Based Multiple Variable Length Pattern Search

Algorithm for Large Data Sets”, International Conference on Data Science and Engineering,

Cochin, in press.

[22] E. Liu, A. K. Jain, J. Tian, “A Coarse to Fine Minutiae-Based Latent Palmprint Matching”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, Issue 10, 2013, pp.

2307-2322

