
A Major Project Report On

IMPLEMENTING PRIVATE CLOUD USING OPEN SOURCE

SOFTWARE

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

Computer Science & Engineering

By

Rajat Sehrawat

(Roll No. 2K12/CSE/13)

Under the guidance of

Divyashikha Sethia

Assistant Professor

Department of Software Engineering

Delhi Technological University, Delhi

Department of Computer Engineering

Delhi Technological University, Delhi

2012-2014

Department of Computer Engineering
Delhi Technological University,

Shahbad Daulatpur, Main Bawana Road, Delhi – 110042

Tel : 011-27871043 Fax : 011-27871023

CERTIFICATE

This is to certify that the thesis entitled “Implementing Private Cloud Using Open Source

Software” submitted by Rajat Sehrawat (2K12/CSE/13), to the Department of Computer

Engineering of Delhi Technolgical University, Delhi in partial fulfilment of the

requirements for the award of the degree of Master of Technology (M. Tech.) in Computer

Science & Engineering is an authentic record of the work carried out by him under my

guidance and supervision.

In my opinion, this work fulfils the requirement for which it has been submitted. This

dissertation has not been submitted to any other university or institution for any degree.

Divyashikha Sethia,

Assistant Professor,

Department of Software Engineering,

Delhi Technological University, Delhi.

Department of Computer Engineering
Delhi Technological University,

Shahbad Daulatpur,Main Bawana Road, Delhi – 110042

Tel : 011-27871043 Fax : 011-27871023

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “Implementing

Private Cloud Using Open Source Software” in partial fulfilment of the requirement for the

award of the degree of Master of Technology (M. Tech.) in Computer Science & Engineering

and submitted in the Department of Computer Engineering. Delhi Technological University,

Delhi is an authentic record of my own work carried out under the supervision of

Divyashikha Sethia, Assistant Professor, Department of Software Engineering. The matter

presented in this thesis has not been submitted by me for the award of any other degree of this

or any other Institute / University.

Name : Rajat Sehrawat

Roll No. : 2K12/CSE/13

This is to certify that the above statement made by the candidate is correct to the best of my

knowledge.

Date : Divyashikha Sethia,

Assistant Professor,

Department of Software Engineering,

Delhi Technological University, Delhi.

Department of Computer Engineering
Delhi Technological University,

Shahbad Daulatpur,Main Bawana Road, Delhi – 110042

Tel : 011-27871043 Fax : 011-27871023

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a lot of people who have

supported me with their words and deeds in completion of my research work as part of this

course of Master of Technology in Software Engineering.

To start with I would like to thank the almighty for being with me in each and every step of

my life. Next, I thank my parents and family for their encouragement and persistent support.

I would like to express my deepest sense of gratitude and indebtedness to my guide and

motivator, Divyashikha Sethia, Assistant Professor, Department of Software Engineering,

Delhi Technological University for her valuable guidance and support in all the phases from

conceptualization to final completion of the project.

I wish to convey my sincere gratitude to Prof. Rajeev Kapoor, Head of Department, and all

the faculties and PhD. Scholars of Department of Computer Engineering, Delhi

Technological University who have enlightened me during my project.

I humbly extend my grateful appreciation to my friends whose moral support made this

project possible.

Last but not the least, I would like to thank all the people directly and indirectly involved in

successfully completion of this project.

 Rajat Sehrawat

Roll No: 2K12/CSE/13

v

 ABSTRACT

This work is based on setting up private cloud to be used as a platform for deploying various

applications over it. In this work a private cloud has been deployed in LANS lab, DTU using

Apache CloudStack Infrastructure as Service (IaaS) with ActiveState Stackato Platform as a

Service (PaaS) over it. The main cloud setup is used to provide a Health Secure Service for a

NFC based healthcare service as suggested in [1].

The Health Secure service provides security as a service for a secure interaction between

patient and doctor. The application assumes that patient records are retained with him on a

personal electronic device like mobile. In case the records are lost they can be retrieved from

the backup of records maintained in the cloud. The cloud provides a PaaS application where

patients and doctors can be registered and their security information as well as access control

information can be retained on a SQL database. The patient or any hospital staff will connect

to private cloud for key retrieval or information retrieval of patient. If hospital staff wants to

add new medical record into system then it should be done in very secure way. For this

purpose private cloud is necessary which will deliver on-demand service to authenticated

devices in a secure manner and users can utilize a shared and elastic infrastructure. Another

positive aspect of cloud computing is scalability. If there is peak load or high traffic for a site,

cloud can handle easily without any additional hardware infrastructure & without disturbing

user's normal work. Another advantage of cloud is fault tolerance, i.e. hardware failure can be

easily traced out and rectified.

vi

TABLE OF CONTENTS

Certificate.. ii

Candidate’s Declaration.. iii

Acknowledgement.. iv

Abstract... v

1. Introduction... 1

 1.1 Cloud Computing... 2

 1.1.1 Features of cloud computing... 3

 1.2 Cloud participants... 4

 1.3 Cloud, Cloud services and Access... 4

2. Deployment Models.. 5

 2.1 Public Cloud... 6

 2.2 Private Cloud.. 6

 2.3 Hybrid Cloud.. 6

 2.4 Community Cloud.. 6

3. Service Models.. 8

 3.1 Infrastructure as a Service.. 9

 3.2 Platform as a Service.. 10

vii

 3.2.1 Single-tenant PaaS.. 12

 3.2.2 Multi-tenant PaaS.. 12

 3.3 Software as a Service... 13

4. IaaS Solutions.................,... 14

 4.1 Eucalyptus.. 15

 4.2 OpenNebula... 15

 4.3 Nimbus... 15

 4.4 AbiCloud.. 15

 4.5 Delta Cloud.. 15

 4.6 OpenStack.. 15

 4.7 XenCloud Platform.. 16

 4.8 CloudStack... 16

 4.9 Comparison Table.. 16

 4.10 Why Private Cloud?.. 18

 4.11 Why Open Source System?... 18

5. CloudStack... 19

 5.1 CloudStack Architecture.. 20

 5.2 Management Server... 21

 5.3 Cloud Infrastructure... 22

viii

 5.3.1Zone.. 22

 5.3.2 Pod... 22

 5.3.3 Cluster.. 22

 5.3.4 Host.. 22

 5.3.5 Primary Storage.. 22

 5.3.6 Secondary Storage.. 22

5.4 CloudStack Networking... 23

 5.4.1Basic Networking.. 23

 5.4.2 Advanced Networking.. 23

5.5 CloudStack Traffic... 24

 5.5.1 Guest... 24

 5.5.2 Management... 24

 5.5.3 Public.. 24

 5.5.4 Storage.. 24

6. CloudStack Deployment... 25

6.1 Minimum System Requirements... 26

 6.1.1 Management Server.. 26

 6.1.2 Host/Hypervisor... 27

6.2 Management Server Installation... 27

 6.2.1 Prepare the Operating System... 27

ix

 6.2.2 Install the Management Server on the Host... 28

 6.2.3 Install Database on Management Server.. 28

 6.2.4 Prepare NFS Share... 28

 6.2.5 Prepare VM Template.. 29

 6.2.6 Start Management Server... 29

 6.3 KVM Hypervisor Host Installation.. 30

 6.3.1 Prepare the Operating System.. 30

 6.3.2 Install the KVM Agent on the Host... 30

 6.3.3 Configure KVM... 30

 6.3.4 Configure Network Bridges... 31

 6.3.5 Configure Firewall... 32

 6.4 Cloud Infrastructure Provisioning.. 33

 6.4.1 Change Root Password.. 33

 6.4.2 Add a Zone... 33

 6.4.3 Add a Pod.. 33

 6.4.4 Add a Cluster... 34

 6.4.5 Add more Hosts... 34

 6.4.6 Add a Primary Storage... 34

 6.4.7 Add a Secondary Storage... 34

 6.4.8 Initialize and Run the new cloud.. 35

x

7. PaaS Solutions... 39

7.1 Engine Yard... 40

7.2 Open Shift.. 40

7.3 App Engine... ... 40

7.4 Heroku.. 40

7.5 AppFog... ... 41

7.6 Azure.. 41

7.7 Caspio... ... 41

7.8 Stackato.. 41

7.9 Comparison Table.. 42

8. Stackato... 44

8.1 Stackato Architecture... 45

 8.1.1 Cloud Controller.. 45

 8.1.2 Router... 46

 8.1.3 Droplet Execution Agents (DEAs).. 46

 8.1.4 Services... 46

 8.2 Stackato Security.. 47

 8.2.1 Docker Containers... 47

 8.2.2 AppArmor.. 48

 8.2.3 Secure Sockets Layer... 48

xi

 8.2.4 Secure Shell... 48

 8.2.5 Secure Copy... 48

 8.2.6 Database Operations via dbShell... 48

 8.2.7 Privileged access.. 49

8.3 Advantages... 49

9. Stackato Deployment... 50

9.1 Minimum Host System Requirements... 51

9.2 Micro Cloud VM.. 51

9.3 Create Stackato Template.. 51

9.4 Create Stackato Instance.. 53

9.5 Stackato Management Console.. 53

 9.5.1 Adding Organizations.. 54

 9.5.2 Adding Spaces... 54

 9.5.3 Adding Users... 54

9.6 App Store... 55

9.7 Stackato Client... 55

 9.7.1 Target and Login.. 56

 9.7.2 Selecting Organization and Space... 56

 9.7.3 Pushing Application Code... 56

xii

10. Healthcare Application.. 57

10.1 Architecture for Secure Healthcare System... 59

 10.2 Healthcare Application... 61

 10.2.1 Application Testing.. 65

11. Conclusion and Future Work... 69

12. References... 71

xiii

LIST OF FIGURES

Figure 1: Cloud Computing Sample Architecture... 2

Figure 2: Features of Cloud.. 3

Figure 3: Overview of cloud computing…..........……………………………………. 4

Figure 4: Deployment Models.. 7

Figure 5: Cloud Service Models.......……………………………………………... 9

Figure 6: PaaS Adoption Percentage Graph... 10

Figure 7: Benefit Rating of Using PaaS... 11

Figure 8: Type of Applications Run on PaaS... 11

Figure 9: Structure of ST-PaaS.. 12

Figure 10: Structure of MT-PaaS... 12

Figure 11: Overview of CloudStack.. 20

Figure 12: Basic Architecture of CloudStack Deployment..................................... 21

