EXPERIMENTAL AND NUMERICAL STUDIES ON SPRING BACK IN U-BENDING OF TAILOR WELDED BLANKS

Submitted to **Delhi Technological University** in partial fulfilment of the requirement for the award of the degree of

Master of Technology

In

Production Engineering

By

ASHISH KUMAR SHUKLA (2K12/PIE/04)

UNDER THE SUPERVISION OF

Shri Vijay Gautam

Assistant Professor

Mechanical Engineering Department

Delhi Technological University

Bawana Road, Delhi-110042, INDIA

July-2014

Certificate

Date: - ___/__/___

This is to certify that report entitled "Experimental And Numerical Studies On Spring Back In U-Bending of Tailor Welded Blanks" by Mr. Ashish Kumar Shukla is the requirement of the partial fulfilment for the award of Degree of Master of Technology (M.Tech.) in Production Engineering at Delhi Technological University. This work was completed under my supervision and guidance. He has completed his work with utmost sincerity and diligence. The work embodied in this project has not been submitted for the award of any other degree to the best of my knowledge.

Shri Vijay Gautam

(Assistant Professor)

Department of Mechanical Engineering Delhi Technological University, Delhi

Student's Declaration

I hereby declare that this thesis entitled "Experimental And Numerical Studies On Spring Back In U-Bending of Tailor Welded Blanks" is my own research except as cited references. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature

Name : ASHISH KUMAR SHUKLA

Roll no. : 2K12/PIE/04

:

Date : 16 JULY 2014

Acknowledgement

There are many person who given me a reason to thank them, firstly, I am grateful to **Prof. Navin Kumar**, Head Of Department (Mechanical Engineering) for giving me an opportunity to work with **Shri Vijay Gautam**. I wish to express my deep sense of gratitude to my supervisor, **Shri Vijay Gautam** for his encouragement, guidance, advices, motivation and friendship to make this thesis become reality. Without his continuous support this thesis would not be completed.

I am also thankful to staffs of Mechanical Engineering department lab of Delhi Technological University for the guidance and support during this thesis in making. My special acknowledgement also goes to my family, and my colleagues for their full support either morale or materials in helping me to finish up this thesis. I also sincerely acknowledge the help of all people who directly or indirectly helped me in my project work and constantly encouraged me.

Ashish Kumar Shukla

(2K12/PIE/04)

Abstract

Tailor welded blank (TWB) is an advancement in the field of sheet metal forming in which multiple blanks are welded together to create a single blank prior to forming process. Springback behaviour of TWBs in bending is complex due to thickness, material combination and rolling direction of sheet metal which shows variation with different Punch corner radius. In this Thesis, the effect of punch profile radius on the springback of Parallel to length welded strips has been investigated in U-bending operation with Tool bend angle of 90° and using punches with three different punch profile radii of 7.5 mm, 10 mm and 12.5 mm. TWBs were prepared by laser welding of interstitial- free steel blanks with a thickness combination of 0.8 mm and 1.5 mm. The Tensile properties of parent materials and tailored blanks were evaluated by Tension test as per ASTM-E8M standard. The bend samples with transverse weld line were prepared to a size of 20mmX130mm to ensure plane strain bending. The different naked eye observations of tailoring Pattern with one sheet to other sheet lead to modelling of TWBs Cross-section. After Proper modelling Finite element (FE) simulations were performed for TWBs Model with and without Weldline property. Whereas in with Weldline property as per Width provided by ASTM-E8 for subsized and micro specimens used for simulation using Abaqus. All FEA Specimens in Abaqus are divided on the basis of material orientation and section assignment for Centre line TWBs cross-section Integration model, for top surface shell element analysis, with anisotropy and without anisotropy were found to be in good agreement with the experimental results

TABLE OF CONTENTS

Particulars	Page
TITLE PAGE	i
CERTIFICATE	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi-viii
LIST OF FIGURES	ix-xi
LIST OF TABLES	xii
LIST OF SYMBOLS	xiii-xiv
LIST OF ABBREVIATIONS	XV
SPECIMEN NOMENCLATURE	xvi
Chapter 1: Introduction	
1.1 Tailor Welded Blanks	01
1.2 Material Characterization	
1.2.1 Microstructure and Hardness of TWB	03
1.3 Spring-Back	04
1.4 Finite Element Modelling and simulation	05
1.5 Problem and Motivation	06

1.6	Objective)7
Chapter	2: Literature Review0	8
2.1	U-Bending	09
2.2	Progress in Tailor Welded Blank Applications	. 10
2.3	Tailor Blanking of Steel	13
2.4	Factors influencing Spring Back of Parent material and TWBs	13
2.5	Application of Numerical Methods for TWBs	.16
Chapter	3: Materials selection and Preparation of TWBs1	8
3.1	Selection of Materials	18
3.2	Preparation of Tailor welded Blanks	19
3.3	Metallurgical Examination	19
	3.3.1 Sample Preparation of TWB	19
	3.1.1 Optical Microscopy and SEM Analysis of TWB	22
3.4	Microhardness Examination of TWB2	3
3.5	Tensile Testing of Specimen	.24
	3.5.1 Strain Hardening Of parent and TWB	29
	3.5.2 Anisotropy of parent material	.30
3.6	U-Bending Tool (Die-Punch)	.34
3.7	Spring-Back Measurement	.28
3.8	U-Bending Experimental setup	.29

