

i

BOTNET DETECTION AND MITIGATION USING HONEYPOTS

A Dissertation submitted in partial fulfillment of the requirement for the

Award of degree of

MASTER OF TECHNOLOGY

IN

INFORMATION SYSTEMS

Submitted By

LIPIMONI TAYE

(2K13/ISY/11)

Under the esteemed guidance of

Dr. N.S. RAGHAVA

Associate Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

Session 2013-2015

ii

CERTIFICATE

This is to certify that the thesis entitled “Botnet Detection and Mitigation

Using Honeypots” submitted by Lipimoni Taye, Roll No. 2K13/ISY/11 student

of Master of Technology (M. Tech.) in Information Systems from Department

of Computer Science and Engineering, Delhi Technological University, Delhi is

a bonafide record of the candidate’s own work carried out by her under my

guidance.

Signature Place: DTU, Delhi

Dr. N.S. Raghava Date:

Associate Professor

Department of Electronics & Communication

Delhi Technological University

iii

ACKNOWLEDGMENT

I would like to express my deep sense of gratitude towards my supervisor Dr. N. S.

Raghava, Associate Professor, Department of Electronics and Communication for his able

guidance, support and motivation throughout the time. It would not have been possible

without the kind support and help of many individuals and Delhi Technological University.

I would like to extend my sincere thanks to all of them.

I would like to express my gratitude and thanks to Dr. O.P Verma (Head of Dept.) for

giving me such an opportunity to work on the project.

I would like to express my gratitude towards my parents & staff of Delhi Technological

University for their kind co-operation and encouragement which helped me in completion of

this project.

My thanks and appreciations also go to my friends and colleagues in developing the project

and people who have willingly helped me out with their abilities.

Lipimoni Taye

Roll No: 2K13/ISY/11

M. Tech. (Information Systems)

Delhi Technological University

iv

ABSTRACT

The technological advances in the fields of networking and distributed computing have been

in an increasing growth trend. And as the curve rise, the ease of access to these remote

computers and networking devices for carrying out various measures like communication,

data transmission and various transactions have also seen a significant increase especially in

the recent years. Security of such infrastructure have always been a major concern for both

hardware and software vendors. Although a number of solutions have been proposed and

implemented over the time to combat the security vulnerabilities, the impact of the black hats

(attackers and hackers) are always at par with those of the security defenders.

Botnet phenomenon is one such threat to the security of any network systems and its end

users which has already gained a widespread negative impact worldwide. Threats via a

botnet include a wide range of malicious activities like spam distribution, malware, phishing,

launching DDoS/DoS, identity theft, illegal resource utilization and many more. Therefore it

has become an utmost necessity from security point of view to come up with an efficient and

robust botnet detection and mitigation technique. While a wide range of solutions have

already come up in the research history, the honeypot technology in detection of bots and

botnets is one significant approach and is still in its infant stage.

This thesis aims towards having a complete understanding of the botnet phenomenon, its

architecture, types, lifecycle and various detection mechanisms. The honeypot technology is

also studied in depth especially in context to its application in network security. Deployment

of honeypots for detecting bots and botnets being the primary goal of this thesis, work is done

to implement a centralized botnet command and control architecture. A low interaction

honeypot is deployed in the compromised bot machines and servers to perform a monitoring

activity for the attackers trying to connect and also logging information for further study and

analysis.

