A

Dissertation

On

A Novel approach for Face Recognition using Extended BBO

Submitted in partial Fulfillment of the requirement

For the award of the Degree of

Master of Technology

In

Computer Science & Engineering

Submitted By

Kanishka Bansal

University Roll No. 2K12/CSE/09

Under the esteemed guidance of

Dr. Daya Gupta

Computer Engineering Department, DTU, Delhi

DELHI TECHNOLOGICAL UNIVERSITY 2012-2014

DELHI TECHNOLOGICAL UNIVERSITY DELHI - 110042

CERTIFICATE

This is to certify that the dissertation titled "A Novel approach for Face Recognition using Extended BBO" is a bonafide record of work done at Delhi Technological University by Kanishka Bansal, Roll No. 2K12/CSE/09 for partial fulfillment of the requirements for degree of Master of Technology in Computer Science & Engineering. This project was carried out under my supervision and has not been submitted elsewhere, either in part or full, for the award of any other degree or diploma to the best of our knowledge and belief.

(Prof. Daya Gupta)	Date:
Project Guide	
Department of Computer Engineering	
Delhi Technological University	

ACKNOWLEDGEMENT

I would like to express our deepest gratitude to all the people who have supported and

encouraged me during the course of this project without which, this work could not have been

accomplished.

First of all, I am very grateful to my project supervisor Dr. Daya Gupta for providing the

opportunity of carrying out this project under her guidance. I am deeply indebted to her for the

support, advice and encouragement she provided without which the project could not have

proceeded smoothly.

I am highly thankful to Ms. Lavika Goel, Research scholar in Department of Computer

Engineering, who enlightened me at every step of this project by giving helpful directions and

guidance. I am grateful to all my friends and family for their continued support and

encouragement throughout the research work.

Kanishka Bansal

University Roll no: 2K12/CSE/09

M.Tech (Computer Science & Engineering)

Department of Computer Engineering

Delhi Technological University

Delhi - 110042

iii

Abstract

Face recognition has become a popular area of research in computer vision and one of the most successful applications of image analysis and understanding. We always have to extract optimal features from images to recognize an image as to achieve high accuracy as well as to be efficient. In this thesis an efficient and optimized face recognition algorithm based on Extended Species Abundance Model of Biogeography is presented.

We have used Principal Component Analysis (PCA) for the face recognition technique to extract the most important features of the image as all the features, that construct an image are not that essential to recognize image. These extracted features are minimum features which are required to recognize an image from the database.

Initially we apply Gabor Kernel to smoothen the images so as to give as input to PCA. Gabor Kernel helps in proper alignment of images.

After this we extract important features present in the images through PCA. Than we apply extended BBO to train database, to collect most desirable features extracted from PCA, to make face recognition an efficient process.

Then in recognizing phase of face recognition process we again apply BBO based on Extended Species Abundance Model of Biogeography on training database to recognize an input image, which accelerate the recognizing process.

Performance analysis is performed on Olivetti research Laboratory (ORL) face database. Results show that face recognition algorithm based on BBO with Extended Species Abundance Model Of Biogeography generates better results than original PCA technique with gabor kernel as well as with PSO and original BBO.

TABLE OF CONTENTS

CHA	HAPTER 1: INTRODUCTION	
1.1	MOTIVATION	
1.2	RELATED WORK	
1.3	PROBLEM STATEMENT	
1.4	SCOPE OF THE WORK	
1.5	ORGANIZATION OF THE DISSERTATION	
<u>CHA</u>	PTER 2: FACE RECOGNITION	7
2.1	FACE RECOGNITION- STATE OF THE ART	7
2.2	FACE RECOGNITION: FRAMEWORK	7
2.3	FACE DETECTION	8
2.4	FACE RECOGNITION BASED ON SENSORY INPUT	9
2.5	FACE RECOGNITION FROM VIDEO SEQUENCES	10
2.6	FACE RECOGNITION FROM INTENSITY IMAGES	12
2.7	GABOR KERNEL	21
2.8	APPLICATIONS OF FACE RECOGNITION	22
<u>CHA</u>	PTER 3: SWARM BASED ALGORITHMS FOR FACE RECOGNITION	26
3.1	PARTICLE SWARM OPTIMIZATION	
3.2	ANT COLONY OPTIMIZATION	
3.3	HYBRID ACO\PSO FOR CLASSIFICATION	
3.4	BIOGEOGRAPHY BASED OPTIMIZATION	
3.5	EXTENDED SPECIES ABUNDANCE MODEL OF BIOGEOGRAPHY	39
<u>CHA</u>	PTER 4: PROPOSED APPROACH	45
4.1	FACE RECOGNITION MODEL	45
4.2	PARAMETERS FOR EXTENDED SPECIES ABUNDANCE MODEL	46
4.3	ADAPTION OF EXTENDED BBO FOR FEATURE EXTRACTION	48
4.4	ADAPTION OF EXTENDED BBO FOR RECOGNIZING PHASE	50
<u>CHA</u>	PTER 5: EXPERIMENTAL SETUPAND RESULTS	53
5.1	EXPERIMENTAL SETUP	53
5.2	PERFORMANCE ANALYSIS	
5.3	RESULTS	
<u>CHA</u>	PTER 6: CONCLUSION AND FUTURE WORK	59
6.1	ELITIDE WORK	60

