ABSTRACT

Act of drawing or state of being drawn, propulsion of vehicle is called the traction and the system of traction involving the use of electricity is called the electric traction system. Electric traction systems are the most widely used because of their qualities like high efficiency, heavy ridership and fast transportation. The introduction of self commuting solid state devices has boosted the application of ac motor drives in electric traction systems. The variable frequency induction motor drives used in AC traction system consist of uncontrolled ac-dc converters and voltage source inverters feeding the induction motor. Such converters induce power quality issues in the power distribution system feeding the traction system such as injecting harmonics which leads to voltage fluctuation, reactive power and low power factor issues.

Different international organizations have given guidelines through various standards like IEEE-519, IEC 61000-3-2, etc to inflict limits on the levels of harmonic current emissions. This has lead to novel research in suggesting and developing different ways and means for reducing these harmonic currents and to improve the power quality. Various circuit topologies have been reported in the literature for converter inverter designing for feeding traction motor drive.

This work presents the performance analysis of electric traction motor drive consisting of an AC-DC converter fed vector controlled induction motor drive. The converter provides the constant dc link, keeps the input power factor close to unity and also reduces the THD of AC mains current. Modelling and simulated results of the converter fed induction motor drive are presented to demonstrate the features of electric traction drive. The necessary modelling and simulations are done in MATLAB Simulink.

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to all those who have been instrumental in the successful completion of this project. One cannot even imagine the power of the force that guides us all and neither can we succeed without acknowledging it. My deepest gratitude to **Almighty God** for holding my hands and guiding me throughout my lives.

I would like to thank my beloved parents, who always give me strong inspirations, moral supports, and helpful suggestions. Without them, my study career would never have begun. It is only because of them, my life has always been full of abundant blessing.

Dr. Rachana Garg, Associate Professor, Dept. Of Electrical Engineering, Delhi Technological University, my project guide, has guided me for the successful completion of this project. It is worth mentioning that she always provided the necessary guidance and support. I sincerely thank her for her wholehearted guidance.

I would like to express my sincere thanks to **Prof. Parmod Kumar**, formerly-HOD, Electrical Engineering Department, Delhi Technological University for his help and guidance. I would like to thanks Mrs Priya Mahajan, Assistant Professor for her suggestions and help.

I am grateful for the help and cooperation of HOD EED, **Prof. Madhusudan Singh**, Head Department of Electrical Engineering, Delhi Technological University, for providing the necessary lab facilities and cooperation. And I wish to thank all faculty members whoever helped to finish my project in all aspects. To all the named and many unnamed, my sincere thanks. Surely it is Almighty's grace to get things done fruitfully.

CONTENTS

Cover F	Page	i	
Certific	Certificate		
Abstrac	Abstract		
Acknow	vledgement	iv	
Content	ts	v	
List Of	Tables	viii	
List Of	Figures	ix	
List Of	Symbols	xi	
СНАРТ	TER 1 INTRODUCTION	1-6	
1.1	General	2	
1.1.1	Electric Traction System	3	
1.1.2	Control Techniques for Traction Motor Drive	4	
1.1.3	H-Bridge Single Phase AC-DC Converter	5	
1.2	Objective of Study	5	
1.3	Organization of Dissertation	6	
1.4	Conclusion	6	
СНАРТ	TER 2 LITERATURE REVIEW	7-15	
2.1	General	8	
2.2	Electric traction system	8	
2.3	Voltage Source Converter	9	
2.4	Control techniques for IM drive	12	
2.4.1	Scalar Control	12	
2.4.2	Vector Control	13	
2.4.3	Direct Torque Control	14	
2.5	Conclusion	14	
СНАРТ	TER 3 ELECTRIC TRACTION SYSTEM	16-22	
3.1	General	17	
3.2	Various Traction Power Supplies	18	

3.2.1	DC Sy	DC System			18	
3.2.2	AC Sy	AC System				19
3.3	Syster	n Configuration	L			19
3.4	Induct	tion Motor Drive	e System			20
CHAPT	TER 4	CONTROL	TECHNIQUES	FOR	TRACTION	22-36
		MOTOR DR	IVE			
4.1	General				23	
4.2	Contro	ol Techniques fo	or Induction Motor I	Drive		23
4.2.1	Scalar	Control				24
4.2.2	Vector	r control				24
4.2.2.1	d-q to abc transformation			26		
4.2.2.2	θ_e Cal	culation Block				27
4.2.2.3	I _{ds} Cal	lculation Block				27
4.2.2.4	Iqs Calculation Block			27		
4.2.3	Direct Torque Control			27		
4.2.3.1	DTC Controller Design			28		
4.2.3.2	Space Vectors			29		
4.3	MATLAB Modelling of VFIMD			31		
4.3.1	Vector Control			32		
4.3.2	Direct	Torque Contro	ol			32
4.3.3	Perfor	mance of contro	ol schemes			33
СНАРТ	TER 5	H-BRIDGE S	SINGLE PHASE A	C-DC C	ONVERTER	37-43
5.1	Gener	al				38
5.2	Power	r Factor Control	using PWM Conver	ter		38
5.2.1	Desig	n for Steady Sta	te operation			39
5.3	Voltag	ge source conve	rter			41
5.3.1	Voltag	ge Controller				41
5.3.2	Curren	nt Controller				41
5.3.3	H-Bridge VSC			43		
СНАРТ	TER 6	SIMULATIO	N AND RESULTS			45-55

