
Delhi Technological University Page i

A
Dissertation

On

 Parallelization of Bat Algorithm using Hadoop MapReduce

Submitted in Partial Fulfillment of the Requirement
For the Award of the Degree of

Master of Technology

in

Computer Science and Engineering

by

Sanchi Girotra
University Roll No. 2K12/CSE/29

Under the Esteemed Guidance of

Dr. Kapil Sharma
Associate Professor, Computer Engineering Department, DTU, Delhi

2012-2015

 COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI – 110042

Delhi Technological University Page ii

ABSTRACT

Bat algorithm is among the most popular meta-heuristic algorithms for optimization. Traditional

bat algorithm work on sequential approach which is not scalable for optimization problems

dealing with BIG DATA such a scrawled documents, web request logs, commercial transaction

information therefore parallelizing meta-heuristics to run on tens, hundreds or even thousands of

machine to reduce runtime is required.

In this paper, we introduced two parallel models of BAT algorithm using MapReduce

programming model proposed by Google. We used these two models for solving the Software

development effort optimization problem.

The experiment is conducted using Apache Hadoop implementation of MapReduce on a cluster

of 6 machines. These models can be used to solve problems with large search space, dimension

and huge computation by simply adding more hardware resources to the cluster and without

changing the proposed model code.

Index Terms - BAT algorithm, COCOMO Model, Effort Estimation, parallel algorithms,

Apached Hadoop, MapReduce Model, Scalability, Big data.

Delhi Technological University Page iii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to all the people who have supported and

encouraged me during the course of this project without which, this work could not have been

accomplished.

First of all, I am very grateful to my project supervisor Dr. Kapil Sharma for providing the

opportunity of carrying out this project under his guidance. I am deeply indebted to him for the

support, advice and encouragement he provided without which the project could not have been a

success. I am also grateful to Dr. OP Verma, HOD, Computer Science, DTU for her immense

support. I am also thankful to my parents for being there for me at all times. Last but not the

least, I am grateful to Delhi Technological University for providing the right resources and

environment for this work to be carried out.

Sanchi Girotra

University Roll no: 2K12/CSE/29

M.Tech (Computer Science & Engineering)

Department of Computer Engineering

Delhi Technological University

Delhi – 110042

Delhi Technological University Page iv

CERTIFICATE

This is to certify that the dissertation titled “Parallelization of Bat Algorithm using Hadoop

MapReduce” is a bonafide record of work done at Delhi Technological University by Sanchi

Girotra, Roll No. 2K12/CSE/29 for partial fulfilment of the requirements for the degree of

Master of Technology in Computer Science & Engineering. This project was carried out under

my supervision and has not been submitted elsewhere, either in part or full, for the award of any

other degree or diploma to the best of my knowledge and belief.

 (Dr. Kapil Sharma)

 Associate Professor & Project Guide

Date: _____________ Department of Computer Engineering

 Delhi Technological University

Delhi Technological University Page v

Table of Contents

Abstract ii

Acknowledgment iii

Certificate iv

List of Figures vii

List of Abbreviations viii

Chapter 1

Introduction 1

Chapter 2

Literature Review 3

2.1 Variants of Bat Algorithm 3

2.2 Applications of Bat Algorithm 5

2.3 Applications of MapReduce Model 7

Chapter 3

Research Methology 9

3.1 Bat Algorithm 9

3.2 MapReduce Model 13

 3.2.1 Example of MapReduce Model 14

 3.2.2 Hadoop MapReduce Architecture 15

3.3 COCOMO II Model 18

3.4 NASA 63 Data Set 19

Chapter 4

Parallel Bat Algorithm using MapReduce Model 22

4.1 Input Representation 22

4.2 Exchange of Information between Bats 23

4.3 Mapper in Bat Algorithm 24

Delhi Technological University Page vi

Chapter 5

Experimental Result and Analysis 29

5.1 Implementation 29

5.2 Environment 29

5.3 Experimental Results 30

Chapter 6

Conclusion and Future Work 33

References 34

Delhi Technological University Page vii

List of Figures

Figure 2.1: Timeline of bat algorithm 5

Figure 3.1: Bat using echolocation to locate its prey 9

Figure 3.2: Example of MapReduce Model 15

Figure 3.3: Hadoop Server Roles 16

Figure 3.4: Hadoop MapReduce Architecture 17

Figure 4.1: Operation phases in Map Reduce Bat Algorithm (MRBA) 23

Figure 4.2: Operation phases in Map Bat Algorithm (MBA) 24

Figure 4.3: Flow chart of Model 1 26

Figure 4.4: Flow chart of Model 2 28

Figure 5.1:

Scalability of MBA for effort estimation problem wi th 30

 increasing the number of mappers

Figure 5.2: Comparison between MRBA and MBA 31

Figure 5.3:

Scalability of MBA for effort estimation problem wi th 31

 increasing the number of nodes

Figure 5.4: Performance tuning with increase in population size 32

Figure 5.5:

Performance tuning with increase in number of Generations 32

Delhi Technological University Page viii

List of Abbreviations

BA Bat Algorithm

PSO Particle Swarm Optimization

CS Cuckoo Search

MPI Message Passing Interface

PRS Performance-based Reward Strategy

FBC Fuzzy Bat Clustering

MOBA Multi Objective Bat Algorithm

BBA Binary Bat Algorithm

DLBA Differential Operator and Lévy Flights Bat

 Algorithm

BAM Bat Algorithm with Mutation

IBA Improved Bat Algorithm

BPNN Back-Propagation Neural Network

ACO Ant Colony optimization

GA Genetic Algorithm

PF Particle Filter

APF Annealed Particle Filter

TSP Travelling Salesman Problem

HFS Hybrid Flow Shop

RBF Radial basis function

COCOMO Constructive Cost Model

MPSO Map - Particle Swarm Optimization

MRPSO Map Reduce Particle Swarm Optimization

MRPGA Map Reduce Parallel Genetic Algorithm

NASA National Aeronautic and Space

 Administration

EM Effort Multiplier

MRBA Map Reduce Bat Algorithm

Delhi Technological University Page ix

MBA Map Bat Algorithm

KLOC Thousands of Lines of Code

HDFS Hadoop Distributed File System

MMRE Mean Magnitude of Relative Error

Delhi Technological University Page 1

CHAPTER 1
INTRODUCTION

Over the last few years, Meta-heuristic (discover solution by trial and error) approximation

algorithms are widely used to solve many continuous and combinatorial optimization problems.

It often finds good solution with less computation effort than exhaustive, iterative and simple

heuristic methods. Some of the meta-heuristic algorithms are particle swam optimization (PSO),

genetic algorithm (GA), cuckoo search (CS) etc. These algorithms are problem independent thus

suits many optimization problems. Bat Algorithm is one of the swarm intelligence based nature

inspired meta heuristic algorithm proposed by Yang [1] in 2010 and it is based on the

echolocation behavior of bats to detect its prey, avoid obstacle and to find its dwell in caves. BA

has been successfully applied on many continuous optimization problems of topology design,

effort estimation, economic dispatch etc. and it has shown better convergence to optimal solution

than other meta - heuristic algorithms.