Figure 13: Cloud Infrastructure... 23

Figure 14: Conceptual View of Deployed CloudStack Cloud................................. 26

Figure 15: Dashboard of Cloud.. 35

xiv

Figure 16: Cloud Infrastructure.. 36

Figure 17: List of Hosts... 36

Figure 18: Virtual Machine Migration.. 37

Figure 19: Successful VM Migration Notification... 37

Figure 20: Events Log.. 38

Figure 21: Pop-Up window for accessing VM through GUI................................... 38

Figure 22: Stackato Platform Overview... 45

Figure23: Stackato Architecture... 47

Figure 24: Stackato Template... 52

Figure 25: List of Templates.. 52

Figure 26: Stackato Instance.. 53

Figure 27: Stackato Management Console... 54

Figure 28: Stackato App Store... 55

Figure29: List of Deployed Application.. 56

Figure 30: Flow Diagram of Proposed Secure Healthcare System........................ 60

Figure 31: Deployed System Architecture... 61

Figure 32: Healthcare Application Deployed on Stackato.................................... 62

xv

Figure 33: Healthcare Login Page.. 62

Figure 34: Healthcare View and Add Data………………………......………...... 63

Figure 35: Healthcare Edit Data... 63

Figure 36: Detail View... 64

Figure 37: Secure Hash Key and Access Rights retrieval.. 64

Figure 39: Response Time Graph for application on Server.................................... 65

Figure 39: Response Time Graph for application on Server.................................... 66

Figure 40: Error%, Throughput and Data Rate for application over Stackato........ 66

Figure 41: Error%, Throughput and Data Rate for application over Server............ 66

Figure 42: Initial Memory Usage... 67

Figure 43: Intermediate Memory Usage.. 67

Figure 44: Scaled Memory Usage.. 67

Figure 45: Stackato VM Migration.. 68

Figure 46: Notification of Stackato VM Migration... 68

xvi

LIST OF TABLES

Table 1: Comparison between IaaS...… 18

Table 2: Management Server Requirements.. 26

Table 3: Host/Hypervisor Requirements.. 27

Table 4: Comparison between PaaS........................……....……………………... 43

Table 5: Host System Requirements... 51

1

Chapter 1

INTRODUCTION

2

1.1 Cloud computing

Cloud Computing is emerging computing paradigm which pools various resources such as

computing power, storage, network and software for provision of services on the internet in a

remotely accessible fashion. Cloud Computing is not a new technology, instead it is modern

way of providing services using technology. Cloud Computing is a powerful and flexible

software environment, in which users pay as they go. The migration of applications on the

Cloud is increasing day by day. Some users try to build their own private Cloud which is a

custom-fit to their requirements. These users make use of existing technologies such as

CloudStack, OpenStack, Eucalyptus, Nimbus, OpenNebula, Azure and many more [29].

The official definition given by the cloud Security Alliance and National Institute of

Standards and Technology (NSIT) [10] for cloud computing -

 “Model for enabling convenient, on- demand network access to a shared pool of

configurable computing resources (e.g. networks, servers, storage, applications and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction”.

Gartner [27] defines cloud computing as-

“A style of computing where massively scalable, IT-enabled capabilities are provided as a

service across the Internet to multiple external customers”.

Cloud computing refers to applications delivered as services to the end users over the Internet

where the hardware and systems software are placed at remote locations that provide those

services. It facilitates sharing of digital information, software platforms and technological

resources between a large number of clients and users on Internet.

Figure 1: Cloud Computing Sample Architecture [8]

http://en.wikipedia.org/wiki/File:CloudComputingSampleArchitecture.svg

3

1.1.1 Features of cloud computing [24]

 On Demand Self Service

It is a prime feature of cloud which refers to the provision of cloud resource available to user

whenever they requires. On-demand self service methodology passes users to requested

resources on run time.

 Broad Network Access

Broad network access is the property by which the private cloud resources hosted within

company firewall are made available to wide range of devices like Desktops, Laptops,

Tablets, Mobile Phones, etc. These resources can also be accessible from remote locations.

 Resource Pooling

Pool of computing resource shared between the users as per their requirements. This can be

achieved by Multi-Tenant application architecture, where multiple user share same instance.

Each user has his/her own isolated space dedicated for his/her use.

 Scalable & Elastic

Cloud service has to scale up or scale down its capacity based on user's or application's need.

Scalability is the power of cloud service by which it can grow or shrink while Elasticity is

property of immediate addition or removal of resources. Scalability achieved by virtuousness

of its architecture while Elasticity is implicitly gained by deploying on a cloud.

 Measured Service

Cloud services are measured in similar to electricity usage. Aside from measuring and

monitoring, the resource usage can also be controlled. The price lists are entirely based on the

amount of the service used by the users, which may be measured in terms of hours, data

transfers or amount of computing resources it required with time. Here a user only pays for

what he/she use (similar to cab services).

Figure 2: Features of Cloud

4

1.2 Cloud participants

The user of the cloud need not to know any background about the cloud and can perform

his/her tasks seamlessly using cloud services. Enterprise management is responsible for

managing the services and data present on the cloud.

Service provider is responsible for providing the services and service management.

1.3 Cloud, cloud services and access

The cloud is defined as the set of networks, hardware, interfaces, services and storage that are

collectively responsible for providing the services.

Cloud services are responsible for the delivery of infrastructure, storage and software over the

Internet as per the user’s requirements.

Access to the cloud by the user can be via multiple devices like PC, mobile tec. or multiple

technologies like Internet etc.

Figure 3: Overview of cloud computing [11]

5

Chapter 2

DEPLOYMENT MODELS

6

2.1 Public Cloud

This type of cloud is made for public use i.e. the end-user of this cloud can be anyone who

wishes to use the service. It is provided big companies like Amazon, Google etc. In this type

of cloud data is stored at remote locations which are difficult to be accessed.

Advantages of Public cloud are-

 Easy setup.

 Pay for only what you use.

 Increased scalability.

 Reliable and Robust backup.

2.2 Private cloud

This type of cloud is made for an enterprise and is used by that enterprise only for their

personal work. Here only the enterprise members can access the cloud and no one else is able

to use the cloud.

Advantages of Private cloud

 Reduces costs.

 Provides elasticity.

 Dynamic storage capacity.

 Easy management of the infrastructure.

 More control

2.3 Hybrid cloud

This type of cloud is composition of more than two clouds public, community and private

cloud. It is managed by external as well as internal providers.

2.4 Community cloud

This type of cloud is shared between a number of enterprises and it supports a particular

group or community that has a same goals and objectives.

7

Figure 4: Deployment Models [6]

8

Chapter 3

SERVICE MODELS

9

Based on the type of services and the flexibility that the cloud computing provider provides

the user, cloud services are broadly classified into three basic service models.

 IaaS (Infrastructure as a Service)

 PaaS (Platform as a Service)

 SaaS (Software as a service)

Figure 5: Cloud Service Models [9]

3.1 Infrastructure as a Service

IaaS is the most basic cloud service model. Main aim of any organization is to reduce time

and cost required for procuring the new improved hardware systems. IaaS targets that

objective with outsourcing of equipment to support operations. In Iaas the duty of service

provider is housing, controlling and equipment maintenance which forms the cloud. The VM

are run by the hypervisors, like KVM or Xen as guests on the host systems. This feature

allows cloud to support multiple VMs. IaaS clouds includes resources such as images of

virtual machine, storage, IP addresses, load balancers, firewalls, VLANs (virtual local area

networks), and software bundles.

10

Examples of IaaS include: OpenStack, CloudStack, Eucalyptus, AWS, Nimbus, Open Nebula

[29].

3.2 Platform as a Service

The PaaS will provide computing resources through platform such as Operating System.

