
A Major Project Report On

CROSS PROJECT DEFECT PREDICTION FOR OPEN

SOURCE SOFTWARE

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

By

Anushree Agrawal

(Roll No. 2K12/SWE/09)

Under the guidance of

Dr. Ruchika Malhotra

Department of Software Engineering

Delhi Technological University, Delhi

Department of Computer Engineering

Delhi Technological University, Delhi

2012-2014

iii

DELHI TECHNOLOGICAL UNIVERSITY

CERTIFICATE

This is to certify that the project report entitled CROSS PROJECT DEFECT

PREDICTION FOR OPEN SOURCE SOFTWARE is a bona fide record of work carried

out by Anushree Agrawal (2K12/SWE/09) under my guidance and supervision, during the

academic session 2012-2014 in partial fulfilment of the requirement for the degree of Master

of Technology in Software Engineering from Delhi Technological University, Delhi.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University/Institute for the award of any Degree or Diploma.

Dr.RuchikaMalhotra

Asst. Professor

Department of Software Engineering

Delhi Technological University

Delhi

iv

DELHI TECHNOLOGICAL UNIVERSITY

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a lot of people who have

supported me with their words and deeds in completion of my research work as part of this

course of Master of Technology in Software Engineering.

To start with I would like to thank the almighty for being with me in each and every step of

my life. Next, I thank my parents and family for their encouragement and persistent support.

I would like to express my deepest sense of gratitude and indebtedness to my guide and

motivator, Dr. Ruchika Malhotra, Assistant Professor, Department of Software

Engineering, Delhi Technological University for her valuable guidance and support in all the

phases from conceptualization to final completion of the project.

I wish to convey my sincere gratitude to all the faculties and PhD. Scholars of Computer

Engineering Department, Delhi Technological University who have enlightened me during

my project.

I humbly extend my grateful appreciation to my friends especially Aditya Jalan whose moral

support made this project possible.

Last but not the least, I would like to thank all the people directly and indirectly involved in

successfully completion of this project.

AnushreeAgrawal

Roll No. 2K12/SWE/09

v

TABLE OF CONTENTS

Certificate …………………………………………………………………………………...ii

Acknowledgement …………………………………………………………………………iii

Table of contents …………………………………...………………………………………iv-v

List of Tables .………………………………...………………………………………………vi

List of Figures………………………………...……………………………………………...vii

Abstract ………………………………………………………………………..……………viii

Chapter 1: Introduction …………………………………………………...………………...1-5

1.1 Introduction …………………………………………………………………….…1

1.2 Motivation of Work ……………………………………………………………….2

1.3 Aim of Work ……………………………………………………………………...3

1.4 Organization of Thesis ……………………………………………………………4

Chapter 2: Related Work ……………………………………………………………………6-9

Chapter 3: Research Methodology………………………………………………..……...10-35

3.1 Data Collection ……………………………………………………………….......10

3.1.1 Source code checkout …………...……………………………………..10

3.1.2 Extraction of bugs……………………………………………………..10

3.1.3 Metrics calculation ……………...……………………………………..10

3.1.4 Preparation of dataset………………………………...………………..11

vi

3.2 Prediction model ……………………………………………………………….....14

3.3 Descriptive statistics …..…………………………………..…………….………..17

3.4Performance evaluation measures ………………………………….…..…………29

3.4.1 Precision and recall …………...…………………………………...…..29

3.4.2 Area under ROC curve……………………...………………………....30

3.4.3Construction of decision tree …………………………………………..31

3.4.3.1 Decision tree ……………………………………………..…..31

3.4.3.2 Random Tree ……………………………………………..….32

3.4.3.3 Validation Method …………………………………………...33

Chapter 4: Result analysis……………………………………………………...................36-43

4.1 Experimental Results ………………………………………………………….….36

4.2 Discussion of results ……………………………………………………………...40

4.3 Threats to validity .………………………………………………………..……...42

Chapter 5:- Conclusion and Future Work ………………………………………………..44-45

5.1

Conclusions…………………………………………………………….………..445.2

Application of the work……………………………………………………….....455.3

Future Work………………………………………………………….………….45

References ………………………………………………………………………………..46-47

vii

LIST OF TABLES

3.1 Datasets used for experiments …………………………………...…………………..14

3.2 Metrics description …………………..………………………………………………16

3.3 Indicators of software attributes ……………………………………………………..17

3.4 Distributive characteristics of amakihi …….……………………………………..….18

3.5 Distributive characteristics of amberarcher ………………………………………….19

3.6 Distributive characteristics of abbot …………………………………………………20

3.7 Distributive characteristics of Apollo ………………………………………………..21

3.8 Distributive characteristics of avisync ………………………………………………22

3.9 Distributive characteristics of jfreechart ………………………………………….…23

3.10 Distributive characteristics of jgap …………………………………………………24

3.11 Distributive characteristics of jtreeview…………………………………………….25

3.12 Distributive characteristics of barcode4j …………………………………………...26

3.13 Distributive characteristics of jtopen ……………………………………………….27

3.14 Distributive characteristics of jung …………………………………………………28

3.15 Distributive characteristics of geotag ………………………………………………29

4.1 Successful prediction results …………………...……………………………………37

4.2 Rules for successful prediction learnt from DT ……………………………………..39

4.3 Performance of training sets…………………………………………………………40

4.4 Potential predictors for test sets …………………………………………..…………41

viii

LIST OF FIGURES

3.1 Data collection methodology…………………………………………………………11

3.2 Generation of training-test instance from the dataset combination …………………...…35

4.1 Decision Tree …………………………………………………………………………….38

4.2 Potential defect predictors for dataset under study ……………………………………...43

ix

ABSTRACT

Software defect prediction is the process of identification of defects early in the life cycle so

as to optimize the testing resources and reduce maintenance efforts. Defect prediction works

well if sufficient amount of data is available to train the prediction model. However, not

always this is the case. For example, when the software is the first release or the company has

not maintained significant data. In such cases, cross project defect prediction may identify the

defective classes. In this work, we have studied the feasibility of cross project defect

prediction and empirically validated the same. We conducted our experiments on 12 open

source datasets. The prediction model is built using 12 software metrics. After studying the

various train test combinations, we found that cross project defect prediction was feasible in

35 out of 132 cases. The success of prediction is determined via precision, recall and AUC of

the prediction model. We have also analysed 14 descriptive characteristics to construct the

decision tree. The decision tree learnt from this data has 15 rules which describe the

feasibility of successful cross project defect prediction.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 1

INTRODUCTION

1.1 Introduction

A software defect is a disorder in the software system such that the software does not

perform its intended task well or it does not meet its requirements or it does not meet

customer expectations. It is the malfunctioning of the program to produce inappropriate or

unexpected results due to error in the programming or logic. A defect is anything that has to

be corrected in the software product in the developer‘s perspective. For example, the user

expects that clicking of a button on a webpage should perform a specific task and clicking the

button does nothing, then this is a software defect.

Defects may be introduced in the system due to specification errors, design errors or

programming errors. Also, software is prone to change. No matter how brilliantly we design

software, it is liable to change. New features may be added, existing functionalities may be

modified and various other modifications are certain to happen. Unknowingly software

defects are injected into the system by these modifications as well. These errors may lead to

malfunctioning of the system which may lead to severe economic loss or even danger to life.

There are numerous examples of software defects in the past which have made significant loss

of currency or life.

Ariane 5, a giant rocket launched by a European space agency was intended to give

Europe overwhelming supremacy in the commercial space business. The rocket was

destroyed after 39 seconds of its launch due to overflow error. When the guidance system‘s

own computer tried to convert one piece of data the sideways velocity of the rocket from a 64

bit format to a 16 bit format; the number was too big, and an overflow error resulted after 36.7

seconds. When the guidance system shutdown, it passed control to an identical, redundant

unit, which was there to provide backup in case of just such a failure. Unfortunately, the

second unit had also failed in the identical manner a few milliseconds before.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 2

The Patriot missile which was first used in the Gulf war failed several times including

one that killed 28 soldiers in Dahran, Saudi Arabia. The reason was a small timing error in the

system‘s clock which when accumulated after 14 hours; the tracking system was no longer

accurate. In the Dhahran attack, the system had been operating for more than 100 hours.

The Y2K problem in the commencement of twentieth century was simply the

ignorance about the adequacy of using only last two digits of the year. This created problems

in many systems when the year 2000 was taken as 00 which was unacceptable.

Many companies have experienced failures in their accounting system due to faults in

the software itself. The failures range from producing the wrong information to the whole

system crashing.

 Thus early identification of defects in SDLC is very important to prevent catastrophic

results. The aim of the software development process is to detect and correct errors before it is

delivered to the customers. Defect prediction in software systems focuses on prediction of

fault prone classes early in the software development life cycle. It is a 2- class classification

system, where the aim is to assign each class into one of the two classes, ‗defective‘ or ‗non-

defective‘. The prediction model needs two inputs, software static code attributes or metrics

and previous data. The prediction model is built using regression or machine learning

methods. This helps in near to optimal allocation of testing and maintenance resources. Defect

prediction works well if a large amount of data is available to train the prediction model.

However, if the data is not preserved or if we are dealing with the first release of the software

system, no training data is available. Thus defect prediction based on historical data of same

project is not always feasible.

1.2 Motivation of the work:

Cross project defect prediction is the process of predicting defects in software systems

using historical data of other projects [1]. This is important because sufficient data is not

always available to train the prediction model from the same project. Also technologies

change rapidly between different releases of the software systems. Hence the prediction may

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 3

not be very accurate in some cases with the training data of a previous release. Hence the need

for cross project defect prediction arises. Very few Studies are available in literature for cross

project defect prediction and they show that this is a serious challenging task. Cross project

defect prediction can help to optimize the allocation of testing resources from the first release

of the project. It may also minimize corrective maintenance efforts in software systems. Thus

cross project defect prediction is very useful in optimizing testing resources and minimizing

errors. In our work, we have attempted to study the feasibility of cross project defect

prediction using open source software systems. The prediction model is build using logistic

regression.