But BA takes reasonable amount of time to solve problems involving large volumes of data (big

data), involving huge fitness computation or having large number of dimensions. One solution to

handle this would be to parallelize bat algorithm and scale it to large number of processors. But

after program successfully parallelize, it must still needs to focus on communication of best bat

across all the processors this can be done through shared memory which provides a global

address space which parallel tasks can access asynchronously but it lacks locality of reference

thus takes much time as compare to message passing interface (MPI) which provides an

interface, protocol and semantic specifications to pass messages between parallel processes.

These parallelized program still need to handle distribution of data and node failure explicitly. In

order to deal with these concerns, Google designed a new abstraction called MapReduce that

provides a parallel design pattern for simplifying application development for distributed

environments i.e. allows expressing the simple computation in that design model with hiding

messy details of parallelization, fault-tolerance, data distribution and load balancing in a library.

This abstraction is inspired by map and reduce primitives present in Lisp and many other

functional languages. Apache Hadoop implementation of map reduce and HDFS have

successfully parallelized many optimization algorithms like PSO, genetic algorithm and have

Delhi Technological University Page 2

effectively reduced the running time of algorithm for complex problems like stock trading

Strategy (PRS) [2], job shop scheduling problems Huang and Lin [3], k-mean clustering [4] etc.

This thesis makes the following research contributions:

1. We demonstrate a transformation of bat algorithms into the map and reduce primitives

2. We propose 2 models of parallel bat algorithm.

3. We implement these models on effort estimation problem and demonstrate its scalability

to large problem sizes.

From this proposed work, many complex optimization problem based on BA can easily scaled

only by increasing the no of hardware resources.

The rest of the thesis is organized as follows. Chapter 2 presents BA and MapReduce in

literature. Chapter 3 discusses the research methodology used for proposed work. In chapter 4 we

discuss how bat algorithm can be parallelized using the Map Reduce model. Chapter 5 provides

implementation, environment details and evaluates these two models on Hadoop MapReduce

cluster. Then we conclude in chapter 6.

Delhi Technological University Page 3

CHAPTER 2
LITERATURE REVIEW

In 2010, [1] proposed Bat Algorithm (BA), which is a new meta(high level)-heuristic algorithm

for continuous problem optimization. From then BA has been employed on various optimization

problems and many variants of BA have been proposed.

2.1 VARIANTS OF BAT ALGORITHM
In order to improve the solution of the problem, many variants of Bat Algorithm have been

proposed, which resulted in better performance than original algorithm.

1. Fuzzy Bat Clustering (FBC) algorithm : Khan, et al. [5] combined fuzzy logic with bat

algorithm and presented a variant of bat algorithm for clustering of ergonomic workspace.

2. Multi Objective Bat Algorithm (MOBA) : In 2011, Xin-She [6] proposed an extended

version of bat algorithm to solve multiobjective optimisation problems. It used Pareto

optimality and weighted sum to deal with multiple objective functions.

3. K-Means Bat Algorithm (KMBA) : In KMBA, Komarasamy and Wahi [7] used bat

algorithm to calculate the cluster center and KM algorithm to form clusters which provides

efficient clustering.

4. Chaotic Levy Flight Bat Algorithm : Lin, et al. [8] uses chaotic(map) variables in place of

random numbers and levy flight for random walk for estimation of parameters in dynamic

biological system.

5. Binary bat algorithm (BBA): Nakamura, et al. [9] developed a discrete version of bat

algorithm for solving feature selection problem.

6. Improved Bat Algorithm with Doppler Effect : U., et al. [10] modified BA to take into

account the Doppler shift i.e. change in frequency of echoes when bats are approaching their

prey. In this case, bats changes their frequency of signal emission to make echoes centered

Delhi Technological University Page 4

within a narrow frequency range where they have very sensitive hearing. It has been tested

on 4 benchmark functions.

7. Differential Operator and Lévy Flights Bat Algorithm(DLBA) : Xie, et al. [11] modified bat

algorithm by introducing Differential Operator as a mutator to increase the convergence

speed of algorithm and Lévy Flights for random walk to avoid pre mature convergence.

8. Bat algorithm with mutation (BAM) : Zhang and Wang [12] modified bat algorithm to

mutate bat in Equation 4 to solve image matching problem.

9. Hybrid Bat Algorithm : Jr., et al. [13] uses differential evolution ”DE/rand/1/bin” strategy to

find the neighborhood solution in order to get good results for higher-dimensional problems.

10. Adaptive Bat Algorithm : Wang, et al. [14] improved bat algorithm to avoid premature

convergence problem and used dynamic / adaptive strategy to update its speed and direction.

11. Improved Bat Algorithm (IBA): Yilmaz and Kucuksille [15] employed Inertia Weigh Factor,

Adaptive Frequency Modification, Scout Bee Modification to balance exploration over

exploitation in BA.

12. Enhanced Bat Algorithm : Kaveh and Zakian [16] presents a variant of bat algorithm by

limiting the local search by a Θ scale factor thus improve the exploration capability of BA.

13. Modified Bat Algorithm: Yılmaz, et al. [17] balance exploration and exploitation in BA by

assigning separate loudness A and pulse rate r for each dimension of the solution.

14. Compact Bat Algorithm: Dao, et al. [18] addressed the problem of limited hardware

resources such as memory for solving numerical optimization problem by using probability

vector in place of population.

15. Parallelized Bat Algorithm with a Communication Strategy : In 2014, Tsai, et al. [19] defined

communication strategy to parallelize original Bat Algorithm.

Delhi Technological University Page 5

16. Evolved Bat Algorithm : Dao, et al. [20] proposed a new bat algorithm to solve Economic

Dispatch problem whose results are found better than Genetic Algorithm.

Figure 2.1: Timeline of Bat Algorithm

Many researchers have united the BA with other algorithms to solve optimization problems like,

Wang and Guo [21] merged BA with Harmony Search for Global Numerical Optimization,

Nawi, et al. [22] combined BA with Back-propagation neural network (BPNN) algorithm to

solve the local minima problem in gradient descent trajectory and to increase the convergence

rate.

2.2 APPLICATIONS OF BAT ALGORITHM

Meta-heuristic technique are problem-independent and provide general purpose strategy for

search which makes BA applicable for different continuous optimization problems and in the last

5 years, BA has successfully provided optimized solutions of various problems:

Delhi Technological University Page 6

1. Bora, et al. [23] (2012) optimized of 5 design parameters in order to design Brushless DC

Wheel Motor having best efficiency η with satisfying 6 constraints.

2. Damodaram and Valarmathi [24] (2012) employed BA to minimize the error rate of

predicting the e-banking phishing websites in which BA outperformed ACO and PSO.

3. In 2013, Ramesh, et al. [25] used BA to solve economic dispatch problem by optimizing fuel

cost coefficients of 6 generators in order to minimize total power generation cost with

satisfying all units and operational constraints of the power system.

4. Marichelvam and Prabaharam [26] (2012) minimized makespan (the maximum completion

time) and mean flow time by selecting optimal hybrid flow shop schedule in HFS with

multiple machines and BA found more efficient than Genetic Algorithm and PSO.