PaaS is built on top of IaaS. It provides building blocks such as programming languages and

an environment for easy and quick deployment of applications onto the cloud infrastructure.

PaaS eradicates the time consuming phase of hardware and other configurations. It provides a

platform for safe and secure development, deployment and management of applications. PaaS

platform has evolved from IaaS and SaaS. The companies are shifting more and more

towards PaaS solution. In a survey [30] of 162 people, conducted by Engine Yard in the year

2012 following results were obtained

 About 88% of the surveyed people were aware about PaaS

 Almost 21% of the surveyed companies are currently upgrading to PaaS and 18% of them

are already using PaaS for their companies

.

Figure 6: PaaS Adoption Percentage Graph [30]

11

 Following figure shows the benefits of PaaS and their importance percentage from

company perspective.

Figure 7: Benefit Rating of Using PaaS[30]

 Nearly 5% of the surveyed people were using PaaS for Medical Application which leaves

a lot of room for research and innovation in health sector using PaaS.

Figure 8: Type of Applications Run on PaaS [30]

12

Examples of PaaS include: Engine Yard, Heroku, AppFog, Google App Engine , OpenShift,

Windows Azure Cloud Services[31].

3.2.1 Single-tenant PaaS (ST-PaaS) [23]

In ST-PaaS, an IaaS instance is dedicated to a particular user. The relationship between MT-

PaaS and ST-PaaS is a trade-off. The running cost of MT-PaaS is smaller than that of ST-

PaaS, but thedevelopment cost is higher.

Figure 9: Structure of ST-PaaS [23]

3.2.2 Multi-tenant PaaS (MT-PaaS) [23]

 In MT-PaaS, an instance of IaaS is shared by multiple tenant users. In principle, the number

of instances in MT-PaaS will be smaller than that in ST-PaaS, which reduces the cost.

Figure 10: Structure of MT-PaaS [23]

13

3.3 Software as a Service

In this model the user directly access and interact with the application which is deployed over

the cloud. The user does not need to install the application on his/her own computer in order

to run that application, instead the user is able to directly access the application which is

already running on the cloud of the service provider. This service model is of great use from

business point of view, as businesses are able to get the same results as that of commercial

software with a much reduced cost. It also frees the user from the burden of software support

and maintenance. The main benefit of SaaS is non-involvement of licensing risk and also no

issue of version compatibility. It also decreases the hardware and software cost. Customer

does not require any technical knowledge while using paid software and underlying

infrastructure. Common example of SaaS application software is CRM, Google Docs, ERP,

etc. SaaS also reduces the IT support cost.

Enterprises have to select the right service model based on their specific requirements. The

selection has to be done considering various factors such as cost benefit analysis, relevant

risks, security and controls and the criticality of the data and services. Typically, enterprises

would choose the model which offers them the best savings with the required security as

appropriate to the criticality of the services provided. Quite often, the non-critical

services/applications are the first to be migrated both as a test case and also considering the

lower risks.

14

\

Chapter 4

IaaS SOLUTIONS

15

4.1 Eucalyptus

Eucalyptus is an (Elastic Utility Computing Architecture for Linking Your Programs To

Useful Systems) open-source implementation of Amazon EC2 and compatible with business

interfaces. Eucalyptus project started at California University Santa Barbara, and mainly was

used to build open-source private cloud platform initial release of Eucalyptus came out in

October 2010.

4.2 OpenNebula

OpenNebula is an open source toolkit used to build private, public and hybrid Clouds. It

works with Xen, KVM and VMware virtualization solution and it is currently working on

supporting VirtualBox.

4.3 Nimbus

The Nimbus project is considered as a science Cloud Computing solution providing

Infrastructure as a service. Nimbus is attached to the Culumbus project and it supports

different virtualization implementations: Xen and KVM.

4.4 AbiCloud

AbiCloud is a private Cloud solution developed by Abiquo. It enables users to build

Infrastructure as a service Cloud environment. The supported virtualization techniques of

AbiCloud are VirtualBox, VMWare, XEN, and KVM.

4.5 Delta Cloud

Deltacloud is a vendor neutral API and an open source project initiated by Red Hat and is

now an Apache incubator project. Deltacloud abstracts the differences between clouds and

maps a cloud client's application programming interface (API) into the API of a number of

popular clouds, including Amazon EC2, GoGrid, OpenNebula, and Rackspace

4.6 OpenStack

OpenStack is a collaborative software project designed to create freely available code and

needed standards for the benefit of both Cloud providers and Cloud customers. OpenStack is

16

currently three projects: OpenStack Compute (deploy automatically provisioned virtual

compute instances), OpenStack Object Storage (redundant storage of static objects) and

OpenStack Image Service (provides discovery, registration, and delivery services for virtual

disk images).

4.7 XenCloud Platform

The Xen Cloud Platform (XCP) is an open source server virtualization and cloud computing

platform, delivering the Xen Hypervisor. The Xen Hypervisor provides an abstraction layer

between server’s hardware and operating systems including Windows and Linux network and

storage support.

4.8 CloudStack

CloudStack is an open source software provided by Apache which pools computing resources

such as network, computing nodes and storage to provide Infrastructure as a Service (IaaS)

clouds. CloudStack also provides an interface for deployment, management, and

configuration of cloud computing environments [12].

4.9 Comparison Table

Property OpenStack Eucalyptus Nimbus

OpenNebula

CloudStack

Initial

Release
October 2010 May 2008

January

2009
March 2008 May 2010

Developers

Rackspace

Hosting,

NASA and

now More

than 200

companies

have joined

Eucalyptus

Systems,

Inc.

Kate

Keahey,

Tim

Freeman, et

al.

OpenNebula

Community

Apache

Software

Foundation

Written in

Language
Python Java and C

Python and

Java

C++, C,

Ruby, Java,

Shell script,

lex and yacc

Java and C

17

Users

Enterprise,

service

providers

and

researchers

Enterprise

Scientific

communitie

s

Researchers

on Cloud

Computing

and

Virtualizatio

n

Service

providers and

enterprises

Architecture

Integration of

OpenStack

object storage

and

OpenStack

compute

-Minimum 6

servers

-

Hierarchica

l

- Five

components

- Minimum

two servers

-Centralized

- Three

components

- Minimum

two servers

- Centralized

- Three

components

- Minimum

two servers

Two

Components -

Management

Server

-Cloud

infrastructure

Supported

Hosts

Linux and

Windows
Linux Windows Linux Linux

Storage

OpenStack

Object

Storage and

Block storage

Storage

Controller

- GridFTP,

Comulus

(new

version of

GridFTP)

- SCP

-SCP

- SQLite3

Primary

Storage and

Secondary

Storage

Network

Quantum

linked with

OpenStack

Compute

(Nova)

DHCP

server on

the cluster

controller

DHCP

server

installed on

nodes

Manual

configuration

Simple and

Advanced

Network

Load

Balancer
Yes Yes Yes Yes Yes

VM

migration

Manual Live

Migration
No No Shared FS

Manual Live

Migration

VMs

Location

OpenStack

Compute

(Nova)

Node

controller

Physical

nodes
Cluster node Hosts

Hypervisor

XEN, KVM

and VMware

Xen, KVM

and

VMWare

XEN and

KVM

XEN, KVM

and VMWare

XEN, KVM

and VMware

18

Interface
Web

interface

- EC2 WS

API

- Tools as:

HybridFox,

ElasticFox

- EC2 WS

API

- Nimbus

WSRF

- EC2 WS

API

- OCCI API

Web Interface

Used By

AT&T,

CERN, Intel,

Sony,

Yahoo!,

NASA, HP

public cloud,

etc.

NASA STAR

Reservoir

Project,

NUBA

Sungard,

Softlayer,

Spotify,Amdoc

s

Table 1: Comparison between IaaS[3][4][5][6][7]

4.10 Why Private Cloud?

Following are the reasons for utilizing private cloud for this project:

 Have higher Return On Investment than traditional infrastructure

 Are more customizable

 Can quickly respond to changes in demands

 Support rapid deployment

 Have increased security

 Focus on an organization's core business

4.11 Why Open Source System?

In general OSS has following advantages:

 Lowering the costs (i.e. no licensing headaches)

 Interchange ability & portability (general, avoiding vendor lock-in)

 Socio-organizational reasons

 Energy efficient

Based on the above mentioned points I have selected Eucalyptus for this project work.

19

Chapter 5

CLOUDSTACK

20

CloudStack[16] is an open source software provided by Apache to deploy private, public and

hybrid IaaS cloud. It pools and manages computing resources such as storage, network, and

computing nodes which collectively makes cloud infrastructure [12].

CloudStack[16] can set up on-demand, elastic cloud computing service as well as it can set

up on-premise private cloud for use of employees. On-demand means “provision of cloud

resource available to user whenever they requires”. Elastic means “how instantly an

application can add or remove resources”.