1.3 Aim of the work:

In our work we have tried to empirically find the answers to the following severe research

problems

1. Is the defect data of one project likely to derive defects of another project

efficiently?

Various studies in the literature show that historical data from software repositories

can be used in prediction of software defects for upcoming releases, but availability of

this past defect data is not always possible. In this study, we have empirically

validated that defect data from other projects can be used to identify the defective

classes.

2. Are the characteristics of datasets useful to identify potential defect predictors?

Cross project defect prediction is feasible in some cases, but this is not always

possible. The major challenge in this field is how to identify the scenarios where cross

project defect prediction is applicable. One solution to this problem given by

Zimmerman [1] in his work is to study the relationship between the characteristics of

the training and test set. In this work, we have studied 14 characteristics of software

projects and illustrated this relationship with the help of decision tree where the

characteristics determine the potential predictors.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 4

3. What are the acceptable criteria for successful cross project defect prediction?

There are numerous studies in literature in the area of software defect prediction. The

prediction model is build using statistical or machine learning methods and the

efficiency of the model is evaluated using various measures as sensitivity, specificity,

precision, recall, AUC etc. analyzing the various studies, we have built the model

using logistic regression and chosen appropriate cut off values of precision, recall and

AUC to accept or reject the model.

1.4 Organization of the thesis:

This thesis report is divided into different chapters. To start with, after abstract we

have the first chapter which is introduction. It defines the problem with the software systems

and the impact of these problems on economics and human life. The importance of early

defect prediction is explained in this section. We also broadly describe the defect prediction

process which is traditionally used and the problems associated with the same. We have

descried the cross project defect prediction process and discussed the need for the same.

 Chapter 2 is the related work in the context of cross project defect prediction.

Numerous studies are present in literature for defect prediction model trained from previous

release of the same project, but very few cross project studies have been done in literature.

This section describes the cross project prediction model proposed by Zimmermann et al [1].

We have also described the empirical validation and extension of Zimmermann et al‘s work

by He et al [8]. Ma et al. have proposed a novel learning algorithm ‗Transfer Naïve Bayes‘ for

cross company defect prediction [9]. We have summarized their work in this section of the

thesis.

Chapter 3 explains the ―Research Methodologies‖ that are used in this project. We

have explained the underlying concept behind each and every technology that we have used in

our project in this chapter. It demonstrates the relevance of every technology why it has been

used in the project and also discussed how these techniques have been applied in our project.

The data collection process is done with the help of CMS tool [2]. The procedure is explained

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 5

in detail in this section of the thesis. Then we have explained the validation process of cross

project defect prediction and the process of decision tree construction in this section of the

thesis.

 Following this we have chapter 4, ―Result Analysis‖ that describes the

implementation section of the project as well as the cross project prediction results. We have

shown the acceptance criteria of each cross project model and also the decision tree which is

learnt from data.

At last, in the last chapter, i.e. chapter 6 we provide the conclusion and related future

work scopes on this project which could be taken as a subject to be worked upon. We have

also discussed the threats to validity of our project in this section of our thesis.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 6

RELATED WORK

Numerous studies are available in literature in the area of software defect prediction.

The aim of most of them is to study the feasibility of defect prediction from the historical data

of same project. Prediction models are built using the statistical and machine learning

methods. Radjenovic et al. have done a systematic literature review for software fault

prediction models in their work [3]. In this work, the authors have searched seven digital

libraries to identify the most commonly used set of software metrics in software fault

proneness prediction. This paper aims to identify software metrics and assess their

applicability in software fault prediction. The authors investigated the influence of context on

metrics selection and performance. This systematic literature review includes 106 papers

published between 1991 and 2011. The selected papers are classified according to metrics and

context properties. The results indicate that Object-oriented metrics (49%) were used nearly

twice as often compared to traditional source code metrics (27%) or process metrics (24%).

Chidamber and Kemerers (CK) object-oriented metrics were most frequently used. According

to the selected studies there are significant differences between the metrics used in fault

prediction performance. Object-oriented and process metrics have been reported to be more

successful in finding faults compared to traditional size and complexity metrics. Process

metrics seem to be better at predicting post-release faults compared to any static code metrics.

Gray and MacDonell have also compared the various techniques for software fault

prediction models. The authors have discussed the inherent limitations of the techniques used

in defect prediction models. The use of regression analysis to derive predictive equations for

software metrics has been complemented by increasing numbers of studies using non-

traditional methods, such as neural networks, fuzzy logic models, case-based reasoning

systems, and regression trees. There has also been an increasing level of sophistication in the

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 7

regression-based techniques used, including robust regression methods, factor analysis, and

more effective validation procedures. This paper examines the implications of using these

methods and provides some recommendations as to when they may be appropriate. A

comparison of the various techniques is also made in terms of their modeling capabilities with

specific reference to software metrics [4].

Careful attribute selection is very important for the success of a fault prediction model.

The authors have investigated the impact of attribute selection on naïve bayes based fault

prediction model in their work. This research analyzes the impact of attribute selection on

Naive Bayes (NB) based prediction model. the results are based on Eclipse and KC1 bug

database. On the basis of experimental results, the authors show that careful combination of

attribute selection and machine learning apparently useful and, on the Eclipse data set ,yield

reasonable good performance with 88% probability of detection and 49% false alarm rate [5].

Very few studies are available in the area of cross project defect prediction. Turhan et

al. have investigated the application of cross company defect data to build prediction model

using static code features [10]. They have conducted their experiments on seven NASA and

three SOFTLAB datasets.

Zimmermann et al. have studied the feasibility of cross project defect prediction and

validated it using several versions of open source software. They have conducted their study

on apache tomcat, apache Derby, Eclipse, Firefox, Direct-X, IIS, Printing, Windows

Clustering, Windows File system, SQL Server 2005 and Windows Kernel [1]. The results

indicate that the relationship of characteristics between the projects permits cross project

defect prediction in some cases. This relationship is analyzed with the help of decision trees

that can provide early estimates for precision, recall, and accuracy before a prediction is

attempted.. Their results indicate that simply using models from projects in the same domain

or with the same process does not lead to accurate predictions. The authors identified factors

that do influence the success of cross-project predictions.

He et al. have also empirically validated cross project defect prediction using defect

data from PROMISE repository [8]. They have conducted the experiment on 34 releases of 10

open source projects. This paper investigates defect predictions in the cross-project context

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 8

focusing on the selection of training data. Major conclusions from their experiments include:

(1) in the best cases, training data from other projects can provide better prediction results

than training data from the same project; (2) the prediction results obtained using training data

from other projects meet our criteria for acceptance on the average level, defects in 18 out of

34 cases were predicted at a Recall greater than 70% and a Precision greater than 50%; (3)

results of cross-project defect predictions are related with the distributional characteristics of

data sets which are valuable for training data selection. they further propose an approach to

automatically select suitable training data for projects without historical data. Prediction

results provided by the training data selected by using our approach are comparable with

those provided by training data from the same project.

Ma et al. have proposed a novel learning algorithm ‗Transfer Naïve Bayes‘ for cross

company defect prediction [9]. They have exploited all the cross company data in training the

model. The results are validated on NASA datasets and Turkish local software datasets. It is

difficult to employ defect prediction models which are built on the within-company data in

practice, because of the lack of these local data repositories. Transfer learning is very useful in

cases when distributions of training and test instances differ, but it is appropriate for cross-

company software defect prediction. In this paper, the authors consider the cross-company

defect prediction scenario where source and target data are drawn from different companies.

In order to harness cross company data, they try to exploit the transfer learning method to

build faster and highly effective prediction model.Unlike the prior works selecting training

data which are similar from the test data, they proposed a novel algorithm called Transfer

Naive Bayes (TNB), by using the information of all the proper features in training data. Their

solution estimates the distribution of the test data, and transfers cross-company data

information into the weights of the training data. On these weighted data, the defect prediction

model is built. This article presents a theoretical analysis for the comparative methods, and

shows the experiment results on the data sets from different organizations. It indicates that

TNB is more accurate in terms of AUC (The area under the receiver operating characteristic

curve), within less runtime than the state of the art methods. It is concluded that when there

are too few local training data to train good classifiers, the useful knowledge from different-

distribution training data on feature level may help. They are optimistic that transfer learning

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 9

method can guide optimal resource allocation strategies, which may reduce software testing

cost and increase effectiveness of software testing process.

From this study we observed that cross project defect prediction is feasible with

careful selection of code quality features. The relationship among the various characteristics

of the datasets should be carefully analyzed to choose the potential defect predictors. We have

attempted to extend this study by empirical validation of cross project defect data using defect

data of twelve open source software and twelve Chidamber and Kemerer metrics [6].The

prediction model is build using logistic regression.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 10

RESEARCH METHODOLOGY

3.1 Data Collection

We have analyzed the logs of latest version for software to identify the faulty classes.

We have developed a tool, Configuration Management System (CMS) in java language to

fetch these logs [2]. CMS offers features to analyze the changes amongst two versions of

software as well as fetch logs from software project repositories and process them to obtain

bug count. In this study we have used CMS to obtain faulty classes only. Figure 3.1 explains

the data collection method of CMS.

3.1.1 Source code checkout: the first step in data collection process is to obtain the

source code from the remote repository. For this, we create a local copy of the software. We

connect to the CVS repository of the software by logging in into the system and then

download the source code on our local machine. This is done with the help of CVS

―checkout‖ command.

3.1.2 Extraction of bugs: After we make a local repository for the code, we can

request the logs using ―log‖ command. The server replies with the software logs in response

to this command, which is a huge file. We apply text mining on this file and search for text

pattern ―bug‖ and ―fix‖ in the logs. If any of the two keywords is found, the class is assumed

to be faulty. We repeat the process for each file in the source code to identify all the faulty

classes in the software.

3.1.3 Metrics calculation: We obtain the metrics for software with the help of

―Understand‖ tool. This tool calculates the object oriented metrics for each class. We have

calculated seven object oriented metrics for software.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 11

3.1.4 Preparation of dataset: we integrate the metric and bug report to obtain the

dataset. Preprocessing is done to remove the unnecessary data points. Now we apply logistic

regression on the collected data to build the prediction model.

