ABSTRACT

The need for studies of control strategies for induction motor drives is justified with the proliferation of application of these drives in industries and production plants where materials have to be both processed and transported and where a high productivity is one of the key factors. This work is focused on developing effective control strategies and configurations for control scheme of industrial induction motor drives. The work is extended to harmonics and reactive power control of the industrial induction motor drive with a PWM converter. The proposed control strategy is analyzed and confirmed by the simulation studies of the mathematical models used.

The complete mathematical model of field orientation control (FOC) and direct torque control (DTC) of induction motor is described and simulated in MATLAB for studies of 200 hp cage type induction motor drives. The indirect vector controlled induction motor drives involve decoupling of the stator current in to torque and flux producing components. PI control is used for the estimation of the instantaneous magnitude of the rotor speed, current and torque. The direct torque control employs direct control of stator flux linkages and the electromagnetic torque by the selection of an optimum voltage vector.

The pulse width modulated (PWM) converter designed as controllable switching pulses generator offers a flexible solution to the problem of current harmonics and reactive power requirement of the designed industrial drives. The dissertation successfully demonstrates the field oriented control and direct torque control fed with a PWM converter topology. Both motor control strategies are compared to decide the performance of the motor.

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to all those who have been instrumental in the successful completion of this project.

Dr. Rachana Garg, Associate Professor, Dept. Of Electrical Engineering, Delhi Technological University, my project guide, has guided me for the successful completion of this project. It is worth mentioning that she always provided the necessary guidance and support. I sincerely thank her for her wholehearted guidance.

I am grateful for the help and cooperation of HOD EED, Prof. Madhusudan Singh, Head Department of Electrical Engineering, Delhi Technological University, New Delhi, for providing the necessary lab facilities.

I would like to extend my heartfelt thanks to Prof. Pramod Kumar and Mrs. Priya Mahajan for their invaluable guidance and support in carrying out the work.

And I wish to thank all faculty members whoever helped to finish my project in all aspects. To all the named and many unnamed, my sincere thanks. Surely it is Almighty's grace to get things done fruitfully.

> Harsha Saroa 2k12/PSY/25

TABLE OF CONTENTS

Certificate	ii
Abstract	iii
Acknowledgement	iv
Table of Content	v
List of Tables	viii
List of Figures	ix
List of Symbols	xii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	2
1.2 Industrial Drives	2
1.3 Control Schemes for Industrial Drives	3
1.3.1 Scalar Control	3
1.3.2 Field Oriented Control	3
1.3.3 Direct Torque Control	3
1.4 Three Phase PWM Converter	4
1.5 Objective of Thesis	5
1.6 Preview of Thesis	5
1.7 Conclusion	6
CHAPTER 2 LITERATURE REVIEW	7
2.1 Introduction	8
2.2 Field Oriented Control of Induction Motor Drive	8
2.3 Direct Torque Control of Induction Motor Drive	10
2.4 PWM Converter	12
2.5 Conclusion	13
CHAPTER 3 MODELLING OF INDUSTRIAL DRIVES	14
3.1 Introduction	15
3.2 Salient Features of Induction Motor	15
3.2.1 Working Principle of Three Phase Induction Motor	15

3.2.2 Dynamic Model of Induction Motor	16	
3.3 Speed Control Scheme of Three Phase Induction Motor Drives	18	
3.3.1 Scalar Control of Induction Motor		
3.3.2 Vector Field Oriented Control of Induction Motor Drive	18	
3.3.3 Direct Torque Control of Induction Motor Drive	22	
3.4 Conclusion	26	
CHAPTER 4 THREE PHASE CONTROLLED	27	
CONVERTER		
4.1 Introduction	28	
4.2 Classification of Converters	29	
4.2.1 Voltage Source Converter	30	
4.2.2 Current Source Converter	30	
4.3 Three Phase PWM Converter Modeling	31	
4.4 Conclusion	35	
CHAPTER 5 MATLAB/SIMULINK MODELS OF	36	
INDUCTION MOTOR DRIVES		
5.1 Introduction	37	
5.2 PWM Converter Simulation Blocks	37	
5.3 Direct Torque Control Scheme	39	
5.4 Field Oriented Control Scheme	42	
5.5 Conclusion	44	
CHAPTER 6 SIMULATION RESULTS	45	
6.1 Simulation and Results	46	
6.2 Results of DTC scheme	47	
6.2.1 DTC Scheme Results at Different Loads	48	
6.2.2 DTC Scheme Results at Different Speeds	49	
6.3 Results of FOC Scheme	51	
6.3.1 FOC Scheme Results at Different Loads	52	
6.3.2 FOC Scheme Results at Different Speeds	53	

6.4 DC Link Voltage Variations for Supply Perturbations			
6.5 Comparison of	f FOC and DTC Scheme Results	56	
CHAPTER 7 CONCLUSION AND FURTHER SCOPE			
	OF WORK		
7.1 Conclusion		59	
7.2 Further Scope	of work	59	
APPENDIX			
REFERENCES		62	
LIST OF PUBLICATIONS			

LIST OF TABLES

Table I	General selection table for direct torque control.	26
Table II	DC link voltage variations for supply voltage perturbations	55
Table III	Comparison of control schemes at different loads	56
Table IV	Comparison of control schemes at different speeds	57