Figure 11: Overview of CloudStack [12]

5.1 CloudStack Architecture

A CloudStack[16] consists of two parts:

1. Management Server

2. Cloud Infrastructure

21

Figure 12: Basic Architecture of CloudStack Deployment [12]

5.2 Management Server [12]

The Management Server is responsible for the proper management of cloud resources. We

can manage and configure our cloud infrastructure by interacting with Management Server

through or UI or API. Also the Management Server can be run on dedicated server or VM. It

insures the allocation of virtual machines to hosts and allocates storage and IP addresses to

the virtual machines instances.

In short the Management Server [12]:

 Offers the web user interface to the administrator and end users.

 Provides the APIs[15] for CloudStack.

 Handles the assignment of guest VMs to specific hosts.

 Handles the assignment of private and public IP addresses to specific accounts.

 Handles the assignment of storage unit to guests as virtual disks.

 Management of templates, snapshots and ISO images, which are possibly replicated

across data centers.

 Provides an interface to configure the cloud at a single point only.

22

5.3 Cloud Infrastructure [12]

The Management Server handles one or more zones having host computers where guest

virtual machines usually runs.

Cloud Infrastructure Organized into

5.3.1 Zone:

It is equivalent to datacenter. It comprises of secondary storage and one or more pods.

5.3.2 Pod:

It is one rack of hardware that comprises a layer-2 switch and clusters.

5.3.3 Cluster:

It comprises of primary storage and one or more hosts. A cluster is a bunch of XenServer

servers, VMware cluster (preconfigured in vCenter) or a bunch of KVM servers. Within the

same cluster it it possible to live-migrate the VM from one host to another, without

interruption of service to user.

5.3.4 Host:

It’s a single node in the cluster. Host run in the form of virtual machines to provide cloud

service. Hypervisor software is installed on each host for the management of guest VMs. To

provide more capacity to guest VMs more hosts can be added at any point of time. Hosts are

hidden from the end user i.e. they are not able to find, to which host their guest VM is

assigned.

5.3.5 Primary Storage:

It is linked with a cluster. It consist the disk volumes of every virtual machine running on

hosts under a single cluster. It supports NFS, iSCSI and Clusterd Logical Volume Manager

(CLVM)

5.3.6 Secondary Storage:

It is linked with a zone. It consists of the templates, ISO images and disk volume snapshots.

23

All the items in secondary storage linked to zone are made available to all the hosts in the

zone.

Figure 13: Cloud Infrastructure [12]

5.4 CloudStack Networking [12]

5.4.1 Basic Networking

In a basic network, configuration of the physical network is fairly easy. In general, to carry a

traffic generated by guest VMs we have to configure only one guest network.

5.4.2 Advanced Networking

In advanced networking, it is recommended to set aside sufficient private IPs for

accommodating the total number of users, plus sufficient for the required CloudStack System

VMs.

24

5.5 CloudStack Traffic [12]

5.5.1 Guest

Guest traffic is generated when the end users run any VMs. Through guest network the guest

VMs communicate with each other. This network will be isolated or shared. In isolated guest

network, the administrator has to reserve VLAN range to provide isolation for each

CloudStack account's network. While in shared network, single network is shared by all guest

VMs.

5.5.2 Management

Management traffic is the one which is generated on account of communication between

internal resources. This simply involves the direct communication between Management

Server and any other component like hosts and system VMs that communicates directly with

the Management Server. It is important to configure the of system VMs.

5.5.3 Public

When the VMs in the cloud get access to the Internet a public traffic is generated. For that

purpose, public IP should be allocated. With help of CloudStack UI the end users can get

these IPs for implementation of NAT between public network and guest network.

5.5.4 Storage

A separate Network Interface Controller (NIC) known as Storage NIC is used for storage

network traffic. Storage network traffic is the one which is generated when VM templates

and snapshots are sent between secondary storage servers and the secondary storage VM.

25

Chapter 6

CLOUDSTACK

DEPLOYMENT

26

For implementing the CloudStack two Ubuntu 10.04 machines are used. The one machine

will act as Management Server while the second machine will be KVM Hypervisor Host.

Also the Database and Storage System is on Management Server itself.

The Conceptual View of CloudStack deployment is shown in below figure.

Figure 14: Conceptual View of Deployed CloudStack Cloud

6.1 Minimum System Requirements [12]

6.1.1 Management Server

 Minimum Requirements

OS CentOS/RHEL 6.3+ or Ubuntu 10.04 or above

CPU 64-bit x86

RAM 4GB

HDD 50GB (if secondary storage on management server then 500GB is recommended)

NIC 1

Table 2: Management Server Requirements

27

Domain Name should be fully qualified and should return it by hostname command.

6.1.2 Host/Hypervisor

 Minimum Requirements

OS CentOS/RHEL 6.3+ or Ubuntu 10.04 or above

CPU 64-bit x86

RAM 4GB

HDD 36 GB

NIC 1

 Table 3: Host/Hypervisor Requirements

Requires Hardware virtualization support

Domain Name should be fully qualified and should return it by hostname command

6.2 Management Server Installation [12] [21]

Following steps describes the installation of Management Server. There are two ways of

doing this installation

a) Single Management Server with MySQL on same server.

b) Multiple Management Server with MySQL installed on separate server rather than

same management server machine.

6.2.1 Prepare the Operating System

The Server OS (Ubuntu or CentOS) should be prepared first to host the management server

on it. The following steps confirms the fully prepared server OS for management server.

1. Login to Server OS as Root User

2. Verify the fully qualified hostname of the prepared Server OS with following command

hostname --fqdn

The above command should return the fully qualified domain name of system like

“cldstkmgmt.lanslab.edu”. If output of the above command is not in the specified format

the correct it by editing the file “/etc/hosts”.

3. Install NTP for Time Synchronisation

#apt-get install openntpd

28

6.2.2 Install the Management Server on the Host

Installation of Management Server can be done with RPM or DEB packages.

#apt-get install cloud-client

6.2.3 Install Database on Management Server

1. Install MySQL with following command

#apt-get install mysql-server

complete the MySQL installation by setting up the root database user's password.

2. Edit MySQL configuration

#nano /etc/mysql/my.cnf

insert the below lines in [mysqld] section after datadir line

innodb_rollback_on_timeout=1

innodb_lock_wait_timeout=600

max_connections=350

log-bin=mysql-bin

binlog-format = 'ROW'

3. Now setup the database the below command creates the 'cloud' user in the database.

cloud-setup-databases cloud:<dbpassword>@localhost \

 --deploy-as=root:<password> \

 -e <encryption_type> \

 -m <management_server_key> \

 -k <database_key>

Alternatively, the required version of CloudStack, tar.gz file can be downloaded from

http://sourceforge.net/projects/cloudstack/files/CloudStack%20Acton/3.0.0/ and then

untarring the file and running install.sh and choosing M for management server, D for

database and A for agent or host setup.

6.2.4 Prepare NFS Share

CloudStack implements the primary and secondary storage using NFS share. The NFS share

can be set using following commands:

29

1. Install nfs-kernel-server on Ubuntu Server

#apt-get install nfs-kernel-server

2. On storage server create NFS share using command

#mkdir -p /export/primary

#mkdir -p /export/secondary

3. Now configure the new directories as NFS exports. for this edit the file /etc/exports

#nano /etc/exports

then add the line

/export *(rw,async,no_root_squash)

4. Export the /export directory

exportfs –a

5. On Management Server create the mount point of secondary storage

#mkdir /mnt/secondary

6. Now mount the secondary storage on Management Server

mount -t nfs nfsservername:/nfs/share/secondary /mnt/secondary

In our case its

mount -t nfs 172.16.6.15:/nfs/share/secondary /mnt/secondary

7. Reboot the system

#reboot

6.2.5 Prepare VM Template [12]

Template should be created in secondary storage for creation of cloudstack system VMs.

On management server run cloud-install-sys-tmplt command to set template for specific

hypervisor which is to be used in cloud infrastructure machine or which are being used with

management server.

For KVM:

#/usr/lib/cloud/common/scripts/storage/secondary/cloud-install-sys-tmplt

-m /mnt/secondary -u http://download.cloud.com/templates/acton/acton-systemvm-

02062012.qcow2.bz2 -h kvm -F

6.2.6 Start Management Server

 #cloud-setup-management

30

6.3 KVM Hypervisor Host Installation [12][22]

 6.3.1 Prepare the Operating System

The Server OS (Ubuntu Server or CentOS) should be prepared first to host the KVM

Hypervisor on it. The following steps confirms the fully prepared server OS for KVM

Hypervisor.

1. Login to Server OS as Root User

2. Verify the fully qualified hostname of the prepared Server OS with following command

#hostname --fqdn

The above command should return the fully qualified domain name of system like

“cldstkkvm01.lanslab.edu”. If output of the above command is not in the specified format

the correct it by editing the file “/etc/hosts”.

3. Install NTP for Time Synchronisation

 #apt-get install openntpd

 6.3.2 Install the KVM Agent on the Host

 #apt-get install cloud-agent

6.3.3 Configure KVM

libvirt and QEMU are the two parts of KVM which should be properly configured to get the

things running.

QEMU Configuration

Edit the QEMU VNC configuration.