Chapter	4: Exper	imental Results	
4.1	Material C	haracterization	
	4.1.1	Metallurgical analysis	30
	4.1.2	Microhardness analysis	32
4.2	Uniaxial Te	ensile testing	33
	4.2.1	Uniaxial tensile testing Parent materials and Subsized TWBs	
4.3	Reaction for	orce v/s punch displacement Diagram of Parent Materials U Bending	34
4.4	U Bending	of TWB	40
4.5	Comparison	n of Spring-back	44
	4.5.1	Comparison of Spring-Back of Parent materials	44
	4.5.2	Comparison of Spring-Back of TWBs	49
Chapter	5: Finite	Element Modelling and Simulation	54
5.1	Introduction	n	54
5.2	Finite elem	ent modelling of parent materials and TWBs	54
5.3	U-Bending	Simulation of Specimens in 3-D	61
5.4	Discussion	on Finite Element Modelling and Simulation	63
Chapter	6: Concl	usions and Future Scope	130
6.1	Conclusion	S	
6.2	Future Sco	pe	133
Reference	s		(i-iv)

List of Figure

Sr.	Deutien1eus	Page
No.	Particulars	No.
01	Figure: 1.1 Tailor Welded Blanks Prepared for the U-Bending Experiment and	01
	3-D Tailor welded blank for simulation	
02	Figure 1-2 various tailor welded blank Component used in an automotive	02
	structure [1]	
03	Figure 1.3: Hardness and corresponding microstructure of TWB using 22MnB5.	03
04	Figure: 1.4 Spring-Back Phenomenon in Bending [4]	05
05	Figure: 1.5 FEA models for specimen with weld line perpendicular to bending	06
	moment: (a) 3D shell element w/o weld; (b) 3D shell element w/ weld; (c) 3D	
	solid element w/ weld. Et.al. K.M. Jhao	
06	Figure: 2.1 Comparison of shapes after U-channel forming and springback of an	09
	AHSS (DP 600) and traditional high-strength steel (HSLA 450) is having equal	
	yield stresses (IISI, 2006).	
07	Figure: 2.2 Initial Blank Used for the Hot Stamping of the Rear side Member	09
08	Figure: 2.3 Use of Tailor welded blanks in automobiles	10
09	Figure: 2.4 Process Parameters for the preparation of Tailor welded blanks for	16
	U- bending	
10	Figure: 3.1 Micro Structure of IF Steel et. al. Christian Mathis	18
11	Figure: 3.2. Abrasive cutter	20
12	Figure: 3.3 Mounting Press	20
13	Figure: 3.4 Sample Polishing Machine	21
14	Figure: 3.5 Scanning Electron Microscope	22
15	Figure: 3.6 Minimum Recommended spacing for Knop and Vickers Indentations	23
16	Figure: 3.7 Tinius Olsen H50KS Universal Testing Machine	24
17	Figure: 3.8 ln True stress v/s ln true strain Plot for determination of Strength	25
	Coefficient and Strain Hardening Exponent	
18	Figure: 3.9 elongated tensile test specimen for anisotropy	27

19	Figure: 3.10 U-Bending Tool, Dies-and Punches	28
20	Figure 3.11: Vision inspection machine for measurement of spring back in U	28
	Bending	
21	Figure: 4.1 Microstructure of TWB cross-sections	31
22	Figure: 4.2 SEM analysis of TWB's cross-section	32
23	Figure: 4.3 Hardness value v/s distance along the TWB's Cross-section	32
24	Figure: 4.4 ASTM E-8 Standard size Tensile Specimen	33
25	Figure: 4.5 True stress v/s true strain of Parent material and Subsized specimens	34
26	Figure: 4.6 a, b, c, Comparison of Effect of Rolling Direction on reaction force	35
	v/s punch displacement plot of sheet thickness 0.8mm on punch corner radius	
	7.5mm, 10mm, 12.5mm	
27	Figure: 4.7 Comparison of Effect of Rolling Direction on reaction force v/s	37
	punch displacement plot of sheet thickness 1.5mm on punch corner radius	
	7.5mm, 10mm, 12.5mm	
28	Figure: 4.8 a, b, c Comparison of Effect of Punch corner radius 7.5mm, 10mm,	38
	12.5mm on sheet thickness 0.8mm	
29	Figure: 4.9 a, b, c, Comparison of Effect of Punch corner radius 7.5mm, 10mm,	39
	12.5mm on sheet thickness 1.5mm	
30	Figure: 4.10 a, b, c Comparison Plot of Effect of Punch Corner Radius on rolling	41
	direction for weld line partitioned, Sub-sized partitioned Bending Specimen	
31	Figure: 4.11 a, b, c Effect of rolling direction w.r.t weld line partitioned, micro	43
	partitioned, and subsized partitioned bending specimen on punch corner radius	
	7.5mm, 10.0 mm, & 12.5mm	
32	Figure: 4.12 a, b, c Effect of rolling direction on spring Back at PCR 7.5mm,	45
	10mm and 12.5mm of sheet thickness 0.8mm	
33	Figure: 4.13 a, b, c Effect of rolling direction on spring Back at PCR 7.5mm,	46
	10mm and 12.5mm of sheet thickness 1.5mm	
34	Figure: 4.14 a, b, c Effect of Punch Corner Radius of on spring back of 0.8mm	47
	sheet thickness in 0, 45, 90 degree of rolling direction	
35	Figure:4.15 a, b, c Effect of Punch Corner Radius on spring back of 1.5mm	48

