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ABSTRACT 
 

Bat algorithm is among the most popular meta-heuristic algorithms for optimization. Traditional 

bat algorithm work on sequential approach which is not scalable for optimization problems 

dealing with BIG DATA such a scrawled documents, web request logs, commercial transaction 

information therefore parallelizing meta-heuristics to run on tens, hundreds or even thousands of 

machine to reduce runtime is required. 

In this paper, we introduced two parallel models of BAT algorithm using MapReduce 

programming model proposed by Google. We used these two models for solving the Software 

development effort optimization problem. 

The experiment is conducted using Apache Hadoop implementation of MapReduce on a cluster 

of 6 machines. These models can be used to solve problems with large search space, dimension 

and huge computation by simply adding more hardware resources to the cluster and without 

changing the proposed model code. 

Index Terms - BAT algorithm, COCOMO Model, Effort Estimation, parallel algorithms, 

Apached Hadoop, MapReduce Model, Scalability, Big data. 
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CHAPTER 1 
INTRODUCTION 

 

Over the last few years, Meta-heuristic (discover solution by trial and error) approximation 

algorithms are widely used to solve many continuous and combinatorial optimization problems. 

It often finds good solution with less computation effort than exhaustive, iterative and simple 

heuristic methods. Some of the meta-heuristic algorithms are particle swam optimization (PSO), 

genetic algorithm (GA), cuckoo search (CS) etc. These algorithms are problem independent thus 

suits many optimization problems. Bat Algorithm is one of the swarm intelligence based nature 

inspired meta heuristic algorithm proposed by Yang [1] in 2010 and it is based on the 

echolocation behavior of bats to detect its prey, avoid obstacle and to find its dwell in caves. BA 

has been successfully applied on many continuous optimization problems of topology design, 

effort estimation, economic dispatch etc. and it has shown better convergence to optimal solution 

than other meta - heuristic algorithms.  

But BA takes reasonable amount of time to solve problems involving large volumes of data (big 

data), involving huge fitness computation or having large number of dimensions. One solution to 

handle this would be to parallelize bat algorithm and scale it to large number of processors. But 

after program successfully parallelize, it must still needs to focus on communication of best bat 

across all the processors this can be done through shared memory which provides a global 

address space which parallel tasks can access asynchronously but it lacks locality of reference 

thus takes much time as compare to message passing interface (MPI) which provides an 

interface, protocol and semantic specifications to pass messages between parallel processes. 

These parallelized program still need to handle distribution of data and node failure explicitly. In 

order to deal with these concerns, Google designed a new abstraction called MapReduce that 

provides a parallel design pattern for simplifying application development for distributed 

environments i.e. allows expressing the simple computation in that design model with hiding 

messy details of parallelization, fault-tolerance, data distribution and load balancing in a library. 

This abstraction is inspired by map and reduce primitives present in Lisp and many other 

functional languages. Apache Hadoop implementation of map reduce and HDFS have 

successfully parallelized many optimization algorithms like PSO, genetic algorithm and have 
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effectively reduced the running time of algorithm for complex problems like stock trading 

Strategy (PRS) [2], job shop scheduling problems Huang and Lin [3], k-mean clustering [4] etc. 

This thesis makes the following research contributions: 

1. We demonstrate a transformation of bat algorithms into the map and reduce primitives 

2. We propose 2 models of parallel bat algorithm. 

3. We implement these models on effort estimation problem and demonstrate its scalability 

to large problem sizes. 

From this proposed work, many complex optimization problem based on BA can easily scaled 

only by increasing the no of hardware resources. 

The rest of the thesis is organized as follows. Chapter 2 presents BA and MapReduce in 

literature. Chapter 3 discusses the research methodology used for proposed work. In chapter 4 we 

discuss how bat algorithm can be parallelized using the Map Reduce model. Chapter 5 provides 

implementation, environment details and evaluates these two models on Hadoop MapReduce 

cluster. Then we conclude in chapter 6. 
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CHAPTER 2 
LITERATURE REVIEW 
 

In 2010, [1] proposed Bat Algorithm (BA), which is a new meta(high level)-heuristic algorithm 

for continuous problem optimization. From then BA has been employed on various optimization 

problems and many variants of BA have been proposed. 

2.1  VARIANTS OF BAT ALGORITHM 
In order to improve the solution of the problem, many variants of Bat Algorithm have been 

proposed, which resulted in better performance than original algorithm. 

1. Fuzzy Bat Clustering (FBC) algorithm : Khan, et al. [5] combined fuzzy logic with bat 

algorithm and presented a variant of bat algorithm for clustering of ergonomic workspace.  

 

2. Multi Objective Bat Algorithm (MOBA) : In 2011, Xin-She [6] proposed an extended 

version of bat algorithm to solve multiobjective optimisation problems. It used Pareto 

optimality and weighted sum to deal with multiple objective functions. 

 

3. K-Means Bat Algorithm (KMBA) : In KMBA, Komarasamy and Wahi [7] used bat 

algorithm to calculate the cluster center and KM algorithm to form clusters which provides 

efficient clustering. 

 

4. Chaotic Levy Flight Bat Algorithm : Lin, et al. [8] uses chaotic(map) variables in place of 

random numbers and levy flight for random walk for estimation of parameters in dynamic 

biological system.  