Fig.3.1. Data collection methodology

We have used 12 software for our study from sourceforge.net . These datasets vary in

domain of application, size and percentage of faulty classes, while the programming language

of all datasets is java. Tale 3.1 lists the programming language, version used for our

experiments, and the count and percentage of faulty classes for all software under study.

 Amakihi: Amakihi supports the software testing activity of SDLC by helping the

software developers in automation of test scripts. It is inspired from the software unit

testing tools [11]. It ensures interaction of all interfaces with each other for thorough

integration testing. It consists of 98 classes where 44 are faulty. The size of the

software is 8 KLOC.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 12

 Amber archer: Amber archer is a java class library to support corporate software

development process. It helps in building UI, processing XML files, pooling, caching

etc [12]. It consists of 693 java files with 9.7% of faulty classes. the size of the

software is 29 KLOC.

 Abbot: Abbot is a java framework that is used to test UI for java applications. It can be

used with scripts as well as compiled code. It facilitates to launch, explore and control

an application [13]. It consists of 330 java classes out of which 46.1% classes are

faulty and the size of the software is 27 KLOC.

 Apollo: Project Apollo is a data migration framework. It provides an editor and a

compiler for data migration purpose for software systems. It consists of 292 java

classes out of which 58 are faulty [14]. The size of the software is 20 KLOC.

 Avisync: Avisync is a utility developed in java language which is used to fix

synchronization problems in audio/video while playing AVI files [15]. It is also small

software with 67 classes with 37.3 % of faulty classes having one or more faults. The

size of this software is only 3 KLOC and it is the smallest software under study.

 Jfreechart: Jfreechart is a chart library that can be used with java programs. It includes

various representations of charts e.g. pie charts, bar chart, histograms, gantt charts etc

[16]. It is developed using java and we have used the version 1.0.0. It consists of 689

classes out of which 59.2 % classes contain one or more faults. It is a relatively larger

software with the size of 87 KLOC.

 Jgap: Jgap is a genetic programming component available as a java framework. It is

used to design solutions based on evolutionary principles. It is developed in java

language. It is user friendly and highly modular software. It consists of 173 classes out

of which 35.3% (61) classes are having one or more than one faults [17]. The size of

the software is 12 KLOC.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 13

 Jtreeview: Jtreeview is a cross platform visualization tool which is used for

visualization of gene expression data. It is developed in java language [18]. We have

studied version 1.0.0 of this software for our study and 184 out of 405 classes (45.4%)

are found faulty and the size of the software is 40 KLOC.

 Barcode4j: Barcode4j is available under the Apache license v2.0. It is a flexible

generator of barcodes. We have used version 1.0 of this software for our experiments

which consists of 170 classes out of which 31 classes had one or more than one faults

[19]. The size of the software is 11 KLOC.

 Jtopen: it is a set of lightweight classes appropriate to be used on mobile devices. It

supports the java classes to connect to IBM I, DDM access, basic JDBC access,

command call, program call access, etc [20]. We have used v1.0 of this software for

our study which consists of 1527 classes out of which 27.9% classes are faulty. This is

the largest software under study with the size of 231 KLOC.

 Jung: JUNG provides a common and extendible language for the modeling, analysis,

and visualization of data that can be represented as a graph or network. We have

performed our experiments on JUNGv1.3 which consists of 51 faulty classes out of

149 [21]. The size of the software is 10 KLOC.

 Geotag: it is a portable; GUI based intelligent matching software system. It allows us

to match date time information from photos with the location information from a map

or GPS unit. We have used v 0.07 of this software for our study which consists of 628

classes, 89 of which are faulty [22]. The size of this software is 45 KLOC.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 14

Dataset Program

ming

language

Version Total

LOC

No. of

faulty

classes

No. of

non-

faulty

classes

Total no

of classes

Percenta

ge of

faulty

classes

Amakihi Java 1.0alpha1 8059 44 54 98 44.9

Amber

archer

Java 1.1 29316 67 626 693 9.7

Abbot Java 1.0.0rc1 27235 152 178 330 46.1

Apollo Java 0.1 20281 58 234 292 19.9

Avisync Java 1.0 3096 25 42 67 37.3

Jfreecha

rt

Java 1.0.0 87189 408 281 689 59.2

Jgap Java 3.4.4 12847 61 112 173 35.3

Jtreevie

w

Java 1.0.0 40278 184 221 405 45.4

Barcode4

j

Java 1.0 11161 31 139 170 18.2

Jtopen Java 1.0 231246 426 1101 1527 27.9

Jung Java 1.3 10164 51 98 149 34.2

Geotag Java 0.07 45246 89 539 628 14.2

Table 3.1: datasets used for experiments

3.2 Prediction model

The prediction model is build using the logistic regression technique. Logistic

regression is a type of probabilistic statistical classification model, which is used to predict a

binary response from a binary predictor based on one or more predictor variables. It measures

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 15

the relationship between the independent variable and the categorical independent variable.

"Logistic regression" is used to refer specifically to the problem in which the dependent

variable is binary—that is, the number of available categories is two—while problems with

more than two categories are referred to as multinomial logistic regression or, if the multiple

categories are ordered, as ordered logistic regression. Logistic regression measures the

relationship between a categorical dependent variable and one or more independent variables,

which are usually (but not necessarily) continuous, by using probability scores as the

predicted values of the dependent variable. Logistic regression can be binomial or

multinomial. Binomial or binary logistic regression deals with situations in which the

observed outcome for a dependent variable can have only two possible types (for example,

"dead" vs. "alive"). Multinomial logistic regression deals with situations where the outcome

can have three or more possible types (e.g., "disease A" vs. "disease B" vs. "disease C"). In

binary logistic regression, the outcome is usually coded as "0" or "1", as this leads to the most

straightforward interpretation. If a particular observed outcome for the dependent variable is

the noteworthy possible outcome (referred to as a "success" or a "case") it is usually coded as

"1" and the contrary outcome (referred to as a "failure" or a "non-case") as "0". Logistic

regression is used to predict the odds of being a case based on the values of the independent

variables (predictors). The odds are defined as the probability that a particular outcome is a

case divided by the probability that it is a non-case [7].

We have studied various object oriented software metrics and selected 12 of them to

build our prediction model. Table 3.2 lists these software metrics. These metrics are the

independent variables to construct the prediction variable and the binary dependent variable is

fault proneness.

http://en.wikipedia.org/wiki/Binary_variable
http://en.wikipedia.org/wiki/Multinomial_logistic_regression
http://en.wikipedia.org/wiki/Level_of_measurement#Ordinal_type
http://en.wikipedia.org/wiki/Ordered_logistic_regression
http://en.wikipedia.org/wiki/Level_of_measurement#Interval_scale
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Multinomial_logit
http://en.wikipedia.org/wiki/Odds
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Independent_variable

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 16

Metrics Studied Description

AVG_CC(Average

Cyclomatic Complexity)

There are a large number of functions or program modules in a project.

The average of all such Cyclomatic Complexities is known as average

Cyclomatic Complexity.

CBO(Coupling between

objects)

CBO is measured only for object oriented systems and it is defined as

the number of other classes that a class is coupled to.

NOC(Number of

children)

It is the count of number of immediate subclasses that inherit the class.

This gives an idea about the influence of the class on software design.

NIM(Number of instance

methods)

This is the count of total number of methods defined in a class that are

only accessible through an object of that class.

NIV(Number of instance

variables)

This is the count of total number of variables defined in a class that are

only accessible through an object of that class.

RFC(Response for a

class)

The response set (RS) of a class is a set of methods that can potentially

be executed in response to a message received by an object of that

class.

NPM(Number of public

methods)

It is the count of total public methods in a class.

LOC(Lines of code) The total number of executable lines of code excluding blank lines and

comments.

MAX_CC(Maximum

Cyclomatic Complexity)

 It is the maximum cyclomatic complexity possessed by any function

or program in the entire software. This gives the information about

most complex part of the project.

DIT(Depth of inheritance

Tree)

DIT is the path length from root node to the farthest leaf node of the

inheritance tree. The higher value of DIT denotes a greater number of

classes that it inherits, making it complex to predict the class behavior.

LCOM(Lack of cohesion

amongst method)

It is the difference between method not having common attribute usage

and methods having common attribute usage.

WMC(Weighted methods

per class)

WMC is defined as the weighted sum of the complexities of all the

methods defined in a class.

Table 3.2: metrics description

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 17

3.3 Descriptive statistics

We have calculated 14 indicators to describe the distribution of each metric in a

training/test set. These indicators and their description are listed in table 3.3. We combine

these indicators with the metrics to make a set of (14 indicators * 12 metrics) 168 metric

indicators. These 168 indicators describe the distributional characteristics of the training and

test sets under study. We have listed these characteristics in table 3.4-3.15 for all the datasets.

Indicator Description

Mean The average value of the data points. It is given as µ=

∑

Median The middle value in the sorted dataset.

Mode The value with maximum occurrence in the dataset.

Std. Deviation It measures the distance of data points from the mean. It is given as

√
∑

Variance It is a measure of variability and computed by squaring the std. deviation.

Skewness It is the measure of asymmetry in the dataset.

Kurtosis It is the measure of peakedness in the dataset.

Minimum The minimum value among all the data points.

Maximum The maximum value among all the data points.

Range The numeric difference between the minimum and maximum.

First Quartile The first quartile is obtained by computing the median of the dataset and then

re-computing the median of the lower half.

Third Quartile The third quartile is obtained by computing the median of the dataset and then

re-computing the median of the upper half.

Interquartile

range

The difference between the third quartile and the first quartile.

Coff. Of variation It is given as the ratio of std. deviation to the arithmetic mean.

Table 3.3: indicators of software attributes

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 18

Following below are the lists of all the distributive characteristics by different datasets. Let us

start with Amakihi.

Ama

kihi

Mean Medi

an

Mode Std.

Devia

tion

Varia

nce_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

range

Coff.

