
A Major Project Report On

COMPARISON OF EVOLUTIONARY ALGORITHMS FOR

TEST DATA GENERATION

Submitted in the Partial Fulfilment of the Requirement

For the Award of Degree of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

By

CHIRAG GOLECHHA

(Roll No. 2K12/SWE/12)

Under the guidance of

DR. RUCHIKA MALHOTRA

Department of Software Engineering

Delhi Technological University, Delhi

Department of Computer Engineering

Delhi Technological University, Delhi

2012-2014

ii

DECLARATION

I hereby declare that the thesis entitled “Comparison of Evolutionary Algorithms for Test

Data Generation” which is being submitted to the Delhi Technological University, in

partial fulfillment of the requirements for the award of degree of Master of Technology in

Software Engineering is an authentic work carried out by me. The material contained in this

thesis has not been submitted to any university or institution for the award of any degree.

Chirag Golechha

Department of Computer Engineering

Delhi Technological University,

Delhi.

iii

DELHI TECHNOLOGICAL UNIVERSITY

CERTIFICATE

This is to certify that the project report entitled “COMPARISON OF EVOLUTIONARY

ALGORITHMS FOR TEST DATA GENERATION” is a bona fide record of work,

carried out by Chiarg Golechha (2K12/SWE/12) under my guidance and supervision,

during the academic session 2012-2014 in partial fulfillment of the requirement for the

degree of Master of Technology in Software Engineering from Delhi Technological

University, Delhi.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University/Institute for the award of any Degree or Diploma.

Dr. Ruchika Malhotra

Asst. Professor

Department of Software Engineering

Delhi Technological University

Delhi

iv

DELHI TECHNOLOGICAL UNIVERSITY

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a lot of people who have

supported me with their words and deeds in completion of my research work as part of this

course of Master of Technology in Software Engineering.

To start with I would like to thank the almighty for being with me in each and every step of

my life. Next, I thank my parents and family for their encouragement and persistent support.

I would like to express my deepest sense of gratitude and indebtedness to my guide and

motivator, Dr. Ruchika Malhotra, Assistant Professor, Department of Software

Engineering, Delhi Technological University for her valuable guidance and support in all the

phases from conceptualization to final completion of the project.

I wish to convey my sincere gratitude to Prof. Rajeev Kapoor, Head of Department, and all

the faculties and PhD. Scholars of Computer Engineering Department, Delhi Technological

University who have enlightened me during my project.

I humbly extend my grateful appreciation to my friends whose moral support made this

project possible.

Last but not the least, I would like to thank all the people directly and indirectly involved in

successfully completion of this project.

Chirag Golechha

Roll No. 2K12/SWE/12

v

TABLE OF CONTENTS

DECLARATION…………………………………………………………………………….ii

CERTIFICATE………………….…………………………………………………………..iii

ACKNOWLEDGEMENT……...……………………………………………………………iv

TABLE OF CONTENTS…………………………………………………………………v-vii

LIST OF FIGURES…...……………………………………………………………………viii

 LIST OF TABLES…………………………………………………………………………..ix

ABSTRACT………………………………………………………………………………….x

CHAPTER 1: INTRODUCTION…………………………………………………………1-10

1.1 INTRODUCTION TO SOFTWARE TESTING………………………………...1

1.1

1.2 INTRODUCTION TO TEST DATA GENERATION…………………………..3

1.3 MOTIVATION OF THE WORK………………………………………………..4

1.4 PROBLEM STATEMENT………………………………………………………5

1.5 GOAL OF THE THESIS………………………………………………………...6

1.6 ORGANIZATION OF THESIS………………………………………………….8

CHAPTER 2: LITERATURE SURVEY………………………………………………..11-20

2.1 STATIC AND DYNAMIC TESTING…………………………………………11

2.2 THE BOX APPROACH………………………………………………………..11

2.2.1 BLACK BOX TESTING……………………………………………..11

 2.2.1.1 BOUNDARY VALUE ANALYSIS………………………..12

2.2.1.2 ROBUSTNESS TESTING………………………………….12

2.2.1.3 WORST CASE TESTING………………………………….12

2.2.1.4 ROBUST WORST CASE TESTING…………………........12

2.2.1.5 EQUIVALENCE CLASS TESTING……………………….12

vi

2.2.1.6 DECISION TABLE BASED TESTING…………………..12

2.2.1.7 CAUSE EFFECT GRAPH TECHNIQUE………..............13

2.2.2 WHITE BOX TESTING……………………………………………..13

2.2.2.1 CONTROL FLOW TESTING……………………………..13

2.2.2.2 DATA FLOW TESTING…………………………………..14

2.2.2.3 SLICE BASED TESTING…………………………………14

2.2.2.4 MUTATION TESTING……………………………………14

2.2.3 GREY BOX TESTING………………………………………………14

2.2.3.1 MATRIX TESTING……………………………………….14

2.2.3.2 REGRESSION TESTING…………………………………14

2.2.3.3 PATTERN TESTING……………………………………...15

2.2.3.4 ORTHOGONAL ARRAY TESTING…….……………….15

2.3 PREVIOUS WORK DONE……………………………………………….......15

CHAPTER 3: RESEARCH METHODOLOGY………………………………………...21-45

3.1 ANT COLONY OPTIMIZATION……………………………………………..21

 3.1.1 BACKGROUND FOR THE ALGORITHM…………………………23

3.1.2 ALGORITHM FOR ACO……………………………………………25

3.2 ARTIFICIAL BEE OPTIMIZATION………………………………………….27

3.2.1 BACKGROUND FOR THE ALGORITHM………………………...30

3.2.2 ALGORITHM FOR ABC……………………………………………31

3.3 GENETIC ALGORITHM………………………………………………….….34

3.3.1 BACKGROUND FOR THE ALGORITHM………………………..37

3.3.2 ALGORITHM FOR GA…………………………………………….41

 3.4 PROPOSED FRAMEWORK FOR THE TOOL “TEST GENERATOR

 COMPARATOR”……………………………………………………………..44

CHAPTER 4: IMPLEMENTATION…………………………………………………...46-50

CHAPTER 5: RESULTS…………………………………………………………….....51-55

5.1 COMPARISON ON THE BASIS OF TIME TAKEN………………………..52

vii

5.2 COMPARISON ON THE BASIS OF ITERATIONS…………………..........53

5.3 COMPARISON ON THE BASIS OF PATH COVERAGE………………….54

CHAPTER 6: CONCLUSIONS…………...56

REFERENCES………………………………………………………………………...57-58

APPENDIX…………………………………………………………………………....59-67

viii

LIST OF FIGURES

FIGURE 1.1. COST OF FIXING ERRORS WITH DEVELOPMENT STAGES……..2

FIGURE 2.1. CLASSIFICATION OF TESTING……………………………………..10

FIGURE 2.2. CAUSE EFFECT GRAPH TECHNIQUE………………………………13

FIGURE 2.3. FLOW CHART OF ALGORITHM PROPOSED IN [13]……….........18

FIGURE 2.4. FLOW CHART OF ALGORITHM PROPOSED IN [14]……………..19

FIGURE 3.1. PATH FINDING MECHANISM OF REAL ANTS [6]…………….....22

FIGURE 3.2. ACO SEARCHING MODEL

 FOR TEST DATA GENERATION……………………………………..27

FIGURE 3.3. WAGGLE DANCE OF HONEY BEES…………………………….…..28

FIGURE 3.4. BEE FORAGING BEHAVIOR………………………………………....30

FIGURE 3.5. BASIC FLOW OF GA………………………………………................36

FIGURE 3.6. FRAMEWORK FOR TOOL

 “TEST GENERATOR COMPARATOR………………………………..44

FIGURE 4.1. SNAPSHOT 1 OF TOOL

 “TEST GENERATOR COMPARATOR”……………………………….49

FIGURE 4.2. SNAPSHOT 2 OF THE TOOL

 “TEST GENERATOR COMRATOR”…………………………………50

FIGURE 5.1. TIME TAKEN BY ABC ACO AND GA

 FOR INPUT PROGRAMS………………………………….................52

FIGURE 5.2. ITERATIONS DONE BY ABC ACO AND GA

 FOR INPUT PROGRAMS……………………………........................53

FIGURE 5.3. PATH COVERAGE BY ABC ACO AND GA

 FOR INPUT PROGRAMS…………………………………………….56

ix

LIST OF TABLES

TABLE 1.1. PERSONS AND THEIR ROLES DURING DEVELOPMENT

 AND TESTING………………………………………………………………3

TABLE 2.1. DECISION TABLE COMPONENTS………………………………………13

TABLE 3.1. THEORETICAL COMPARISON OF ACO, ABC AND GA…….............45

TABLE 5.1. OUTPUT OF TEST GENERATOR COMPARATOR FOR

 INPUT PROGRAMS………………………………………………………51

TABLE 5.2. TIME TAKEN BY ABC ACO AND GA FOR

 INPUT PROGRAMS…………...52

TABLE 5.3. ITERATIONS DONE BY ABC ACO AND GA FOR

 INPUT PROGRAMS………………………………………………………53

TABLE 5.4. PATH COVERAGE FOR ABC ACO AND GA FOR

 INPUT PROGRAMS……………………………………………………..54

x

ABSTRACT

Software testing is a very important process and plays a very important and key role in

software industry. The cost of testing consumes a significant portion of the total project cost.

Exhaustive testing is not possible and hence testing the focus is on testing those portions of

the project or program where probability of finding fault is maximum.

Test Data Generation is an important part of testing and it is the process of creating a data set

which is then applied on the new or revised software for testing it. Now a day’s focus has

shifted on automatic generation of test data which saves both time and effort. In the light of

generating test data automatically various methods and algorithms are being developed and

used so that the problem of generating test data can be solved not only efficiently but also in

less time.

In this thesis we have compared three important Test Data Generation Algorithms namely

Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) and Genetic Algorithm (GA).

These algorithms generate test path from CFG of the program and corresponding to that test

data is generated that satisfies that path.

We have developed a tool named “TEST GENERATOR COMPARATOR” that takes input,

CFG of 10 C programs and then the tool applies these three algorithms on each program

CFG. Test data is generated by each algorithm for each input program, and for each

algorithm and each program the tool outputs three parameters namely number of iterations,

path coverage and the time taken.