 

5. Binary bat algorithm (BBA): Nakamura, et al. [9] developed a discrete version of bat 

algorithm  for solving feature selection problem. 

 

6. Improved Bat Algorithm with Doppler Effect : U., et al. [10] modified BA to take into 

account the Doppler shift i.e. change in frequency of echoes when bats are approaching their 

prey. In this case, bats changes their frequency of signal emission to make echoes centered 
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within a narrow frequency range where they have very sensitive hearing. It has been tested 

on 4 benchmark functions. 

7. Differential Operator and Lévy Flights Bat Algorithm(DLBA) : Xie, et al. [11] modified bat 

algorithm by introducing Differential Operator as a mutator to increase the convergence 

speed of algorithm and Lévy Flights for  random walk to avoid pre mature convergence. 

 

8. Bat algorithm with mutation (BAM) : Zhang and Wang [12] modified bat algorithm to 

mutate bat in Equation 4 to solve image matching problem. 

   

9. Hybrid Bat Algorithm : Jr., et al. [13] uses differential evolution ”DE/rand/1/bin” strategy to 

find the neighborhood solution in order to get good results for higher-dimensional problems. 

 

10. Adaptive Bat Algorithm : Wang, et al. [14] improved bat algorithm to avoid premature 

convergence problem and used dynamic / adaptive strategy to update its speed and direction. 

 

11. Improved Bat Algorithm (IBA): Yilmaz and Kucuksille [15] employed Inertia Weigh Factor, 

Adaptive Frequency Modification, Scout Bee Modification to balance exploration over 

exploitation in BA. 

 

12. Enhanced Bat Algorithm : Kaveh and Zakian [16] presents a variant of bat algorithm by 

limiting the local search by a Θ scale factor thus improve the exploration capability of BA. 

 

13. Modified Bat Algorithm: Yılmaz, et al. [17] balance exploration and exploitation in BA by 

assigning separate loudness A and pulse rate r for each dimension of the solution. 

 

14. Compact Bat Algorithm: Dao, et al. [18] addressed the problem of limited hardware 

resources such as memory for solving numerical optimization problem by using probability 

vector in place of population. 

 

15. Parallelized Bat Algorithm with a Communication Strategy : In 2014, Tsai, et al. [19] defined 

communication strategy to parallelize original Bat Algorithm.  
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16. Evolved Bat Algorithm : Dao, et al. [20] proposed a new bat algorithm to solve Economic 

Dispatch problem whose results are found better than Genetic Algorithm. 

 

 

Figure 2.1: Timeline of Bat Algorithm 

Many researchers have united the BA with other algorithms to solve optimization problems like, 

Wang and Guo [21] merged BA with Harmony Search for Global Numerical Optimization, 

Nawi, et al. [22] combined BA with Back-propagation neural network (BPNN) algorithm to 

solve the local minima problem in gradient descent trajectory and to increase the convergence 

rate. 

2.2 APPLICATIONS OF BAT ALGORITHM 

Meta-heuristic technique are problem-independent and provide general purpose strategy for 

search which makes BA applicable for different continuous optimization problems and in the last 

5 years, BA has successfully provided optimized solutions of various problems: 
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1. Bora, et al. [23] (2012) optimized of 5 design parameters in order to design Brushless DC 

Wheel Motor having best efficiency η with satisfying 6 constraints. 

 

2. Damodaram and Valarmathi [24] (2012) employed BA to minimize the error rate of 

predicting the e-banking phishing websites in which BA outperformed ACO and PSO. 

 

3. In 2013, Ramesh, et al. [25] used BA to solve economic dispatch problem by optimizing fuel 

cost coefficients of 6 generators in order to minimize total power generation cost with 

satisfying all units and operational constraints of the power system. 

 

4. Marichelvam and Prabaharam [26] (2012) minimized makespan (the maximum completion 

time) and mean flow time by selecting optimal hybrid flow shop schedule in HFS with 

multiple machines and BA found more efficient than Genetic Algorithm and PSO. 

 

5. M., et al. [27] (2012) estimated full body human pose by minimizing the distance or 

maximize the similarity between generic model of human body and the cloud of points. It 

performed better than PSO, Particle Filter (PF) and Annealed Particle Filter (APF). 

 

6. Yang, et al. [28] (2012) used BA in topology optimization i.e. find best geometric 

configuration so as to achieve certain objective. For E.g. distribute two different materials so 

as to maximize the temperature difference. 

 

7. Tamiru and Hashim [29] combined bat algorithm with fuzzy logic for gas turbine model 

identification after exergy changes. 

 

8. Faritha Banu and Chandrasekar [30] explored Modified Bat algorithm to detect duplicate 

records in Cora Bibliographic data set in which BA performed better than Genetic 

Programming. 

 

9. Srivastava, et al. [31] (2014) proposed test effort estimation model using BA. 
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10. Saji, et al. [32] (2014) redefined Bat Algorithm for solving NP hard TS Problem. 

 

11. Gupta and Sharma [33] estimated software development effort by optimizing COCOMO 

coefficients.  

12. Djelloul, et al. [34] found optimal assignment of colors in the graph subject to certain 

constraints i.e. solved Graph Coloring Problem. 