v

Table of Contents
Chapter 1 INTRODUCTION ... 1

1.1 The Botnet Threat .. 3

1.1.1 Botnet Phenomenon ... 3

1.1.2 History.. 5

1.2 Botnet Architecture .. 7

1.2.1 Centralized Botnets .. 8

1.2.2 Decentralized (P2P) Botnet: .. 9

1.3 Botnet Detection .. 10

1.4 LifeCycle of a Botnet ... 13

1.5 Related Work ... 14

1.6 Organization of the Thesis ... 16

Chapter 2 HONEYPOTS AND THEIR TYPES ... 18

2.1 Introduction to Honeypots ... 18

2.2 Types of Honeypots ... 18

2.2.1 Research honeypots .. 18

2.2.2 Production honeypots.. 19

2.2.2.1 Prevention .. 19

2.2.2.2 Detection .. 19

2.2.2.3 Response .. 20

2.2.3 Honeynets ... 20

2.3 Level of Interaction .. 21

2.3.1 Low-interaction Honeypots .. 21

2.3.2 Medium-interaction Honeypots .. 22

2.3.3 High-interaction Honeypots .. 22

2.4 Honeypots in Network Security ... 22

2.5 Honeypots for detection of bots and botnets .. 23

Chapter 3 PROPOSED METHODOLOGY .. 25

3.1 Scope of the Methodology and Main Goals .. 25

3.2 Implementation idea... 25

3.2.1 Command and Control Server Implementation .. 25

3.2.2 Bots finding the C&C ... 27

3.2.3 The Bot model and transitions .. 27

vi

3.2.4 Bot reporting C&C .. 28

3.2.5 Tracking and Detecting Bots .. 29

Chapter 4 EXPERMENTAL SETUP AND IMPLEMENTATION .. 30

4.1 Botnet Implementation... 30

4.2 Communication Methodology ... 32

4.3 Detection with Honeypot ... 35

4.4 Deployment of the Honeypot ... 36

4.5 Key Implementation Features of the Honeypot used 37

4.6 Honeypot Graphical User Interface ... 38

4.7 Internal Mechanism of Honeypot Application .. 39

4.7.1 Launching and Initializing of the Honeypot ... 40

4.7.2 Initialization of the LIModule ... 41

4.7.3 LIProtocol (FTP protocol) interaction with Client ... 43

Chapter 5 EXPERIMENTAL OBSERVATION AND DISCUSSION 46

Chapter 6 CONCLUSION AND FUTURE WORK .. 56

6.1 Conclusion ... 56

6.2 Future Scope .. 58

Chapter 7 REFERENCES .. 60

vii

LIST OF FIGURES

Figure 1.1 Design Overview .. 2

Figure 1.2: Taxonomy of Botnet Architecture ... 7

Figure 1.3 Centralized Botnet Architecture ... 8

Figure 1.4 Decentralized P2P Botnet ... 9

Figure 1.5 Botnet Detection Techniques ... 11

Figure 1.6 Botnet LifeCycle .. 13

Figure 2.1 Honeynet Setup .. 21

Figure 3.1 Design of Botnet C&C ... 26

Figure 3.2 Various Transitions of bots .. 28

Figure 4.1Botnet Implementation Flowchart ... 31

Figure 4.2 Multithreaded design showing two clients connected at the same port. 38

Figure 4.3 Honeypot GUI .. 39

Figure 4.4 Honeypot Application Launch Flow .. 41

Figure 4.5 Flow of Events in LIModule .. 42

Figure 4.6 FTP communication between the client (Botmaster) and server (Honeypot) 43

Figure 5.1 Client side console output (client-server in same network) 47

Figure 5.2 Client side console output(client-server in different network) 47

Figure 5.3 Server side console output .. 49

Figure 5.4 Bots Table at botmaster database ... 49

Figure 5.5 Graphical User Interface of the low interaction honeypot 51

Figure 5.6 Honeypot GUI with client connected ... 52

Figure 5.7 Botmaster telnet window when bot is connected ... 53

Figure 5.8 Console output of the log file created by honeypot .. 54

Figure 5.9 Log file saved in text format .. 55

viii

LIST OF TABLES

Table 1.1 Historical list of Botnets(Timeline) ... 6

Table 2.1 Classification of Botnet Commands .. 24

Table 4.1Main Classes of the botnet Package ... 34

Table 4.2 Bots Table .. 35

1

Chapter 1 INTRODUCTION

One of the most serious security risks to the internet and its vast users in today’s world is

Botnet. A botnet is a network of compromised computers that are remotely controlled by a

Botmaster or Bot herder under a Command and Control (C&C) architecture. Botnets today is

widespread, reason pertaining not solely on malice but profits instead. Delay in detection of

new and emerging botnets leads to higher profits for the adversaries. Bots under a botnet are

responsible for sending spams, malicious packets, performing Distributed Denial of service

attacks, phishing, click frauds and many more. The detection of botnet has become an

important topic of research over the years and many approaches to detect and mitigate botnets

were studied and implemented. The centralized botnet architecture provides a simple and

real-time communication platform to the bot controllers. Detection of centralized botnet aids

in tracking down the botmaster and also helps to mitigate some of the destructive capabilities

of a botnet.

Several botnet detection techniques have been studied and out of them Honeypot technique

has found importance among researchers. A honeypot is a decoy system which is deployed in

an existing network to detect any unauthorized use of resources. Honeypots helps to

understand and analyse botnet phenomenon and its characteristics. Honeypots can be

classified into low interaction, high interaction and hybrid honeypots. Low interaction

honeypots are used to emulate a limited number of services, high interaction honeypots either

emulate a complete operating system and sometimes even use real installations of OS. The

classification is basically dependent on the level of interaction with the attacker. A network

of two or more honeypots is termed as a honeynet. With the help of honeynets, the botmasters

or bot controllers can be tracked down.

In this thesis, a detailed study on botnet phenomenon, it’s architecture, mechanism and

detection techniques has been done. The aim is to implement centralized botnet architecture

over standard FTP, IRC and HTTP protocols and detecting it using the honeypot detection

technique. The honeypot logs are used to study the source and behaviour of any malicious

attacks. Low interaction honeypots are comparatively easy to deploy and maintain. It also

entails lower risks than the high interaction ones with better scalability and overall less

2

resource intensive. Also most of the botnets use centralized command and control (C&C)

architecture to issue commands and control the bots. The P2P variant of botnet is also

becoming quite popular but the centralized infrastructure provides a central point of failure

and is also useful in terms of security aspects.