Based on these three parameters the algorithms are compared. The results obtained show that

ABC gives better result as compared to other two algorithms and hence is well suited for test

data generation.

Keywords: Software Testing, Test Data Generation, Ant Colony Optimization, Artificial

Bee Colony, Genetic Algorithm.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 1

Chapter 1: Introduction

1.1. Introduction To Software Testing

Different people understand different definitions of testing. Some of them can be shown as:

1) Process that shows no presence of errors.

2) Checking whether a program performs its functions correctly or not is another purpose

of testing.

3) Testing establishes confidence that a program does what it’s supposed to do.

All the above definitions unfortunately are incorrect and describe almost opposite of what

testing should be viewed:

“To execute a program so that the error in it can be found out” [1]

The goal of testing is to find critical situations of any program. Test cases shall be designed

for every possible critical situation in order to make the program fail if such situation arises.

In case if it is not possible to remove a fault then proper warning message should be given at

proper places in the program.

The aim of the best testing person should be to try to fix all or most of the errors and faults.

This is possible only when the intensions are to show that the program does not work as per

the specifications, hence the definition given above is most appropriate.

This Chapter proceeds with discussing why software should be tested, who should do the

testing and finally Test case generation

Why Should We Test? [2]

Software testing is no doubt very expensive and critical activity but releasing any software

without proper testing is definitely more expensive and dangerous. It would be like a car

running without a brake which no one would like to do.

The basic problem is that software cannot be released without adequate testing. The results

after study may not be applicable universally but they give us some idea about the dept and

how serious the problem is. When the software should be released is an important decision.

The cost of fixing errors increases as shown in Fig 1.1 [2].

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 2

 Fig 1.1 Cost of fixing errors with development stages

Testing continues to the point where the cost of testing process significantly outweighs the

return.

Who should do the Testing?

Testing system software is not a responsibility of a single person. The role of software

developer should be as small as possible in testing.

Since the developers are involved so intimately with the development of the software it

becomes difficult for them to point out errors from their own creations.

The testing persons must be cautious and good communicators. One part of their job is to ask

those questions that the developers might not be able to ask themselves. The testing people

use the software just like an expert on the customer side.

Therefore most of the time testing people are made different from the development people

keeping the overall benefit of the system in mind. The developers give guidelines during

testing; however the overall responsibility is on the people who are involved in the testing.

Roles of the person involved in the testing during development and testing are given in

Table1.1 [2]

0

200

400

600

800

1000

1200

Sp
e

ci
fi

ac
ti

o
n

an

d
 a

n
al

ys
is

D
e

si
gn

C
o

d
in

g

Te
ti

n
g

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 3

 Table 1.1 Persons and their roles during development and testing [2]

S.No Persons Roles

1. Customer Provides funds, provides requirements, approve any

change and test the results.

2. Project Manager Project is managed and planned by him.

3. Software Developer He designs the software, builds it, participates in

source review and testing, bugs, defects fixture done

by him

4. Testing coordinator Test plan are created along with test specifications

based on functional requirements and docunments.

5. Testing Persons Tests and documents the results.

1.2. Introduction To Test Data Generation

Generation of test data plays an important role in Testing. In this process data is created and

then checked on software which can be old or new. Test data generation is done as follows:

1) Control Flow Graph Construction for an input program.

2) Selecting a path.

3) Generation of data for testing.

Generating test data is simple. A path is identified by the path selector. After identifying all

the test paths, for every path input data is generated which results in execution of the selected

path.

Manual Testing is not possible [2] and consumes a lot of time, automatic generation of test

data can, not only reduce the work of testing but can help in the improvement of efficiency.

Therefore the focus is on finding those algorithms that can help in automation of test data

generation process and can also find faults in the program as early as possible without causing

any other side effects.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 4

1.3. Motivation Of the Work

The need of automatic generation of test cases and finding an efficient technique or algorithm

for testing has its roots in the fundamental principles of Software Testing. These fundamental

principles are as follows:

a. Exhaustive Testing is not possible: This implies that the entire set of possible test

cases cannot be executed. Therefore it is important to find and apply only those test

cases which are useful in testing all or almost all paths.

b. Early Testing: This implies that testing activities should be started early and move

parallel with the development of software. Thus, test cases should be generated on the

basis of requirement specification.

c. Testing Shows presence of errors: This implies that one cannot be assured that

software is free from errors. It shows errors are present but cannot assure their

absence.

d. Accumulation of errors: It means that, in a test object the errors are distributed

unevenly and unequally. All errors may not be localized to same place in code but it

is more likely to happen that some errors may be found where one error is found.

Process of testing should be flexible and should respond to the behavior mentioned.

Thus, all parts of code are not equally error prone. Hence, the need of effective test

data generation arises.

e. Fading effectiveness: This implies that with the advent of time test suites become

less effective. Repetition of test cases can’t help in finding out new errors. If a

function remains untested, it is possible that errors within it may not get discovered.

To overcome this, test cases giving 100% coverage should be chosen.

f. Testing depends on context. Every system is different and hence the method for

testing them should also be different. For each system different testing intensity must

be defined which tells when to stop testing.

g. False Conclusion, no errors means usable system: If an error is detected and

removed, it does not guarantee that the system has become usable and meets the

expectations of the users. Integrating units early and rapid prototyping prevents

unhappy clients and discussions.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 5

Besides there are several drawbacks in generation of test data:

1) The test data generated randomly may not be sufficient to cover all the paths in a

program. The data generated may be able to detect only some portions of the code and

the other portion may remain untouched.

2) As discussed in [3] Ant Colony algorithm for test data generation may prove to be

ineffective when loops come into picture.

3) For some programs an algorithm may generate test data in small time duration while

for some others it may take more time when compared to others.

4) Manual test data generation is a tedious task and hence there is a shift from manual

testing to automatic testing of system software.

1.4. Problem Statement

Software industry faces a huge challenge in today’s world. Every now and then market is

boomed with new technology, new devices and softwares. These softwares are improving

human life style and also providing them ease but they can also lead to catastrophic accidents.

Most of the reasons which are given for such accidents are due to failure in the software

which incurs due to some bug which was present during deployment of the software/system

or due to some problem which occurred due to abnormal working of the software.

These are problems occur due to only one most important reason which is lack of proper

testing.

Testing should start from the specification phase itself and should go on until the software

dies or becomes outdated. Testing should be carried out in different phases of software

development. Errors not only can occur in code, it can also be possible that the specifications

are misunderstood, documentation is wrong or has wrongly written something, also come

error can occur when the software is deployed on the user machine or system.

Hence it becomes necessary that testing should be done in every phase of software

development.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 6

 Major setback with Testing as outlined above is that exhaustive Testing is not possible. This

means that there should be focus on finding a technique that is suitable for testing in any

condition and that gives test data that are effective for finding faults in software. Instead of

using any random technique the testers now are required to find a method that is best suitable

for most of the software for testing and this method should generate test data that satisfies all

the constrains. Hence the test data generated should be effective in finding out all the errors

that can occur in the software.

Several test data generation Algorithms have been used and are being used testing a software

and to improving the quality of automatic generation of test data. A need is there to choose

the best among all the algorithms for generation of test data, so that huge amount of time

could be saved in testing and the focus could be shifted on finding those faults that result in

faults and errors most of the time when software is working.

1.5. Goal of the thesis

The goal of the work in this thesis is summarized below:

a) To apply test data generation Algorithms on inputs programs: Three test data

generation algorithms namely Ant Colony (ACO) [3], Artificial Bee Colony (ABC)

[8] and Genetic Algorithm (GA) [20] are applied on some input C programs which are

represented in the form of Control Flow Graph.

b) To compare the Three Algorithms for test data generation: All the three algorithms

are applied on the input programs and then the results are obtained for each of the

program. On each program these three algorithms ACO,ABC,GA are applied and then

they are compared on the basis of the different parameters .The different parameters

which are taken into account are number of iterations, total time taken by each

algorithm for generating the test data and path coverage.

c) To find the most suitable and efficient algorithm for test data generation: On

applying the algorithms on the input programs we obtain results based on different

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 7

parameters. These results are analyzed and then based on which the most suitable and

efficient algorithm is decided that will be helpful in test data generation.

 The aim at which our main focus is to find out the best among the three test data generation

algorithms. The algorithms are compared based on three parameters which are:

1) No of iterations

2) Path Coverage

3) Time Taken

No of iterations measures that how much time the algorithms iterates in finding out the

solution or in finding out the test cases which cover the independent paths. Since it is not

possible to find and test all the paths in a control flow graph for a corresponding program, we

shift our focus on finding independent paths and then generate data corresponding to

independent paths. Hence the no of iterations that take place in finding test data which

satisfies all the independent paths is used as a parameter to measure how efficient an

algorithm is.

Path Coverage is another parameter that measures how many independent paths has been

covered by the algorithm. Each algorithm iterates for a maximum number of iterations.

If all the independent paths are covered before that that means that the algorithm has the

efficiency to generate test data that can cover all the independent paths.

Time Taken measures the running time of the Algorithm. It shows how much time an

Algorithm takes in generating the test data for a given program that is given as input to the

algorithm. It accounts for the running time of an algorithm for completely generating the

independent paths or the time it takes to cover the paths before maximum possible iterations

It can be observed that our goals are focused on finding out the best algorithm among the

three algorithms that are used. We aim to establish that using the most efficient algorithm will

not only improve the quality of testing and reduce time but will also guarantee that the test

cases which it will generate will be helpful in identify the faults to the most possible extent

possible.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 8

1.6. Organization Of Thesis

The organization of thesis is as follows:

Chapter 1: begins with Introduction to the Software testing, and discussing some general

concepts like why testing should be done, who should do the testing. Next the concept of test

data generation is discussed which is followed by topics like motivation of the thesis, problem

statement, Goal of the thesis and in the end organization of thesis.

Chapter 2: discusses the work done by different people in the field of test data generation in

the past. This includes the extensive study of various types of testing techniques and various

test data generation algorithms applied on different programs using different methods that

have been proposed in the literature so far. It also highlights some of the most relevant works

in the field of Software testing using different algorithms and methodology.

Chapter 3: focuses on the general terms and concepts which are being involved in the

generation of test data and are being used in the algorithms. Then the three algorithms namely

Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) and Genetic Algorithm (GA)

are being discussed in detail that what are they and how they are used in test data generation

followed by the algorithms which describes the steps that should be followed for each

algorithm. Finally the framework for our tool “TEST GENERATOE COMPARATOR” has

been shown along with the theoretical comparisons of all the three algorithms.