 

13. Hassan, et al. [35] detected optimal community of nodes in the network having better internal 

connectivity than external using discrete bat algorithm. 

2.3 APPLICATIONS OF MAPREDUCE MODEL  

In 2004, Google’s Dean and Ghemawat [36] published a white paper to parallelize large data on 

clusters by using map reduce model. After that MapReduce became widely-used parallel 

programming model and was employed on various large processing application like relation data 

processing [37], machine learning [38], scientific analysis [39] etc. 

 

Nowadays, heuristic algorithms have started using Hadoop Map Reduce Model to scale data 

intensive problems such as: 

 

1. Particle Swarm optimization Algorithm (PSO) : McNabb, et al. [40] successfully parallelized 

PSO on a MapReduce framework and evaluated it on RBF Network Training function and 

sphere function then in 2014 Wang, et al. [2] proposed MPSO (Map-PSO) and applied this 

on Performance-based Reward Strategy in stock markets which took less running time then 

sequential and MRPSO. 

 

2. Genetic Algorithm (GA) : Jin, et al. [41] used MapReduce model to parallelize GA and 

proposed MRPGA. Verma, et al. [42] presented parallel model of GA for data-intensive 

computing and tested it on one max problem. Keco and Subasi [43] proposed Model 2 and 

compared it with model 1 for same one max problem implementation. Then these models 

were used for various problems like Job Shop Scheduling Problem [3], automatic generation 

of JUnit Test Suites [44] etc. 
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3. Cuckoo Search : Lin, et al. [45] scaled Modified Cuckoo Search using MapReduce 

Architecture and evaluated it on Griewank function,  Rastrigrin function,  Rosenbrock 

function and Sphere function. 
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CHAPTER 3 
RESEARCH METHOLOGY 
 

In this research, we have studied Bat algorithm, Hadoop Map Reduce Model, COCOMO II and 

have successfully used these methods to propose a new parallel Bat Algorithm using MapReduce 

Programming Model and have evaluated it on Effort Estimation problem using NASA 63 

Dataset. 

3.1  BAT ALGORITHM 

Bat Algorithms (BA), is swarm intelligence based meta-heuristic optimization algorithm 

proposed by Xin-She Yang in 2010. BA finds the solution in the search space by exploiting the 

echolocation behavior of bats in which they locate their prey by emitting a short - loud sound 

pulse and listen for the echo that bounces back from the surrounding obstacle then they use the 

time delay from the emission of sound pulse to perception of the echo and the time difference 

between their two ears and also the loudness variations (signal intensity) of the echo’s to get a 

view about surrounding and prey size as shown in Figure 3.1. 

 

Figure 3.1: Bat using echolocation to locate its prey 
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BA is a continuous meta-heuristic optimization algorithm used to select best real valued input 

from defined set of options in order to maximize or minimize a function. It only guarantee 

approximate (not approximation) solution to the problem. 

In addition to this, heuristic Algorithms have two main attributes: exploration (also known as 

diversification) and exploitation (also known as intensification). 

 

Exploration  is investigation of larger portion of search space so as to detect global optimum 

point (global search ability) while Exploitation  is investigation of limited (promising) region of 

the search space in order to improve or refine the promising previous best solutions. 

 

A good response of an algorithm depends on well-balance of these components i.e. in the case of 

little exploration and massive exploitation, the algorithm can get confined into local optimum 

points. Whereas too much exploration but less exploitation will make it difficult for algorithm to 

converge on optimal point thus slow down the search performance. But it is beneficial to first 

explore and then exploit as we get good solution in the beginning then we can refine them to find 

local best solutions. And in BA exploration and exploitation is performed by varying the pulse 

emission rates r and loudness �0. 

Yang used three generalized rules for Bat Algorithm: 

1. All bats use echolocation to sense distance and they also know the difference between 

food/prey and background barriers in some magical way. 

2. Bats fly randomly with velocity �� at position �� with a frequency ����, varying 

wavelength and loudness �0 to search for prey. They can automatically adjust the 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission r 

[0, 1] depending on the proximity of their target. 

3. Although the loudness can vary in many ways, we assume that the loudness varies from a 

large (positive) �0 to a minimum constant value ����. 

 

BAT Algorithm 
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1:  Initialize the population of N bats randomly and each bat corresponds to a potential solution 

to the given problem using Equation (1) 

2:  Define loudness ��, pulse frequency ��∊ [����, ��	�] 

3:  Define the initial velocities �� (�=1, 2, 3...N) 

4:  Set pulse rate r�. 

5:  while t < Max number of Generations do 

6:    for bat in population do 

7:      Generate new solution by adjusting frequency, updating velocities using Equation [2-4] 

8:      if (rand > r�) then 

9:        Select a solution among the best solutions. 

10:      Generate a local solution around the selected best solution using Equation (5) 

11:    end if 

12:    Generate a new solution by flying randomly 

13:    if (rand < �� & f (��) < f (�*) ) then 

14:      Accept the new solution 

15:      Increase r� and reduce �� using Equation [6, 7] 

16:    end if 

17:  end for 

18:  Rank the bats and find the current best �* 

19:  end while  

20:  Post process results and visualization 

 

In this algorithm, the bat behaviour of finding the best location is captured to optimize the fitness 

function of the problem to be solved. It consists of the following steps: 

Initialization of Bat Population (lines 1 - 4) –  

In first iteration, N bats are randomly spread over the search space as they have no idea where 

the prey is located thus population is randomly generated for each dimension d with default 

values for frequency, velocity, pulse emission rate and loudness. 