5. M., et al. [27] (2012) estimated full body human pose by minimizing the distance or

maximize the similarity between generic model of human body and the cloud of points. It

performed better than PSO, Particle Filter (PF) and Annealed Particle Filter (APF).

6. Yang, et al. [28] (2012) used BA in topology optimization i.e. find best geometric

configuration so as to achieve certain objective. For E.g. distribute two different materials so

as to maximize the temperature difference.

7. Tamiru and Hashim [29] combined bat algorithm with fuzzy logic for gas turbine model

identification after exergy changes.

8. Faritha Banu and Chandrasekar [30] explored Modified Bat algorithm to detect duplicate

records in Cora Bibliographic data set in which BA performed better than Genetic

Programming.

9. Srivastava, et al. [31] (2014) proposed test effort estimation model using BA.

Delhi Technological University Page 7

10. Saji, et al. [32] (2014) redefined Bat Algorithm for solving NP hard TS Problem.

11. Gupta and Sharma [33] estimated software development effort by optimizing COCOMO

coefficients.

12. Djelloul, et al. [34] found optimal assignment of colors in the graph subject to certain

constraints i.e. solved Graph Coloring Problem.

13. Hassan, et al. [35] detected optimal community of nodes in the network having better internal

connectivity than external using discrete bat algorithm.

2.3 APPLICATIONS OF MAPREDUCE MODEL

In 2004, Google’s Dean and Ghemawat [36] published a white paper to parallelize large data on

clusters by using map reduce model. After that MapReduce became widely-used parallel

programming model and was employed on various large processing application like relation data

processing [37], machine learning [38], scientific analysis [39] etc.

Nowadays, heuristic algorithms have started using Hadoop Map Reduce Model to scale data

intensive problems such as:

1. Particle Swarm optimization Algorithm (PSO) : McNabb, et al. [40] successfully parallelized

PSO on a MapReduce framework and evaluated it on RBF Network Training function and

sphere function then in 2014 Wang, et al. [2] proposed MPSO (Map-PSO) and applied this

on Performance-based Reward Strategy in stock markets which took less running time then

sequential and MRPSO.

2. Genetic Algorithm (GA) : Jin, et al. [41] used MapReduce model to parallelize GA and

proposed MRPGA. Verma, et al. [42] presented parallel model of GA for data-intensive

computing and tested it on one max problem. Keco and Subasi [43] proposed Model 2 and

compared it with model 1 for same one max problem implementation. Then these models

were used for various problems like Job Shop Scheduling Problem [3], automatic generation

of JUnit Test Suites [44] etc.

Delhi Technological University Page 8

3. Cuckoo Search : Lin, et al. [45] scaled Modified Cuckoo Search using MapReduce

Architecture and evaluated it on Griewank function, Rastrigrin function, Rosenbrock

function and Sphere function.

Delhi Technological University Page 9

CHAPTER 3
RESEARCH METHOLOGY

In this research, we have studied Bat algorithm, Hadoop Map Reduce Model, COCOMO II and

have successfully used these methods to propose a new parallel Bat Algorithm using MapReduce

Programming Model and have evaluated it on Effort Estimation problem using NASA 63

Dataset.

3.1 BAT ALGORITHM

Bat Algorithms (BA), is swarm intelligence based meta-heuristic optimization algorithm

proposed by Xin-She Yang in 2010. BA finds the solution in the search space by exploiting the

echolocation behavior of bats in which they locate their prey by emitting a short - loud sound

pulse and listen for the echo that bounces back from the surrounding obstacle then they use the

time delay from the emission of sound pulse to perception of the echo and the time difference

between their two ears and also the loudness variations (signal intensity) of the echo’s to get a

view about surrounding and prey size as shown in Figure 3.1.

Figure 3.1: Bat using echolocation to locate its prey

Delhi Technological University Page 10

BA is a continuous meta-heuristic optimization algorithm used to select best real valued input

from defined set of options in order to maximize or minimize a function. It only guarantee

approximate (not approximation) solution to the problem.

In addition to this, heuristic Algorithms have two main attributes: exploration (also known as

diversification) and exploitation (also known as intensification).

Exploration is investigation of larger portion of search space so as to detect global optimum

point (global search ability) while Exploitation is investigation of limited (promising) region of

the search space in order to improve or refine the promising previous best solutions.

A good response of an algorithm depends on well-balance of these components i.e. in the case of

little exploration and massive exploitation, the algorithm can get confined into local optimum

points. Whereas too much exploration but less exploitation will make it difficult for algorithm to

converge on optimal point thus slow down the search performance. But it is beneficial to first

explore and then exploit as we get good solution in the beginning then we can refine them to find

local best solutions. And in BA exploration and exploitation is performed by varying the pulse

emission rates r and loudness �0.

Yang used three generalized rules for Bat Algorithm:

1. All bats use echolocation to sense distance and they also know the difference between

food/prey and background barriers in some magical way.

2. Bats fly randomly with velocity �� at position �� with a frequency ����, varying

wavelength and loudness �0 to search for prey. They can automatically adjust the

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission r

[0, 1] depending on the proximity of their target.

3. Although the loudness can vary in many ways, we assume that the loudness varies from a

large (positive) �0 to a minimum constant value ����.

BAT Algorithm

Delhi Technological University Page 11

1: Initialize the population of N bats randomly and each bat corresponds to a potential solution

to the given problem using Equation (1)

2: Define loudness ��, pulse frequency ��∊ [����, ��	�]

3: Define the initial velocities �� (�=1, 2, 3...N)

4: Set pulse rate r�.

5: while t < Max number of Generations do

6: for bat in population do

7: Generate new solution by adjusting frequency, updating velocities using Equation [2-4]

8: if (rand > r�) then

9: Select a solution among the best solutions.

10: Generate a local solution around the selected best solution using Equation (5)

11: end if

12: Generate a new solution by flying randomly

13: if (rand < �� & f (��) < f (�*)) then

14: Accept the new solution

15: Increase r� and reduce �� using Equation [6, 7]

16: end if

17: end for

18: Rank the bats and find the current best �*

19: end while

20: Post process results and visualization

In this algorithm, the bat behaviour of finding the best location is captured to optimize the fitness

function of the problem to be solved. It consists of the following steps:

Initialization of Bat Population (lines 1 - 4) –

In first iteration, N bats are randomly spread over the search space as they have no idea where

the prey is located thus population is randomly generated for each dimension d with default

values for frequency, velocity, pulse emission rate and loudness.

()min max min 0,1 ()j j ji jx x a xr nd x= + − (1)

Delhi Technological University Page 12

Where i = 1, 2 … N, j = 1, 2… d, min jx and max jx are lower and upper boundaries for dimension j

respectively.

Update Process of Frequency, Velocity and Solution (line 7) -

Each bat emits sound pulses of random frequency dispersed between [����, ��	�] and this

frequency controls the speed and new position of bat using below equations:

min max min()if f f f β= + − (2)

1 1(*)t t t
i i i iv v x x f− −= + − (3)

 1t t t
i i ix x v−= + (4)

Where
 denotes a randomly generated number with in the interval [0, 1] and �* is the current

global best solution which is located after comparing all the solutions. Upper and lower bounds

of frequency are chosen such that it is comparable to the size of search space of that variable.