 #nano /etc/libvirt/qemu.conf

uncomment the following line (simply remove # before the following line)

vnc_listen=0.0.0.0

Configure libvirt

1. For live migration events the libvirt has to listen on unsecure TCP connections. These

settings are located in /etc/libvirt/libvirt.conf

Set the following parameters:

listen_tls = 0

listen_tcp = 1

31

tcp_port = “16059”

auth_tcp = “none”

mdns_adv = 0

2. Turning “listen_tcp” 0 in libvirtd.conf is not enough, we have to change the parameters as

well:

modify /etc/init/libvirt-bin.conf

Change the following line (at the end of the file):

exec /usr/sbin/libvirtd -d

to (just add -l)

exec /usr/sbin/libvirtd -d -l

3. Restart libvirt

service libvirt-bin restart

6.3.4 Configure Network Bridges

This can be done by editing the file /etc/network/interfaces.

#nano /etc/network/interfaces

Modify the interfaces file so finally it will look like:

auto lo

iface lo inet loopback

The primary network interface

auto eth0.100

iface eth0.100 inet static

address 172.16.6.17

netmask 255.255.240.

gateway 172.16.1.1

dns-nameservers 172.16.1.1

dns-domain cldstkkvm01.lanslab.edu

Public network

auto cloudbr0

iface cloudbr0 inet manual

bridge_ports eth0.200

bridge_fd 5

32

bridge_stp off

bridge_maxwait 1

Private network

auto cloudbr1

iface cloudbr1 inet manual

bridge_ports eth0.300

bridge_fd 5

bridge_stp off

bridge_maxwait 1

Now restart the network

#sudo /etc/init.d/networking restart

6.3.5 Configure Firewall

The hypervisor needs to communicate with other hypervisors and the management server

needs to reach the hypervisor.

For this purpose we have to open the following TCP ports (if you are using a firewall):

1. 22 (SSH)

2. 1798

3. 16509 (libvirt)

4. 5900 - 6100 (VNC consoles)

5. 49152 - 49216 (libvirt live migration)

To open this ports execute the following commands:

$ ufw allow proto tcp from any to any port 22

$ ufw allow proto tcp from any to any port 1798

$ ufw allow proto tcp from any to any port 16509

$ ufw allow proto tcp from any to any port 5900:6100

$ ufw allow proto tcp from any to any port 49152:49216

33

6.4 Cloud Infrastructure Provisioning [12]

6.4.1 Change Root Password

It is the first step after setting up the cloudStack environment. Root administrator is user

account which is responcible for managing the cloudstack deployment. Through root

administrator modification in the configuration settings in the basic cloudstack is possible.

So, after installing CloudStack it is very important to change the default password to newone

which is unique

Steps:

1) Open web browser and open the CloudStack Dashboard's URL which is of the form

http://<management_server_ip:8080>/client

2) Log in to UI with current root user ID and password being 'password'.

3) Click Accounts

4) Click on the admin account

5) click view users

6) click on the admin user

7) click on the button “Change Password”

8) Type new password and click on the button “OK”

6.4.2 Add a Zone

Before adding a Zone beware to log in to the Cloudstack UI

Steps

From the left navigation pane, Choose Infrastructure

Click on View More in the Zones container

Click on the Add Zone after that Zone creation wizard appear

choose appropriate network type as you wish like, Basic or Advanced

On the basis of choosen network type set respective configuration of that network such as

Name, DNS 1 and 2, Internal DNS 1 and Internal DNS 2, Hypervisor, etc.

6.4.3 Add a Pod

In the newly created zone, cloudstack adds the first pod, also more pods can be added later

configuration of Pod:

34

Pod Name which is the uique name for the new pod.

Reserved System Gateway the gateway for the hosts in the pod

Reserved System Netmask the netmask that defines the pod's subnet using CIDR notation

start/End Reserved System IP

This is the IP range which is used by management network of cloudstack for managing

various system VMs

6.4.4 Add a Cluster

To add Cluster, create the cluster with configuration which is listed below

1) Hypervisor

Hypervisor can be one of the type such as vSphere, KVM, XenServer, etc.

2) Cluster Name

Give a name to newly created cluster a unique identifiable name.

6.4.5 Add more Hosts

New hosts can be added into cluster after its installation and configuration on separate

machine. After complete installation of host they can be added to cloudstack infrastructure

with configuration setup fields such as

HostName, User Name, Password and Host tags.

6.4.6 Add a Primary Storage

Each cluster has primary storage corresponds to each guest host of cloud.

Primary storage server can be configured by entering the following

 Name

The storage device Name.

Protocol.

For XenServer, choose either NFS, iSCSI, or PreSetup.

For KVM, choose NFS, SharedMountPoint,CLVM, or RBD.

For vSphere choose either VMFS (iSCSI or FiberChannel) or NFS.

6.4.7 Add a Secondary Storage

Each zone has secondary storage associated with it.

35

Secondary storage server can be configured by entering the following

 Name

The storage device Name.

Protocol.

For XenServer, choose either NFS, iSCSI, or PreSetup.

For KVM, choose NFS, SharedMountPoint,CLVM, or RBD.

For vSphere choose either VMFS (iSCSI or FiberChannel) or NFS.

6.4.8 Initialize and Run the new cloud

After installing the complete CloudStack System we have added some OS ISO's which are to

be used by guest VM's. Customized templates which has predefined OS's installed in it are

also added for quick creation of guest VM's and accessing those VM's through GUI.

Figure 15: Dashboard of Cloud

36

Figure 16: Cloud Infrastructure

Figure 17: List of Hosts

37

Figure 18: Virtual Machine Migration

Figure 19: Successful VM Migration Notification

38

Figure 20: Events Log

Figure 21: Pop-Up window for accessing VM through GUI

39

Chapter 7

PaaS SOLUTIONS

40

7.1 Engine Yard

Engine Yard is made using PHP, Node.js and Ruby on Rails. It is projected for web

application developers who desire to seize supremacy of cloud computing without worrying

about the responsibility of operations management. It provides a set of services on top of

AWS. It uses Amazon cloud to runs its platform, so the worth of the PaaS rests more with the

management and orchestration than with providing software components. It additionally

takes care of major operations tasks such as managing clusters, performing backups, load

balancing, managing snapshots, and administering databases.

7.2 OpenShift

Red Hat OpenShift is highly customizable and is provided in three versions:

 OpenShift Enterprise- It is a private PaaS which runs in the data center.

 OpenShift Online- It is a public cloud-based hosting service.

 OpenShift Origin- It is a community open source application hosting platform.

It is based on open source applications and provides user with a wide variety of choice of

languages, components and databases. It automates system administration tasks such as

scaling, configuration and virtual server provisioning and for code management it supports

git repositories.

7.3 App Engine

App Engine is designed by Google using Java, PHP, Go and Python. It is targeted for

distributed web applications and developers. It provides a SDK for the four supported

languages, it also provides plug-in for Eclipse. The java environment enables it to support

other languages that make use of JRE. The PaaS offers runtime environments and managed

infrastructure that can be scaled, but only when the applications fits the restrictions set by the

App Engine.

7.4 Heroku

Heroku supports Java, Python, Node.js, Ruby, Clojure and Scala. The PaaS provides dynos

(abstract computing environments), which are virtualized Unix-style containers that are

41

responsible for running processes in an isolated environment. These are broadly classified in

two,

 Web Dynos- which responds to all the HTTP requests.

 Worker Dynos- which responds to all the task requests.

Heroku gives best result for those applications that fits well into Twelve Factor App

methodology.

7.5 AppFog

It is a multi framework and multi language platform which is suitable for multi-cloud

deployments, which also includes private clouds. AppFog PaaS supports seven language

namely Java, Python, PHP, Ruby, Erlang, Node and Scala. It offers four services namely

RabbitMQ, Redis, PostgreSQL and MySQL along with third party add-on services.

7.6 Azure

Microsoft Windows Azure is diminishing the lines between infrastructure and platform as a

service. Cloud Services provided by Windows Azure supports languages such as PHP, .NET,

Java, Python, Node.js and Ruby. Application administration is done through the dashboard

provided by Windows Azure or optionally it can also be done by a cli. In addition to SDK,

one can also use Visual Studio by Microsoft for creating applications which can be deployed

over the cloud. It also provides choice between Persistent storage namely SQL Database,

Tables and Blobs.

7.7 Caspio

Caspio aims on carrying the desktop database like functionality to the cloud. It does not

provide a fully useful software development environment. It is intended for creating

databases that can be used for providing data entry forms and generating reports. Its visual

development tool (point and click) minimizes coding efforts.

7.8 Stackato

ActiveState Stackato is a secure, stable and commercially supported enterprise Platform-as-a-

Service (PaaS) that is built with and on top of various open source packages including Cloud

42

Foundry and Docker. Stackato can deploy applications written in Java, Python, Clojure,

Dotnet, Go, Node, Perl, Php, Python and Ruby. It supports services like Filesystem,

Memcached, Microsoft Sql Server, Mongodb, Mysql, Postgresql, Rabbitmq and Redis.