( )min max min 0,1  (   )j j ji jx x a xr nd x= + −       (1)  
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Where i = 1, 2 … N, j = 1, 2… d, min jx  and max jx are lower and upper boundaries for dimension j 

respectively.  

Update Process of Frequency, Velocity and Solution (line 7) - 

Each bat emits sound pulses of random frequency dispersed between [����, ��	�] and this 

frequency controls the speed and new position of bat using below equations: 

min max min( )if f f f β= + −        (2) 

1 1( *)t t t
i i i iv v x x f− −= + −       (3)   

 1t t t
i i ix x v−= +   (4) 

Where 
 denotes a randomly generated number with in the interval [0, 1] and �* is the current 

global best solution which is located after comparing all the solutions. Upper and lower bounds 

of frequency are chosen such that it is comparable to the size of search space of that variable. 

Local search (lines 8-11) – 

Random walk is used in order to exploit a position around the best solution. 

t
new oldx x Aε= +       (5)   

Here oldx is selected best solution from current best solutions, � denotes a random number within 

the interval [-1, 1], while tA   is the average loudness of all the bats at this time step. 

Updating Loudness and Pulse Emission Rate (lines 12-16) - 

As the bat approach their prey, loudness of emitted sound pulse decreases and pulse emission 

rate increases so if new solution is improved than previous solution then factors like loudness 

and pulse rate needs to be updated. For simplicity, we can also use �0 = 1 and �min = 0, 

assuming �min = 0 means that a bat has just found the prey and temporarily stop emitting any 

sound.  

1t t
i iA Aα+ =        (6) 

1 0(1 )t t
i ir r e γ+ −= −        (7) 

Where α and γ are constants.0ir  & 0
iA  consist of random values and 0

ir ∈[0, 1] and 0
iA ∈[1, 2] 

  
Find the current best solution (line 18) – 
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Find the current best bat by comparing last best fitness value with improved bat fitness if it found 

better then update the best bat solution.   

In bat algorithm, if the new solutions are generated from equation [2-4] then exploration is good 

and if solution is generated by Equation 5 then exploitation is high. So the pulse rate r controls 

the balance between exploration and exploitation but the possibility of rand > r� to be true is 

during the initial iterations of bat algorithm that means initially exploitation will be good and 

during following iterations exploration will be good. But it is advantageous to explore first and 

exploit later to prevent the solution from getting trapped into local minimum. In order to solve 

this issue, researchers have proposed various variants of bat algorithm. For e.g. FBC redefined 

velocity t
iv  and position t

ix  in Equation [3, 4] in which each bat is not only considering the best 

solution found by all the bats but also its own local preference (lbestx ). 

1 1 1( *) ( )t t t t lbest
i i i i i iv v x x f x x f− − −= + − + −   (8) 

And Chaotic Levy Flight Bat Algorithm used Levy Flight for random walk thus modified 

neighborhood solution.   

( )new old sx x C Levyλ= + ⊗         (9)  

Here, the product ⊗  means entry-wise multiplications.  

Improved bat algorithm with Doppler Effect introduced a new frequency equation to deal with 

Doppler Effect of bat’s echo 

 1t ti
i i

i

c v
f f

c v
−−=

+
      (10) 

Wheref is bat frequency and c iss speed of sound which is 340 m/s. 

3.2  MAPREDUCE MODEL 

Map Reduce is programming model proposed by Google - Dean and Ghemawat [36] 

MapReduce is a simple model designed for processing large volumes of data in parallel by 

dividing the program into a set of high-level map and reduce functions which are inspired by 

functional languages like Lisp, List etc. This Model exploits parallelism by splitting the input 
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data into chunks which are processed by the map and reduce tasks in a completely parallel 

manner. 

The input to MapReduce Model is in the form of (key; value) pairs and operation on these set of 

pairs occur in three stages: the map stage, the shuffle stage and the reduce stage. 

A. Map Stage 

In the map stage, the map() function takes as input a single (key; value) pair and produces as 

output any number of intermediate (key; value) pairs. It is crucial that the map operation is 

stateless - that is, it operates on one pair at a time. This allows for easy parallelization as different 

inputs for the map can be processed in different machines. 

                 MAP: (K1, V1) => LIST (K2, V2) 

B. Shuffle Stage 

In shuffle phase, all of the map’s output (key; value) pairs are sorted and value lists are created 

for each individual key which is then send to the reduce() function. This occurs automatically 

without programmer intervention. 

C. Reduce Stage 

In the reduce stage, each reduce () function takes all of the values associated with a single key k, 

and outputs a multi set of (key; value) pairs with the same key k (often “reduced” in length from 

the original list of values).This highlights one of the sequential aspects of Map/Reduce 

computation i.e. all of the maps need to finish before the reduce stage can begin.  

                  REDUCE: (K2, list (V2)) => list (V2) 

And in the reduce step, the parallelism is exploited by observing that reducers operating on 

different keys can be executed simultaneously. 

Apache Hadoop is an open source software framework for distributed processing which have 

implemented google MapReduce and Google file system in its modules.  