6.1	Simulation 46			46			
6.2	Result	s					55
СНАРТ	ER 7	CONCLUSIONS	AND	FURTHER	SCOPE	OF	56-57
		WORK					
7.1	Conclu	ision					57
7.2	Furthe	r Scope of work					57
REFERENCES 5			58				
APPENDIX I			62				
LIST OF PUBLICATIONS			63				

LIST OF TABLES

Table	Description	Page No.
Ι	Switching table of inverter voltage vector	28
II	Flux and Torque variations due to applied voltage vector	28
III	Selection Table for Direct Torque Control	30
IV	Analysis of traction motor drive scheme implemented	55

LIST OF FIGURES

Figure	Description	Page No.
1.1	Block Diagram of AC-DC-AC traction system for AC moto	r 3
	drive	
3.1	Schematic diagram of a) DC electric locomotive, b) AC electric locomotive.	e 19
3.2	Block diagram of electric traction motor drive system configuration	n 20
3.3	Block diagram of induction motor drive	21
4.1	Block diagram of Vector control scheme of traction moto drive.	r 25
4.2	Stator flux vector locus and Voltage vectors for possible switching.	e 30
4.3	Block diagram of direct torque control of traction motor	31
4.4	Simulink model of field oriented control of induction motor	32
4.5	Simulink model of direct torque control of induction motor	32
4.6	Simulink plot for FOC showing three phase stator current speed and electromagnetic torque for no load at 150rad/sec speed.	
4.7	Simulink plot for DTC showing three phase stator current speed and electromagnetic torque for no load at 150rad/sec speed.	
4.8	Simulink plot for FOC showing three phase stator current speed and electromagnetic torque for half load (400Nm) a 150rad/sec speed.	
4.9	Simulink plot for DTC showing three phase stator current speed and electromagnetic torque for half load (400Nm) a 150rad/sec speed.	
4.10	Simulink plot for FOC showing three phase stator current speed and electromagnetic torque for full load (800Nm) a 150rad/sec speed.	
4.11	Simulink plot for DTC showing three phase stator current speed and electromagnetic torque for full load (800Nm) a 150rad/sec speed.	
5.1	Single Phase Bridge Voltage Source Converter	39
5.2	Phasor Diagram of Front End Converter: a.) Forward power	r 40

	flow, b.) Reverse power flow	
5.3	Schematic control diagram of the converter fed electric traction motor drive	42
5.4	MATLAB model of Converter fed electric traction motor drive.	43
6.1	Simulink plot for FOC showing three phase stator current, speed and electromagnetic torque for no load at 215rad/sec speed.	46
6.2	Simulink plot for DTC showing three phase stator current, speed and electromagnetic torque for no load at 215rad/sec speed.	47
6.3	Simulink plot for FOC showing three phase stator current, speed and electromagnetic torque for half load at 215rad/sec speed.	47
6.4	Simulink plot for DTC showing three phase stator current, speed and electromagnetic torque for half load at 215rad/sec speed.	48
6.5	Simulink plot for FOC showing three phase stator current, speed and electromagnetic torque for full load at 215rad/sec speed.	48
6.6	Simulink plot for DTC showing three phase stator current, speed and electromagnetic torque for full load at 215rad/sec speed.	49
6.7	MATLAB model of single phase supply fed electric traction motor drive.	50
6.8	Simulink plot showing source voltage, source current, three phase stator current, speed and electromagnetic torque for full load (1000Nm) at 215rad/sec speed.	51
6.9	Simulink plot showing source voltage, source current, three phase stator current, speed and electromagnetic torque for half load (500Nm) at 215rad/sec speed.	52
6.10	Simulink plot showing source voltage, source current, three phase stator current, speed and electromagnetic torque for no load (0Nm) at 215rad/sec speed.	53
6.11	Simulink plot showing source voltage, source current, three phase stator current, speed and electromagnetic torque for at half the rated speed and full load.	54

LIST OF SYMBOLS

Symbols	Description
d ^s -q ^s	Stationary reference frame direct and quadrature axis
$d^{e}-q^{e}$	Synchronously rotating reference frame direct and quadrature axis
i _{qs}	q ^e -axis stator current
i _{qr}	q ^e -axis rotor current
i _{dr}	d ^e -axis rotor current
i _{ds}	d ^e -axis stator current
i_{qs}^{as}	q ^e -axis stator current
L_m	Magnetizing inductance
L_{ls}	Stator leakage inductance
L_{lr}	Rotor leakage inductance
v_{qs}	q ^e -axis stator voltage
v_{ds}	d ^e -axis stator voltage
v_{qr}	q ^e -axis rotor voltage
v_{dr}	d ^e -axis rotor voltage
R_s	Stator resistance
R_r	Rotor resistance
L_s	Stator inductance
L_r	Rotor inductance
ω_e	Stator or line frequency
ω_r	Rotor electrical speed
ω_{sl}	Slip frequency
S	Laplace operator
р	Number of pole
θ_e	Angle of synchronously rotating frame
θ_r	Rotor angle
θ_{sl}	Slip angle
v_{qs}^s	q ^s -axis stator voltage
v_{ds}^s	d ^s -axis stator voltage
i_{qs}^s	q ^s -axis stator current
i_{ds}^s	d ^s -axis stator current
Ks	Slip gain Boostive power
Q Q*	Reactive power Reactive power reference
i_a^* , i_b^* , and i_c^*	Stator current reference
i_{qs}^{a} , i_{b}^{b} , and i_{c}^{b}	Stator quadrature-axis reference current
i_{ds} *	Stator direct-axis reference current
$ \Psi_{\rm r} ^*$	Sotor flux reference input
T_e^*	Torque reference
$ \Psi_r _{est}$	Estimated rotor flux linkage