х

sheet thickness in 0, 45, 90 degree of rolling direction

- Figure: 4.16 a, b, c Effect of Rolling direction on TWB Springback and Punch
 corner radius of 7.5mm, 10mm, 12.5mm for Subsized partitioned, and micro
 partitioned bending specimen w.r.t. Experimental Values
- Figure: 4.17 a, b, c Effect of Punch Corner Radius on Springback of TWBs and 51 its rolling direction for Subsized partitioned, and micro partitioned bending specimen w.r.t. Experimental Values.
 Figure: 5.1 U-bending FEA model assemblies 57
- 39Figure: 5.2, 3-D U-Bending Simulation Assembly6140Figure: 5.3 overlay Plot of Springback Perspective view6241Figure: 5.4 overlay Plot of Springback Parallel view62
- 42 Figure: 5.5 overlay Plot of Springback Front view 63

List of Table

Sr.	Particulars	
No.		
01	Table: 3.1 mounted Specimen parameters for Fine Grinding and polishing	21
02	Table: 4.1 Elemental Composition of Selected Material (IF Steel)	30
03	Table: 4.2. Specimen Specification as per ASTEM E-8 Standard	33
04	Table: 4.3 Mechanical Properties of Sheet Metal and TWBs	52
05	Table: 4.4 Springback comparison of experimental and simulation results	53
06	Table: 5.1 No. of nodes, elements, & Variables of Blanks Node set	58
07	Table: 5.2 List of Potential of parent material	59
08	Table: 5.3 Amplitude of step time of Simulation for Punch Displacement on	60
	Displacement Basis	

List of Symbols

- α = bend angle (in radians)
- R = Bend radius
- t = sheet thickness
- K = Strength coefficient
- n = Strain hardening exponent
- $e_o = Strains$ the outer fibres
- $e_i = strains$ inner fibres
- F_{max} = Maximum bending force
- L = length of the part
- R_i = Bend radius before spring back
- R_f = Bend radius after spring back
- K_s = Spring-back ratio
- Θ_i = Bending angle before springback
- Θ_f = Bending angle after springback
- z = The distance of an element from neutral axis in the bend region
- $L_0 =$ Arc length at the mid-plane
- e = Engineering strain
- ϵ_x = True strain in x-axis
- ε_y = True strain in y-axis
- ε_z , = True strain in z-axis

M= Bending moment σ_x =Stress in x direction S = Plane strain yield stress E' = Modulus of elasticity in plane strain μ = coefficient of friction $\epsilon_w =$ Strain in width direction ϵ_t = Strain in thickness direction v = Poisson's ratio. E = Young's modulusY= Distance from middle surface to stress at some distance ρ = Radius of curvature of sheet of a cylindrical bent region σ = Representative/effective or equivalent stress r_p = Plastic strain ratio \overline{R} = Normal anisotropy (R-BAR) r_0 = Plastic strain ratio in rolling direction

- r_{45} = Plastic strain ratio in diagonal direction
- r_{90} = Plastic strain ratio in transverse direction

 θ_{tool} = Angle of die

List of Abbreviations

ASTM	American Standard for Testing and Materials
CAD	Computer-aided design
IF Steel	Interstitial Free Steel
FEA	Finite Element Analysis
FEM	Finite Element Method
UTM	Universal Testing Machine
UTS	Ultimate Tensile Stress
YS	Yield Stress
ST	Standard size Tensile Specimen
SS	Sub-sized tensile Specimen
SEM	Scanning Electron Microscope
SIM	Simulation
TWB	tailor Welded blanks
RD	Rolling Direction
PCR	Punch Corner Radius
SB	Spring-Back

Specimen's Nomenclature

Т	Thickness	
T1	Thickness of thinner Sheet Metal 0.8mm	
T2	Thickness of thicker Sheet Metal 1.5mm	
T1-T2	TWB of both the sheet	
T1 – T2 -	-XX - YY	(1)
T1 - XX - YY (2)		(2)
$T2 - XX - YY \tag{3}$		(3)
XX	Rolling Direction of TWB or orientation of joined sheet w.r.t. weld line	
XX	0^{0} Parallel to rolling direction, 45^{0} to rolling direction and 90^{0} perpendicular rolling direction	r to the
YY	Dimension of specimen size mentioned only in case of Subsized and micro specimens	-sized
YY	Subsized Specimen Width 6.0mm	
YY	Micro-Sized Specimen Width 2.0mm	

Note: Similar sequence Followed in parent, TWBs, bending and Simulation, With Further Property of Test incorporated