3.2.1 EXAMPLE OF MAPREDUCE MODEL  
Example of Map Reduce Model is shown in Figure 3.2. This WordCount  program counts the 

number of occurrences of each word in a given input data. The input data file is given to the Map 

Reduce job which splits the data into several files and sends it to different map tasks(mappers) 
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for processing. Each mapper processes the file, line by line and generates input key-value pair 

for map function. The map() function splits each line into words and sends output key-value pair 

as word:1 where key is the word and 1 is its count. Then sort and shuffle function combines 

mapper key-value output and generates count list for each word. Finally, the reducer sum the 

count value of each word and write the final count of occurrence of each word as output.  

 

Figure 3.2: Example of MapReduce Model  

3.2.2 HADOOP MAPREDUCE ARCHITECTURE 

As shown in Figure 3.3, the major components of Hadoop based cluster are client machine, 
master node, slave node. Each master node performs parallel processing and handling of data in 
HDFS which have instances of name node (handles data distribution across data nodes), job 
tracker (handles instances of trasktracker in each slave node) and secondary name node (backup 
of namenode). Each slave node performs map/reduce task so have data node and task tracker 
instances.  
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Figure 3.3: Hadoop Server Roles 

The basic architectural flow of Hadoop MapReduce is shown in figure 3.4 and can be explained 
in steps as: 

1. Client writes input files into HDFS. 

2. Client submits the job consisting of following information: inputformat, outputformat, 

mapper class, reducer class, partitioner class, combiner class, input path, output path etc. 

3. Hadoop Client breaks the files into inputsplits depending upon the block size. 

4. Client by consulting the name node store each block in one or more data nodes which is 

controlled by dfs.replication parameter. 

5. Job Tracker creates task instances for mappers depending upon no of splits i.e. if 5 split 

then 5 mapper tasks will be created. 

6. Job Tracker distributes the tasks across the data nodes and number of tasks assigned to 

each node depends on the hardware configuration of the system. 

7. Defined Inputformat provides record reader object to read the data in key – value pairs. 

8. Record Reader passes each key-value pair in the input split to the user defined map () 

function. 
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Figure 3.4: Hadoop MapReduce Architecture 

9. Map () function synthetize each key-value pair into new object and passes it to the 

partitioner and shuffler for sorting and grouping them.  

10. These new grouped data is again distributed across the data nodes. 

11. Job Tracker creates reduce tasks based on mapred.reduce.tasks parameter or by default 

creates 1 instance of reduce task and deploy it on data nodes. 

12. Each key – value list in the partition is assigned to a single Reduce task. 
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13. Then the user defined reduce () function will write final key value pair as output in 

HDFS. 

3.3  COCOMO II MODEL 

The Constructive Cost Model (COCOMO ) is a regression-based software cost estimation 

model developed by Barry W. Boehm in 1981 which is also called in references as COCOMO 

81. COCOMO-81 is said to be the best known, best documented and it reflects most software 

development practices on that time.  

One of the problems with the use of COCOMO I today is that it does not support modern 

software development processes like desktop development, code reusability, rapid-development, 

object-oriented approaches etc. Therefore, in 1997, Boehm developed the COCOMO II for 

estimating modern software development projects.  

COCOMO consists of a hierarchy of three increasingly detailed and accurate forms: 

1. Basic COCOMO computes software development effort (and cost) as a function of program 

size and it holds up until a certain point, usually for projects that can be reasonably 

accomplished by small teams of two or three people. 

2. Intermediate COCOMO provides more accurate estimates by taking into account software 

development environment through 15 cost drivers.  

3. Detailed COCOMO computes effort as a function of program size and a set of cost drivers 

given according to each phase of software life cycle i.e. analysis and design of the software 

engineering Process. 

 

The COCOMO estimated software effort is given by below equation and is measured in calendar 

months  

( ) [ ] ( 1 2 3 15)bEffort Person month a LOC EM EM EM EM− = × × × × × ×…   (11) 

Here the coefficient “a” is known as productivity coefficient and the coefficient “b” is the scale 

factor. They are based on the different modes of project as given in table 3.1 

 

Software Project Project Size a b 
Organic Less than 50 KLOC 3 1.1 

Semi-detached 50 – 300 KLOC 3 1.1 
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Embedded Over 300 KLOC 3 1.2 
 

Table 3.1: Software Project Mode 

And EMi are effort multipliers (Cost drivers) which have up to six levels of rating: Very Low, 

Low, Nominal, High, Very High, and Extra High. Each rating has a corresponding real number 

based upon the factor and the degree to which the factor can influence productivity as given in 

Table 3.2 

 

Cost 
Drivers 

Rating 
Very 
Low Low Nominal High 

Very 
High 

Extra 
High 

acap 1.46 1.19 1 0.86 0.71  -  
pcap 1.42. 1.17 1 0.86 0.7  -  
aexp 1.29 1.13 1 0.91 0.82  -  
modp 1.24. 1.1 1 0.91 0.82  -  
tool 1.24 1.1 1 0.91 0.83  -  
vexp 1.21 1.1 1 0.9  -   -  
lexp 1.14 1.07 1 0.95  -   -  
sced 1.23 1.08 1 1.04 1.1  -  
stor  -   -  1 1.06 1.21 1.56 
data  -  0.94 1 1.08 1.16  -  
time  -   -  1 1.11 1.3 1.66 
turn  -  0.87 1 1.07 1.15  -  
virt  -  0.87 1 1.15 1.3  -  
rely 0.75 0.88 1 1.15 1.4  -  
cplx 0.7 0.85 1 1.15 1.3 1.65 

 
Table 3.2: Software Cost Drivers 

These effort multipliers fall into three groups: those that are positively correlated to more effort, 

those that are negatively correlated to more effort and the third group containing just schedule 

information. 