7.9 Comparison Table

Property AppFog App

Engine

Heroku OpenShift Stackato

Vertical Scaling Yes No Yes Yes Yes

Horizontal Scaling Yes Yes Yes Yes Yes

Auto Scaling No Yes No Yes Yes

Java Yes Yes Yes Yes Yes

Clojure No No Yes No Yes

Node Yes No Yes Yes Yes

Perl No No No Yes Yes

Python No Yes Yes Yes Yes

Go No Yes No No Yes

Php Yes Yes Yes Yes Yes

Ruby Yes No Yes Yes Yes

Scala No No Yes No No

Dotnet No No No No Yes

BuidPacks No No No Yes Yes

Jenkins No No No Yes No

Mongodb Yes No No Yes Yes

Mysql Yes No No Yes Yes

Postgresql Yes No Yes Yes Yes

Filesystem No No No No Yes

Memcached No No No No Yes

Microsoft Sql Server No No No No Yes

Rabbitmq Yes No No No Yes

Redis Yes No No No Yes

43

GoogleCloud Datastore No Yes No No No

Google Cloud Sql No Yes No No No

Google Cloud Storage No Yes No No No

Hosting Public and

Private

Public Public Public and

Private

Private

Table 4: Comparison between PaaS [27][32][36][37][38]

44

Chapter 8

STACKATO

45

Stackato[36] is a Platform-as-a-Service commercially supported by ActiveState that

incorporates open source components such as Dockers and Cloud Foundry. It runs on top of

cloud infrastructure, as a application middleware and automatically configures the

requirements such as web frameworks, language runtimes, messaging and data services. It

also provides administrators with facility to configure and monitor user roles, scaling,

application components, and memory usage through the web interface or command line.

Figure 22: Stackato Platform Overview [36]

8.1 Stackato Architecture [40]

8.1.1 Cloud Controller

It is responsible for managing all the components of the system. The Health Monitor attached

to it is used to keep track of availability of Droplet Execution Agents. Communication

between Cloud Controller and Stackato VMs is done over NATS, which is a lightweight

46

distributed queuing messaging and publish-subscribe system. This system handles the

synchronization of the components and establishes other communication channels between

the components, like TCP connections between databases and applications. Cloud Controller

is connected to all the VMs through NATS during cluster configuration.

8.1.2 Router

It is responsible for mapping of application instances running on the Droplet Execution

Agents to application URLs. When a user tries to connect to the application via web, then

he/she is transparently redirected to an internal URL and port. All the connections from

Stackato’s client are routed to the Cloud Controller.

8.1.3 Droplet Execution Agents (DEAs)

Droplet Execution Agents are the worker nodes of the system. Each DEA hosts many apps

within separate Linux containers. From the Cloud Controller application droplets are pulled

which are then launched inside a pre-allocated Linux container. In case of unresponsiveness

of DEA, the Health Manager which monitors DEA, notices the unresponsive behaviour of

DEA and notifies the Cloud Controller, which then redeploys the assigned applications to

another healthy Droplet Execution Agents.

8.1.4 Services

Cloud Controller can automatically provision database, messaging, file system, and other

services. A special environment variable which shows the connection information in the

application container bounds the services to the applications. Any deployed user application

can be bound to any services requested by that user, so this allows multiple applications to

bind to a service and vice versa. Services can share VMs, or can be run on separate VMs

depending on the requirement. Provision for using external services by applications is also

available. For example, if an existing external database cluster connected to the Droplet

Execution Agents, then the applications can connect directly to that database, as it would in a

traditional scenario.

47

Figure 23: Stackato Architecture [40]

8.2 Stackato Security [41]

The security at platform level is equally important as at infrastructure level. Stackato has

been designed with security as its prime focus to protect applications from being breached

and bringing down the cloud completely.

8.2.1 Docker Containers

Docker is used for Stackato’s LXC (Linux Containers), which ensures that users’ applications

are safe and secure. Docker containers enable customers to deploy applications in a safe way.

No two applications can interact with each other on the PaaS unless they are intentionally

allowed to interact with each other. The isolated application only sees its own files and

processes.

48

8.2.2 AppArmor

To provide an extra layer of security each container runs AppArmor which is an alternative to

SELinux. It prevents an intruder from breaking out of the container, in a scenario where the

intruder is somehow able to access the root level of the container.

8.2.3 Secure Sockets Layer

Stackato supports Secure Sockets Layer across the stack as well as the API itself is accessed

over HTTP Secure (HTTPS) by default. Stackato is delivered with a self-signed certificate as

SSL requires a certificate on the server. This certificate can be updated at any point of time.

8.2.4 Secure Shell

Direct access to the container is provided by SSH (Secure Shell). It provides complete access

to the process space, file systems, environment, hostname and network. Stackato’s SSH

support enables the user to SSH into the container for environment monitoring, for

troubleshooting purpose and low-level debugging. Any changes made in one container will

not impact any other running containers.

8.2.5 Secure Copy

SCP (Secure Copy) is also fully supported by Stackato, it allows safe transferring of files to

and from the container. Any changes made will not persist and are specific to the container.

The container is ephemeral, so once the container goes away, all the changes will go away

with it. The application instances, running in containers, should not store any state

information, as this will restrict that application’s ability to scale beyond a single instance.

State information should be the domain of the provisioned data-services that Stackato

provides.

8.2.6 Database Operations via dbShell

Stackato gains access to the underlying data via SSL tunnel, which is created to access an

interactive shell (MySQL, MongoDB, PostgreSQL). This feature is used to import data into

the databases.

49

8.2.7 Privileged Access

Within user’s application containers he/she can be granted sudo privileges, which allow total

access to install any software or packages within the container. Due to this uncontrolled

power, this feature is limited to trusted users only. Admin can revoke or grant sudo privileges

to the users through Stackato’s Web Console.

8.3 Advantages

The PaaS manages infrastructure resources on its own, provide better infrastructure

utilization and eliminate time consuming configuration tasks such as from manual

configuration of individual application environments. It provides a platform that enables

developer to provide their applications as service offerings. The process of application

management, deployment and scaling is simplified by PaaS which increases developer’s

productivity. Development teams are able to get a quick access to application hosting service,

which automatically assembles the software required by the application at runtime.

Resources sharing between applications can be easily done this reduces the number of VMs

required which in turn reduces the cost. Most of the Private PaaS such as Stackato provide a

central place (web console) from where all the applications can be managed, eliminating the

concern of being outside IT governance.. Stackato is independent from the underlying

infrastructure. VM images for different hypervisors exists so if user changes virtualization

platforms, or move from a private cloud to a public IaaS, than one can easily create a new

PaaS cluster over the new infrastructure and can import all user and application data.

And finally, using Stackato to build one’s own PaaS keeps applications and data where they

should be, i.e. under the direct control of the organization.

50

Chapter 9

STACKATO

DEPLOYMENT

51

9.1 Minimum Host System Requirements

 Minimum Requirements

CPU 64-bit x86 with VT-x enabled (x86 virtualization).

RAM 3GB

HDD 20GB

Table 5: Host System Requirements

The Stackato VM uses 2GB of memory by default. So there should be sufficient memory

remaining on the host system to run the host operating system and any other applications

required.

9.2 Micro Cloud VM

By default, the Stackato VM starts as a single node “micro cloud” with a base set of roles

already running and ready to use. This can be used as a test bed for pushing applications still

in development. If program deploys successfully to a Stackato micro cloud, it will deploy to

any Stackato PaaS of the same version. The application hosting environment is the same in

all aspects except scale.

1) Download a Stackato VM in the KVM hypervisor format.

2) Convert the image to qcow2 format

$ qemu-img convert -f raw -O qcow2 stackato.img stackato.qcow2

3) cd to the directory where staccato.qcow2 image is stored and run the following

command to make a web server

$ python -m SimpleHTTPServer 8080

9.3 Create Stackato Template

A CloudStack Template of Stackato will enable us to create instances of stackato very easily.

1) Open Cloudstack console (xxx.xx.x.xx:8080/client) and navigate to Templates tab

and click on create template.

2) In the URL field, specify the URL where the staccato.qcow2 image is hosted.

52

Figure 24: Stackato Template

Figure 25: List of Templates

53

9.4 Create Stackato Instance

1) Open Cloudstack console (xxx.xx.x.xx:8080/client) and navigate to Instances tab and

click on add instance.

2) Choose template option, and select the stackato template.

3) Choose the large instance (3 GB) in compute offering.

4) Choose medium disk (20 GB) in data disk offering.

Figure 26: Stackato Instance

9.5 Stackato Management Console

1) Open Stackato console (staccato-xxxx.local) and create the first admin user and first

organization for the system.

2) Use the above credentials for creating new users, organizations, system configuration

and pushing applications.

54

Figure 27: Stackato Management Console

9.5.1 Adding Organizations

Upon creating the first user staccato automatically sets up first organization, if one wish to

add more organizations then it can be done by logging into management console and going to

organization view.

9.5.2 Adding Spaces

Minimum of one space is required for deploying application. This can be done by clicking on

add space in organization view.

9.5.3 Adding Users

More users can be added from web interface or command line interface

1) Login to management console and go to User section and add user with its role.