Of

varia

tion

AVG

_CC

1.79 1.00 1.00 1.71 2.93 3.57 15.76 11.00 1.00 12.00 1.00 2.00 1.00 0.96

CBO 2.05 1.00 0.00 2.97 8.83 3.40 15.60 18.00 0.00 18.00 0.00 3.00 3.00 1.45

NOC 0.30 0.00 0.00 0.85 0.73 3.27 11.51 5.00 0.00 5.00 0.00 0.00 0.00 2.88

NIM 6.13 4.00 1.00 7.33 53.77 3.88 23.39 57.00 0.00 57.00 1.00 9.00 8.00 1.20

NIV 1.46 1.00 0.00 2.30 5.30 2.30 5.31 11.00 0.00 11.00 0.00 2.00 2.00 1.58

RFC 9.20 8.00 4.00 7.92 62.76 2.99 16.33 59.00 1.00 60.00 4.00 13.00 9.00 0.86

NPM 0.21 0.00 0.00 0.56 0.31 2.89 8.54 3.00 0.00 3.00 0.00 0.00 0.00 2.62

LOC 82.23 44.50 5.00 147.1

0

2163

8.02

5.86 44.07 1263.

00

5.00 1268.

00

17.00 83.00 66.00 1.79

MAX

_CC

3.80 2.00 1.00 4.25 18.10 2.47 7.72 24.00 1.00 25.00 1.00 5.00 4.00 1.12

DIT 1.72 2.00 2.00 0.69 0.47 0.81 1.03 3.00 1.00 4.00 1.00 2.00 1.00 0.40

LCO

M

51.06 64.00 0.00 35.53 1262.

12

-0.50 -1.37 100.0

0

0.00 100.0

0

0.00 80.00 80.00 0.70

WM

C

13.81 9.00 4.00 15.28 233.4

4

2.17 5.11 73.00 1.00 74.00 4.00 18.00 14.00 1.11

Table 3.4: Distributive characteristics of amakihi

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 19

Amb

erarc

her

Mean Medi

an

Mode Std.

Devia

tion

Varia

nce_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Third

Quar

tile

Inter

quart

ile

range

Coff.

Of

varia

tion

AVG

_CC

1.23 1.00 1.00 0.75 0.56 3.02 13.77 7.00 0.00 7.00 1.00 1.00 0.00 0.61

CBO 2.62 2.00 0.00 3.20 10.23 2.06 5.37 20.00 0.00 20.00 0.00 4.00 4.00 1.22

NOC 0.45 0.00 0.00 2.03 4.13 9.26 109.8

8

30.00 0.00 30.00 0.00 0.00 0.00 4.53

NIM 0.31 0.00 0.00 1.26 1.60 14.39 288.8

5

27.00 0.00 27.00 0.00 0.00 0.00 4.08

NIV 0.39 0.00 0.00 1.37 1.88 5.91 41.61 14.00 0.00 14.00 0.00 0.00 0.00 3.54

RFC 10.25 8.00 2.00 10.88 118.3

8

2.80 10.53 76.00 0.00 76.00 3.00 13.00 10.00 1.06

NPM 0.57 0.00 0.00 1.54 2.38 5.01 34.66 16.00 0.00 16.00 0.00 0.00 0.00 2.72

LOC 42.30 23.00 11.00 50.84 2584.

21

2.79 11.03 401.0

0

1.00 402.0

0

11.00 53.00 42.00 1.20

MAX

_CC

2.39 1.00 1.00 2.43 5.93 2.91 11.38 20.00 0.00 20.00 1.00 3.00 2.00 1.02

DIT 1.91 2.00 1.00 0.95 0.91 0.70 -0.45 4.00 1.00 5.00 1.00 3.00 2.00 0.50

LCO

M

30.80 16.00 0.00 33.77 1140.

40

0.44 -1.43 100.0

0

0.00 100.0

0

0.00 64.00 64.00 1.10

WM

C

8.35 5.00 2.00 9.94 98.73 2.77 10.89 83.00 0.00 83.00 2.00 10.00 8.00 1.19

Table 3.5: Distributive characteristics of amberarcher

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 20

Abbot

Me

an

Medi

an

Mode Std.

Devia

tion

Varia

nce_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

range

Coff.

Of

varia

tion

AVG_

CC

1.75 1.00 1.00 1.41 1.98 2.81 10.97 10.00 0.00 10.00 1.00 2.00 1.00 0.81

CBO 3.22 1.00 1.00 7.16 51.24 11.40 169.1

6

113.0

0

0.00 113.0

0

1.00 4.00 3.00 2.22

NOC 0.56 0.00 0.00 2.78 7.74 12.48 185.0

8

44.00 0.00 44.00 0.00 0.00 0.00 4.96

NIM 6.26 2.00 2.00 11.13 123.8

2

5.36 38.42 112.0

0

0.00 112.0

0

2.00 7.00 5.00 1.78

NIV 1.76 0.00 0.00 4.34 18.80 6.89 64.39 52.00 0.00 52.00 0.00 2.00 2.00 2.47

RFC 34.7

3

6.00 5.00 59.53 3544.

07

2.18 3.45 221.0

0

0.00 221.0

0

3.00 35.25 32.25 1.71

NPM 1.05 0.00 0.00 5.23 27.34 13.18 204.5

5

85.00 0.00 85.00 0.00 1.00 1.00 4.99

LOC 82.5

3

25.50 5.00 203.8

2

4154

3.89

7.94 84.96 2655.

00

1.00 2656.

00

9.00 83.00 74.00 2.47

MAX_

CC

3.96 2.00 1.00 4.60 21.19 3.30 15.58 37.00 0.00 37.00 1.00 5.00 4.00 1.16

DIT 2.47 2.00 2.00 1.30 1.69 0.81 -0.04 5.00 1.00 6.00 1.00 3.00 2.00 0.53

LCOM 30.4

4

0.00 0.00 36.14 1305.

94

0.55 -1.42 98.00 0.00 98.00 0.00 66.00 66.00 1.19

WMC 16.6

3

6.00 2.00 38.13 1453.

52

6.25 47.94 369.0

0

0.00 369.0

0

2.00 15.25 13.25 2.29

Table 3.6:Distributive characteristics of abbot

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 21

apoll

o

Mean Medi

an

Mode Std.

Devia

tion

Varia

nce_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

range

Coff.

Of

varia

tion

AVG

_CC

1.73 1.00 1.00 1.65 2.72 3.89 18.81 13.00 0.00 13.00 1.00 2.00 1.00 0.95

CBO 4.85 4.00 0.00 5.02 25.17 2.05 7.12 35.00 0.00 35.00 1.00 8.00 7.00 1.03

NOC 0.60 0.00 0.00 3.37 11.35 9.58 107.8

2

44.00 0.00 44.00 0.00 0.00 0.00 5.62

NIM 6.43 5.00 5.00 7.44 55.28 5.00 40.18 82.00 0.00 82.00 3.00 8.00 5.00 1.16

NIV 2.79 2.00 0.00 3.48 12.14 2.75 13.62 30.00 0.00 30.00 0.00 4.00 4.00 1.25

RFC 13.15 9.00 1a 11.88 141.0

3

1.59 4.09 83.00 0.00 83.00 4.00 20.50 16.50 0.90

NPM 0.21 0.00 0.00 0.78 0.61 5.06 30.31 7.00 0.00 7.00 0.00 0.00 0.00 3.80

LOC 69.46 39.50 17.00 97.06 9421.

09

4.84 36.28 1022.

00

2.00 1024.

00

17.25 82.75 65.50 1.40

MAX

_CC

4.31 3.00 1.00 5.35 28.60 3.99 22.07 48.00 0.00 48.00 1.00 5.00 4.00 1.24

DIT 1.90 2.00 2.00 0.81 0.65 0.78 0.97 4.00 1.00 5.00 1.00 2.00 1.00 0.42

LCO

M

39.73 44.00 0.00 32.20 1036.

71

-0.03 -1.43 100.0

0

0.00 100.0

0

0.00 68.00 68.00 0.81

WM

C

13.82 9.00 5.00 19.47 379.1

0

5.85 53.45 229.0

0

0.00 229.0

0

5.00 16.00 11.00 1.41

Table 3.7: Distributive characteristics of Apollo

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 22

avisy

nc

Mean Medi

an

Mode Std.

Devia

tion

Varia

nce_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

range

Coff.

Of

varia

tion

AVG

_CC

1.13 1.00 1.00 0.42 0.18 2.09 6.36 3.00 0.00 3.00 1.00 1.00 0.00 0.37

CBO 3.07 1.00 0.00 4.75 22.52 2.04 3.97 21.00 0.00 21.00 0.00 4.00 4.00 1.54

NOC 0.61 0.00 0.00 1.53 2.33 3.37 13.97 9.00 0.00 9.00 0.00 0.00 0.00 2.50

NIM 7.69 6.00 1.00 7.74 59.85 1.32 1.17 32.00 0.00 32.00 1.00 11.00 10.00 1.01

NIV 2.06 1.00 0.00 2.81 7.88 2.15 5.61 14.00 0.00 14.00 0.00 3.00 3.00 1.36

RFC 14.93 8.00 5.00 12.76 162.8

9

0.86 -0.59 44.00 0.00 44.00 5.00 24.00 19.00 0.86

NPM 1.57 0.00 0.00 4.12 17.01 3.80 15.24 23.00 0.00 23.00 0.00 2.00 2.00 2.63

LOC 46.21 32.00 5.00 55.89 3123.

99

2.17 4.81 247.0

0

4.00 251.0

0

5.00 61.00 56.00 1.21

MAX

_CC

2.28 1.00 1.00 2.52 6.33 3.45 17.01 17.00 0.00 17.00 1.00 3.00 2.00 1.10

DIT 2.36 2.00 1.00 1.35 1.81 0.54 -1.02 4.00 1.00 5.00 1.00 4.00 3.00 0.57

LCO

M

68.04 81.00 100.0

0

34.97 1222.