Chapter 4: describes the detailed implementation of the three algorithms. It illustrates the C

programs that we have used as an input to the three algorithms. It shows how the algorithms

are applied on the input programs. It also shows the snapshot of the tool used for the

implementation of each algorithm.

Chapter 5: presents the results that are being obtained after the algorithms are applied on the

input programs. The results consist of the graphs of the output, which compares the three

algorithms based on the no of iterations, path coverage and total time taken for running the

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 9

algorithm. It shows which algorithm is better and efficient than the other two. Along with it a

tabular representation of the result is also shown.

Chapter 6: presents the conclusion of the thesis that shows the goal that we have achieved in

each of the chapter. It shows what we have discussed and successfully achieved in each of the

chapter.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 10

Chapter 2: Literature Survey

Software Testing is dedicated to finding errors in software. Complete testing of the program is

neither feasible nor possible in today’s scenario. Hence this situation has made the area of

testing very challenging, where the question is:-

“How to choose a reasonable number of test cases out of a large pool of test cases” [2]

Researchers are putting their entire effort to provide answers to the above mentioned question

in their own ways, however still selection of test cases is not a cakewalk and cannot be solved

with a single method. [2]

Hence we may wish to touch a bottom line which may incorporate the following: [2]

1) At least once every statement of the program must be executed.

2) At least once all possible paths of the program must be executed.

3) At least once every exit of the branch statement must be executed.

Testing is divided by different researchers into different categories [2]. That can be shown in

Fig 1.3

 Fig 2.1 Classification of Testing

Testing

The Box
Approach

Black Box White Box Grey Box

Static and
Dynmic
Testing

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 11

2.1 Static And Dynamic Testing

Static testing includes Reviews, walkthroughs or inspections, on the other hand checking a

program code by executing it with given test cases is called dynamic testing.

Reviews:-Code Review is examining a source code systematically. It removes the mistakes

that are not taken into account in the initial development and hence improving quality of

software and skills of developer. Code reviews generally finds and removes mistakes such as

format string, race condition, buffer overflows, thereby improving software’s security. Study

of types of defects in code reviews has given evidence that a large percentage of defects in

code review, affect software [2].

Walkthrough: It is a type of peer review in which a developer guides members of the

development team and others, through a product developed by him and then all the members

ask questions and gives feedback about errors which can occur and any other problems.

Inspection: It deals with review of any product, by people who are trained in finding defects

using well defined process. Inspection comes in reviews which are common in projects. Its

aim is that, all the inspectors should agree with work product and give approval for its use in

the project.

Static Testing is generally not that important hence can be ignored. Dynamic testing is done

on program when it is in use. Dynamic testing may be done even when the program is not yet

complete. Validation is done in dynamic testing and verification is done in static testing. [2]

2.2 The Box Approach [2]

The Box approach of testing is divided into white box, black box and grey box. These are

discussed below:

2.2.1 Black Box Testing: Method of testing that checks what functions are performed by

software without looking into its internal structure or working. It finds its use in each

and every level of testing including unit, integration, etc. Using this method enables a

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 12

tester to know what a software does but gives no idea how. Black Box methods

include:

2.2.1.1 Boundary Value Analysis: As the name suggests it focus on values which are either

on boundary or close to boundary. The number of inputs selected by this technique is

4n+1, ‘n’ is the number of inputs. The boundary value selects values based on single

fault assumption theory [2].

2.2.1.2 Robustness Testing: This is extension of boundary value. Here apart from valid

inputs, invalid inputs are also selected. The total number of test cases in robustness

testing are 6n+1 where ‘n’ is the number of input values.

2.2.1.3 Worst Case Testing: This is a special form of boundary value analysis where we

don’t consider the single fault assumption theory of reliability. Here those failures are

also considered which occur due to more than one fault. Due to which the number of

test cases increases from 4n+1 to 5
n

test cases, where ‘n’ is the number of input

variables.

2.2.1.4 Robust Worst Case Testing: Extension of worst case testing in which we add two

more states i.e. just below minimum value and just above maximum value

corresponding to invalid inputs. Hence the total number of test cases increases to 7
n

test cases.

2.2.1.5 Equivalence Class Testing: As the name suggests it divides the data into categories

or classes each having equivalent data. It reduces total number of test cases which

should be used by using test cases which reveals the classes of errors. It reduces the

time for testing.

2.2.1.6 Decision Table Based Testing: They provide us with a small and accurate method to

present complicated problems and their solutions. Like any other decisional and

control flow statements, decision table gives what should be done if a certain situation

occurs and this is done in an elegant way

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 13

Table 2.1 Decision Table Components

The four quadrants

Conditions Condition alternatives

Actions Action entries

2.2.1.7 Cause Effect Graphic Technique: This technique is a popular technique for small

programs and takes into account the combinations of various inputs which were not

available in earlier mentioned techniques. The Fig 1.3 shows below the step by step

process of Cause Effect Graphic Technique.

 Fig 2.2 Cause Effect Graph Technique [2]

2.2.2 White Box Testing: As the name suggests is a testing in which tester can see through

the working of the software hence it is also called clear box testing and since the

internal structure are also available for testing it is called structural testing [2] .It tests

the working of a software instead of, its functionality. White box test techniques

include:

2.2.2.1 Control Flow Testing: It is very popular because of its simplicity and effectiveness.

Some of the techniques which are part of control flow testing are discussed :

Statement Coverage: Takes care that every statement of the program

is executed in order to achieve 100% coverage.

Identification of
all causes and

effects

Design the
cause-effect

graph

Apply
constraints,if any

Design limited
entry decision

table from graph

Write test cases
using every

column of the
decision table

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 14

Branch Coverage: Every branch is tested. Does not guarantee 100%

path coverage but it guarantee 100% statement coverage.

Path Coverage: Every path is tested of the program. If it is not

possible at least all the independent paths of an input program should

be executed

2.2.2.2 Data Flow Testing: It helps to minimize those mistakes which can occur with

Control Flow graph testing. Ii does not involve data flow diagram. It is based on

variables, their usage and the definitions of the variables in the program. Its main

concern is on where a variable is defined and where it is used. Since a variable if

defined is used as long as the program works and hence this technique focuses mainly

on where a variable is defined and used

2.2.2.3 Slice Based Testing: In this technique various subsets (called slices) of a program are

prepared with respect to its variables and their selected location in the program to be

tested. Each variable with one of its location gives a program slice.

2.2.2.4 Mutation Testing: A popular technique to access the effectiveness of a test suite. We

may have a large number of test cases for a program and have neither time nor

resources to execute all of them. We may create a test suite selecting some of the test

cases and then use mutation testing to assess the effectiveness and quality of the test

suite and if found not adequate can also improve the same.

2.2.3 Grey Box Testing: It is a combined effect of white box and black box testing. It finds

and searches defects if an application is not used properly or it possesses a structure

that is not proper. It requires the document which describes what the application does

so that its test cases can be defined. It provides the advantage of both black and white

box testing. Generally used for testing web based applications.

Grey box testing techniques are as follows:

2.2.3.1 Matrix Testing: It provides what is the status of the project.

2.2.3.2 Regression Testing: It means that if any changes are made to the software then the

testing should be done again on it.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 15

2.2.3.3 Pattern Testing: Verifies whether an application is good or not on the basis of its

design and its structure.

2.2.3.4 Orthogonal Array Testing: Of all the possible combinations how many subsets can

be made decides the usage of Orthogonal Array testing.

2.3 Previous Work Done

Testing software is a problem that is not new to the industry. The day when the software was

evolved, the problem of testing evolved with it simultaneously. A lot of work has been done

from then in order to solve the problem and to come to conclusion in which they can decide

how the problem can be best solved. A lot of testing techniques are being discussed and are

used in generating test cases. But along with these techniques some algorithms are also used

which improves the work and makes it easy. Different testing algorithms are being used in

order to solve the problem and each Algorithm uses different techniques.

Algorithms that are inspired from nature have gained attention of the researchers from a long

time. They have used them as an example to model many problems that are faced in today’s

world [22]. The popularity of these algorithms has increased as they are able to solve problem

easily and in a short duration of time. Due to these reasons some of the algorithms came into

existence namely Ant colony, Evolutionary, Particle Swarm Optimization, Genetic, Bee

Colony etc.

Praveen Ranjan Srvivastava et al. [3] have used Ant colony Algorithm for generation of

optimal path from given CFG.They have taken input a CFG for a software and then applied

ACO on it to calculate various parameters like feasibility of path, heuristic information

probability value, pheromone which is then used to calculate the strength of the independent

paths found from the CFG and based on which the priority to each path is assigned. Hence

they have focused on test case prioritization using Ant Colony Optimization.

 Kewen Li,Zilu Zhang Weying Liu[4] have used Ant colony optimization for automatic test

case generation and have shown through experiments that it has better performance than use

case and genetic approach used for the same purpose. They have used a basic search model

based on which they have calculated the shortest path and hence the test cases. They have

modified and proposed a new ant density model which is used to update pheromone

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 16

Q= ((M-|f|) / M)*K

“M” is a positive number and has value slightly greater than the sum of every branch

functions, “f” gives branch function’s sum and “K” denotes a constant

Huaizhong LI, C. Peng LAM [5] have applied ant colony in state based testing for

generation of test sequence automatically. They have made use of UML state chart diagram to

implement the algorithm and generate test cases automatically.Ahmed S.Guiduk [6] has

combined the approach used by Praveen Ranjan Srivastava [3] for test path generation with a

slight modification that the pats are generated corresponding to def-use pairs in the control

flow graph and approach used by Kewen Li[4] for generation of test data corresponding to the

independent paths generated. Here instead of control flow graph they have used def-use

graph.

Chengying Mao et al. [7] have used ant colony optimization for generating test data for

structural testing. The local transfer rule, global transfer rule and pheromone update rule are

re-defined for the Ant Colony Algorithm, to handle the continuous input domain searching.