2) $ stackato add-user username [--passwd password]

55

9.6 App Store

Stackato App Store consists of many ready to run applications which can be easily deployed

on the staccato micro cloud. The app store pulls the source code of the application from Git

repository.

 Figure 28: Stackato App Store

9.7 Stackato Client

Stackato client helps to interact with the system from command line interface and also to

push applications

1) Download the client for the platform (Windows, OS X, Linux x86, Linux x64)

2) Unzip the archive in a suitable directory.

3) Add the executable to system/shell $PATH by:

 moving it to a directory in the $PATH,

 creating a symlink from a directory in the $PATH, or

 creating a shell alias for the executable.

4) Confirm that the client is installed correctly by running stackato help.

56

9.7.1 Target and Login

1) stackato target command is used to connect client to the PaaS

 $ stackato target https://api.stackato-xxxx.local

2) After targeting stackato authentication is provided by stackato login command

$ stackato login

9.7.2 Selecting Organization and Space

1) If you have multiple organization then organization can be switched by following

command

$ stackato switch-org organization_name

2) Similarly if multiple space exists then they can be switched by following command

$ stackato switch-space space_name

9.7.3 Pushing Application Code

Change the current directory to the root directory of source code and use stackato push

command to deploy the application.

 $ stackato push

 $ stackato push -n

The –n option stands for no-prompt and is used if stackato.yml or manifest.yml config file

exists in the directory.

Figure29: List of Deployed Application

57

Chapter 10

HEALTHCARE

APPLICATION

58

Health is the biggest asset and most important concern in anyone’s life. Everyone in his or

her lifetime faces one or other health related problems. Taking care of one’s health problems

through the services provided by doctor, hospitals and any other similar service is the most

logical and justified step that one can take. Whenever we talk about health care, we are

implicitly referring to all services and goods which are used in one’s recovery. Therefore a

good healthcare system always target to provide quality health services to as many people as

possible.

An efficient system with reliable patient record, and secure health flow is required for the

care to reach to the right patient at right time. In the developing countries like India the health

flow in the hospitals is based on an OPD (Out Patient Data) Card. The patients have to

register for a doctor standing in long queues. Once the doctor sees a patient, prescription is

written manually on the card, or may be suggested to move to another department for further

investigations and tests. There is no mapping between the OPD card and the patient. This is a

major security flaw as the OPD card of one patient can be utilized by another patient. As all

the patient information is written on the OPD card only, then if the OPD card is lost all

patient records are lost. There is a need to store information digitally where it can be securely

accessed and managed. The records could be either be retained electronically on some

external source or retained on a mobile device frequently retained by a patient.

This can be easily achieved by integrating the cloud services in the healthcare system.The

elasticity of cloud will allow infinite number of users to access the cloud at the same time.

With introduction of cloud computing in health sector there will be substantial workload shift

where the local devices no more have to do heavy task while running applications. Instead

group of computers which contributes to particular cloud will do that heavy task. This will

reduce the need of hardware and software on user's side. The user only has to access cloud's

interface through simple web browser and network and then the cloud will take care of the

rest [26].

The existing system of healthcare with one application server with database server has issues

like [25]

1) These types of server do not provide implicit security which is to be handled explicitly.

2) Also for managing this type of system the organisation needs qualified IT staff.

3) On-demand scaling of system is not possible which ensures the smooth running of

application in case of huge number of users is accessing the service.

59

4) Needs huge investment in procuring the dedicated servers which are costly.

Due to all these reasons, it is not possible to use a single server for the healthcare purpose.

But, with introduction of cloud there are various advantages like [25]

1) The time and efforts required by the IT for managing system will tremendously reduce as

cloud provider such as Stackato provides central interface to manage and troubleshoot

problems and it also itself configures the run time environment of application. This provides

developer with more time for providing a better and quality service to user without worrying

about the underlying environment.

2) Scalability provided by cloud easily enables the application to scale when number of user

increases. It enables to scale up or scale down the computing capacity as per the requests.

3) Customer has to pay as they use.

4) Inbuilt security features are provided by the cloud for example Stackato provides feature

such as apparmor, docker container etc.

6) Load Balancer ensures the proper usage of the underlying resources and no extra care is to

be taken for load balancing

10.1 Architecture for Secure Healthcare System

The Secure Healthcare System is comprises of many components with each one of them

having their own importance. The key idea behind this system is to takes into consideration

of all the security and other healthcare system related issues and use state-of-art technologies

to deliver a robust, scalable, secure, manageable and easy to use system. In the proposed

system use of various technologies like Hadoop, NFC cards, CloudStack, Stackato and

Kerberos are made. In the system patient retains their individual health card which safely

stores the patient information digitally and this information is shared only between the

authenticated users and doctors. Secure keys which are used for this purpose of authentication

are stored on the cloud and the data of all the patient is stored using hadoop.

The key components of the architecture are:

 OpenMRS – It is a collaborative open source project to develop software to support the

delivery of healthcare in developing countries. It is intended as a platform that can be used

by many organizations which eliminates the need of developing a system from scratch

60

instead the existing OpenMRS system can be modified according to one’s requirements.

Here a hospital information system based on OpenMRS is used, where authorized doctors

reviews the registered patients.

 Hadoop Distributed File System- It is open source software for large scale processing

and storage of data on clusters of hardware. Here it is used for the purpose of storing

records and backups.

 Stackato- The PaaS is used to deploy the healthcare application on the cloud which

accesses a SQL database for retrieval and storage of patient and doctor secure keys. The

SQL database retains security hash of the keys of the patient and access control rights of

the doctor along with some other patient/ doctor details.

 e-HealthCard- The patient health information is retained in his Smartphone in a secure

region. Hence, patient carries his/her Health-Card digitally, which justifies the use of term

e-HealthCard. The secure region is implemented by an external microSD card.Here two

secure elements (SE) – one for doctor and other for patient. Doctor’s SE is used just for

authentication whereas patient’s SE is used for both authentication and storing recent

health records.

Figure 30: Flow Diagram of Proposed Secure Healthcare System

61

Figure 31: Deployed System Architecture

10.2 Healthcare Application

As shown in figure 30, the super admin needs to interact with the cloud to create new patient

entry so in order to provide an interface between the super admin and the cloud a healthcare

application is created and deployed on the cloud using Stackato (PaaS).

 The PaaS is used to deploy the healthcare application on the cloud which accesses a SQL

database for retrieval and storage of patient and doctor secure hash keys. The SQL

database retains hash of the security keys of the patient and access control rights of the

doctor along with some other patient/ doctor details. Figure 32, shows the successful

deployment of the application on stackato.

 The healthcare web application is made using JSF (Java Server Faces) and it accesses SQL

database. Figure 33, shows the login page of the application.

 After successful login as show in figure 34, the application displays the list of all the

registered users and also enables the admin to register new users.

 Figure 35, shows the editing option provided by the application to the admin in order to

modify the data according to the requirements.

62

 The details of any particular user can be viewed by clicking on the user_id of the selected

user. Figure 36, shows the detail view of selected user.

 Further for security purpose it is required to check the access rights and secure hash key of

a user. Figure 37, shows the retrieval of access rights and secure hash key by entering the

user id of the user as an input.

Figure 32: Healthcare Application Deployed on Stackato

Figure 33: Healthcare Login Page

63

Figure 34: Healthcare View and Add Data

Figure 35: Healthcare Edit Data

64

Figure 36: Detail View

Figure 37: Secure Hash Key and Access Rights retrieval

65

The PaaS provides a platform for easy deployment and management of the applications,

which reduces the time and efforts required by the IT for managing the system. This provides

developer with more time for providing a better and quality service to the user. PaaS easily

handles the large number of requests by scaling the computing capacity as per the requests

and the load balancer ensures the proper usage of the underlying resources.

10.2.1 Application Testing

To test and compare the application deployed over Stackato and on a server for its scalability,

response time and other related performance metrics Apache Jmeter [43] is used. The

following parameter values were set for the purpose test, number of users was set to 500 and

the time period between the requests was set to 2 seconds and loop count was set to infinite

loop.

After 30 minutes following results were obtained

 Response Time

Average Response Time of server was about 19.4 seconds whereas that of cloud was 0.96

seconds which is about 1/20
th

 time as compared to the server.

Figure 38: Response Time Graph for application on Stackato

66

Figure 39: Response Time Graph for application on Server

 Error Percentage

Error percentage for application running on cloud was 0.62% and on server was 85.12%

which is about 137 times more than that of cloud.

 Throughput

The number of requests per second for cloud was 103.7/sec and that of server was 19.5/sec

 Data Rate

The data rate for cloud was 489.2 KB/sec and for server was 35.43 Kb/sec

Figure 40: Error%, Throughput and Data Rate for application over Stackato

Figure 41: Error%, Throughput and Data Rate for application over Server

67

 Scalability

The application was initially set to use 256 MB, but as the number of requests increased the

Stackato automatically scaled the application in order to support the increase in demand.

Figure 42: Initial Memory Usage

Figure 43: Intermediate Memory Usage

Figure 44: Scaled Memory Usage

68

 Stackato VM Migration

There is a possibility of an unfortunate event where the host on which the stackato VM is

running goes down, to ensure that the system is resilient to such an event migration of the

running stackato instance to another host can be done.