Local search (lines 8-11) –

Random walk is used in order to exploit a position around the best solution.

t
new oldx x Aε= + (5)

Here oldx is selected best solution from current best solutions, � denotes a random number within

the interval [-1, 1], while tA is the average loudness of all the bats at this time step.

Updating Loudness and Pulse Emission Rate (lines 12-16) -

As the bat approach their prey, loudness of emitted sound pulse decreases and pulse emission

rate increases so if new solution is improved than previous solution then factors like loudness

and pulse rate needs to be updated. For simplicity, we can also use �0 = 1 and �min = 0,

assuming �min = 0 means that a bat has just found the prey and temporarily stop emitting any

sound.

1t t
i iA Aα+ = (6)

1 0(1)t t
i ir r e γ+ −= − (7)

Where α and γ are constants.0ir & 0
iA consist of random values and 0

ir ∈[0, 1] and 0
iA ∈[1, 2]

Find the current best solution (line 18) –

Delhi Technological University Page 13

Find the current best bat by comparing last best fitness value with improved bat fitness if it found

better then update the best bat solution.

In bat algorithm, if the new solutions are generated from equation [2-4] then exploration is good

and if solution is generated by Equation 5 then exploitation is high. So the pulse rate r controls

the balance between exploration and exploitation but the possibility of rand > r� to be true is

during the initial iterations of bat algorithm that means initially exploitation will be good and

during following iterations exploration will be good. But it is advantageous to explore first and

exploit later to prevent the solution from getting trapped into local minimum. In order to solve

this issue, researchers have proposed various variants of bat algorithm. For e.g. FBC redefined

velocity t
iv and position t

ix in Equation [3, 4] in which each bat is not only considering the best

solution found by all the bats but also its own local preference (lbestx).

1 1 1(*) ()t t t t lbest
i i i i i iv v x x f x x f− − −= + − + − (8)

And Chaotic Levy Flight Bat Algorithm used Levy Flight for random walk thus modified

neighborhood solution.

()new old sx x C Levyλ= + ⊗ (9)

Here, the product ⊗ means entry-wise multiplications.

Improved bat algorithm with Doppler Effect introduced a new frequency equation to deal with

Doppler Effect of bat’s echo

 1t ti
i i

i

c v
f f

c v
−−=

+
 (10)

Wheref is bat frequency and c iss speed of sound which is 340 m/s.

3.2 MAPREDUCE MODEL

Map Reduce is programming model proposed by Google - Dean and Ghemawat [36]

MapReduce is a simple model designed for processing large volumes of data in parallel by

dividing the program into a set of high-level map and reduce functions which are inspired by

functional languages like Lisp, List etc. This Model exploits parallelism by splitting the input

Delhi Technological University Page 14

data into chunks which are processed by the map and reduce tasks in a completely parallel

manner.

The input to MapReduce Model is in the form of (key; value) pairs and operation on these set of

pairs occur in three stages: the map stage, the shuffle stage and the reduce stage.

A. Map Stage

In the map stage, the map() function takes as input a single (key; value) pair and produces as

output any number of intermediate (key; value) pairs. It is crucial that the map operation is

stateless - that is, it operates on one pair at a time. This allows for easy parallelization as different

inputs for the map can be processed in different machines.

 MAP: (K1, V1) => LIST (K2, V2)

B. Shuffle Stage

In shuffle phase, all of the map’s output (key; value) pairs are sorted and value lists are created

for each individual key which is then send to the reduce() function. This occurs automatically

without programmer intervention.

C. Reduce Stage

In the reduce stage, each reduce () function takes all of the values associated with a single key k,

and outputs a multi set of (key; value) pairs with the same key k (often “reduced” in length from

the original list of values).This highlights one of the sequential aspects of Map/Reduce

computation i.e. all of the maps need to finish before the reduce stage can begin.

 REDUCE: (K2, list (V2)) => list (V2)

And in the reduce step, the parallelism is exploited by observing that reducers operating on

different keys can be executed simultaneously.

Apache Hadoop is an open source software framework for distributed processing which have

implemented google MapReduce and Google file system in its modules.

3.2.1 EXAMPLE OF MAPREDUCE MODEL
Example of Map Reduce Model is shown in Figure 3.2. This WordCount program counts the

number of occurrences of each word in a given input data. The input data file is given to the Map

Reduce job which splits the data into several files and sends it to different map tasks(mappers)

Delhi Technological University Page 15

for processing. Each mapper processes the file, line by line and generates input key-value pair

for map function. The map() function splits each line into words and sends output key-value pair

as word:1 where key is the word and 1 is its count. Then sort and shuffle function combines

mapper key-value output and generates count list for each word. Finally, the reducer sum the

count value of each word and write the final count of occurrence of each word as output.

Figure 3.2: Example of MapReduce Model

3.2.2 HADOOP MAPREDUCE ARCHITECTURE

As shown in Figure 3.3, the major components of Hadoop based cluster are client machine,
master node, slave node. Each master node performs parallel processing and handling of data in
HDFS which have instances of name node (handles data distribution across data nodes), job
tracker (handles instances of trasktracker in each slave node) and secondary name node (backup
of namenode). Each slave node performs map/reduce task so have data node and task tracker
instances.

Delhi Technological University Page 16

Figure 3.3: Hadoop Server Roles

The basic architectural flow of Hadoop MapReduce is shown in figure 3.4 and can be explained
in steps as:

1. Client writes input files into HDFS.

2. Client submits the job consisting of following information: inputformat, outputformat,

mapper class, reducer class, partitioner class, combiner class, input path, output path etc.

3. Hadoop Client breaks the files into inputsplits depending upon the block size.

4. Client by consulting the name node store each block in one or more data nodes which is

controlled by dfs.replication parameter.

5. Job Tracker creates task instances for mappers depending upon no of splits i.e. if 5 split

then 5 mapper tasks will be created.

6. Job Tracker distributes the tasks across the data nodes and number of tasks assigned to

each node depends on the hardware configuration of the system.

7. Defined Inputformat provides record reader object to read the data in key – value pairs.

8. Record Reader passes each key-value pair in the input split to the user defined map ()

function.

Delhi Technological University Page 17

Figure 3.4: Hadoop MapReduce Architecture

9. Map () function synthetize each key-value pair into new object and passes it to the

partitioner and shuffler for sorting and grouping them.

10. These new grouped data is again distributed across the data nodes.

11. Job Tracker creates reduce tasks based on mapred.reduce.tasks parameter or by default

creates 1 instance of reduce task and deploy it on data nodes.

12. Each key – value list in the partition is assigned to a single Reduce task.

Delhi Technological University Page 18

13. Then the user defined reduce () function will write final key value pair as output in

HDFS.

3.3 COCOMO II MODEL

The Constructive Cost Model (COCOMO) is a regression-based software cost estimation

model developed by Barry W. Boehm in 1981 which is also called in references as COCOMO

81. COCOMO-81 is said to be the best known, best documented and it reflects most software

development practices on that time.

