A PROJECT REPORT MAJOR -II

ON

COMPUTATIONAL ANALYSIS OF EFFECT OF PARTICLE INJECTION IN A RECTILINEAR TURBINE CASCADE

Submitted in partial fulfillment for the award of the Degree of

MASTER OF TECHNOLOGY

IN

THERMAL ENGINEERING

By

NEELAM BAGHEL

(2K12/THR/16)

Under the valuable guidance of

Dr. SAMSHER (Prof.) AND Dr. K. MANJUNATH (Asst. Prof.)

To the

Department of Mechanical Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Delhi - 110042

July 2014

STUDENT'S DECLARATION

I Neelam Baghel, hereby certify that the work which is being presented in the major project-II entitled "Computational analysis of effect of particle injection in a rectilinear turbine cascade" is submitted in the partial fulfillment of the requirements for degree of M.Tech at Delhi Technological University is an authentic record of my own work carried under the supervision of Prof. Samsher & Dr. K. Manjunath. I have not submitted the matter embodied in this major project-II for the award of any other degree. Also it has not been directly copied from any source without giving its proper reference.

Neelam Baghel M tech. (Thermal) 2k12/THR/16

CERTIFICATE

This is to certify that the project entitled, "**Computational Analysis of Effect of Particle Injection in a Rectilinear Turbine Cascade**" is submitted by **Neelam Baghel (Roll no. 2K12/THR/16)** to Delhi Technological University, Delhi for the evaluation of M.Tech Major Project-II as per academic curriculum. It is a record of bonafide research work carried out by student under our supervision and guidance, towards partial fulfillment of the requirement for the award of Master of Technology degree in thermal engineering.

The work is original as it has not been submitted earlier in part or full for any purpose before.

30th June, 2014

Dr. Samsher Professor, Mech. Engg. Deptt. Delhi Technological University Delhi - 110042

Dr. K. Manjunath Asst. Professor, Mech. Engg. Deptt. Delhi Technological University Delhi - 110042

ACKNOWLEDGEMENT

This project could not have been reached to this stage without the support of my mentors. I take this opportunity to express my gratitude to **Dr. Samsher** (Professor, Department of Mechanical Engineering, DTU) and **Dr. K. Manjunath** (Asst. Professor, Department of Mechanical Engineering, DTU). Their commitments, interest and positive attitude for the project has always been undiminished. The numerous discussions in which ideas and opinions were heard and decisions taken accordingly helped me to do my work regarding the project.

Neelam Baghel 2k12/THR/16 M.tech (Thermal)

ABSTRACT

Blade is the most important part of turbine. During the flow of working fluid various types of contaminants come in contact of turbine blades which give rise to the trilogy of "CDE" names corrosion, deposition and erosion. This decreases the strength and overall efficiency of blade as well as turbine. In this report the attention is focused on the variation of inlet velocity in the rectilinear turbine cascade with the injection of particles using FLUENT®.

This report gives a detailed explanation about the effect of particle injection on blade length and profile loss coefficient with variation of inlet velocity. Two Dimensional geometry of rectilinear cascade with six blades is created in Gambit® 2.4.6 software and flow behaviour is analyzed using fluent 6.3.26. Air at inlet velocity 50m/s, 100m/s and 150m/s with injection of ash, steel and water particles of 50µm, 100µm, 200µm and 300µm is passed through the cascade. The profile loss is decreased by increasing the velocity for a blade span. In case of ash particles of 50µm, profile loss is 17.92% by increasing velocity from 50m/s to 150m/s, 17.89% in case of steel particles, 17.15% in case of water particles. We analyze that the effected length on the suction and pressure side of the blade will increases by increasing the velocity and diameter of injected particles.

TABLE OF CONTENTS

Page no.

Student's declaration	ii
Certificate	iii
Acknowledgement	iv
Abstract	v
Table of contents	vi
List of figures	viii
List of tables	xii
Nomenclature used	xiii

CHAPTER-1 INTRODUCTION

1.1	Background	1
-----	------------	---

CHAPTER-2 LITERATURE REVIEW

2.1	Theoretical background	3
2.2	Summary of literature review	14
2.3	Problem statement	14
2.4	Organization of report	14

CHAPTER-3 METHODOLOGY

3.1	Computational fluid dynamics	16
3.2	Need for CFD	16
3.3	Equations for CFD	17
	3.3.1 Continuity Equation	17
	3.3.2 Momentum Equation	17
	3.3.3 Energy Equation	18
3.4	Strategy of CFD	19
3.5	Discretization of Equation	20