Experimentally it is shown that the algorithm outperforms the existing simulated annealing

and genetic algorithm in most cases

Soma Sekhara Babu Lama et al. [8] have used Artificial Bee Colony Algorithm for

generating independent paths that are feasible from given CFG and then optimizing the test

suite with the help of the approach proposed. They have generated a CFG for the input

program and then have applied ABC algorithm to find the fitness values of each node which

is then used to generate the independent paths. After these paths are generated, random test

data is generated and they are then optimized for the paths generated based on parameter like

probability and total fitness. Finally new test cases are generated for the paths which are

having probability less than average probability.

AdiSrikanth et al. [9] have proposed a new ABC approach for automatic test case generation

and test suite optimization. They have shown that the proposed ABC approach is better than

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 17

the previously used approaches for test suite optimization. The approach not only returns

feasible paths but also returns paths that are not feasible, if a path cannot be reached using test

data generated. Surender Singh Dahiya et al. [10] have applied ABC algorithm using

symbolic execution method to generate test cases. They have used branch predicate based

fitness function. Hence symbolic execution method has been used based on static testing

which first selects the target from the CFG of program and then generation of inputs take

place which uses the ABC method in which composite predicate corresponding to the target

path is satisfied. D. Karaboga , B. Basturk [11] have used Artificial Bee Colony for multi

dimensional numeric problems which optimizes numerical test functions that are large in

number and compares results with that of differential evolution (DE), evolutionary algorithm

(EA) and particle swarm optimization (PSO). Experimentally it is shown that ABC is better

than the rest of the mentioned approaches.

Adil Baykasolu et al. [12] have discussed the application of ABC algorithm to generalized

assignment problem (GAP). They have used the method of neighborhood shifting. Initially

each set of agents are assigned with their particular number of tasks. And based on the

working calculated the fitness function for the task is calculated. After that the agent-task

relationship is rearranged by shifting or double shifting the agents and allocating it to some

new set of agents.

D. Jeya Mala and V. Mohan [13] have presented a non-pheromone-based test suite

optimization approach. .The employed bee covers all of the coverage and generates the test

case along with a happiness function which is given by the heuristic value of each of the test

cases. They have shown a comparative analysis of Genetic algorithm (GA) and ABC

algorithm in test suite optimization. The framework that is used by them is shown by the Fig

2.3 [13].

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 18

 Fig 2.3 Flow Chart of Algorithm proposed in [13]

Dr. Arvinder Kaur,Shivangi Goyal[14] have given a new algorithm that optimizes and

maps behavior of natural bees to search and collect food so that it can be used to prioritize

test cases of regression test suite. Prioritization of test suite has been done by observing the

behavior of scout and forager bees. Test cases denotes food sources, food source quality is

denoted as the number of conditions that are detected on executing each test case and number

of test cases denotes how many scout bees are there, and the initial population consists of

number of forager bees.

The algorithm proposed by them is shown in Fig 2.4:

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 19

 Fig 2.4 Flow Chart of Algorithm proposed in [14]

They have also concluded that the running time of ABC is O (n
2
)

Roy P. Paras et al. [15] have presented a technique for generation of test data automatically

using Genetic Algorithm. They have implemented a tool that used parallel processing so that

the performance for searching can be improved. They have also implemented a random test

data generator. They have made use of Control dependence graph(CDS) instead of Control

Flow Graph (CFG).They have analyzed the complexity of using CDS for generating test data

using Genetic Algorithm. Li Bin el al [16] has reduced the problem of generation of test data

to a minimizing function. In order to enhance the computational efficiency some

improvements have been made to form genetic stimulated annealing algorithm and has

compared the Genetic Algorithm, Genetic Stimulated annealing algorithm and random test

case generator to assert that stimulated annealing gives better results than the other two.

Praveen Ranjan Srivastava et al. [17] have developed a variable length genetic algorithm.

Path clusters that are critical in a program are identified and then those clusters are selected

that most critical. Jin-Cherng et al. [18] have developed genetic algorithm by making use of

normalize extended hamming distance, a metric which selects test cases that should survive so

that fitter test cases of next generation can be produced. Based on the metric they have also

developed a fitness function named similarity which determines which test cases should

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 20

survive.Moheb R. Girgis [19] have used genetic algorithm which instruments the program to

be tested and then takes it as input, def-use list which shows all the associations that need to

be covered, number of variables that need to be input along with their precision and domain.

A comparison of roulette wheel and random selection for parent selection is done to find out

which one is effective and has experimentally shown that method of random selection is

better when compared to roulette wheel method.

Ahmed S. Ghiduk and Moheb R. Girgis [20] have used genetic algorithm for automatic test

data generation. In order to reduce the cost of testing, the concept of dominance relation

between nodes was introduced by them and hence a new fitness function for evaluation of test

data generated was defined. They have compared random testing with the genetic algorithm

introduced and have shown that the later gives better result than the former.Peng NIE [21]

has discussed the particle swarm optimization algorithm with enhanced exploration ability for

test case generation to overcome the problems faced by the previous particle swarm

optimization algorithms by improving the prematurity and enhancing the efficiency of test

case generation.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 21

Chapter 3: Research Methodology

In this chapter we will describe and discuss the machine learning algorithms that are being

used by us namely Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Artificial

Bee Colony Optimization (ABC). We will describe each algorithm in detail i.e. what does

each algorithm does and how it is applied in test data generation. After that we will give a step

by step procedure of how the algorithm is applied. Finally the framework that we have

proposed for our tool “Test Generator Comparator” and along with a theoretical comparison

of the three algorithms has been shown.

3.1 Ant Colony Optimization (ACO)

Ants like humans are animals that are social. They live together and form colonies and the

work done by them is directed towards the survival of the entire colony instead of a single ant.

Every ant has same ability and no one possess any special abilities. Pheromone, a chemical

substance is used by ants to communicate with each other. Communicating in this way helps

them to do tasks which are complex in nature such as finding shortest path from their colony

to a particular location.

Using this behavior of ants, algorithm for optimization is developed and proposed so that this

behavior of ants can be used to solve problems.

While searching for the food, an ant comes across paths that lead to destination and contain

pheromones. It then selects that path which contains high concentration of pheromone as

compared to other paths with a certain probability. After the path is chosen, an ant deposits

certain quantity of pheromone of its own in the path, thereby increasing its concentration.

Always the same path by ants to return to their colony and hence while returning back other

portion of pheromone is also deposited. Lets us suppose that the two ants at the same location

choose two different paths at the same time. Suppose that two ants choose two different paths

at same location and at the same time. The pheromone concentration will increase faster on

shortest path as compared to other as the ant choosing this path will returns and hence it will

deposit more pheromone in smaller duration.

The concentration of pheromone in the shortest path will be much higher than the

concentration of the pheromone in the other paths if the entire colony follows this behavior.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 22

And hence choosing any other path will be less probable and only few ants fail in following

the shortest path.

Pheromone concentration involves another phenomenon. The concentration of pheromone on

the path becomes less as pheromone being a chemical substance evaporates in air and

eventually vanishes as the time passes. Hence the path used less will have lower concentration

of pheromone than the path mostly as not only the concentration increases in other paths, but

also the concentration of pheromone decreases.

The above process of ant colony can be better understood with the help of the following Fig

3.1 [6]

 Fig 3.1 Path finding mechanism of Real Ants [6]

The above figure shows the path finding mechanism of real ants:

a) While traveling to a destination, ants arrive at a decision point.

b) Randomly some ants choose lower path, some upper.

c) Ants choosing shorter path tend to reach to the opposite location faster than the one

choosing longer path as they all travel at the same speed.

d) On the shorter path, pheromone accumulated at a higher rate. Amount of pheromone

deposited by ants is approximately proportional to the number of dashed lines in the

above Fig 3.1

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 23

3.1.1 Background for the Algorithm [3]

This method generates test data automatically from the Control Flow Graph (CFG). CFG is a

type of directed graph G= {V, E}, where vertices V corresponds to states and Edges E

corresponds to the paths between the nodes.

All the paths must be covered at least once in the CFG of the program using this algorithm.

What path should be selected depends upon its probability. The higher the probability, the

higher are the chances that a path will be selected. Probability value of a path depends on: [3]

1. Feasibility of path (Fij): denotes that the vertices are connected directly.

2. Pheromone value (τij): helpful to ants so that in future they can make right decision.

3. Heuristic information (ηij): At a current vertex what path is visible by an ant is

denoted by heuristic information.

If the selected feasible paths have equal probabilities then follow these steps: [3]

 If next node is end node, than ant will select that node means path form current node

to the end node will be selected.

 Visited status parameter’s value (Vs) is used to select next node by ant. If there is a

connection between two vertices V1 and V2and ant has not visited V1, then V2 will

be selected as the next state. The criteria that all states are covered at least once, is

fulfilled through this concept.

 Any feasible path is selected randomly if not selection is possible using above

conditions.

Proposed algorithm can find out all feasible paths information from its current state. An ant is

associated with four other information about: visited states with the help of visited status (Vs),

Heuristic information for the paths (ηij), level of pheromone on path (τij), and last is

probability parameter (P). Pheromone level and heuristic values are updated after selection of

a particular path. Increase in Pheromone level depends on last pheromone level and heuristic

information on the other hand heuristic information, depends on previous heuristic

information.

If a vertex ‘i’ is connected to vertex ‘j’ that means that there exist a path from vertex ‘i’ and

‘j’ i.e. (ij). Every path in a graph is associated with five tuples: Fij (p), τij (p), ηij (p), Vs(p)

and Pij (p), where (p) shows an ant p and the value of tuple associated with it .These attribute

are described below:

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 24

1) Feasible path set F: = Fij (p), connection from vertex ‘i’ to its next vertex “j” is

shown by it. Vertices are adjacent to ‘i’ if there is a direct connection.

 If Fij=1 shows that path is feasible between “i” and “j”.

 If Fij=0 shows that path is feasible between “i” and “j”.

2) Pheromone trace set τ: = τij (p) shows that on the path (ij) which is feasible from

one vertex to other vertex what is the level of pheromone. After a path is traversed, the

pheromone level is updated. Helpful for ants to make any decision in future.

3) Heuristic set η = ηij (p): From current vertex ‘i’ to vertex “j”, what is the visibility of

a path for an ant is shown by it.

4) Visited status set Vs: All the states which are already traversed by the ant p,

information about this is shown by it. For state ‘i’ :

 If VS (i) =0 indicates that ant p has not visited vertex “i”..

 Whereas if Vs (i) =1 shows that ant p has already visited vertex “i”.