One of the problems with the use of COCOMO I today is that it does not support modern

software development processes like desktop development, code reusability, rapid-development,

object-oriented approaches etc. Therefore, in 1997, Boehm developed the COCOMO II for

estimating modern software development projects.

COCOMO consists of a hierarchy of three increasingly detailed and accurate forms:

1. Basic COCOMO computes software development effort (and cost) as a function of program

size and it holds up until a certain point, usually for projects that can be reasonably

accomplished by small teams of two or three people.

2. Intermediate COCOMO provides more accurate estimates by taking into account software

development environment through 15 cost drivers.

3. Detailed COCOMO computes effort as a function of program size and a set of cost drivers

given according to each phase of software life cycle i.e. analysis and design of the software

engineering Process.

The COCOMO estimated software effort is given by below equation and is measured in calendar

months

() [] (1 2 3 15)bEffort Person month a LOC EM EM EM EM− = × × × × × ×… (11)

Here the coefficient “a” is known as productivity coefficient and the coefficient “b” is the scale

factor. They are based on the different modes of project as given in table 3.1

Software Project Project Size a b
Organic Less than 50 KLOC 3 1.1

Semi-detached 50 – 300 KLOC 3 1.1

Delhi Technological University Page 19

Embedded Over 300 KLOC 3 1.2

Table 3.1: Software Project Mode

And EMi are effort multipliers (Cost drivers) which have up to six levels of rating: Very Low,

Low, Nominal, High, Very High, and Extra High. Each rating has a corresponding real number

based upon the factor and the degree to which the factor can influence productivity as given in

Table 3.2

Cost
Drivers

Rating
Very
Low Low Nominal High

Very
High

Extra
High

acap 1.46 1.19 1 0.86 0.71 -
pcap 1.42. 1.17 1 0.86 0.7 -
aexp 1.29 1.13 1 0.91 0.82 -
modp 1.24. 1.1 1 0.91 0.82 -
tool 1.24 1.1 1 0.91 0.83 -
vexp 1.21 1.1 1 0.9 - -
lexp 1.14 1.07 1 0.95 - -
sced 1.23 1.08 1 1.04 1.1 -
stor - - 1 1.06 1.21 1.56
data - 0.94 1 1.08 1.16 -
time - - 1 1.11 1.3 1.66
turn - 0.87 1 1.07 1.15 -
virt - 0.87 1 1.15 1.3 -
rely 0.75 0.88 1 1.15 1.4 -
cplx 0.7 0.85 1 1.15 1.3 1.65

Table 3.2: Software Cost Drivers

These effort multipliers fall into three groups: those that are positively correlated to more effort,

those that are negatively correlated to more effort and the third group containing just schedule

information.

3.4 NASA 63 DATA SET

The proposed algorithm is evaluated on 63 NASA projects from different centers from the years

of 1971 to 1987. As shown in table 3.3, this dataset consist of development mode(embedded,

Delhi Technological University Page 20

organic, semidetached), EAF of 15 cost drivers, size of each project in kilo source line of code

and actual effort.

Mode EAF LOC Effort
Embedded 2.28811 113 2040
Embedded 0.53128 6.9 8
Embedded 5.50991 22 1075
Embedded 2.01377 30 423
Embedded 1.73015 29 321
Embedded 1.73015 32 218
Embedded 0.93626 37 201
Embedded 4.94502 3 60
Embedded 3.04353 3.9 61
Embedded 2.37496 6.1 40
Embedded 1.94746 3.6 9
Embedded 3.27117 320 11400
Embedded 3.48791 299 6400
Embedded 0.84607 252 2455
Embedded 0.96816 118 724
Embedded 0.7025 90 453
Embedded 1.1639 38 523
Embedded 0.95249 48 387
Embedded 0.99439 1.98 5.9
Embedded 0.56909 390 702
Embedded 2.30187 42 605
Embedded 1.47674 23 230
Embedded 0.30168 91 156
Embedded 0.3401 6.3 18
Embedded 2.66087 27 958
Embedded 3.30632 17 237
Embedded 1.05362 9.1 38
Organic 0.32046 132 243
Organic 0.99814 60 240
Organic 0.65617 16 33
Organic 1.86504 4 43
Organic 0.85243 25 79
Organic 1.6573 9.4 88
Organic 0.68887 15 55
Organic 0.37224 60 47

Delhi Technological University Page 21

Organic 0.3588 15 12
Organic 0.38774 6.2 8
Organic 0.9649 3 8
Organic 0.25445 5.3 6
Organic 0.58734 45.5 45
Organic 1.06981 28.6 83
Organic 1.33662 30.6 87
Organic 0.87268 35 106
Organic 0.82473 73 126
Organic 1.28037 24 176
Organic 2.30456 10 122
Organic 1.15428 5.3 14
Organic 0.77736 4.4 20
Organic 1.08961 25 130
Organic 1.00697 23 70
Organic 2.12549 6.7 57
Organic 0.38613 10 15
Semidetached 0.84227 293 1600
Semidetached 0.67554 1150 6600
Semidetached 0.90842 77 539
Semidetached 2.81069 13 98
Semidetached 0.99439 2.14 7.3
Semidetached 3.43917 62 1063
Semidetached 2.17879 13 82
Semidetached 0.38067 23 36
Semidetached 0.75808 464 1272
Semidetached 1.37602 8.2 41

Semidetached 0.4466 28 50

Table 3.3: NASA 63 Dataset

Delhi Technological University Page 22

CHAPTER 4

PARALLEL BAT ALGORITHM USING MAPREDUCE

MODEL

In each iteration of Bat algorithm, all bats finds a new location either by flying randomly using

equation 5 or by adjusting their frequency and updating their velocity, location using equation

[2-4]. Each bat then evaluates the fitness of new solution and accordingly move to new position

if found better than the current position.

In this algorithm, steps that can be parallelized i.e. can be executed independently are:

• Each bat updating its position.

• Iterations can be executed in parallel.

But iterations can’t be parallelized as population of bat should improve from generation to

generation and initial iteration results should be utilized in the next iterations.

Based on above idea, to transform BA into map and reduce primitives following issues need to

be considered:

1. Determine the input to MapReduce Model.

2. Determine the jobs of mapper and reducer tasks.

3. Exchange information between parallel map tasks.

4.1 INPUT REPRESENTATION

We provide large initial random population of bats as input to MapReduce framework which

then split them into chunks and distribute them across the map tasks. Each bat in input

population is represented by key/value pairs:

K1: Set of string representing individual bat

V1: fitness

Here the key consist of set of attributes representing bat like position, frequency and velocity

whereas value is the fitness of that bat. For e.g. in our software effort optimization problem we

have:

Delhi Technological University Page 23

Coefficient a; Coefficient b; Frequency; Velocity a; Velocity b: Fitness

And gbest bat of population is of following form:

Coefficient a; Coefficient b: Fitness

4.2 EXCHANGE OF INFORMATION BETWEEN BATS

In bat algorithm, bats use the shared current best bat in the updating process but in Parallel Bat

Algorithm we share generation best bat which can be implemented by two approaches:

1. Map Reduce Bat Algorithm (MRBA) :

In MRBA, initially we share the gbest across all the map tasks and each bat uses this gbest as �*

in Equation [3, 5]. Output of map tasks are combined and sent to a single Reducer (as used same

key for all the improved bats). Reduce task sorts all the improved bats and output gbest bat from

them which is used for following iterations as shown in figure 4.1.