LIST OF FIGURES

Figure 1.1	Complete schematic diagram of the proposed system 5					
Figure 3.1	Equivalent circuit of an induction motor in the synchronous 1 rotating reference frame, a) q-axis circuit b) d-axis circuit					
Figure 3.2	Block diagram of FOC scheme of induction motor drives	20				
Figure 3.3	Switching voltage vectors and stator flux vector locus	25				
Figure 3.4	Block diagram of direct torque control of induction motor	26				
Figure 4.1	(a) Single-phase bridge rectifier (b) Three-phase bridge rectifier	29				
Figure 4.2	Topology for three phase PWM converter	31				
Figure 4.3	Block diagram of PWM converter control scheme	31				
Figure 4.4	Block diagram of decoupled controller	33				
Figure 4.5	Diagrammatic representation of sinusoidal pulse width modulation technique	34				
Figure 4.6	Simulink PWM Block Diagram	34				
Figure 5.1	Controller sub block of the converter	37				
Figure 5.2	Simulation Block of PWM Generator	38				
Figure 5.3	Current controller block of converter	38				
Figure 5.4	Phase locked loop block of converter 3					
Figure 5.5	Simulink model of DTC of induction motor					
Figure 5.6	Torque and flux estimator simulink block					
Figure 5.7	Flux and Torque hysteresis controller					
Figure 5.8	Speed controller subsystem of Direct torque control of induction motor	41				
Figure 5.9	Matlab Simulink block diagram of FOC scheme	42				
Figure 5.10	Hysteresis current regulator block 42					
Figure 5.11	Block for Flux Calculation 43					
Figure 5.12	Block for Theta Calculation 43					
Figure 5.13	Transformation block: d-q to abc 44					
Figure 5.14	Transformation Blocks: abc to d-q44					

Figure 6.1	DC link voltage output of the PWM converter of the system	46
Figure 6.2	Source current and voltage waveform of three phase PWM converter	47
Figure 6.3	Unity power factor waveform for DTC	47
Figure 6.4	Simulink plot showing stator currents, rotor speed and electromagnetic torque for no load condition at speed of 150 rad/sec.	48
Figure 6.5	Simulink plot showing stator currents, rotor speed and electromagnetic torque for half load condition at speed of 150 rad/sec.	48
Figure 6.6	Simulink plot showing stator currents, rotor speed and electromagnetic torque for full load condition at speed of 150 rad/sec.	49
Figure 6.7	Simulink plot for DTC scheme showing three phase stator current, speed and electromagnetic torque for full load (800Nm) at 50rad/sec speed	49
Figure 6.8	Simulink plot for DTC scheme showing three phase stator current, speed and electromagnetic torque for full load (800Nm) at 100rad/sec speed	50
Figure 6.9	Simulink plot for DTC scheme showing three phase stator current, speed and electromagnetic torque for full load (800Nm) at 150rad/sec speed	50
Figure 6.10	Source current and voltage waveform of three phase PWM converter	51
Figure 6.11	Unity power factor waveform of FOC	51
-	Simulink plot showing three phase stator current, speed and electromagnetic torque on no load at 150rad/sec speed.	52
Figure 6.13	Simulink plot showing three phase stator current, speed and electromagnetic torque on half load at 150rad/sec speed.	52
Figure 6.14	Simulink plot showing three phase stator current, speed and electromagnetic torque on full load at 150rad/sec speed	53
Figure 6.15	Simulink plot for FOC scheme showing three phase stator current, speed and electromagnetic torque for full load (800Nm) at 50rad/sec speed	53
Figure 6.16	Simulink plot for FOC scheme showing three phase stator current, speed and electromagnetic torque for full load (800Nm) at	54

х

100rad/sec speed

Figure 6.17	Simulink plot for FOC scheme showing three phase stator current,						54			
	speed	and	electromagnetic	torque	for	full	load	(800Nm)	at	
	150rac	l/sec	speed							

Figure 6.18 Simulink plot for DC link voltage with supply perturbations 55

LIST OF SYMBOLS

Symbols	Description
d ^s -q ^s	Stationary reference frame direct and quadrature axis
$d^{e}-q^{e}$	Synchronously rotating reference frame direct and quadrature axis
i_{qs}	q ^e -axis stator current
i_{qr}	q ^e -axis rotor current
i _{dr}	d ^e -axis rotor current
i _{ds}	d ^e -axis stator current
i_{qs}	q ^e -axis stator current
L_m	Magnetizing inductance
L_{ls}	Stator leakage inductance
L_{lr}	Rotor leakage inductance
v_{qs}	q ^e -axis stator voltage
v_{ds}	d ^e -axis stator voltage
v_{qr}	q ^e -axis rotor voltage
v_{dr}	d ^e -axis rotor voltage
R_s	Stator resistance
R_r	Rotor resistance
L _s	Stator inductance
L_r	Rotor inductance
ω_e	Stator or line frequency
ω_r	Rotor electrical speed
ω_{sl}	Slip frequency
S	Laplace operator
p	Number of pole
θ_e	Angle of synchronously rotating frame
θ_r	Rotor angle
θ_{sl}	Slip angle
v_{qs}^s	q^{s} -axis stator voltage
v_{ds}^{s}	d ^s -axis stator voltage q ^s -axis stator current
i _{qs} :s	d ^s -axis stator current
i^s_{ds} K _s	Slip gain
\mathbf{R}_{s} Q	Reactive power
Q*	Reactive power reference
i_a^* , i_b^* , and i_c^*	Stator current reference
i _{qs} *	Stator quadrature-axis reference current
i_{ds}^{qs} *	Stator direct-axis reference current
$ \Psi_r ^*$	Sotor flux reference input
T_e^*	Torque reference
$ \Psi_r _{est}$	Estimated rotor flux linkage