3.4  NASA 63 DATA SET 

The proposed algorithm is evaluated on 63 NASA projects from different centers from the years 

of 1971 to 1987. As shown in table 3.3, this dataset consist of development mode(embedded, 
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organic, semidetached), EAF of 15 cost drivers, size of each project in kilo source line of code 

and actual effort.  

 

Mode EAF LOC Effort 
Embedded 2.28811 113 2040 
Embedded 0.53128 6.9 8 
Embedded 5.50991 22 1075 
Embedded 2.01377 30 423 
Embedded 1.73015 29 321 
Embedded 1.73015 32 218 
Embedded 0.93626 37 201 
Embedded 4.94502 3 60 
Embedded 3.04353 3.9 61 
Embedded 2.37496 6.1 40 
Embedded 1.94746 3.6 9 
Embedded 3.27117 320 11400 
Embedded 3.48791 299 6400 
Embedded 0.84607 252 2455 
Embedded 0.96816 118 724 
Embedded 0.7025 90 453 
Embedded 1.1639 38 523 
Embedded 0.95249 48 387 
Embedded 0.99439 1.98 5.9 
Embedded 0.56909 390 702 
Embedded 2.30187 42 605 
Embedded 1.47674 23 230 
Embedded 0.30168 91 156 
Embedded 0.3401 6.3 18 
Embedded 2.66087 27 958 
Embedded 3.30632 17 237 
Embedded 1.05362 9.1 38 
Organic 0.32046 132 243 
Organic 0.99814 60 240 
Organic 0.65617 16 33 
Organic 1.86504 4 43 
Organic 0.85243 25 79 
Organic 1.6573 9.4 88 
Organic 0.68887 15 55 
Organic 0.37224 60 47 



Delhi Technological University Page 21 
 

Organic 0.3588 15 12 
Organic 0.38774 6.2 8 
Organic 0.9649 3 8 
Organic 0.25445 5.3 6 
Organic 0.58734 45.5 45 
Organic 1.06981 28.6 83 
Organic 1.33662 30.6 87 
Organic 0.87268 35 106 
Organic 0.82473 73 126 
Organic 1.28037 24 176 
Organic 2.30456 10 122 
Organic 1.15428 5.3 14 
Organic 0.77736 4.4 20 
Organic 1.08961 25 130 
Organic 1.00697 23 70 
Organic 2.12549 6.7 57 
Organic 0.38613 10 15 
Semidetached 0.84227 293 1600 
Semidetached 0.67554 1150 6600 
Semidetached 0.90842 77 539 
Semidetached 2.81069 13 98 
Semidetached 0.99439 2.14 7.3 
Semidetached 3.43917 62 1063 
Semidetached 2.17879 13 82 
Semidetached 0.38067 23 36 
Semidetached 0.75808 464 1272 
Semidetached 1.37602 8.2 41 

Semidetached 0.4466 28 50 
 

Table 3.3: NASA 63 Dataset 
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CHAPTER 4 

PARALLEL BAT ALGORITHM USING MAPREDUCE 

MODEL  

 

In each iteration of Bat algorithm, all bats finds a new location either by flying randomly using 

equation 5 or by adjusting their frequency and updating their velocity, location using equation 

[2-4]. Each bat then evaluates the fitness of new solution and accordingly move to new position 

if found better than the current position.  

In this algorithm, steps that can be parallelized i.e. can be executed independently are: 

• Each bat updating its position.  

• Iterations can be executed in parallel. 

But iterations can’t be parallelized as population of bat should improve from generation to 

generation and initial iteration results should be utilized in the next iterations.  

Based on above idea, to transform BA into map and reduce primitives following issues need to 

be considered: 

1. Determine the input to MapReduce Model. 

2. Determine the jobs of mapper and reducer tasks. 

3. Exchange information between parallel map tasks. 

4.1  INPUT REPRESENTATION 

We provide large initial random population of bats as input to MapReduce framework which 

then split them into chunks and distribute them across the map tasks. Each bat in input 

population is represented by key/value pairs: 

K1: Set of string representing individual bat 

V1: fitness 

Here the key consist of set of attributes representing bat like position, frequency and velocity 

whereas value is the fitness of that bat. For e.g. in our software effort optimization problem we 

have: 
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Coefficient a; Coefficient b; Frequency; Velocity a; Velocity b: Fitness 

And gbest bat of population is of following form: 

Coefficient a; Coefficient b: Fitness 

4.2  EXCHANGE OF INFORMATION BETWEEN BATS 

In bat algorithm, bats use the shared current best bat in the updating process but in Parallel Bat 

Algorithm we share generation best bat which can be implemented by two approaches:  

1. Map Reduce Bat Algorithm (MRBA) : 

In MRBA, initially we share the gbest across all the map tasks and each bat uses this gbest as �* 

in Equation [3, 5]. Output of map tasks are combined and sent to a single Reducer (as used same 

key for all the improved bats). Reduce task sorts all the improved bats and output gbest bat from 

them which is used for following iterations as shown in figure 4.1. 