Figure 4.1: Operation phases in Map Reduce Bat Algorithm (MRBA)

Delhi Technological University Page 24

2. Map Bat Algorithm (MBA)

Figure 4.2: Operation phases in Mapper Bat Algorithm (MBA)

In MBA i.e. only map approach, initially we share the population gbest across all the map tasks.
Each map task has a mapper level best bat which is initialized with this gbest. This mbest is
updated in map () if a better bat is found in map task specific input split. At the end of each map
task this mapper level best bat is stored in distributed file systems. In this we take zero reduce
task so mapper output will not be sorted or shuffled and is directly sent for output. After every
iteration, gbest is evaluated from all mapper level mbest bats as shown in figure 4.2. Thus MBA
reduces the no of comparison than MRBA for finding the gbest. Therefore in our proposed
algorithm we have used MBA.

4.3 MAPPER IN BAT ALGORITHM

Hadoop job tracker set up instances of map task equal to the no of population split and each map

task calls the map () function for each bat in the population split.

Delhi Technological University Page 25

Map Task Set Up:

This method is called once at the beginning of each map task in which we set mapper level best

as last generation gbest.

Algorithm 1: setup (context)

mBest = gBest;

Here mBest is Mapper level best bat and gBest is Global best bat

Map Function:

In this thesis, we present two models of parallel bat algorithm. First model uses one map phase

for one generation of bat algorithm i.e. population is evolving generation by generation while the

second model uses one map phase for all the generations i.e. each bat is evolving for N

generations. That means in Model 1, N Map Reduce cycle execute whereas in Model 2 only one

map reduce cycle will generate the optimum output. So we have two map algorithms

corresponding to these two models.

Model 1 map () function explores and exploits new solution for given key bat using mBest as �*.

And the outputs improved bat which is sent as input for next generation as shown in figure 4.3.

Algorithm 2 for Model 1: map (key, value, context)

1. bat ← BATREPRESENTATION(key)

2. fitness ← value

3. # Generate new solution by adjusting frequency and updating velocities and locations/solutions.

4. newBat ← NEWBAT (bat, mBest)

5. if (rand > r�)

6. newBat ← LOCALBAT (mBest)

7. end if

8. newFitness ← CALCULATEFITNESS (newBat)

9. if (rand < �� & newFitness < fitness)

10. # Accept the new solution.

11. bat = newBat

12. fitness = newFitness

13. end if

14. if (fitness < mBest.fitness)

Delhi Technological University Page 26

15. mBest = bat

16. end if

17. EMIT (bat, fitness)

Figure 4.3: Flow chart of Model 1

Model 2 map () function evolves the given key-bat for N generations using mBest as �*.In this

no intermediate data are emitted by any Mapper and each iteration evaluated gbest is considered

as the output of the job as shown figure 4.4

For N Generation

Map Task

. . .

Begin

Spread the population of n bat randomly over the search space. Each bat
corresponds to 2 coefficients.

Define loudness Ai, pulse frequency Qi

Define the initial velocities �� (�=1, 2, 3...n) & set pulse rate r�.

Give population and gbest as input to Map Reduce Model.

Hadoop splits the population into chunks of block size to be processed by
map tasks in parallel.

Population
Spilt 1

BAT1:F1

newBAT1:F1

Output: Improved Population

Map ()

For H: K:
V pair

newBAT1:F1

Population
Spilt 2

Population
Spilt N

Map Task

BAT1:F1

Map ()

For H: K:
V pair

newBAT1:F1

For H: K:
V pair

Map Task

Map ()

BAT1:F1

Output gbest bat

Delhi Technological University Page 27

Algorithm 3 for Model 2: map (key, value, context)

1. bat ← BATREPRESENTATION(key)

2. fitness ← value

3. while t <Max number of Generations do

4. newBat ← NEWBAT(bat, mBest)

5. if (rand >r�)

6. newBat ← LOCALBAT(mBest)

7. end if

8. newFitness ← CALCULATEFITNESS(newBat)

9. if (rand <�� & newFitness < fitness)

10. # Accept the new solution.

11. bat = newBat

12. fitness = newFitness

13. end if

14. if (fitness < mBest.fitness)

15. mBest = bat

16. end if

17. end while

Map Task Clean Up:

This method is called ones at the end of each map task in which improved mbest is written to the

distributed file system. These mbest’s are then evaluated at the end of each iteration for gbest.

Algorithm 4: cleanup (context)

Write(mBest, mBest.fitness)

Delhi Technological University Page 28

Figure 4.4: Flow chart of Model 2

Map Task

. . .

Begin

Spread the population of bat randomly over the search space. Each bat
corresponds to 2 coefficients.

Define loudness Ai, pulse frequency Qi

Define the initial velocities �� (�=1, 2, 3...N) & set pulse rate r�.

Give population and gbest as input to Map Reduce Model.

Hadoop splits the population into chunks of block size to be processed by
map tasks in parallel.

Population
Spilt 1

BAT1:F1

newBAT1:F1

Output gbest bat

Map ()

For H: K:
V pair

newBAT1:F1

Population
Spilt 2

Population
Spilt N

Map Task

BAT1:F1

Map ()

For H: K:
V pair

newBAT1:F1

For H: K:
V pair

Map Task

Map ()

BAT1:F1

For N
Generatn

Evolve

For N
Generatn

Evolve

For N
Generatn

Evolve

Delhi Technological University Page 29

CHAPTER 5
EXPERIMENTAL RESULT & ANALYSIS

5.1 IMPLEMENTATION

We have implemented these proposed models on optimization COCOMO II parameters (a, b)

such that calculated efforts approximate to actual efforts for NASA 63 project Dataset.

Formally, this problem can be framed as finding parameter X = {x1, x2} where xi ∈ {0, 5}, that

minimize the following equation:

MMRE = [Actual – x1(KLOC) x2] /Actual

Here MMRE is Mean Magnitude of Relative Error which is used as evaluation criteria for

assessment of optimized parameters. And since parameter x1 and x2 are specific to project mode

therefore we execute program for each mode separately.

For this implementation, we have taken Bat Algorithm Specific Parameter as d = 2, r = 0.5, � =

0.5, max jx =4, min jx = 0 and initial frequency/velocity as 0 and have considered constant pulse

rate and loudness over the iterations.

5.2 ENVIRONMENT

We implemented these models on Apache Hadoop (0.19) and ran it on our 6 node cluster in

which one node act as master and other acts as slaves. Each node runs a Intel 5 dual core, 4GB

RAM and 250 GB hard disks. The nodes are integrated with Hadoop Distributed File System

(HDFS) yielding a potential single image storage space of 2 * 250/3 = 166 GB (since the

replication factor of HDFS is set to 3). By default each node can run 2 mappers and 1 reducers in

parallel else it depends on hardware configuration.