5) Probability set: Probabilistic value, value of pheromone τij (p), feasibility of path Fij

(p) and heuristic information ηij (p) of path, all these are considered by an ant p for

selecting a path. Two more parameters α, β are there, which are helpful and used to

calculate the probability of a path. α and β are the parameters that control the

desirability versus visibility. Pheromone and heuristic value of the paths are associated

with α and β respectively.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 25

3.1.2 Algorithm for ACO [3]

Here we will present the algorithm that we have used in path generation from the CFG of the

input program and then test data generation for each path. The algorithm is as follows:

Initialize all parameters;

1.1 Set heuristic Value (η): Heuristic value η=2, for every path in the CFG, is initialized.

1.2 Set pheromone level (τ): Pheromone value τ =1, for every path in the CFG, is initialized.

1.3 Set Visited status (Vs): Vs is initialized to 0 for every state showing that no state is

visited initially by the ant.

1.4 Set Probability (P): Probability P is initialized to 0, for each path.

1.5 Set α=1 and β=1.

1.6 Count is set equal to Cyclomatic complexity which gives the number of independent

paths in the program.

1.7 Key is set equal to end node (end_node).

2 while(count>0)

2.1 Start is initialized to i, sum and visit is initialized to 0.

2.2 Update the track: Visited status is updated for the current vertex ‘i’, i.e. Vs[i] =1 if (Vs[i]

==0) and visit=visit +1.

2.3 Evaluate Feasible Set: For the current vertex ‘i’, F(p) is determined and all possible path

are evaluated from the current vertex ‘i’ to all the neighboring vertices with the help of

CFG. Go to step 3, if no path is feasible then.

2.4 Sense the trace: Probability for all the non- zero connection in the feasible set for current

vertex ‘i’, is evaluated. For every non-zero element in F(p), probability is calculated

using the following formula:

Pij =

2.5 Move to next vertex: Using the below mentioned rule move to next vertex:

R1: Select Path (ij) whose probability (Pij) is maximum.

R2: If more than two paths have equal probability then selection is made path

in accordance to the rule below:

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 26

R2.1: Entry present in the feasible set is checked whether it is the end node or

not. If (feasible set entry ==end_node) then end_node is selected as next node

Otherwise follow R 2.2

R2.2: Select the path whose next state is not visited yet ie Vs=0. If same

visited status is same for two of more then follow R2.3

R2.3: If Vs[j] ==Vs[k] then random selection of path is done.

2.6 Update the parameter

2.6.1 Update pheromone for path (ij) according to the following rule:

2.6.2 Update Heuristic

2.7 Calculate Strength

Sum=Sum+ τij

Strength [count] =Sum

Start=next_vertex

2.8 If(start !=end_node)

Then go to step 2.3

Else

If (visit ==0) then discard the path as it is redundant path otherwise add new path

2.9 Update count: decrement count by 1 each time

Count=count-1

3 End

The above algorithm generates only the independent paths along with the strength of each

path generated. For test data generation we randomly generate the test data and then check

whether these test data satisfies one of the independent paths or not. The following search

model is applied for test data generation as shown in Fig 3.2 [4]

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 27

 Fig 3.2 ACO Searching model for Test Data Generation [4]

Random values are assigned to input variables from the input domain and then these values

are used to evaluate a path. If the data satisfies that path then that value of input data becomes

the one of the test case for the program and if not then that value is modified so that new

value can be generated. In this way test data is generated to cover the independent paths.

3.2 Artificial Bee Colony Optimization (ABC)

The Artificial Bee Algorithm can be implemented on a wide range of problems including

includes global optimization as it is a population-based evolutionary method, it shows similar

behavior with swarm intelligence algorithm. As the name suggests it is derived and motivated

from the behavior of natural bees. It is all about how honey bees store extra nectar for their

survival in the season of winter by distributing their work and collective foraging strategy.

They follow a certain protocol for collecting nectar and hence this search behavior and

intelligence drives the researchers to use ABC for test case generation and optimization. Bees

aim on finding out those sources of food which have high nectar amount. One of the most

important things is how they communicate with each other. Bees use waggle dance during

food procuring.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 28

 The direction of bees indicated the direction of the food source in relation to the sun, while

performing waggle dance, how far the food source is indicate by the intensity of the waggle

dance indicates and the duration indicates the amount of nectar in the food source.

Fig 3.3 Waggle Dance of honey bees [12]

Bee Colony system consists of two essential components:[12]

 Food Sources: It depends on different parameters such as how near the food source is,

how easily it can be extracted.

 Foragers:

 Unemployed Foragers: If the knowledge about the food source is available in

the search field, search is initiated by bee as an employed forager. Two

possibilities for an unemployed forager are there:

 Scout Bee (S in Fig 3.4): A scout bee is one which without any

knowledge, starts searching spontaneously.

 Recruit(R in Fig 3.4).If the waggle dance done by some other bee, is

attended by the unemployed forager, than using the knowledge of

waggle dance it starts searching.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 29

 Employed Foragers (EE in Fig 3.4): If the food source is exploited and found

out by the recruit, it raises to be an employed forager, whose work is to

memorize the location of the food source. Some portion of nectar from the

food source is loaded by the employed bee and then when it returns to the hive

it unloads the food source to the food area in the hive. There are three options

related to residual amount for the foraging bee:

 The food source is abandoned by foraging bee, if the nectar amount is

decreased to a low level or exhausted, and then foraging bee becomes

an unemployed bee.

 It can continue to forage without sharing the food source information

with the nest mated, if the amount of nectar is sufficient in the food

source.

 Or it give information about the same food source to other nest mates

by performing

 Experienced Foragers: Historical memories for the location and quality of

food sources are used by them.

 Can be an inspector by controlling the recent status of food source

already discovered.

 Can be a reactivated forager who makes use of information from

waggle dance. (RF in Fig 3.4).

 Can be a scout bee for searching new food sources if the entire food

source gets exhausted. (ES in Fig 3.4).

 Can be a recruit bee that searches new food source which is shown in

the dancing area by another employed bee. (ER in Fig 3.4).

The honey bee foraging behavior discussed above can be depicted in the following Fig 3.4

[12]

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 30

Fig 3.4 Bee foraging behavior [12]

3.2.1 Background for the Algorithm [8]

The approach discussed, generates test path and test data from the CFG diagram

automatically. CFG is the form of directed graph G = {V, E}, where V indicates vertices to

states, and E shows edges between the nodes in the path.

ABC algorithms is run so that at least once optimal path is covered in the CFG of the software

on which testing is done. Fitness of the node of the path decides which path should be

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 31

selected. Fitness values which are associated with the nodes are randomly generated and then

based on these values the node having minimum fitness value is selected as the next node.

ABC techniques which we will discuss here consist of two strategies that are proposed using

Artificial Bee Algorithm [8].

1) First is generation of independent path that are feasible using ABC and

2) And the second one is test suite optimization using ABC

3.2.2 Algorithm for ABC [8]

Feasible Independent Path Generation

1. CFG is constructed for the given code.

2. All nodes of CFG are initialized with random fitness values in small ranges (should be

analogous to scout bees).

3. Cyclomatic complexity is calculated using no. of Predicates Nodes + 1, where

predicates nodes are the decision nodes in the CFG.

4. Start node is selected as initial node and neighboring nodes are identified (like

employed bees).

5. Node with has least fitness value is selected and its fitness value is increased by one

unit and that node is added to visited list.

6. If required loop optimization function is applied (as discussed below) for selected

node.

7. Selected node is made as initial node and new path is generated using Steps 4-6 until

last node is reached.

8. If new path generated from above Step already exists, don’t save that path, go to step

next step.

9. Steps 4-8 are repeated until total number of iterations are equal to 2*cyclomatic

complexity.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 32

Loop Optimization Function

This function checks the node that we have selected already exists in the traversed path or not;

if it does, the position ‘i’ of the selected node from starting node is obtained by this function

and then the fitness value of (i+1)
th

 node is increased. In this way in the next iteration, (i+1)
th

node is not selected hence giving chance that next time new path will be found.

Test Suite Optimization using ABC:

All the independent paths are classified into square root (SQRT) of total number of

independent paths sets, based on coverage [8]. Based on the comparison criteria among the

independent paths, sets are formed. The algorithm for this can be stated as:

1. Randomly generated test cases (food sources) are initialized, similar to scout bees in

Bee Colony.

2. All these test cases (food sources) are evaluated for the given program.

3. Continue to next step if a criterion is not satisfied, else stop (all test cases generated).

4. Using comparison approach, independent paths are grouped into SQRT of total

number of independent path sets i.e. independent paths having more number of similar

edges are grouped together.

5. Check whether all independent test path coverage criteria is satisfied or not. If it is not

satisfied run Bee Thread Algorithm.

Bee Thread Algorithm:

1. Fitness values and probability values are calculated for independent test path.

2. New test cases are generated depending on the number of independent paths having

probability value less than minimum qualifying criteria.

3. Test cases that are satisfied and remaining are replaced by its neighbors like employed

bees.

4. All these test cases are evaluated for given program.

5. Return to step 5 of above algorithm.

Algorithm for Generation of Test Suite

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 33

1. The random population of test data Xij is initialized, within input domain where test

case number is denoted by ‘i’ and index of variable in that test case is denoted by ‘j’.

2. Test data generated is evaluated.

3. Check whether all the independent paths are satisfied or not. If not go to next step else

exit.

4. Independent paths are divided into sets.

5. Fitness and probability values are calculated for each test data as discussed below:

6. Average of the probability value is calculated and is named as Pavg.

7. If value of any path probability is less than Pavg then generate new test data in the

neighborhood of Xij by making use of the following equation:

Yij = Xij + RAND (-1,0,1) * (Xij - Xkj)

Where RAND (-1,0,1) is random number from {-1,0,1} and Xkj is neighbor test data,

k= (i+1) % number of parameter

8. Populated test data is evaluated.

9. Check whether all independent paths are satisfied or not. If not go to Step-4 else

terminate.

10. Repeat step 4-8 until solution for all individual test paths is obtained.

Fitness and Probability Calculation

Test path sequence comparison method is used as the fitness value function so that individual

path coverage criteria can be achieved in ABC algorithm. Comparison of each unsolved

independent path against each solved independent path takes place, in finding out the fitness

value. All solved independent paths are considered to have ideal fitness value and their

probabilities value are assumed as 100%, in normalized form these values are taken as 1

1. One solved independent test path is selected, we call it as SPij.

2. Each unsolved test path UPij is compared with the selected solved test path SPij in such

a way that if nodes in both the paths are same then assign value’1’ else ‘0’.