74

-1.04 -0.24 100.0

0

0.00 100.0

0

57.00 100.0

0

43.00 0.51

WM

C

11.07 7.00 1.00 12.38 153.2

8

1.78 3.29 58.00 0.00 58.00 1.00 15.00 14.00 1.12

Table 3.8: Distributive characteristics of avisync

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 23

jfreec

hart

Mean Medi

an

Mode Std.

Devia

tion

Varia

nce_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

range

Coff.

Of

varia

tion

AVG

_CC

1.45 1.00 1.00 0.93 0.86 3.18 14.34 8.00 0.00 8.00 1.00 2.00 1.00 0.64

CBO 4.51 2.00 1.00 6.36 40.47 3.87 31.87 81.00 0.00 81.00 1.00 6.00 5.00 1.41

NOC 0.31 0.00 0.00 1.33 1.76 6.25 45.75 14.00 0.00 14.00 0.00 0.00 0.00 4.33

NIM 9.93 5.00 4.00 15.17 230.1

4

5.52 43.64 172.0

0

0.00 172.0

0

4.00 11.00 7.00 1.53

NIV 2.23 1.00 0.00 4.87 23.74 5.12 35.08 46.00 0.00 46.00 0.00 2.50 2.50 2.19

RFC 33.82 7.00 5.00 62.26 3876.

49

2.51 5.05 264.0

0

1.00 265.0

0

5.00 27.00 22.00 1.84

NPM 0.49 0.00 0.00 1.04 1.08 2.55 7.54 7.00 0.00 7.00 0.00 0.00 0.00 2.11

LOC 126.5

4

74.00 5.00 186.0

1

3460

0.39

4.77 33.46 2148.

00

4.00 2152.

00

42.00 133.0

0

91.00 1.47

MAX

_CC

5.29 2.00 2.00 6.54 42.75 2.98 11.56 51.00 0.00 51.00 2.00 6.00 4.00 1.23

DIT 2.03 2.00 2.00 0.88 0.78 1.35 2.60 5.00 1.00 6.00 2.00 2.00 0.00 0.43

LCO

M

38.90 41.00 0.00 37.86 1433.

32

0.14 -1.68 100.0

0

0.00 100.0

0

0.00 75.00 75.00 0.97

WM

C

21.86 9.00 8.00 38.07 1449.

36

6.00 53.51 489.0

0

0.00 489.0

0

6.00 22.00 16.00 1.74

Table 3.9: Distributive characteristics of jfreechart

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 24

jgap

Mea

n

Medi

an

Mod

e

Std.

Devi

ation

Vari

ance

_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

rang

e

Coff.

Of

varia

tion

AVG

_CC

1.31 1.00 1.00 0.73 0.53 2.03 7.06 5.00 0.00 5.00 1.00 2.00 1.00 0.56

CBO 4.18 4.00 5.00 4.36 18.98 3.16 16.04 34.00 0.00 34.00 1.00 5.00 4.00 1.04

NOC 0.61 0.00 0.00 3.70 13.70 8.77 82.26 39.00 0.00 39.00 0.00 0.00 0.00 6.04

NIM 8.80 7.00 7.00 9.41 88.51 3.14 13.46 65.00 0.00 65.00 3.00 10.00 7.00 1.07

NIV 2.31 1.00 0.00 3.60 12.95 3.08 12.67 25.00 0.00 25.00 0.00 3.00 3.00 1.56

RFC 31.92 12.00 2a 31.87 1015.

67

0.44 -1.70 83.00 0.00 83.00 4.00 71.00 67.00 1.00

NPM 0.17 0.00 0.00 0.77 0.59 7.34 65.90 8.00 0.00 8.00 0.00 0.00 0.00 4.60

LOC 74.26 46.00 36.00 109.8

2

1205

9.72

5.28 36.83 1011.

00

3.00 1014.

00

25.00 77.00 52.00 1.48

MAX

_CC

3.40 2.00 2.00 3.57 12.74 2.98 12.20 26.00 0.00 26.00 1.00 4.00 3.00 1.05

DIT 1.69 1.00 1.00 0.80 0.63 0.62 -1.15 2.00 1.00 3.00 1.00 2.00 1.00 0.47

LCO

M

76.64 84.00 100.0

0

27.02 730.0

5

-1.43 1.74 100.0

0

0.00 100.0

0

64.00 100.0

0

36.00 0.35

WM

C

15.42 10.00 8.00 21.35 455.8

3

4.47 26.14 179.0

0

0.00 179.0

0

5.00 17.00 12.00 1.38

Table 3.10:Distributive characteristics of jgap

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 25

jtree

view

Mea

n

Medi

an

Mod

e

Std.

Devi

ation

Vari

ance

_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quart

ile

rang

e

Coff.

Of

varia

tion

AVG

_CC

1.61 1.00 1.00 1.20 1.44 3.05 12.51 10.00 0.00 10.00 1.00 2.00 1.00 0.75

CBO 3.51 2.00 0.00 4.78 22.84 3.83 24.01 48.00 0.00 48.00 1.00 4.00 3.00 1.36

NOC 0.24 0.00 0.00 0.95 0.90 6.16 51.21 11.00 0.00 11.00 0.00 0.00 0.00 3.92

NIM 8.13 5.00 1.00 9.99 99.76 3.33 17.23 92.00 0.00 92.00 2.00 10.00 8.00 1.23

NIV 3.16 2.00 0.00 4.56 20.83 2.74 9.95 33.00 0.00 33.00 0.00 4.00 4.00 1.44

RFC 13.84 8.00 1.00 18.26 333.4

4

2.71 8.42 104.0

0

0.00 104.0

0

3.00 17.00 14.00 1.32

NPM 0.85 0.00 0.00 1.73 2.99 2.85 9.52 12.00 0.00 12.00 0.00 1.00 1.00 2.03

LOC 99.45 54.00 10a 131.5

2

1729

6.98

3.67 19.68 1153.

00

3.00 1156.

00

27.00 124.5

0

97.50 1.32

MAX

_CC

3.95 3.00 1.00 3.64 13.26 1.76 3.09 20.00 0.00 20.00 1.00 5.00 4.00 0.92

DIT 1.87 2.00 2.00 0.70 0.49 0.70 1.17 4.00 1.00 5.00 1.00 2.00 1.00 0.37

LCO

M

41.39 50.00 0.00 35.01 1225.

38

-0.02 -1.58 100.0

0

0.00 100.0

0

0.00 75.00 75.00 0.85

WM

C

16.02 8.00 1.00 21.06 443.5

0

3.09 12.90 153.0

0

0.00 153.0

0

4.00 20.00 16.00 1.31

Table 3.11: Distributive characteristics of jtreeview

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 26

barcode4j

Mea

n

Med

ian

Mod

e

Std.

Devi

ation

Vari

ance

_

Ske

wnes

s

Kurt

osis

Ran

ge

Mini

mu

m

Max

imu

m

First

Qua

rtile

Thir

d

Qua

rtile

Inter

quar

tile

rang

e

Coff.

Of

vari

ation

AVG_CC 1.79 1.00 1.00 1.27 1.62 2.03 4.50 7.00 1.00 8.00 1.00 2.00 1.00 0.71

CBO 3.05 3.00 0.00 2.72 7.41 0.84 0.02 11.0

0

0.00 11.0

0

1.00 5.00 4.00 0.89

NOC 0.34 0.00 0.00 1.18 1.40 4.96 28.5

2

9.00 0.00 9.00 0.00 0.00 0.00 3.52

NIM 4.77 3.00 1.00 4.56 20.8

2

1.74 3.40 24.0

0

0.00 24.0

0

2.00 6.00 4.00 0.96

NIV 1.10 0.00 0.00 2.16 4.68 2.69 7.98 12.0

0

0.00 12.0

0

0.00 1.00 1.00 1.97

RFC 9.79 7.00 3.00 9.79 95.7

7

1.61 1.91 41.0

0

1.00 42.0

0

3.00 12.0

0

9.00 1.00

NPM 0.84 0.00 0.00 2.05 4.22 3.78 17.7

4

15.0

0

0.00 15.0

0

0.00 1.00 1.00 2.46

LOC 65.6

5

43.0

0

4.00 82.9

8

6885

.97

4.72 34.9

4

788.

00

3.00 791.

00

18.0

0

87.2

5

69.2

5

1.26

MAX_CC 4.42 3.00 1.00 4.64 21.5

5

2.64 10.0

8

32.0

0

1.00 33.0

0

1.00 6.00 5.00 1.05

DIT 1.76 2.00 2.00 0.71 0.50 0.57 -0.09 3.00 1.00 4.00 1.00 2.00 1.00 0.40

LCOM 31.5

5

0.00 0.00 37.1

4

1379

.04

0.49 -1.55 96.0

0

0.00 96.0

0

0.00 75.0

0

75.0

0

1.18

WMC 12.1

7

7.00 1.00 13.5

7

184.

11

2.37 6.99 77.0

0

1.00 78.0

0

3.00 17.0

0

14.0

0

1.11

Table 3.12: Distributive characteristics of barcode4j

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 27

jtopen

Mea

n

Medi

an

Mod

e

Std.

Devi

ation

Vari

ance

_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quar

tile

rang

e

Coff.

Of

varia

tion

AVG_

CC

1.82 1.00 1.00 1.96 3.83 6.69 75.59 34.00 0.00 34.00 1.00 2.00 1.00 1.08

CBO 5.09 3.00 0.00 6.19 38.32 2.51 12.00 72.00 0.00 72.00 1.00 7.00 6.00 1.22

NOC 0.43 0.00 0.00 2.35 5.54 10.68 143.9

9

39.00 0.00 39.00 0.00 0.00 0.00 5.47

NIM 10.09 5.00 1.00 16.02 256.7

3

5.43 46.58 217.0

0

0.00 217.0

0

2.00 11.00 9.00 1.59

NIV 3.59 1.00 0.00 5.56 30.96 3.19 15.51 53.00 0.00 53.00 0.00 5.00 5.00 1.55

RFC 20.80 15.00 7.00 22.42 502.8

2

2.85 13.35 217.0

0

0.00 217.0

0

6.00 27.00 21.00 1.08

NPM 0.88 0.00 0.00 1.74 3.02 4.22 26.22 20.00 0.00 20.00 0.00 1.00 1.00 1.96

LOC 151.4

4

74.00 35.00 248.1

1

6155

9.40

5.18 40.21 3135.