5.3 EXPERIMENTAL RESULTS

We have performed following analysis on both the models:

1. Scalability of MBA for effort estimation problem wi th increasing the number of

mappers:

Delhi Technological University Page 30

In this experiment, we have taken the population size of 2 lakh which generated the input of

13 MB and have set the number of iterations as 5. Figure 5.1 compares the run time of MBA

(Model 1) by using different number of map task i.e. setting different block size. On taking

block size as 1 MB i.e. 13 map task, execution time is 16.84 which decreased with increase

in block size due to less no of task distribution among the nodes. But on further decreasing

the number of tasks (< no of nodes), run time became almost constant due to decrease in

communication overhead.

Figure 5.1

2. Comparison between MRBA and MBA:

In this experiment, we have taken population size as 2 lakh, number of iterations as 5,

number of nodes as 6 and block size of 5MB and compared the running time of Map Reduce

Bat Algorithm (MRBA) and Map Bat Algorithm (MBA) for Model 1. As shown in Figure

5.2, MBA takes less time as compare to MRBA by saving time in intermediate bat’s sorting

with no initialization of Reducer tasks. Moreover MRBA requires whole population sorting

to get the gbest whereas MBA reads at most 13 mbest from the HDFS to find the gbest.

0

5

10

15

0 5 10 15 20

N
o

of
 M

ap
pe

rs

Time (in secs)

Scalability with Increasing the No of Mappers

Delhi Technological University Page 31

Figure 5.2

3. Scalability of MBA for effort estimation problem wi th increasing the number of nodes:

In this experiment, we have taken population size as 2 lakh, number of iterations as 5, block

size of 5MB and compared the run time of both MBA Models by increasing the number of

nodes in the cluster. As shown in Figure 5.3, Model 2 took less time than Model 1 due to less

no of map cycles and no intermediate data handling. For model 2, single node cluster took

less time than 3 node cluster as there was no communication/task distribution overhead but

on further increasing the number of nodes, the execution time reduced and became almost

constant.

Figure 5.3

4. Performance tuning with increase in population size:

In this experiment, we have taken number of iterations as 5 and block size of 5MB and

compared the MMRE of embedded projects for both models by increasing the size of

0

5

10

15

20

25

30

35

40

45

MRBA MBA

T
im

e
 (

in
 s

e
cs

)

0

5

10

15

0 1 2 3 4 5 6 7

T
im

e
(in

 s
ec

s)

No of Nodes

Model 1

Model 2

Delhi Technological University Page 32

population. As shown in Figure 5.4 MMRE reduced with increase in population and became

constant after 1500.

Figure 5.4

5. Performance tuning with increase in number of Generations :

In this experiment, we have taken population size as 10,000 and block size of 5MB and

compared the MMRE of embedded projects for both models by increasing the number of

iterations. As shown in Figure 5.5 both models give better MMRE than COCOMO Model

(0.3921) and MMRE decreases with increase in generation due to more refining of output.

Figure 5.5

0.35

0.36

0.37

0.38

0.39

0.4

0.41
M

M
R

E

No of Generation

Model 1

Model 2

0.371

0.3715

0.372

0.3725

0.373

0.3735

0.374

0.3745

1 2 3 4 6 8 10 12 14 16 18 20 30 40 50

M
M

R
E

No of Generation

Model 1

Model 2

Delhi Technological University Page 33

CHAPTER 6

CONCLUSION AND FUTURE WORK

The models proposed in this thesis can easily parallelize BA which could be used to solve

problems involving large search space by simply adding more hardware resources to the cluster

and without changing the proposed model code. And according to experimental results model 2

shows better convergence than model 1 and also take less time for execution.

It has been seen that lots of communication, task start up overhead is associated with Hadoop

Map Reduce Architecture thus is not suitable for problems involving small search space, few

dimension and less computation.

Due the update process in BA Parallel BA Models these proposed models can be used for large

population but can’t be used for given large dataset in order to find the optimal result from them.

So further study on BA modification is required to find best results from given dataset for e.g.

getting best quotation from large dataset of quotations.

In future work both models should be used for solving problems involving large search space,

big computation, large no of dimensions like in stock market strategies. And these models

running time can also be further improved by examining other features of MapReduce

architecture like partitioner, combiner, shuffler etc. which may reduce the processing. We can

also compare these models with existing MPI-based implementation.

Delhi Technological University Page 34

References

[1] X.-S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," Studies in Computational

Intelligence, Springer Berlin, pp. 65-74, 2010.
[2] F. Wang, P. L. H. Yu, and D. W. Cheung, "Combining Technical Trading Rules Using

Parallel Particle Swarm Optimization based on Hadoop," presented at the International
Joint Conference on Neural Networks (IJCNN), Beijing, China, 2014.

[3] D.-W. Huang and J. Lin, "Scaling Populations of a Genetic Algorithm for Job Shop
Scheduling Problems using MapReduce," presented at the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science (CloudCom),
Indianapolis, IN, 2010.

[4] W. Zhao, H. Ma, and Q. He, "Parallel k-means clustering based on mapreduce," vol.
5931, pp. 674-679, 2009.

[5] K. Khan, A. Nikov, and A. Sahai, "A Fuzzy Bat Clustering Method for Ergonomic
Screening of Office Workplaces," in Third International Conference on Software,
Services and Semantic Technologies S3T 2011. vol. 101, ed: Springer Berlin Heidelberg,
2011, pp. 59-66.

[6] Y. Xin-She "Bat algorithm for multi-objective optimisation," Internal Journal of Bio-
Inspired Computation, vol. 3, pp. 267-274, 2011.

[7] G. Komarasamy and A. Wahi, "An optimized K-means clustering technique using bat
algorithm," European Journal Scientific Research, vol. 84, pp. 263-273, 2012.

[8] J.-H. Lin, C.-W. Chou, C.-H. Yang, and H.-L. Tsai, "A chaotic Levy flight bat algorithm
for parameter estimation in nonlinear dynamic biological systems," Journal of Computer
and Information Technology, vol. 2, 2012.

[9] R. Y. M. Nakamura, L. A. M. Pereira, K. A. Costa, D. Rodrigues, J. P. Papa, and X. S.
Yang, "BBA: A binary bat algorithm for feature selection," presented at the 25th
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),, 2012.

[10] G. L. I. U., H. Huang, S. Wang, and Z. Chen, "An Improved Bat Algorithm with Doppler
Effect for Stochastic Optimization," International Journal of Digital Content Technology
and its Applications, vol. 6, pp. 326-336, 2012.

[11] J. Xie, Y. Q. Zhou, and H. Chen, "A novel bat algorithm based on differential operator
and L´evy flights trajectory," Computational Intelligence and Neuroscience, vol. 2013, p.
13, 2013.

[12] J. W. Zhang and G. G. Wang, "Image Matching Using a Bat Algorithm with Mutation,"
in Applied Mechanics and Materials, Z. Du and B. Liu, Eds., ed, 2012, pp. 88-93.