3. All the assigned values in the path UPij are added to the FITNESSi (variable used to

store fitness).

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 34

4. For all unsolved individual test path, repeat step 2 to 3.

5. Maximum fitness value in all the unsolved independent test paths is found out, it is

named as MAXFITNESS.

6. Final fitness value corresponding to each solved independent path is computed using

FINAL_FITNESSi = FINAL_FITNESSi +(FITNESSi)/MAXFITNESS

7. Repeat step 1-6 for all independent paths that are solved.

The probability can be calculated using the below formula:

PROBABILITY_VALUEi = FINAL_FITESSi / ∑FINAL_FITNESSi

3.3 Genetic Algorithm (GA) [20]

Genetic algorithm, now days abbreviated to GA, was first used by John Holland, whose book

“Adaptation in Natural and Artificial Systems” of 1975 played a key role in creating

something which is now a flourishing field of research and application that goes beyond the

original GA. In order to cover the developments of the last 10 years, the term evolutionary

computing or evolutionary algorithms (EAs) is now used. However, in the context of meta-

heuristics, it is probably fair to say that GAs in their original form encapsulate most of what

one needs to know.

A variety of problems involving search and optimization are solved by applying GA.

Mechanism of evolution and natural selection from the basis of GA search methods. Natural

search and selection processes form the source of inspiration for GA, which leads to the

survival of the fittest individuals. Mutation and crossover are used for searching and for

generating a sequence of population, selection mechanism is used.

In Genetic Algorithm first generation begins with a set of initial individuals, which are

selected randomly form the problem domain. The present generation is transformed into a

new and fitter generation by performing series of operations using this algorithm.

Evaluation of each individual in each generation may approach the optimal solution.

Operations of genetic algorithm are designed in such a way so that solutions produced by

them are efficient. These operations are shown below:

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 35

1. Reproduction: Based on the output of fitness function, this operation assigns each

individual reproduction probability. Greater probability for reproduction is given to

individuals having higher ranking. Hence the individuals which are fitter stand a better

chance of survival from one generation to next.

2. Crossover: Descendants that make up the next generation are produced using this

operator. Following crossbreeding steps are applied for it:[20]

i. Two individual are selected randomly as a couple from the parent

generation.

ii. Corresponding to this selected couple, select a position randomly of the

genes, as the crossover point.

iii. First parts of both the genes are exchanged, corresponding to the couples.

iv. The two resulted individuals are added to the next generation.

3. Mutation: A gene is picked at random and according to the mutation probability its

state is changed using this operation. To maintain the diversity in a generation,

mutation is done so that premature convergence to a local optimal solution can be

prevented. As there is no definite way, the mutation probability is determined based on

intuition.

After crossover and mutation operations are completed, an original parent and a new offspring

population will be there. A fitness function is devised to find out, which of these parents and

offspring’s can survive into the next generation. These parents and offspring’s are filtered to

form a new generation, after the fitness function is performed.

Until the desired goal is achieved, perform these operations repeatedly. GA assures with high

probability that the quality of the individual will improve over several generations. The

structure of simple GA can be shown as Fig 3.5

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 36

Fig 3.5 Basic Flow of GA

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 37

3.3.1 Background for the Algorithm

Control Flow Graph

A control flow graph or CFG is used to analyze the program structure. Control flow graph

represents the program graphically. It is a directed graph G= (V, E) where V is the set of

vertices and E is the set of edges.

Dominance and Denominator Tree

Let us consider a CFG G= (V, E) with two nodes no and nk. If every path P from the entry

node no to a node m contains node n, then n dominate m. We can obtain a tree rooted at no, by

applying the dominance relations between the nodes of a CFG g. This tree is called the

Dominator Tree DT (G).

A Dominator Tree is a diagraph rooted at node no and every node n except no is head of just

one arc and from root no to each node ‘n’, there exist a unique path called dominance path,.

This path is denoted by dom(n). Tree nodes having out degree zero are called leaves.

Use of dominator tree is that instead of covering all the nodes of the CFG, only the leaves of

the dominator tree are covered. Covering each leaf of dominator tree guarantees that every

dominance path is covered. Union of nodes of dominance graph gives set of nodes of the

CFG. Thus the cost of testing can be reduced, by applying the above concept [20].

Representation

Program input variables are represented as chromosomes using binary vector. Length of the

chromosome depends on the domain length for each input variable and precision required.

Suppose we have a program of k input variables x1,x2,x3…..xk where each variable xi can take

value from a domain Di= [ai ,bi].Now for each input value, the precision of di decimal places

is required. Each domain Di is divided into (bi-ai) x 10
di

 ranges of equal size, in order to

achieve such precision. Let mi be the smallest integer such that (bi-ai) x 10
di

≤ 2
mi

-1. Coding

of each variable xi as a binary stringi of length mi satisfies the precision requirement.

By using the following formula, mapping is done from binary string to a real number:

xi = ai + xi’ * (bi - ai) / 2
mi

-1

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 38

Here the decimal value of the binary string is represented by xi’.

If precision not required i.e. di =0, then the formula would become:

xi = ai + int (xi’ *(bi - ai) / 2
mi

-1)

A binary string of length
 , is used to represent each chromosome or a test case.

The first group of m1 bits map into a value from range [a1, b1] of variable x1, the next group of

m2 bits maps into a value from the range [a2 ,b2] of variable x2 and so on.

Initial Population

As mentioned above a binary string of length m, is used to represent each chromosome (as a

test case). pop_size, m bit string is randomly generated and is used to represent the initial

population, where population size is denoted by pop_size. pop_size is determined

experimentally. Using the above mentioned formulas, each chromosome is converted to k

decimal numbers which are then used to represent values of k input variables x1,x2,x3…....xk .

Evaluation Function

For evaluating test data, new evaluation or fitness function is used. Fitness function depends

on the concept of the dominance relation between nodes of CFG. This fitness function

evaluates by executing the program with each test case and then finding out which nodes are

covered by it. This set if traversed path is denoted by exePath also dominance path of the

target node is found out.

Ratio of the number of nodes covered of the dominance path of the target node to the total

number of nodes of the dominance path of the target node. For each chromosome, fitness

value is calculated as follows:

1. Find exePath: the set of nodes that are covered by a test case, while traversing a

program.

2. Find dom(n):dominance path of the target node ‘n’.

3. Determine (dom(n) – exePath): nodes that are not covered in the dominance path.

4. Determine (dom(n) – exePath)’: nodes that are covered in the dominance path.

5. Calculate | (dom(n) – exePath)’| : number of nodes that are covered in the dominance

path.

6. Calculate |dom(n)| : number of nodes in the dominance path of the target node n.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 39

Then, ft (vi) = | (dom(n) – exePath)’| / |dom(n)

If the fitness value ft (vi) of a test case is 1 then it is considered as optimal.

Selection

From all the members of the current population, test cases are selected that will be parents of

the new population. The method used for selecting test cases is roulette wheel which is

described below:

A roulette wheel with slots sized according to fitness is used, for selecting new population

with respect to the probability distribution based on fitness values. Construction of Roulette

wheel is as follows:

 Fitness value ft (vi) for each chromosome vi (i=1, 2…….pop_size) is calculated

 Total fitness of the population
 is calculated.

 Relative fitness value rft is calculated for each chromosome, rft (vi) / F.

 Cumulative fitness value cft is calculated for each chromosome

If i=1 cft(vi) =rft(vi)

Otherwise

If i=2, 3……pop_size cft(vi) =cft(vi-1) + rft(vi)

Spinning the roulette wheel pop_size , is made the basis of selection. A single chromosome is

selected, each time for a new population in the following way:

 A random (float) number ‘r’ is generated from the range [0...1].

 The first chromosome v1 selected, if r < cft(v1), otherwise select the i
th

 chromosome vi

(2 ≤ i ≤ pop_size) such that cft(vi) ≤ r ≤ cft(vi+1).

Some chromosomes would be selected more than once.

Recombination

In this phase two operators are used: crossover and mutation. New individuals are created to

form new population from the selected parents.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 40

1. Crossover: Substring information is exchanged at a random position in the

chromosome of the two parents to produce new strings. Crossover probability is the

deciding factor for crossover. The expected numbers of chromosomes (PXOVER x

pop_size) which will undergo crossover operations are decided on the basis of

probability of crossover PXOVER. Followings steps are taken for it:

For each chromosome in the parent population:

 A random (float) number ‘r’ is generated from the range [0…1].

 Given chromosome is selected for crossover, if ‘r’ <PXOVER.

Mating of selected chromosomes is done randomly: Random integer pos from the

range [1….m-1] (m is the number of bits in a chromosome), for each pair of coupled

chromosome is generated. Position of the crossing point is indicated by pos.

2. Mutation: Performed on a bit by bit basis. Operates after crossover operator and flips

with the predetermined probability, each bit of selected chromosome. The expected

number of mutated bits (PMUTATION x m x pop_size), is given by the probability of

mutation (PMUTATION). Every bit has an equal chance to undergo mutation. The

followings steps are followed:

For each chromosome in the current population and for each bit within the

chromosome:

 A random (float) number ‘r’, is generated from the range [0…1].

 Mutate the bit, if ‘r’ < PMUTATION.