00

1.00 3136.

00

35.00 163.0

0

128.0

0

1.64

MAX_

CC

6.10 4.00 1.00 9.73 94.77 6.00 52.07 135.0

0

0.00 135.0

0

1.00 7.00 6.00 1.60

DIT 2.03 2.00 2.00 0.96 0.92 0.79 0.13 4.00 1.00 5.00 1.00 3.00 2.00 0.47

LCOM 73.63 84.00 100.0

0

28.80 829.2

8

-1.33 0.82 100.0

0

0.00 100.0

0

62.00 95.00 33.00 0.39

WMC 23.73 11.00 1.00 38.90 1513.

07

4.53 29.70 443.0

0

0.00 443.0

0

4.00 28.00 24.00 1.64

Table 3.13: Distributive characteristics of jtopen

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 28

jung

Mea

n

Medi

an

Mod

e

Std.

Devi

ation

Vari

ance

_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quar

tile

rang

e

Coff.

Of

varia

tion

AVG

_CC

1.60 1.00 1.00 1.08 1.17 2.04 4.27 6.00 0.00 6.00 1.00 2.00 1.00 0.68

CBO 5.07 4.00 0.00 4.63 21.43 0.91 0.64 23.00 0.00 23.00 1.00 8.00 7.00 0.91

NOC 0.39 0.00 0.00 0.99 0.98 3.20 11.42 6.00 0.00 6.00 0.00 0.00 0.00 2.55

NIM 7.21 4.00 1.00 7.56 57.15 1.69 2.96 40.00 0.00 40.00 2.00 10.00 8.00 1.05

NIV 2.22 1.00 0.00 2.85 8.15 2.35 6.98 16.00 0.00 16.00 0.00 3.00 3.00 1.28

RFC 17.55 9.00 4.00 18.42 339.3

2

1.15 0.13 66.00 0.00 66.00 4.00 30.50 26.50 1.05

NPM 0.47 0.00 0.00 1.11 1.24 3.11 11.03 7.00 0.00 7.00 0.00 0.00 0.00 2.37

LOC 68.21 40.00 4.00 67.13 4506.

33

1.28 0.87 276.0

0

2.00 278.0

0

16.50 105.5

0

89.00 0.98

MA

X_C

C

3.92 3.00 1.00 3.40 11.55 1.91 5.49 22.00 0.00 22.00 1.00 5.00 4.00 0.87

DIT 1.78 1.00 1.00 1.03 1.05 1.33 1.08 4.00 1.00 5.00 1.00 2.00 1.00 0.58

LCO

M

35.64 35.00 0.00 34.04 1158.

53

0.24 -1.53 100.0

0

0.00 100.0

0

0.00 68.00 68.00 0.95

WM

C

14.68 9.00 1.00 14.61 213.5

6

1.69 3.96 87.00 0.00 87.00 4.00 21.50 17.50 1.00

Table 3.14: Distributive characteristics of jung

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 29

geota

g

Mea

n

Medi

an

Mod

e

Std.

Devi

ation

Vari

ance

_

Skew

ness

Kurt

osis

Rang

e

Mini

mum

Maxi

mum

First

Quar

tile

Thir

d

Quar

tile

Inter

quar

tile

rang

e

Coff.

Of

varia

tion

AVG

_CC

1.82 1.00 1.00 1.72 2.95 2.88 11.86 15.00 0.00 15.00 1.00 2.00 1.00 0.94

CBO 2.74 1.00 1.00 4.20 17.65 4.75 38.19 52.00 0.00 52.00 1.00 3.00 2.00 1.53

NOC 0.34 0.00 0.00 1.64 2.69 8.68 87.32 19.00 0.00 19.00 0.00 0.00 0.00 4.84

NIM 5.38 3.00 1.00 7.65 58.59 4.89 35.79 88.00 0.00 88.00 1.00 6.00 5.00 1.42

NIV 1.67 0.00 0.00 3.25 10.58 4.06 22.49 29.00 0.00 29.00 0.00 2.00 2.00 1.95

RFC 11.47 5.00 2.00 14.39 207.0

6

2.04 4.08 88.00 0.00 88.00 2.00 14.00 12.00 1.25

NPM 0.68 0.00 0.00 1.89 3.57 5.64 44.13 22.00 0.00 22.00 0.00 1.00 1.00 2.80

LOC 72.05 35.00 10.00 127.2

8

1620

0.42

7.76 98.49 2039.

00

2.00 2041.

00

15.00 79.50 64.50 1.77

MA

X_C

C

4.29 2.00 1.00 6.90 47.55 8.23 109.8

7

113.0

0

0.00 113.0

0

1.00 5.00 4.00 1.61

DIT 1.93 2.00 2.00 1.05 1.10 1.64 2.97 5.00 1.00 6.00 1.00 2.00 1.00 0.54

LCO

M

37.39 44.00 0.00 36.23 1312.

27

0.21 -1.54 100.0

0

0.00 100.0

0

0.00 70.00 70.00 0.97

WM

C

12.87 6.00 2.00 22.32 498.2

3

7.83 103.0

0

365.0

0

0.00 365.0

0

3.00 14.00 11.00 1.73

Table 3.15: Distributive characteristics of geotag

3.4 Performance evaluation measures

3.4.1 Precision and Recall

 Precision: precision is the ratio of number of classes that are correctly classified as

faulty and the no. of classes that are classified as faulty.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 30

 Recall: recall is the ratio of the number of classes that are correctly classified to the

total no. of faulty classes.

Precision and recall are predictive parameters of information retrieval system.

Precision is given by the fraction of retrieved instances that are correctly identified out

of the total retrieved instances whereas recall is given by the fraction of relevant

instances that are retrieved out of the total number of instances. Let us elaborate this

using an example. Suppose in a game of quiz contest. A contestant X answers 6

questions out of a total 10 questions. He answers 4 of them correct and 2 incorrect. So,

in this scenario Precision (X) = 4/7 and Recall (X) = 4/10.

From the above concept, we can easily conclude that if in any problem the

Value of Precision is high it implies that most of the information retrieved is relevant

and very less is irrelevant. If the recall is high, then that implies most of the

information was correctly retrieved.

3.4.2 Area under ROC curve

ROC curve is a graphical representation of binary classifiers when we vary the

discriminating threshold points. It is a plot in between the true positives out of the total

actual positives vs. the false positives out of the total actual negatives. There are two

more terminologies related to the above concept.

 Sensitivity: Sensitivity or true positive rate is the fraction of true positives and

total actual positives.

 Specificity: It is the false positive rate or the fraction of false positives and

total actual negatives subtracted from 1.

From here, we deduce that ROC curve is a graphical plot between sensitivity and 1-

specificity at varied discriminating thresholds.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 31

We often use Area Under the Curve (AUC) to denote the results obtained by ROC

curve. AUC is actually the probability that the classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative instance.

3.4.3 Construction of decision tree

Although cross project defect prediction works in several cases, but successful defect

prediction is not feasible in all cases. After studying the various combinations of training and

testing datasets, we have constructed a decision tree to validate the relationship between

feasibility of cross project defect prediction and distributional characteristics of training and

testing datasets.

3.4.3.1 Decision tree

A decision tree is a decision support tool that uses a tree-like graph or model of

decisions and their possible consequences, including chance event outcomes, resource costs,

and utility. It is one way to display an algorithm. A decision tree is a flowchart-like structure

in which internal node represents test on an attribute, each branch represents outcome of test

and each leaf node represents class label (decision taken after computing all attributes). A

path from root to leaf represents classification rules. In decision analysis a decision tree and

the closely related influence diagram is used as a visual and analytical decision support tool,

where the expected values (or expected utility) of competing alternatives are calculated. A

decision tree consists of 3 types of nodes:

1. Decision nodes - commonly represented by squares

2. Chance nodes - represented by circles

3. End nodes - represented by triangles

Decision trees are commonly used in operations research, specifically in decision analysis, to

help identify a strategy most likely to reach a goal. If in practice decisions have to be taken

online with no recall under incomplete knowledge, a decision tree should be paralleled by

a probability model as a best choice model or online selection model algorithm. Another use

of decision trees is as a descriptive means for calculating conditional probabilities.

http://en.wikipedia.org/wiki/Decision_support_system
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Causal_model
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Utility
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Decision_analysis
http://en.wikipedia.org/wiki/Influence_diagram
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Expected_utility
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Decision_analysis
http://en.wikipedia.org/wiki/Goal
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Conditional_probability

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 32

We have conducted our experiments on all possible permutations of the datasets. One

set is chosen as training set which is used to build the prediction model and the remaining 11

sets are test sets. They are chosen one by one to evaluate the model. This process is repeated y

choosing all the datasets as training sets one at a time. Thus we get 132 (12X11)

combinations from 12 datasets. Precision, recall and AUC are analyzed to predict whether

prediction is possible or not. If precision>0.6 and recall> 0.7 and AUC >0.6, then we

assume that prediction is possible, otherwise not. These cut off values are chosen by

analyzing the acceptance criterion of various prediction models that are available in literature.

Choosing these cut off values of precision, recall and AUC, prediction was found possible in

35 out of 132 permutations. Then we used the distributive characteristics of these datasets to

build the decision node of the decision tree and the leaf node tells whether prediction is

possible or not.

To construct the decision tree, we have used weka 3.6.10. Random tree algorithm is

used to construct the decision tree with 10X validation on the dataset.