 

Figure 4.1: Operation phases in Map Reduce Bat Algorithm (MRBA) 
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2. Map Bat Algorithm (MBA)  

 

Figure 4.2: Operation phases in Mapper Bat Algorithm (MBA) 

In MBA i.e. only map approach, initially we share the population gbest across all the map tasks. 
Each map task has a mapper level best bat which is initialized with this gbest. This mbest is 
updated in map () if a better bat is found in map task specific input split. At the end of each map 
task this mapper level best bat is stored in distributed file systems. In this we take zero reduce 
task so mapper output will not be sorted or shuffled and is directly sent for output. After every 
iteration, gbest is evaluated from all mapper level mbest bats as shown in figure 4.2. Thus MBA 
reduces the no of comparison than MRBA for finding the gbest. Therefore in our proposed 
algorithm we have used MBA. 

4.3  MAPPER IN BAT ALGORITHM  

Hadoop job tracker set up instances of map task equal to the no of population split and each map 

task calls the map () function for each bat in the population split.  
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Map Task Set Up: 

This method is called once at the beginning of each map task in which we set mapper level best 

as last generation gbest. 

Algorithm 1: setup (context) 

mBest = gBest; 

Here mBest is Mapper level best bat and gBest is Global best bat 

Map Function: 

In this thesis, we present two models of parallel bat algorithm. First model uses one map phase 

for one generation of bat algorithm i.e. population is evolving generation by generation while the 

second model uses one map phase for all the generations i.e. each bat is evolving for N 

generations. That means in Model 1, N Map Reduce cycle execute whereas in Model 2 only one 

map reduce cycle will generate the optimum output. So we have two map algorithms 

corresponding to these two models. 

Model 1 map () function explores and exploits new solution for given key bat using mBest as �*. 

And the outputs improved bat which is sent as input for next generation as shown in figure 4.3. 

Algorithm 2 for Model 1: map (key, value, context) 

1. bat ← BATREPRESENTATION(key) 

2. fitness ← value 

3. # Generate new solution by adjusting frequency and updating velocities and locations/solutions. 

4. newBat ← NEWBAT (bat, mBest) 

5. if (rand > r�) 

6. newBat ← LOCALBAT (mBest) 

7. end if   

8. newFitness ← CALCULATEFITNESS (newBat) 

9. if (rand < �� &   newFitness < fitness) 

10. # Accept the new solution. 

11. bat = newBat 

12. fitness = newFitness 

13. end if 

14. if ( fitness < mBest.fitness) 
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15. mBest = bat 

16. end if  

17. EMIT (bat, fitness) 

 

 

Figure 4.3: Flow chart of Model 1 

Model 2 map () function evolves the given key-bat for N generations using mBest as �*.In this 

no intermediate data are emitted by any Mapper and each iteration evaluated gbest is considered 

as the output of the job as shown figure 4.4 

For N Generation 

Map Task 

. . . 

Begin 

Spread the population of n bat randomly over the search space. Each bat 
corresponds to 2 coefficients. 

Define loudness Ai, pulse frequency Qi 

Define the initial velocities �� (�=1, 2, 3...n) & set pulse rate r�. 

 

Give population and gbest as input to Map Reduce Model. 

 

Hadoop splits the population into chunks of block size to be processed by 
map tasks in parallel. 

Population 
Spilt 1 

BAT1:F1 

newBAT1:F1 

Output: Improved Population 

Map () 

For H: K: 
V pair  

newBAT1:F1 

Population 
Spilt 2 

Population 
Spilt N 

Map Task 

BAT1:F1 

Map () 

For H: K: 
V pair 

newBAT1:F1 

For H: K: 
V pair 

Map Task 

Map () 

BAT1:F1 

Output gbest bat 
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Algorithm 3 for Model 2: map (key, value, context) 

1. bat ← BATREPRESENTATION(key) 

2. fitness ← value  

3. while t <Max number of Generations do 

4.   newBat ← NEWBAT(bat, mBest) 

5.   if (rand >r�) 

6.     newBat ← LOCALBAT(mBest) 

7.   end if   

8.   newFitness ← CALCULATEFITNESS(newBat) 

9.   if (rand <�� &  newFitness < fitness) 

10.     # Accept the new solution. 

11.     bat = newBat 

12.     fitness = newFitness 

13.   end if 

14.   if (fitness < mBest.fitness) 

15.     mBest = bat 

16.   end if 

17. end while 

  
Map Task Clean Up: 
 
This method is called ones at the end of each map task in which improved mbest is written to the 

distributed file system. These mbest’s are then evaluated at the end of each iteration for gbest. 

Algorithm 4: cleanup (context) 

Write(mBest, mBest.fitness) 
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Figure 4.4: Flow chart of Model 2 

   

 

 

 

 

Map Task 

. . . 

Begin 

Spread the population of bat randomly over the search space. Each bat 
corresponds to 2 coefficients. 

Define loudness Ai, pulse frequency Qi 

Define the initial velocities �� (�=1, 2, 3...N) & set pulse rate r�. 