[13] I. F. Jr., D. s. Fister, and X.-S. Yang, "A Hybrid Bat Algorithm," 2013.
[14] X. Wang, W. Wang, and Y. Wang, "An Adaptive Bat Algorithm," in Intelligent

Computing Theories and Technology, ed: Springer Berlin Heidelberg, 2013.
[15] S. Yilmaz and E. U. Kucuksille, "Improved Bat Algorithm (IBA) on Continuous

Optimization Problems," Lecture Notes on Software Engineering, pp. 279-283, 2013.
[16] A. Kaveh and P. Zakian, "Enhanced bat algorithm for optimal design of skeletal

structures," Asian Journal of civil engineering, vol. 15, pp. 179-212, 2014.
[17] S. Yılmaz, E. U. Kucuksille, and Y. Cengiz, "Modified Bat Algorithm," Electronics and

Electrical Engineering, vol. 20, 2014.

Delhi Technological University Page 35

[18] T.-K. Dao, J.-S. Pan, T.-T. Nguyen, S.-C. Chu, and C.-S. Shieh, "Compact Bat
Algorithm," in Intelligent Data analysis and its Applications, ed: Springer International
Publishing, 2014.

[19] C.-F. Tsai, T.-K. Dao, W.-J. Yang, T.-T. Nguyen, and T.-S. Pan, "Parallelized Bat
Algorithm with a Communication Strategy," in Modern Advances in Applied Intelligence,
ed: Springer International Publishing, 2014.

[20] T.-K. Dao, T.-S. Pan, T.-T. Nguyen, and S.-C. Chu, "Evolved Bat Algorithm for Solving
the Economic Load Dispatch Problem," in Genetic and Evolutionary Computing, ed:
Springer International Publishing, 2015.

[21] G. Wang and L. Guo, "A novel hybrid bat algorithm with harmony search for global
numerical optimization," Journal of Applied Mathematics, vol. 2013, pp. 1–21, 2013.

[22] N. M. Nawi, M. Z. Rehman, and A. Khan, "A New Bat Based Back-Propagation (BAT-
BP) Algorithm," in Advances in Systems Science, ed, 2014.

[23] T. C. Bora, L. S. Coelho, and L. Lebensztajn, "Bat-inspired optimization approach for the
brushless DC wheel motor problem," presented at the IEEE Transactions on Magnetics,
2012.

[24] R. Damodaram and M. L. Valarmathi, "Phishing website detection and optimization
using modified bat algorithm," nternational Journal of Engineering Research and
Applications, vol. 2, pp. 870–876, Jan-Feb 2012 2012.

[25] B. Ramesh, V. C. J. Mohan, and V. C. V. Reddy, "Application of bat algorithm for
combined economic load and emission dispatch," International Journal of Electricl
Engineering and Telecommunications, vol. 2, pp. 1–9, 2013.

[26] M. K. Marichelvam and T. Prabaharam, "A bat algorithm for realistic hybrid flowshop
schedulihng problems to minimize makespan and mean flow time," ICTACT Journal on
Soft Computing, vol. 3, pp. 428–433, October 2012 2012.

[27] A.-R. E. M., A. A. R., and S. Akhtar, "A metaheurisic bat- inspired algorithm for full
body human pose estimation," presented at the 2012 Ninth Conference on Computer and
Robot Vision, Toronto, ON, 2012.

[28] X. S. Yang, M. Karamanoglu, and S. Fong, "Bat aglorithm for topology optimization in
microelectronic applications," presented at the IEEE International Conference on Future
Generation Communication Technology (FGCT2012) London, 2012.

[29] A. L. Tamiru and F. M. Hashim, Application of bat algorithm and fuzzy systems to model
exergy changes in a gas turbine. Springer, Heidelberg: Springer Berlin Heidelberg, 2013.

[30] A. Faritha Banu and C. Chandrasekar, "An optimized appraoch of modified bat algorithm
to record deduplication," International Journal of Computer Applications, vol. 62, pp.
10–15, 2013.

[31] P. R. Srivastava, A. Bidwai, A. Khan, K. Rathore, R. Sharma, and X. S. Yang, "An
empirical study of test effort estimation based on bat algorithm," International Journal of
Bio-Inspired Computation, vol. 6, pp. 57-70, 2014.

[32] Y. Saji, M. E. Riffi, and B. Ahiod, "Discrete bat-inspired algorithm for travelling
salesman problem " presented at the 2014 Second World Conference Complex Systems
(WCCS), Agadir, 2014.

[33] N. Gupta and K. Sharma, "Optimizing intermediate COCOMO model using BAT
algorithm," presented at the 2015 2nd International Conference on “Computing for
Sustainable Global Development” (INDIACom), New Delhi, India 2015.

Delhi Technological University Page 36

[34] H. Djelloul, S. Sabba, and S. Chikhi, "Binary bat algorithm for graph coloring problem,"
presented at the 2nd World Conference on Complex Systems (WCCS14), Agadir, 2014.

[35] E. A. Hassan, A. I. Hafez, A. E. Hassanien, and A. A. Fahmy, "A Discrete Bat Algorithm
for the Community Detection Problem," in Lecture Notes in Computer Science, ed:
Springer International Publishing, 2015.

[36] J. Dean and S. Ghemawat, "Mapreduce simplified data processing on large clusters,"
Sixth Symposium on Operating System Design and Implementation, vol. 51, pp. 107-113,
2004.

[37] H. Chih, A. Dasdan, R. L. Hsiao, and D. S. Parker, "Map-reducemerge: Simplified
relational data processing on large clusters," in Proceeding ACM SIGMOD International
Conference on Management of data (SIGMOD 2007), 2007, pp. 1029-1040.

[38] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, et al., "Map-reduce for machine
learning on multicore," in Advances in Neural Information Processing Systems, B.
Scḧolkopf, J. Platt, and T. Hoffman, Eds., ed: MIT Press, 2007, pp. 281-288.

[39] J. Ekanayake, S. Pallickara, and G. Fox., "Mapreduce for data intensive scientific
analyses," in eScience '08. IEEE Fourth International Conference on eScience, 2008,
Indianapolis, IN, 2008, pp. 277–284.

[40] A. W. McNabb, C. K. Monson, and K. D. Seppi, "Parallel PSO Using MapReduce,"
presented at the IEEE Congress on Evolutionary Computation, 2007. CEC 2007,
Singapore, 2007.

[41] C. Jin, C. Vecchiola, and R. Buyya, "MRPGA An Extension of MapReduce for
Parallelizing Genetic Algorithms," presented at the IEEE Fourth International Conference
on eScience, 2008., Indianapolis, IN 2008.

[42] A. Verma, X. Llorà, D. E. Goldberg, and R. H. Campbell, "Scaling Genetic Algorithms
Using MapReduce," presented at the ISDA '09. Ninth International Conference on
Intelligent Systems Design and Applications, 2009, Pisa 2009.

[43] D. Keco and A. Subasi, "Parallelization of genetic algorithms using Hadoop
Map/Reduce," SouthEast Europe Journal of Soft Computing, vol. 1, 2012.

[44] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, "A Parallel Genetic Algorithm
Based on Hadoop MapReduce for the Automatic Generation of JUnit Test Suites "
presented at the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST), Montreal, QC, 2012.

[45] C.-Y. Lin, Y.-M. Pai, K.-H. Tsai, C. H.-P. Wen, and L.-C. Wang, "Parallelizing Modified
Cuckoo Search on MapReduce Architecture," Journal of Electronic Science and
Technology, vol. 11, 2013.