	3.6	CFD process	21
		3.6.1 Preprocessing	21
		3.6.2 Simulation	22
		3.6.3 Post Processing	22
	3.7	Designing of cascade	22
		3.7.1 Description of Computational	22
		Domain	
		3.7.2 Basic Steps	23
		3.7.3 Fluent simulation procedure	26
	3.8	Profile loss Calculations	26
CHAPTER-4	RESU	LTS AND DISCUSSION	
	4.1	Validation of data	28
		4.1.1 Analysis of data	30
	4.2	Computation of Profile loss	31
		4.2.1 For Ash particles	31
		4.2.2 For Steel particles	38
		4.2.3 For Water particles	44
	4.3	Analysis of effected length of	49
		blade due to hitting of Particles	
		4.3.1 Ash particles	49
		4.3.2 Steel particles	53
		4.3.3 Water particles	56
CHAPTER-5	CON	CLUSIONS	59
CHAPTER-6	FUT	URE SCOPE	60
	REF	ERENCE	61
	APP	ENDIX	64

LIST OF FIGURES

S. No	Title	page no.
Figure 2.1	Two dimensional flows through a cascade	3
Figure 2.2	Flow through turbine blade passage	3
Figure 2.3	Efficiency with sand volume fraction	8
Figure 2.4	Contours of components of Kaplan turbine for design	9
	conditions	
Figure 2.5	Percentage of silt erosion and their contours	10
Figure 2.6	Sediments shape effect	11
Figure 2.7	Size impacts by sediment	12
Figure 2.8	Validation of computational result with the	13
	experimental result	
Figure 2.9	Comparison of secondary loss	13
Figure 3.1	A blade at required stagger angle	24
Figure 3.2	The required set of blades	24
Figure 3.3	Designed cascade	25
Figure 3.4	Meshing of the Fluid	25
Figure 3.5	Profile losses versus relative pitch	27
Figure 4.1	Comparison of computational results with experimental	29
	data on loss Coefficient	
Figure 4.2	leading edge and the suction surface of a turbine blade	29
	affected by the particles	
Figure 4.3	Trailing edge and the pressure surface of a turbine blade	30
	effected by the particles	
Figure 4.4	Contours of total pressure loss at velocity 50m/s with ash	32
	particles of 50µm	
Figure 4.5	Contours of total pressure loss at velocity 100m/s with ash	32
	Particles of 50µm	
Figure 4.6	Contours of total pressure loss at velocity 150m/s with ash	33
	Particles of 50µm	

Figure 4.7	Pressure loss coefficient v/s non dimensional pitch for ash	34
	particle of different µm of velocity 50m/s	
Figure 4.8	Pressure loss coefficient v/s non dimensional pitch for ash	34
	particle of different µm of velocity 100m/s	
Figure 4.9	Pressure loss coefficient v/s non dimensional pitch for ash	35
	particle of different µm of velocity 150m/s	
Figure 4.10	Pressure loss coefficient v/s non dimensional pitch	35
	at different velocities for ash particle of 50µm	
Figure 4.11	Pressure loss coefficient v/s non dimensional pitch	36
	at different velocities for ash particle of 100µm	
Figure 4.12	Pressure loss coefficient v/s non dimensional pitch	36
	at different velocities for ash particle of 200µm	
Figure 4.13	Pressure loss coefficient v/s non dimensional pitch at different	37
	velocities for ash particle of 300µm	
Figure 4.14	Contours of total pressure loss at velocity 50m/s with steel	38
	particles of 50µm	
Figure 4.15	Contours of total pressure loss at velocity 100m/s with steel	39
	particles of 50µm	
Figure 4.16	Contours of total pressure loss at velocity 150m/s with steel	39
	particles of 50µm	
Figure 4.17	Pressure loss coefficient v/s non dimensional pitch for Steel	40
	particle of different µm at velocity 50m/s	
Figure 4.18	Pressure loss coefficient v/s non dimensional pitch for steel	40
	particle of different µm at velocity 100m/s	
Figure 4.19	Pressure loss coefficient v/s non dimensional pitch for steel	41
	particle of different µm at velocity 150m/s	
Figure 4.20	Pressure loss coefficient v/s non dimensional pitch	41
	at different velocities for steel particle of 50µm	
Figure 4.21	Pressure loss coefficient v/s non dimensional pitch at different	42
	velocities for steel particle of 100µm	
Figure 4.22	Pressure loss coefficient v/s non dimensional pitch at different	42
	velocities for steel particle of 200µm	