Until the test requirement i.e. covering the set of leaves of the denominator tree is achieved,

population continues to evolve. When a set of individuals have traversed the dominance path

of the test requirement and its fitness value ft(vi) becomes 1, the evolution stops.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 41

3.3.2 Algorithm for GA [20]

Input:

The program to be tested P;

Number of program input variables;

Domain and precision of input data;

Population size;

Maximum no. of generations (Max_Gen);

Probability of crossover;

Probability of mutation;

Output:

Set of test cases for P, and the set of nodes covered by each test case;

List of uncovered nodes, it any;

Begin

Step 0: Setup (Analyze P to find prerequisites)

1. Classify the program’s statements.

2. Build the program’s control flow graph CFG.

3. Build the program’s dominator tree DT.

4. Find the set of leaves L of the dominator tree.

5. Instrument P to obtain P’.

Step 1: Initialization

Initialize the score board to zero;

nRun ← 0;

Set of test cases for P ← φ;

nCases ← 0;

Step 2: Generate test cases

For each uncovered node and not selected before in the set of nodes to be tested (L)

Begin

nRun ← nRun +1;

Create Initial_Population;

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 42

Current_population ← Initial_Population;

No_Of_Generation ← 0;

For each member of current population do

 Begin

 Current chromosome is converted to corresponding set of decimal values;

 Execute P’ with this data set as input;

 Evaluate the current test case;

 If (the current node is covered) then

 Mark the current node as covered;

 End If

End For;

Keep the best member of the current population;

While (current node is not covered and No_Of_Generations ≤ Max_Gen) do

 Begin

Select set of parents of new population from members of current

population using roulette wheel method;

Create New_Population using crossover and mutation operators;

Current_Population ← New_Population;

For each member of Current_Population do

Begin

 Convert current chromosome to the corresponding set of decimal

 Values;

 Execute P’ with this data set as input;

 Evaluate the current test case;

 If (the current node is covered) then

 Mark the current node as covered;

 End If

End For;

Increment No_Of_Generation;

 End While;

 If (the current node is covered) then

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 43

 nCases←nCases +1;

 Add these test cases to set of test cases for P;

 Update the score board;

 Check all uncovered nodes by this test case

 End If

End For;

Step 3: Produce output

Return set of test cases for P, and set of nodes covered by each test

case;

Report uncovered node, if any;

End

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 44

3.4 Proposed Framework for the Tool “Test Generator

Comparator”

Here we are going to give the framework for our tool Test Generator Comparator that we

have used for generating test data for some input programs and then applying the above

mentioned three algorithms namely Ant Colony (ACO), Artificial Bee Colony (ABC) and

Genetic Algorithm (GA) on them. These three algorithms are then compared on the basis of

the results that they generate for the input programs.

The framework for the tool can be shown as:

Fig 3.6 Framework for the tool “TEST GENERATOR COMPARATOR”

INPUT

Control Flow

Graph (CFG)

(also Dominator

Tree (DT) in

case of GA) of

10 C programs

along with the

different

parameters

associated with

each program.

TEST GENERATOR

COMPARATOR TOOL

ACO ABC AND GA on the

CFG of 10 input C programs.

Generate test data for each

program and basis of this

displays result.

OUTPUT

1) Time Taken to

generate test data,

2) Number of

iterations to

generate test data

and 3) Path

coverage done in

test data generation

for all input

programs by each

Algorithm.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 45

A theoretical comparison based on different parameters has been performed by us and it can

be represented in tabular form as shown below:

 Table 3.1 Theoretical Comparison of ACO, ABC and GA

Parameters Ant Colony

Algorithm

Artificial Bee

Colony Algorithm

Genetic

Algorithm

No Of Cycles equal to cyclomatic

complexity

equal to 2*(cyclomatic

complexity)

Prescribed by tester

Type of Algorithm Pheromone

based(overhead)

Non-Pheromone

based(no overhead)

Population Based

Communication

about selection

Based on Pheromone Based on waggle

dance/fitness function

Status Flag

Technique for test

data generation

All ants start the search

simultaneously.

Only some bees

dedicated for searching

(Scout bees).

Crossover and

mutation

Type Of Approach Sequential Parallel Parallel

Memory

Limitations

yes No yes

Computational

Overhead

yes No yes

Time Taken Greater than ABC Less than both ACO and

ABC

Greater than ABC

Problem Of Local

Optimum

Yes No Yes

No Of Iterations To

Converge

Greater than ABC Less than both ACO and

GA

Greater than ABC

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 46

Chapter 4: Implementation

In this chapter we have shown how the algorithms discussed in above chapter, are applied on

10 input C programs. CFG for these C programs are shown in APPENDIX.

The following are the input C programs that are used:

1) Program for finding whether a number is even or odd.

2) Program for finding whether a given year is leap year.

3) Program for finding the division of a student on the basis of marks obtained.

4) Program for finding maximum of three numbers.

5) Program for finding minimum of three numbers.

6) Program to find whether a point lies inside or outside or on circle.

7) Program to find in which quadrant a given point lies.

8) Program to find the nature of roots of a quadratic equation.

9) Program to check whether a number divides another given number or not.

10) Program to classify the type of triangle.

We have shown the CFG for the input programs and now we will show how theses 3

Algorithms are applied on these Input programs.

We have developed the code for each of the three algorithms in Java. Also the above shown

CFG for the input programs are implemented in Java. For each of the program a CFG and a

dominator tree (used in GA) is constructed along with this their corresponding input C

programs are modified, so that for each test case generated, the path that it satisfies can be

found out for a given input program.

USING ANT COLONY ALGORITHM

The Ant Colony algorithm discussed in the above chapter is used for test case generation for a

given input C program. The algorithm takes input the CFG of each input program, the number

of input variables associated with an input program and the cyclomatic complexity of the

CFG. Now starting from the first node all the independent paths are found out based on the

algorithm and then these paths are stored. These paths are equal to the cyclomatic complexity

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 47

of the CFG. Once the independents paths are found, test data is generated randomly as per the

algorithm. These test data are checked as which path they satisfy. This is done by the

modified program. If the test data satisfies the path then a new test case is generated and of it

does not then this test data is rejected and new test data is generated. For each program, three

parameters are given as output, which measures the performance of the algorithm:

1. No of Iterations: The number of times the ACO algorithms runs while generating the

test data is measured in terms of iterations. The maximum limit for the iterations we

have set as 51. Hence generating if the test data generated satisfies all the independent

paths before reaching the maximum limit then this becomes the number of iterations

and if all the paths are not covered and the loop reaches the maximum limit then 51 is

the number of iterations. The less the number of iterations, more better the algorithm

is.

2. Path Coverage: The number of paths which are covered is given by the path

coverage. Its maximum value will be equal to the cyclomatic complexity. It shows the

number of paths that are covered by the test cases generated by the algorithm.

3. Time Taken: The total time taken to run the algorithm on one program is given by

time taken. It is calculated as (end_time – start_time).

USING ARTIFICIAL BEE ALGORITHM

The artificial bee algorithm discussed in the above chapter is used for test data generation for

a given input C program. The algorithm takes input CFG of an input program. The algorithm

loops for (2*cyclomatic complexity) times for generating all the independent paths. The paths

are then divided into set based on similarity between the nodes in the path. The test data is

generated and then checked with each independent path. If it satisfies the path then the new

test data is generated, and if it does not satisfies the path this test data is modified in order to

generate new test data. For each program three parameters are given as output:

1. Number of Iterations: It gives the number of times the ABC runs while generating

the test data. The maximum limit for the iterations we have set as 51. Hence

generating if the test data generated satisfies all the independent paths before reaching

the maximum limit then this becomes the number of iterations and if all the paths are

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 48

not covered and the loop reaches the maximum limit then 51 is the number of

iterations. The less the number of iterations, more better the algorithm is.

2. Path Coverage: The number of paths which are covered is given by the path

coverage. Its maximum value will be equal to the cyclomatic complexity. It shows the

number of paths that are covered by the test cases generated by the algorithm.

3. Time Taken: It gives the total time taken to run the algorithm on one program. It is

calculated as (end_time – start_time).

USING GENETIC ALGORITHM

The genetic algorithm discussed in the above chapter is used for test data generation for a

given input C program. The algorithm takes input the Dominator Tree corresponding to the

CFG of the program. The population size we have taken as 20, probability of crossover as 0.8

and probability of mutation as 0.15 .Based on the algorithm discussed and the parameters

taken, GA is applied on the input denominator tree and test data is generated. If the data

generated satisfies any of the independent paths then it is selected, if not then mutation and

crossover is applied to generated new test data. For each program three parameters are given

as output:

1. Number of Iterations: It gives the number of times the GA runs while generating the

test data. The maximum limit for the iterations we have set as 51. Hence generating if

the test data generated satisfies all the independent paths before reaching the

maximum limit then this becomes the number of iterations and if all the paths are not

covered and the loop reaches the maximum limit then 51 is the number of iterations.

The less the number of iterations, more better the algorithm is.

2. Path Coverage: The number of paths which are covered is given by the path

coverage. Its maximum value will be equal to the cyclomatic complexity. It shows the

number of paths that are covered by the test cases generated by the algorithm.

3. Time Taken: It gives the total time taken to run the algorithm on one program. It is

calculated as (end_time – start_time).

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 49

Snapshot of the Tool “TEST GENERATOR COMPARATOR”

 Fig 4.1 Snapshot 1 of the Tool

The above Fig 4.11 shows the snapshot for the tool. We can select the algorithm which we

want to apply from the “Select Algorithm” drop down menu and then we can select the

program on which the algorithm should be applied from “Select Program” drop down menu.

After selecting the algorithm and program, we click on the evaluate button and then in the

space below the output is shown which consists of :-

1. No of iterations

2. Path coverage

3. Time taken

The below snapshot in Fig 4.12 shows it:

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 50

 Fig 4.2 Snapshot 2 of the Tool

Hence we evaluate each algorithm and then the output shown by them can be compared.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 51

Chapter 5: Results

Here we have shown the output for each algorithm, when applied on each of the input C

program. Each value is obtained by running the algorithms on the input programs for 6 times

and then the average of the value is taken as shown.