CHAPTER 7: PUBLICATION FROM THESIS	61
APPENDIX A: ABBREVIATIONS	62
APPENDIX B: MATLAB	63
REFERENCES	65

LIST OF FIGURES

FIGURE 1: FRAMEWORK FOR FACE RECOGNITION 8
FIGURE 2: FRAMEWORK FOR FACE RECOGNITION FROM VIDEO SEQUENCES
FIGURE 3: HIGH LEVEL DIAGRAM FOR FACE RECOGNITION BASED ON AI
METHOD
FIGURE 4: RECOGNITION RATES FOR EIGENFEATURES, EIGENFACES, AND
THE COMBINED MODULAR REPRESENTATION 15
FIGURE 5: THESE EIGEN FACES SHOWS THE PRINCIPAL COMPONENT'S
TENDENCY OF CAPTURING MAJOR VARIATION IN TRAINING SET SUCH AS
LIGHTING DIRECTION17
FIGURE 6: THE CORRESPONDING SAMPLE OF FISHERFACE SHOWS ABILITY
OF FISHERFACE TO DISCOUNT THOSE FACTORS UNREALTED
CLASSIFICATION
FIGURE 7: GEOMETRICAL FEATURES (WHITE) USED IN THE FACE
RECOGNITION EXPERIMENTS
FIGURE 8: GRIDS FOR FACE RECOGNITION20
FIGURE 9: REAL PART OF GABOR FILTER USED FOR FACE RECOGNITION 22
FIGURE 10: FLOWCHART REPRESENTING ACO ALGORITHM FOR FEATURE
SELECTION
FIGURE 11: SPECIES MODEL BASED ON SINGLE HABITAT34
FIGURE 12: FEATURE EXTRACTION
FIGURE 13: FLOW CHART OF FACE RECOGNITION ALGORITHM USING BBO 38
FIGURE 14: EXTENDED SPECIES ABUNDANCE MODEL42
FIGURE 15: STEADY STATE PROBABILITY CURVE P _K AS FUNCTION OF
SPECIES COUNT K, K ₀ IS EQUILIBRIUM NUMBER OF SPECIES, AND P _{K0} IS
THAT PROBABILITY43
FIGURE 16: MODEL FOR FACE RECOGNITION

FIGURE 17	: ARCHITECTURAL FLOW DIAGRAM FOR TRAINING ALGORITHM 49
FIGURE 18:	ARCHITECTURAL FLOW DIAGRAM FOR RECOGNIZING ALGORIT-
HMS	51
FIGURE 19:	ORL DATABASE 53
FIGURE 20:	ROC CURVE BETWEEN EXTENDED BBO AND WITHOUT IT55
FIGURE 21:	ROC CURVE BETWEEN EXTENDED BBO AND BBO 56
FIGURE 22	: PLOT SHOWING SIMULATION RESULTS OF VARIOUS ALGORIT-
HMS	57

LIST OF TABLES

TABLE 1: MAIN ELEMENTS FOR PSO IN FACE RECOGNITION	28
TABLE 2: BBO PARAMETERS	38
TABLE 3: PARAMETERS VALUE USED IN EXTENDED BBO	48
TABLE 4: COMPARISON OF VARIOUS EVOLUTIONARY ALGORITHM	58