Figure 4.23	Pressure loss coefficient v/s non dimensional pitch	43
	at different velocities for steel particle of 300µm	
Figure 4.24	Contours of total pressure loss at velocity 50m/s with	44
	water particles of 50µm	
Figure 4.25	Contours of total pressure loss at velocity 100m/s with	44
	water particles of 50µm	
Figure 4.26	Contours of total pressure loss at velocity 150m/s with	45
	water particles of 50µm	
Figure 4.27	Pressure loss coefficient v/s non dimensional pitch	45
	for water particle of different µm at velocity 50m/s	
Figure 4.28	Pressure loss coefficient v/s non dimensional pitch	46
	for water particle of different µm at velocity 100m/s	
Figure 4.29	Pressure loss coefficient v/s non dimensional pitch for	46
	water particle of different µm at velocity 150m/s	
Figure 4.30	Pressure loss coefficient v/s non dimensional pitch at	47
	different velocities for water particle of 50µm	
Figure 4.31	Pressure loss coefficient v/s non dimensional pitch at	47
	different velocities for water particle of 100µm	
Figure 4.32	Pressure loss coefficient v/s non dimensional pitch at	48
	different velocities for water particle of 200µm	
Figure 4.33	Pressure loss coefficient v/s non dimensional pitch at	48
	different velocities for water particle of 300µm	
Figure 4.34	Trajectories of particle with residence time at velocity	50
	50m/s with ash particles of 50µm	
Figure 4.35	Trajectories of particle with particle residence time at	50
	velocity 100m/s with ash particles of 50µm	
Figure 4.36	Trajectories of particle with particle residence time at	51
	velocity 150m/s with ash particles of 50µm	
Figure 4.37	Affected suction surface of blade v/s particle size	52
	injected at different velocities of ash particles	
Figure 4.38	Affected pressure surface of blade v/s particle size	52
	injected at different velocities of ash particles	

Figure 4.39	Trajectories of particle with residence time at velocity	53
	50m/s with steel particles of 50µm	
Figure 4.40	Trajectories of particle with particle residence time at velocity	53
	100m/s with steel particles of 50µm	
Figure 4.41	Trajectories of particle with particle residence time at velocity	54
	150m/s with steel particles of 50µm	
Figure 4.42	Affected suction surface of blade v/s particle size injected	54
	at different velocities of steel particles	
Figure 4.43	Affected pressure surface of blade v/s particle size injected	55
	at different velocities of steel particles	
Figure 4.44	Trajectories of particle with residence time at velocity	56
	50m/s with water particles of 50µm	
Figure 4.45	Trajectories of particle with particle residence time at velocity	56
	100m/s with water particles of 50µm	
Figure 4.46	Trajectories of particle with particle residence time at velocity	57
	150m/s with water particles of 50µm	
Figure 4.47	Affected suction surface of blade v/s particle size injected	57
	at different velocities of water particles	
Figure 4.48	Affected pressure surface of blade v/s particle size injected	58
	at different velocities of water particles	

LIST OF TABLE

S. No

Title

page no

Table 3.1	Cascade dimensions and flow parameter	23
-----------	---------------------------------------	----

NOMENCLATURE USED

ρ	Density
ui	Velocity vector
Sm	Momentum Source Term
Р	Static Pressure
ρg_i	Gravitational Body Force
Fi	External Body Force
$ au_{_{ij}}$	Stress Tensor
$\delta_{_{ij}}$	Kronecker's delta
μ	molecular viscosity
K _{eff}	Effective Thermal Conductivity
$J_{j'}$	Diffusion Flux
$\mathbf{S}_{\mathbf{h}}$	Source term includes heat of chemical reaction
Т	Temperature
E	Energy term
h	Enthalpy
m _{j'}	mass fraction
ui	instantaneous velocity
K	turbulent kinetic energy
3	energy dissipation rate
М	Mach Number
P_{2s}	Static pressure at outlet
P _{o1}	Total pressure at inlet
$\boldsymbol{\xi}_{y}$	Profile loss coefficient
P _{o2}	Total pressure at outlet
T_0	temperature at inlet
T_2	actual temperature at exit

 T_{2s} temperature at exit when expansion in the cascade is isentropic.

- γ Ratio of specific heats for air
- S span
- z blade height
- y distance along pitch
- C_v sand volume fraction