Figure 45: Stackato VM Migration

Figure 46: Notification of Stackato VM Migration

 Result s Summary

1. As compared to the single server the PaaS provides better response time, throughput

and data rate, also the error percentage in case of PaaS is lesser than that of a single

server.

2. Scalability is i.e. once the application reaches to the maximum of its resource limit

then it cannot scale after that limit and does not response to the incoming requests.

3. VM migration is also not supported by the single server i.e. if the server fails or goes

down than all the application running on it goes down and they cannot be resumed.

69

Chapter 11

CONCLUSION

AND

FUTURE WORK

70

 Conclusion

In simple terms cloud can be defined as a large pool of computing and software resources that

are delivered on demand, as service. Virtualization and clustering are the essence of the cloud

virtualization provides resource pooling and clustering provides scalability. The benefits

provided by cloud such as low cost software, security, resilience, resource pooling,

scalability, measured service, etc. clearly outweighs the legacy system.

The PaaS provides building blocks such as programming languages and an environment for

easy and quick deployment of applications onto the cloud infrastructure. It eradicates the time

consuming phase of hardware and other configurations. The PaaS such as stackato provides a

platform for easy development, deployment and management of the applications, which

reduces the time and efforts required by the IT for managing the system. This provides

developer with more time for providing a better and quality service to the user. It easily

handles the large number of requests by scaling the computing capacity as per the requests.

There is a need to make the current healthcare system automated, secure, scalable and

resilient this is achieved by integrating cloud services in the healthcare system.The elasticity

of cloud allows number of users to access the cloud at the same time. The resiliency of cloud

promises uninterrupted service to the user.

 Future Work

Efforts are being made to integrate the deployed cloud with Hadoop, Apache Hadoop is an

open-source software framework for storage and large-scale processing of data-sets on

clusters. It would be beneficial when the database grows to large scale and data clusters are

needed for storing all patient’s records. Addition of Kerberos Authentication Server for

authentication of end users for added security is also one area where further work can be

done. The deployed system can be scaled by adding more resources which will provide more

robust and high end services to the user. The process of VM migration can be automated and

the system can be deployed and tested on faster and high end machines for improved results.

To better understand the real challenges, requirements and to measure the performance of the

system a tie-up with a hospital can be made where the system can be deployed and tested

with real patients and doctors and according to their needs further modifications can be made

to the system.

71

REFRENCES

72

[1] Divyashikha Sethia, Daya Gupta, Tanuj Mittal, Ujjwal Arora, Huzur Saran, “NFC Based

Secure Mobile Healthcare System”, Sixth International Conference on Communication

Systems and Networks (COMSNETS), pp. 1-6, 2014.

[2] W. Lu, J. Jackson, J. Ekanayake, R. Barga, and N. Araujo, “Performing large science

experiments on Azure: Pitfalls and solution”, IEEE International Conference on Cloud

Computing (CloudCom), pp. 209 – 217, 2010.

[3] Meenakshi Bist, Manoj Wariya and Amit Agarwal, “Comparing Delta, Open Stack and

Xen Cloud Platforms: A Survey on Open Source IaaS”, 3rd IEEE International Advance

Computing Conference (IACC), pp. 96 - 100, 2013.

[4] Gregor von Laszewski, Javier Diaz, Fugang Wang, Geoffrey C. Fox,” Comparison of

Multiple Cloud Frameworks”, IEEE Fifth International Conference on Cloud

Computing, pp. 734 – 741, 2012.

[5] Xiaolong Wen, Genqiang Gu, Qingchun Li, Yun Gao, Xuejie Zhang, “Comparison of

Open-Source Cloud Management Platforms: OpenStack and OpenNebula”, 9th

International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2457 - 2461,

2012

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.

Zagorodnov, “The Eucalyptus Open-Source Cloud-Computing System”, CCGRID ’09:

Proceedings of the 2009 9
th

 IEEE/ACM International Symposium on Cluster Computing

and theGrid. Washington, DC, USA: IEEE Computer Society, pp. 124–131, 2009.

[7] P. Sempolinski, and D. Thain, “A Comparison and Critique of Eucalyptus, OpenNebula

and Nimbus”, IEEE Second International Conference on Cloud Computing Technology

and Science (Cloud Com), pp. 417–426, 2010.

[8] Cloud Concepts, http://en.wikipedia.org/wiki/Cloud_computing

[9] Cloud Service Models, http://blog.teamgrowth.net/index.php/virtualization/cloud-

computing/introduction-to-cloud-computing-and-service-models

[10] T. Grance, and P. Mell, “The NIST definition of Cloud Computing,” National Institute of

Standards and Technology (NIST), 2009.

[11] Stefan Wind, “Open Source Cloud Computing Management Platforms Introduction,

comparison, and recommendations for implementation”, IEEE Conference on Open

73

Systems (ICOS), pp. 175 – 179, 2011.

[12] CloudStack Installation Guide, http://cloudstack.apache.org/docs/en-

US/Apache_CloudStack/4.0.2/html/Installation_Guide/index.html

[13] Apache CloudStack, http://en.wikipedia.org/wiki/Apache_CloudStack

[14] CloudStack Documentation,

https://cwiki.apache.org/confluence/display/CLOUDSTACK/Home

[15] CloudStack API Documentation, http://cloudstack.apache.org/docs/api/

[16] Apache CloudStack, http://cloudstack.apache.org/

[17] CloudStack's Major Users, http://buildacloud.org/users.html

[18] F. Gomez-Folgar, A. Garcia-Loureiro, T. F. Pena and R. Valin, “Performance of the

CloudStack KVM Pod primary storage under NFS version 3”, 10th IEEE International

Symposium on Parallel and Distributed Processing with Applications, 2012

[19] AskUbuntu Website, http://askubuntu.com/

[20] Stackoverflow Website, http://stackoverflow.com/

[21] CloudStack Management Server Installation,

http://ranafaisal.wordpress.com/2013/02/20/cloudstack-management-server-installation/

[22] CloudStack KVM Host Installation,

http://ranafaisal.wordpress.com/2013/02/21/cloudstack-kvm-host-installation/

[23] S. Kibe, S. Watanabe, K. Kunishima R. Adachi, M. Yamagiwa and M. Uehara, “PaaS

on IaaS” , in Advanced Information Networking and Applications (AINA), IEEE 27th

International Conference, pp. 362-367, 2013.

[24] Essential Characteristics of Cloud, http://www.isaca.org/groups/professional-

english/cloud-

computing/groupdocuments/essential%20characteristics%20of%20cloud%20computing.

pdf

74

[25] Rabi Prasad Padhy, Manas Ranjan Patra, Suresh Chandra Satapathy, "Design and

Implementation of a Cloud based Rural Healthcare Information System Model",

Universal Journal of Applied computer Science and Technology, Vol 2 (1), pp. 149-157,

2012.

[26] M.Deepa Lakshmi, J.P.M. Dhas, “An Open Source Private Cloud Solution for Rural

Healthcare", International Conference on Signal Processing, Communication, Computing

and Networking Technologies (ICSCCN), pp. 67-674, 2011.

[27] Chengtong Lv, Qing Li, Zhou Lei, Junjie Peng, Wu Zhang, Tingting Wang “PaaS: A

Revolution for Information Technology Platforms”, International Conference on

Educational and Network Technology (ICENT), pp. 346 – 349, 2010.

[28] The Next Wave of Technologies: Opportunities from Chaos, By Phil Simon, Chapter 4-

Cloud Computing, pp 64.

[29] Cloud Service Providers List 2014,

http://www.spamina.com/eng/cloud_hosting_providers_list.php

[30] The State of PaaS: 2012 Presented by Engine Yard,

http://pages.engineyard.com/rs/engineyard/images/PaaS_Market_Report_2012.pdf

[31] PaaS Providers List: 2014, http://www.tomsitpro.com/articles/paas-providers,1-

1517.html

[32] Heroku, https://devcenter.heroku.com/

[33] OpenShift, https://www.openshift.com/developers/documentation

[34] Google App Engine, https://developers.google.com/appengine/?csw=1

[35] AppFog, https://docs.appfog.com/

[36] Stackato, http://www.activestate.com/stackato

[37] Zeng Shu-Qing , Xu Jie-Bin, “The Improvement of PaaS Platform”, First International

Conference on Networking and Distributed Computing (ICNDC), pp.- 156 – 159, 2010.

[38] Teodor-Florin Fortis, Victor Ion Munteanu, Viorel Negru, “Towards a service friendly

cloud ecosystem”.

75

[39] Sasko Ristov and Marjan Gusev, “Security Evaluation of Open Source Clouds”, IEEE

EUROCON, pp. 73-80, 2013.

[40] Stackato Architecture, http://www.activestate.com/stackato/why-private-paas/paas-

architecture

[41] Stackato Security, http://www.activestate.com/stackato/why-private-paas/cloud-security

[42] Apache Jmeter, http://jmeter.apache.org/