3.4.3.2 Random Tree:

These are machine learning methods that operate by constructing a multitude

of decision trees at training time and giving output as individual trees. These are basically

used in supervised learning techniques. The training algorithm for Random forest uses

bagging technique. Bagging method is used to generate multiple version of a predictor and to

aggregate this predictor. Bootstrap replicates the learning set that is used to form multiple

version of predictor then after used it as new learning set. Bagging is also known as bootstrap

aggregating that repeatedly samples from a data set according to uniform probability

distribution. Despite its popular usage in many real-world applications, existing research is

mainly concerned with studying unstable learners as the key to ensure the performance gain

of a bagging predictor, with many key factors remaining unclear. For example, it is not clear

when a bagging predictor can outperform a single learner and what is the expected

performance gain when different learning algorithms were used to form a bagging predictor.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 33

However, in random forest the algorithm used differs from bagging slightly. It uses a

modified tree learning algorithm that selects a random subset of the features, at each candidate

split. It provides for the correlation of the trees in an ordinary bootstrap sample.

3.4.3.3 Validation method

Validation is the process of checking whether the statistical machine learning

techniques that we have applied is actually acceptable or not. The validation process can

involve analyzing the goodness of fit of the regression, analyzing whether the results are

random, and checking whether the model's predictive performance deteriorates substantially

when applied to data that were not used in model estimation.

We have applied k-fold cross validation, with k=10.

In k-fold cross-validation, the original sample is randomly partitioned into k equal size

subsamples. Of the k subsamples, a single subsample is retained as the validation data for

testing the model, and the remaining k − 1 sub samples are used as training data. The cross-

validation process is then repeated k times (the folds), with each of the k subsamples used

exactly once as the validation data. The k results from the folds can then be averaged (or

otherwise combined) to produce a single estimation.

The dataset is constructed in the following manner: first we List all the distributive

characteristics for all the metrics for the training data set followed by the distributive

characteristics of test dataset. The last column is a binary variable which tells prediction is

possible for this permutation or not. Assuming we have m distribution characteristics for n

metrics, the total number of columns in the dataset will be 2(m*n) +1. In our case, m=14 and

n=12, hence the total number of columns in the dataset = 337. The number of rows is equal to

the number of permutations of the training and test sets. Thus the size of our dataset is 337 X

132. The procedure for construction of dataset for decision tree is shown in Figure 3.2. The

prediction model is built by training from a software system and tested on all remaining

datasets. The result is marked ―yes‖ if the criterion for successful prediction is satisfied else

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 34

―no‖. Now we calculate distributive characteristics for all metrics of both train and test sets

and combine them with the prediction result as shown in figure 3.2. This gives one row of the

combined dataset. Now we repeat the process for all combinations to complete the dataset for

learning of the decision tree.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 35

F
ig

u
re

 3
.2

:
G

en
er

at
io

n
 o

f
tr

ai
n
in

g
-t

es
t

in
st

an
ce

 f
ro

m
 t

h
e

d
at

as
et

co
m

b
in

at
io

n

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 36

RESULT ANALYSIS

4.1 Experimental Results

We generated 132 train-test instances from the various combinations of the datasets.

Out of these 132 instances, 35 were successful with the values of precision, recall and AUC

greater than the cut off values. Thus we get only 26.5% successful cross project defect

prediction scenarios. The best prediction results are observed with Amberarcher as test set and

various training sets. The highest values of precision recall and AUC are obtained with

barcode4j and Geotag as training sets and Amberarcher as test set. Precision and recall for

both these models is greater than 80% and AUC is greater than 70%. Table 4.1 lists the

successful train-test combinations and corresponding values of precision, recall and AUC.

The size of the decision tree learnt from these train test instances is 75. It consists of

38 leaf nodes out of which 15 are labeled ―yes‖ and 23 are labeled ―no‖. We performed 10 –

fold cross validation and observed precision 74.7%, recall 74.2% and AUC 67.9%. The

decision tree is built using random tree algorithm. Table 4.2 lists the rules derived from the

decision tree for successful cross project defect prediction. The support indicates the no. of

instances which satisfy the rule. The decision tree is shown in figure 4.1. Only 37 out of 336

project characteristics are found significant in the construction of decision tree. 24 of these 37

deciding characteristics are of training set and the rest 13 of test set. These characteristics are

compared with a cut off value at each deciding node and the value decides the class whether

―yes‖ or ―no‖.

Training Testing Precision Recall AUC

Amakihi Amberarcher 0.848 0.791 0.63

Amakihi barcode4j 0.74 0.706 0.721

amberarcher Abbot 0.763 0.7 0.793

amberarcher Apollo 0.743 0.733 0.648

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 37

amberarcher Avisync 0.697 0.701 0.763

amberarcher barcode4j 0.769 0.782 0.775

Abbot Jtreeview 0.738 0.738 0.797

Apollo Amberarcher 0.842 0.886 0.754

Apollo Abbot 0.763 0.7 0.895

Apollo Jgap 0.717 0.705 0.78

Apollo barcode4j 0.769 0.818 0.809

Avisync Amakihi 0.724 0.724 0.754

jfreechart Amberarcher 0.857 0.848 0.656

jfreechart Abbot 0.777 0.776 0.87

jfreechart Jtreeview 0.72 0.721 0.786

Jgap Amberarcher 0.832 0.89 0.335

Jgap Abbot 0.792 0.721 0.713

Jgap Apollo 0.764 0.781 0.713

Jtreeview Abbot 0.811 0.809 0.901

Jtreeview barcode4j 0.797 0.724 0.788

barcode4j Amberarcher 0.86 0.84 0.711

barcode4j Abbot 0.739 0.7 0.826

barcode4j Apollo 0.707 0.709 0.678

barcode4j Avisync 0.708 0.701 0.729

Jung Amberarcher 0.854 0.851 0.62

Jung Apollo 0.755 0.767 0.604

Jung barcode4j 0.82 0.841 0.67

Jung Geotag 0.802 0.841 0.504

Geotag Amberarcher 0.859 0.887 0.709

Geotag Apollo 0.761 0.801 0.673

Geotag barcode4j 0.788 0.824 0.812

amberarcher Geotag 0.781 0.788 0.596

Apollo Geotag 0.797 0.83 0.687

Jgap Geotag 0.776 0.728 0.535

barcode4j Geotag 0.787 0.815 0.708

Table 4.1: successful prediction results

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 38

Figure 4.2: Decision Tree

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 39

RULE SUPPORT

Kurtosis_DIT_test >= 0.04 AND Third Quartile_DIT_test < 2.5 AND Interquartile

range_WMC_test < 12.5 AND Median_LCOM_train < 57 AND Range_CBO_train

< 66.5 AND Variance_LOC_train < 16748.7

8

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train < 56.22 AND

Skewness_WMC_train >= 2.28

7

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train >= 56.22 AND

Range_avg_cc_train >= 4 AND Maximum_CBO_train < 97 AND Interquartile

range_NPM_test < 0.5 AND Mode_CBO_train >= 0.5

3

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test < 6 AND Variance_LOC_train

< 10740.41 AND Std. Deviation_NOC_train >= 1.09 AND Third

Quartile_CBO_test < 4.5 AND Std. Deviation_NIM_train < 6

2

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train < 56.22 AND

Skewness_WMC_train < 2.28 AND Coff. Of variation_WMC_test < 1.74

2

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train >= 56.22 AND

Range_avg_cc_train >= 4 AND Maximum_CBO_train < 97 AND Interquartile

range_NPM_test >= 0.5 AND Coff. Of variation_NIV_train < 1.5 AND Interquartile

range_CBO_train < 5

2

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train >= 56.22 AND

Range_avg_cc_train >= 4 AND Maximum_CBO_train < 97 AND Interquartile

range_NPM_test >= 0.5 AND Coff. Of variation_NIV_train >= 1.5 AND Coff. Of

variation_NIV_test >= 2.22 AND Skewness_LOC_train < 6.52

2

Kurtosis_DIT_test >= 0.04 AND Third Quartile_DIT_test < 2.5 AND Interquartile

range_WMC_test >= 12.5 AND Std. Deviation_DIT_test < 0.79 AND

Mode_RFC_train >= 4.5 AND Maximum_NIM_train < 194.5 AND

Mean_NOC_test < 0.27 AND Median_NIM_train < 5.5

2

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 40

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test < 6 AND Variance_LOC_train

< 10740.41 AND Std. Deviation_NOC_train >= 1.09 AND Third

Quartile_CBO_test >= 4.5 AND Mean_CBO_train >= 3.96

1

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train >= 56.22 AND

Range_avg_cc_train >= 4 Maximum_CBO_train < 97 AND Interquartile

range_NPM_test < 0.5 AND Mode_CBO_train < 0.5 AND Variance_NIM_train <

78.46

1

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train >= 56.22 AND

Range_avg_cc_train >= 4 AND Maximum_CBO_train < 97 AND Interquartile

range_NPM_test >= 0.5 AND Coff. Of variation_NIV_train < 1.5 AND Interquartile

range_CBO_train >= 5 AND Coff. Of variation_NOC_test < 4.24

1

Kurtosis_DIT_test < 0.04 AND Range_avg_cc_test >= 6 AND Third

Quartile_NIV_train < 4.5 AND Variance_NIM_train >= 56.22 AND

Range_avg_cc_train >= 4 AND Maximum_CBO_train < 97 AND Interquartile

range_NPM_test >= 0.5 AND Coff. Of variation_NIV_train >= 1.5 AND Coff. Of

variation_NIV_test < 2.22 AND Std. Deviation_avg_cc_train >= 1.33

1

Kurtosis_DIT_test >= 0.04 AND Third Quartile_DIT_test < 2.5 AND Interquartile

range_WMC_test < 12.5 AND Median_LCOM_train < 57 AND Range_CBO_train

< 66.5 AND Variance_LOC_train >= 16748.7 AND Third Quartile_LOC_test <

81.13

1

Kurtosis_DIT_test >= 0.04 AND Third Quartile_DIT_test < 2.5 AND Interquartile

range_WMC_test < 12.5 AND Median_LCOM_train >= 57 AND Interquartile

range_DIT_train < 1.5 AND Coff. Of variation_NIV_train < 1.57 AND

Median_NIM_test >= 4

1

Kurtosis_DIT_test >= 0.04 AND Third Quartile_DIT_test < 2.5 AND Interquartile

range_WMC_test >= 12.5 AND Std. Deviation_DIT_test < 0.79 AND

Mode_RFC_train >= 4.5 AND Maximum_NIM_train < 194.5 AND

Mean_NOC_test >= 0.27 AND Kurtosis_CBO_train < 17.92

1

Table 4.2: Rules for successful prediction learnt from DT

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 41

4.2 Discussion of results

From the results obtained from our experiments, some of the common observations we

concluded are:

1. Software with lower percentage of defective classes has a very large set of potential

defect predictors.