 

Give population and gbest as input to Map Reduce Model. 

 

Hadoop splits the population into chunks of block size to be processed by 
map tasks in parallel. 
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BAT1:F1 
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CHAPTER 5 
EXPERIMENTAL RESULT & ANALYSIS 
 

5.1  IMPLEMENTATION 

We have implemented these proposed models on optimization COCOMO II parameters (a, b) 

such that calculated efforts approximate to actual efforts for NASA 63 project Dataset. 

Formally, this problem can be framed as finding parameter X = {x1, x2} where xi ∈ {0, 5}, that 

minimize the following equation: 

MMRE = [Actual – x1(KLOC) x2] /Actual 

Here MMRE is Mean Magnitude of Relative Error which is used as evaluation criteria for 

assessment of optimized parameters. And since parameter x1 and x2 are specific to project mode 

therefore we execute program for each mode separately. 

For this implementation, we have taken Bat Algorithm Specific Parameter as d = 2, r = 0.5, � = 

0.5, max jx =4, min jx  = 0 and initial frequency/velocity as 0 and have considered constant pulse 

rate and loudness over the iterations. 

5.2  ENVIRONMENT 

We implemented these models on Apache Hadoop (0.19) and ran it on our 6 node cluster in 

which one node act as master and other acts as slaves. Each node runs a Intel 5 dual core, 4GB 

RAM and 250 GB hard disks. The nodes are integrated with Hadoop Distributed File System 

(HDFS) yielding a potential single image storage space of 2 * 250/3 = 166 GB (since the 

replication factor of HDFS is set to 3). By default each node can run 2 mappers and 1 reducers in 

parallel else it depends on hardware configuration. 

5.3  EXPERIMENTAL RESULTS 

We have performed following analysis on both the models: 

1. Scalability of MBA for effort estimation problem wi th increasing the number of 

mappers: 
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In this experiment, we have taken the population size of 2 lakh which generated the input of 

13 MB and have set the number of iterations as 5. Figure 5.1 compares the run time of MBA 

(Model 1) by using different number of map task i.e. setting different block size. On taking 

block size as 1 MB i.e. 13 map task, execution time is 16.84 which decreased with increase 

in block size due to less no of task distribution among the nodes. But on further decreasing 

the number of tasks (< no of nodes), run time became almost constant due to decrease in 

communication overhead. 

 

Figure 5.1 

2. Comparison between MRBA and MBA:  

In this experiment, we have taken population size as 2 lakh, number of iterations as 5, 

number of nodes as 6 and block size of 5MB and compared the running time of Map Reduce 

Bat Algorithm (MRBA) and Map Bat Algorithm (MBA) for Model 1. As shown in Figure 

5.2, MBA takes less time as compare to MRBA by saving time in intermediate bat’s sorting 

with no initialization of Reducer tasks. Moreover MRBA requires whole population sorting 

to get the gbest whereas MBA reads at most 13 mbest from the HDFS to find the gbest. 
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Figure 5.2 

3. Scalability of MBA for effort estimation problem wi th increasing the number of nodes: 

In this experiment, we have taken population size as 2 lakh, number of iterations as 5, block 

size of 5MB and compared the run time of both MBA Models by increasing the number of 

nodes in the cluster. As shown in Figure 5.3, Model 2 took less time than Model 1 due to less 

no of map cycles and no intermediate data handling. For model 2, single node cluster took 

less time than 3 node cluster as there was no communication/task distribution overhead but 

on further increasing the number of nodes, the execution time reduced and became almost 

constant. 

 

Figure 5.3 

4. Performance tuning with increase in population size: 

In this experiment, we have taken number of iterations as 5 and block size of 5MB and 

compared the MMRE of embedded projects for both models by increasing the size of 
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population. As shown in Figure 5.4 MMRE reduced with increase in population and became 

constant after 1500.  

 

Figure 5.4 

5. Performance tuning with increase in number of Generations : 

In this experiment, we have taken population size as 10,000 and block size of 5MB and 

compared the MMRE of embedded projects for both models by increasing the number of 

iterations. As shown in Figure 5.5 both models give better MMRE than COCOMO Model 

(0.3921) and MMRE decreases with increase in generation due to more refining of output. 

 

Figure 5.5 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK  
 

The models proposed in this thesis can easily parallelize BA which could be used to solve 

problems involving large search space by simply adding more hardware resources to the cluster 

and without changing the proposed model code. And according to experimental results model 2 

shows better convergence than model 1 and also take less time for execution.  

It has been seen that lots of communication, task start up overhead is associated with Hadoop 

Map Reduce Architecture thus is not suitable for problems involving small search space, few 

dimension and less computation. 

Due the update process in BA Parallel BA Models these proposed models can be used for large 

population but can’t be used for given large dataset in order to find the optimal result from them. 

So further study on BA modification is required to find best results from given dataset for e.g. 

getting best quotation from large dataset of quotations.  

In future work both models should be used for solving problems involving large search space, 

big computation, large no of dimensions like in stock market strategies. And these models 

running time can also be further improved by examining other features of MapReduce 

architecture like partitioner, combiner, shuffler etc. which may reduce the processing. We can 

also compare these models with existing MPI-based implementation. 
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