The output of each algorithm can be shown in the form of table as:

Table 5.1 Output of TEST GENERATOR COMPARATOR for input programs

S
.N

o

In
p

u
t

P
ro

g
ra

m

In
p

u
ts

C
y
cl

o
m

a
ic

C
o
m

p
le

x
it

y

T
im

e

b
y
 A

C
O

 (
a
v
g
)

T
im

e

b
y
 A

B
C

 (
a
v
g
)

T
im

e

b
y
 G

A
 (

a
v
g
)

It
er

a
ti

o
n

s

b
y
 A

C
O

 (
a
v
g
)

It
er

a
ti

o
n

s

b
y
 A

B
C

 (
a
v
g
)

It
er

a
ti

o
n

s

b
y
 G

A
 (

a
v
g
)

P
a
th

 C
o
v
er

a
g
e

b
y
 A

C
O

 (
a
v
g
)

P
a
th

 C
o
v
er

a
g
e

b
y
 A

B
C

 (
a
v
g
)

P
a
th

 C
o
v
er

a
g
e

b
y
 G

A
 (

a
v
g
)

1 Even Odd 1 3 .127 .005 .094 16 13 30 3 3 3

2 Leap Year 1 4 .056 .010 .048 51 51 51 2 2 3

3 Marks 3 5 .014 .012 .012 51 29 51 2 4 2

4 Maximum

of three

3 3 .012 .009 .055 16 2 5 3 3 3

5 Min of two 2 2 .011 .007 .009 3 2 3 2 2 2

6 Point

Circle

3 3 .010 .013 .009 7 3 3 3 3 3

7 Quadrant 2 4 .009 .006 .011 51 51 51 1 1 1

8 Quadratic

Equation

3 4 .009 .015 .016 51 51 51 2 1 3

9 Remainder 2 2 .050 .012 .010 20 18 18 2 2 2

10 Triangle

Classifier

3 8 .068 .050 .051 51 47 51 5 6 5

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 52

5.1 COMPARISON ON THE BASIS OF TIME TAKEN

 Table 5.2 Time Taken by ABC ACO and GA for Input Programs

Programs Time

Taken_GA

Time

Taken_ABC

Time

Taken_ACO

EO 0.094 0.005 0.127

LEAP 0.048 0.01 0.056

MARKS 0.012 0.012 0.014

MAX 0.055 0.009 0.012

MIN 0.009 0.007 0.011

POINT 0.009 0.013 0.01

QUADRANT 0.011 0.006 0.009

QUADEQ 0.016 0.015 0.009

REMAINDER 0.01 0.012 0.05

TRIANGLE 0.051 0.05 0.068

 Fig 5.1 Time Taken by ABC ACO and GA for Input Programs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time Taken_GA

Time Taken_ABC

Time Taken_ACO

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 53

From the table 5.2 and Fig 5.1 we can easily see that the time taken by ABC is less as

compared to GA and time taken by GA is less when compared to ACO and hence we can say

that the time taken by ABC is smaller as compared to GA and ACO.

5.2 COMPARISON ON THE BASIS OF ITERATIONS

 Table 5.3 Iteration done by ABC ACO and GA for Input Programs

 Fig 5.2 Iterations done by ABC ACO and GA for Input Programs

0

10

20

30

40

50

60

Iterations_GA

Iterations_ABC

Iterations_ACO

Programs Iterations_GA Iterations_ABC Iterations_ACO

EO 30 13 16

LEAP 51 51 51

MARKS 51 29 51

MAX 5 2 16

MIN 3 2 3

POINT 3 3 7

QUADRANT 51 51 51

QUADEQ 51 51 51

REMAINDER 18 18 20

TRIANGLE 51 47 51

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 54

From the Table 5.3 and Fig 5.2 we can deduce that the number of iterations, for all the

algorithms is almost same for some of the input programs. But for some of the input programs

we can see that the iterations are less for ABC when compared to other algorithms.

This shows that, the iterations taken by ABC to generate test data is less than other two

algorithms.

5.3 COMPARISON ON THE BASIS OF PATH COVERAGE

 Table 5.4 Path Coverage by ABC ACO and GA for Input Programs

Programs Path

Coverage_GA

Path

Coverage_ABC

Path

Coverage_ACO

EO 3 3 3

LEAP 3 2 2

MARKS 2 4 2

MAX 3 3 3

MIN 2 2 2

POINT 3 3 3

QUADRANT 1 1 1

QUADEQ 3 1 2

REMAINDER 2 2 2

TRIANGLE 5 6 5

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 55

Fig 5.3 Path Coverage by ABC ACO and GA for Input Programs

From Table 5.4 and Fig 5.3 we can see that the path coverage is same for all the three

algorithms but in some cases ABC shows better output then the other two algorithms.

Hence the test data generated by ABC covers more paths as compared to other algorithms

0

1

2

3

4

5

6

7

Path Coverage_GA

Path Coverage_ABC

Path Coverage_ACO

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 56

Chapter 6: Conclusions

We successfully derived in chapter 1, the concept of software testing, the need for testing and

who should do the testing. Along with this we also showed the test data generation, the

motivation behind the work that we have done and the significance and importance of this.

In chapter 2, we found out different types and forms of software testing. Also the previous

and current work done in the field of software testing by different authors provided us, with

different methods and algorithms for machine learning used in test data generation.

In chapter 3, we successfully showed the three algorithms used by us for test data generation.

The algorithm along with their background is shown. We also showed the framework for our

tool “TEST GENERATOR COMPARAR” developed by us for comparison of three

algorithms and showed theoretical comparison that we have performed successfully in tabular

form.

In chapter 4, we successfully implemented the three algorithms by showing how they are

applied on 10 input C programs. Also the snapshot of the tool developed by us for comparing

the three comparisons was displayed successfully.

In chapter 5, we have shown the results that we have obtained by applying the algorithms on

the input C programs. The algorithms are compared on the basis of three parameters number

of iterations, path coverage and time taken. Results are shown in the form of table and graph

and we successfully deduced from the graphs that ABC algorithm gives better performance

when compared to the other two algorithms.

In chapter 6 we have concluded the work done in our thesis and showed that we have

achieved the aim successfully.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 57

References

1. Aggarwal, K.K, Singh, Y., “Software Engineering”, New Age International

Publishers, Second ed., 2006.

2. Yogesh Singh,”Software Testing”,Cambridge University Press,First,2012.

3. Praveen Ranjan Srivastava, Km Baby, G Raghurama,”An Approach Of Optimal Path

Generation Using Ant Colony Optimization”, IEEE, 2006.

4. Kewen Li, Zilu Zhang Weying Liu ,”Automatic Test Data Generation Based On Ant

Colony Optimization”, IEEE, 2009.

5. Huaizhong LI, C. Peng LAM, “Software Test Data Generation using Ant Colony

Optimization”, World Academy of Science, Engineering and Technology, 2005.

6. Ahmed S. Guiduk ,”A New Software Data-Flow Testing Approach via Ant Colony

Algorithms ”,Universal Journal of Computer Science and Engineering Technology,

2010.

7. Chengying Mao, Xinxin Yu,, Jifu Chen,“Generating Test Data for Structural Testing

Based on Ant Colony Optimization”, IEEE, 2012.

8. Soma Shekhar Babu Lama, M L Hari Prasad Rajub, Uday Kiran Mb, Swaraj Chb,

Praveen Ranjan Shrivastava, “Automated Generation Of Independent Paths and Test

Suite Optimization Using Artificial Bee Colony”, Elsevier, 2011.

9. AdiSrikanth, Nandakishore J. Kulkarni, K. Venkat Naveen,PuneetSingh and Praveen

Ranjan Shrivastava, “Test Case Optimization Using Artificial Bee Colony Algorithm”,

Springer, 2011.

10. Surender Singh Dahiya,Jitendar Kumar Chhabra,Shakti Kumar,”Application of

Artificial Bee Colony Algorithm to Software Testing”,IEEE, 2010.

11. D. Karaboga, B.Basturk,”On the performance of artificial bee colony (ABC)

algorithm”, Elsevier, 2007.

12. Adil Baykasolu, Lale Özbakır and Pınar Tapkan,”Artificial Bee Colony Algorithm and

its Application to Generalized Assignment Problem”, Itech Education and Publishing,

2007.

13. D. Jeya Mala and V. Mohan,” ABC Tester - Artificial Bee Colony Based Sofware

Test Suite Optimization Approach”, IJSE, 2009.

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 58

14. Dr. Arvinder Kaur,Shivangi Goyal,”A Bee Colony Optimization Algorithm For Code

Coverage Test Suite Prioritization”, IJEST, 2011.

15. Roy P. Pargas, Mary Jean Harrold, Robert R. Peck, “Test-Data Generation Using

Genetic Algorithms”,Journal of Software Testing, Verification and Reliability, 1999

16. Li Bin, Li Zhi-Shu, Chen Yan-Hong, Li Bao-Lin, “Automatic Test Data Generation

Tool Based on Genetic Stimulated Annealing Algorithm”, International Conference on

Computational Intelligence and Security Workshops, 2007

17. Praveen Ranjan Srivastava, Tai-hoon Kim, “Application of Genetic Algorithm in

Software Testing”, International Journal Of Software Engineering and its Applications

Vol. 3, No.4, 2009.

18. Jin-Cherng Lin, Pu-Lin Yeh, “Automatic test data generation for path testing using

GAs”, Elsevier, 2001.

19. Moheb R. Girgis, ”Automatic Test Data Generation for Data Flow Testing Using

Genetic Algorithm”, Journal of Universal Computer Science, vol. 11,no.6, 2005.

20. Ahmed S. Ghiduk, Moheb R. Girgis, “Using Genetic Algorithms and Dominance

Concepts for Generating Reduced Test Data”,Informatica 34, 2010.

21. Peng NIE, “A PSO Test Case Generation Algorithm with Enhanced Exploration

Ability”,Journal of Computational Information Systems,2012.

22. Shivangi Goyal,”The Application Survey:Bee Colony”IRACST-Engineering Science

and Technology Journal(ESTIJ), Vol.2, No.2, 2012

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 59

APPENDIX:

1. CFG of programs for finding whether a number is even or odd.

1

2

4
3

6 5

7

8

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 60

2. CFG of program for finding whether a given year is leap year or not.

1

2

3

4

5
6

7

8

12

13

14

9

10

11

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 61

3. CFG of program for finding the division of a student on the basis of marks obtained.

2

1

3

9

11

12

10

4

5 6

7 8

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 62

4. CFG of program for finding maximum of three numbers.

5. CFG of program for finding minimum of three numbers.

1

2

4
3

6 5

7

8

2 3 4
5

7 6

8

9

1

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 63

6. CFG of program to find whether a point lies inside or outside or on circle.

2

4
3

6 5

7

8

1

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 64

7. CFG of program to find in which quadrant a given point lies.

2

4
3

6 5

1

7 8

9

10

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 65

8. CFG of program to find the nature of roots of a quadratic equation.

1

3

2

4

5

6

7 8

9

10 11

15

14

13

12

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 66

9. CFG of program to check whether a number divides another given number or not.

1

2

3 4

5

6

Comparison of Evolutionary Algorithms for Test Data Generation 2014

Delhi Technological University Page 67

10. CFG of program to classify the type of triangle.

1

20

19

17 5

2

16

4

3

18

21

22

23

6 7

8

9 10

11 12

13

14

15

24