2. Defects for large software systems cannot be predicted by relatively smaller software

systems.

3. Datasets with huge difference in the number of classes cannot be used in cross project

defect prediction.

Table 4.3 lists the datasets which can be used for identification of defective classes for

each of the training dataset. Here we can see that jtopen is not useful in defect proneness

prediction of any of the software under study. Amber archer, Barcode4j and Jung are potential

predictors for 5,5 and 4 datasets respectively. Abbot and Avisync are predictors for only 1

dataset while jtopen for none.

Training Dataset Prediction possible for

Amakihi Amber archer, Barcode4j

Amber archer Abbot, Apollo , Avisync, Barcode4j, Geotag

Abbot Jtreeview

Apollo Amber archer, Abbot, Jgap, Barcode4j, Geotag

Avisync Amakihi

Jfreechart Amber archer, Abbot, Jtreeview

Jgap Abbot, Apollo, Geotag

Jtreeview Abbot, Barcode4j

Barcode4j Amber archer , Abbot, Apollo, Avisync, Geotag

Jung Amber archer, Apollo, Barcode4j, Geotag

Geotag Amber archer, Apollo, Barcode4j

Table 4.3: Performance of training sets

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 42

Table 4.4 is another representation of table 18, where the relationship between dataset

and its potential predictors is shown. From this table, we can see that Amber archer can be

predicted by most (seven out of eleven in this case) of the datasets. Thus it is good training as

well as test set. Similarly Abbot and Barcode4j can be predicted by six datasets. Thus they are

good test datasets for which defects can be easily identified. Apollo and Geotag can also be

predicted by five datasets and hence defective classes are identifiable in these cases.

Dataset Potential Predictors

Amakihi Avisync

Amber archer Amakihi, Apollo, Jfreechart, Jgap, Barcode4j, Jung, Geotag

Abbot Amber archer, Apollo, Jfreechart, Jgap,Jtreeviw, Barcode4j

Apollo Amber archer, Jgap, Barcode4j, Jung, Geotag

Avisync Amber archer, Barcode4j

Jgap Apollo

Jtreeview Abbot, Jfreechart

Barcode4j Amakihi, Amber archer, Apollo,Jtreeview, Jung, Geotag

Geotag Amber archer, Apollo, Jgap, Barcode4j, Jung

Table 4.4: Potential predictors for test sets

Figure 4.2 shows the diagrammatic representation of the potential predictors for

software. The X-axis shows the test dataset and Y-axis shows the count of the potential

predictors. This helps in the relative study of the potential predictors for each test software.

Amber archer has the highest number of predictors while jfreechart, jtopen and jung can‘t be

predicted by any of the training sets. However, if we relax some of the acceptance criterion,

we obtain better results with these software systems. Apollo, avisync, barcode4j and geotag

also have ample training sets. Thus we can see that 9 out of 12 software systems under study

can be successfully predicted by one or more training sets.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 43

Figure 4.2: potential defect predictors for dataset under study

4.3 Threats to validity

One of the major threats to validity of our work is the acceptance criteria of the successful

model. We have selected three parameters for successful model i.e. precision, recall and

AUC. The selection of these parameters is based on previous studies in literature about defect

prediction and our own analysis. However, the acceptance criteria may vary depending on

various factors. In such a case, some of our observations and conclusions may change.

Another threat is the selection of static code metrics to build the defect prediction model.

Studies in literature show that these metrics can be used for defect prediction models, but it is

not always the case. The appropriate selection of these metrics may vary depending on the

dataset. A subset of these metrics is found significant in a large number of studies. Thus we

0

1

2

3

4

5

6

7

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 44

can conclude that our experiments and observations may vary depending on the selection of

these static code metrics.

One other threat may be related to our data collection methodology. We have assumed the

presence of a bug by the keywords ―bug‖ and ―fix‖ in the change logs. Previous researches

have observed that these keywords indicate the presence of bug in a class; however this may

depend on the commenting style of the developer as well. If the information is logged via

different keywords other than these, then some of the bugs may remain undetected. This may

lead to mistakes in defect assignment and identification

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 45

CONCLUSION AND FUTURE WORK

5.1 Conclusions

Cross project defect prediction is very useful for projects where sufficient training data is

unavailable to train the model. Cross project defect prediction enables identification of faulty

classes in first release of software systems. We have discussed software defect and its impact

on software systems in chapter 1. Defects may lead to failure of the software and cause

financial loss of and may even lead to danger to life. The need for early defect prediction is

discussed in this section. The prediction model may be built using training data from previous

release of same software or using data of different software. The first approach is not always

possible. We have empirically validated the second approach it this thesis. We have discussed

the previous work in literature in cross project defect prediction in chapter 2. The research

methodology is explained in Chapter 3. The data collection is done with the help of ‗CMS

tool‘ developed y us which calculates the defect data for each class. Software metrics are

collected using ‗Understand for Java‘. The prediction model is built with this using logistic

regression. We conducted our experiments on 12 open source projects. 132 combinations of

train-test instances are generated from these 12 projects and the feasibility of cross project

defect prediction is analyzed. The results show that cross project defect prediction is not

always feasible. Only 35 out of 132 instances exhibit successful cross project prediction

behavior in our experiments. Thus careful selection of training set needs to be done in order to

identify defective classes correctly. The decision tree, constructed in our experiment learns

from the distributive characteristics of software projects to generate rules for successful defect

prediction. This may help in selection of appropriate training sets. The following are the

important conclusions drawn from our study:

1. Chances of successful cross project defect prediction are more likely for comparable

number of classes in the training and test sets. It is observed that jtopen; with very

high number of classes and high LOC than other software systems is neither a good

training nor a test set.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 46

2. Cross project defect prediction may provide acceptable results, if careful selection of

training set is done.

5.2 Application of the work

Cross project defect prediction is the process of learning from one project to improve

another project. It is applicable to the Software Development Life Cycle to improve the

software quality and make the software system more reliable and gain more confidence and

customer‘s satisfaction. Also choosing more than one prediction model trained by different

sets will increase the confidence of the prediction results. This is not possible in the traditional

defect prediction method because model is trained from the previous release of same system.

Training the model with different data will increase the reliance on prediction results. This

will increase the reliability, traceability, usability and maintainability of the software systems

and will help in mitigating software crisis.

5.3 Future Work

Previous studies show that application of some machine learning algorithms builds better

prediction models than statistical method. We may apply machine learning methods as

bagging, naïve bayes etc to build the prediction model instead of logistic regression in future.

This may improve the performance of the model as well as decision tree.

Our experiments for cross project do not take into account the programming language of the

software under study. All the projects under study are developed using same programming

language i.e. java. We may extend our work where combinations of different programming

languages are taken and verify if the prediction works as well in such scenarios or not.

We may also extend the work on real life corporate software. The process followed and the

complexity of industrial software is different from that of open source software and hence we

may take these features also into account. This will make the application of cross project

defect prediction more realistic and applicable to software industry.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 47

REFERENCES

[1]. D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, ―Software fault prediction

metrics: A systematic literature review,‖ Inf. Softw. Technol., vol. 55, no. 8, pp. 1397–

1418, Aug. 2013.

[2]. A. R. Gray and S. G. Macdonell, ―A comparison of techniques for developing

predictive models of software metrics,‖ vol. 5849, no. 96, pp. 6–7, 1997.

[3]. B. Mishra and K. K. Shukla, ―Impact of attribute selection on defect proneness

prediction in OO software,‖ 2011 2nd Int. Conf. Comput. Commun. Technol., pp.

367–372, Sep.

[4]. Shyam R. Chidamber and Chris F. Kemerer, ―A Metrics Suite for Object Oriented

Design‖, IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476-493, June 1994.

[5]. David G. Kleinbaum and Mitchel Klein, ―Logistic Regression-A Self-Learning Text‖,

Third edition.

[6]. Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, An investigation on the feasibility of

cross-project defect prediction, vol. 19, no. 2. 2011, pp. 167–199.

[7]. Y. Ma, G. Luo, X. Zeng, and A. Chen, ―Transfer learning for cross-company software

defect prediction,‖ Inf. Softw. Technol., vol. 54, no. 3, pp. 248–256, Mar. 2012.

M.Tech in Software Engineering 2012-2014

ANUSHREE AGRAWAL Page 48

[10]. B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ―On the relative value of

cross-company and within-company data for defect prediction,‖ Empir. Softw. Eng., vol.

14, no. 5, pp. 540–578, Jan. 2009

[11]. http://amakihi.sourceforge.net/

[12]. http://sourceforge.net/projects/amberarcher/

[13]. http://abbot.sourceforge.net/doc/overview.shtml

[14]. http://sourceforge.net/projects/startec-apollo

[15]. http://sourceforge.net/projects/avisync/

[16]. http://sourceforge.net/projects/jfreechart/

[17]. http://sourceforge.net/projects/jgap/

[18]. http://sourceforge.net/projects/jtreeview/

[19]. http://sourceforge.net/projects/barcode4j/

[20]. http://sourceforge.net/projects/jt400/

[21]. http://sourceforge.net/projects/jung/

[22]. http://sourceforge.net/projects/geotag/

http://amakihi.sourceforge.net/
http://sourceforge.net/projects/amberarcher/
http://abbot.sourceforge.net/doc/overview.shtml
http://sourceforge.net/projects/startec-apollo
http://sourceforge.net/projects/avisync/
http://sourceforge.net/projects/jfreechart/
http://sourceforge.net/projects/jgap/
http://sourceforge.net/projects/jtreeview/
http://sourceforge.net/projects/barcode4j/
http://sourceforge.net/projects/jt400/
http://sourceforge.net/projects/jung/
http://sourceforge.net/projects/geotag/