The broad design overview of this particular thesis work is depicted in the following

Figure 1.1

Figure 1.1 Design Overview

Implement a Centralized

Botnet Command &

Control architecture

Implement a low

interaction Honeypot with

the aim of detecting bot and

botmaster

Deploy the Honeypot in the

bot(Client) system for

detection of Botnets

3

1.1 The Botnet Threat

A botnet is comprised of a network of bots or zombies which are compromised by malware,

spams or Trojan without the knowledge of the user. The term bot as derived from Robot is

programmed to perform some automated functions remotely controlled by a botmaster or a

botherder via a Command and Control(C&C) architecture. Lured by the financial gains in

recent years, botnet related attacks have increased significantly over the years. Botnets

provide a distributed platform for cyber criminals to launch distributed denial of service

attacks, send Trojan, spams, and phishing emails, media piracy, theft of useful computing

resources and information, extortion of e-commerce business, perform click frauds, adware,

spyware, fast flux etc. In order to understand the botnet phenomenon, systematic explanation

of different botnet features is needed [1]. Bot distribution is widely spread in the internet [2]

when vulnerable and unprotected computers are left in open for the attackers. They are

infected and reports are sent to the botmaster. The bots stay inactive until they receive

commands from the botmaster to perform any malicious operations.

1.1.1 Botnet Phenomenon

The major activities in a botnet phenomenon can be classified into three parts: (1) Searching

for unprotected or vulnerable hosts in the internet, (2) Distribution of the bot code to the

target computers to form a network of bots and (3) Signing On or connection of the bots to

the botmaster to start performing actions through the command and control mechanism.

Botmasters are particular about building a robust C&C architecture to manage millions of

globally distributed bots. They had a good understanding of networking and protocols.

IRC(Internet Relay Chat) channels were used as the C&C centres for the first of its kind

botnets. The use of IRC initiated the trend towards centralized command and control. One of

the most notorious and earliest bots names SDBot or Spybot was programmed in C++ which

later began to exploit the vulnerabilities of the Microsoft windows platform. RBot (2003)

started using compression and encryption schemes/ packers such as UPX, Morphine, and

ASPack. With these new demands, a requirement of skilled coders with a clear understanding

of encryption schemes, cryptography emerged. However the centralized C&C infrastructure

of botnet as shown in figure 1.2 is vulnerable for detection and single point of failure. Hence

the emergence of new generation botnets with Peer to Peer (P2P) architecture without a

4

centralized server [2] for example the Sinit(2003) and Phatbot(2004). Storm

Worm/Nuwar(2007) botnet with decentralized P2P architecture was highly complex and

difficult to combat. The botnet threat spread like a global pandemic. As per Mcafee labs

detection botnet infection is more than 1 million in many countries which include India.

According to recent Kaspersky lab statistics, in Q1 of 2015, cybercriminals committed more

than 23000 botnet-assisted DDoS attacks on web resources residing in 76 different countries.

The servers of USA, China and Canada are on the frequent list of targets while resources of

Europe and Asia Pacific region also under serious threat.

The botnet technology is driven by challenges from the many security solutions existing in

the market. The advancement of bots and botnets also results in driving security technologies

to bring forward new and complex security measures and countermeasures to combat

challenges by new and emerging botnets. Driven by monetary benefits the challenges and

risks in botnet technology are in an increasing trend making the tasks of security

professionals even more critical. Botnet detection and mitigation have been a major research

agenda and over the years and many defensive measures were also proposed. But the arms

race between the criminals and defenders is still on-going. Current botnets use state of the art

techniques to challenge the existing detection methods. Using techniques like polymorphism

and metamorphism, mutation of bot codes is possible without any disruptions to the

semantics of the payload. Different bot binaries may exist in a single botnet. The traditional

signature based detection methods looks for particular pattern of data in the binaries. Hence

these methods fail to identify all obfuscated bots.

Recent botnets have also seen evolution of the traditional Command and Control architecture.

Earlier a botmaster used to control the bots via a common control channel by utilizing

centralized C&C mechanisms like IRC, HTTP protocols etc. In case of IRC, the botherder

takes benefit from an IRC server in a public IRC network by specifying a channel which is

kept open for bots to log in to chat rooms. The bots used to scan a network and attack

machines with vulnerabilities. Once the machine was infected the bots would connect to a

specific channel (chat room) and receive commands from the botmaster. IRC also have been

used in taking screenshots from host machines, upgrade or download a bot. Few years ago,

control of many botnets changed from IRC channels to websites using HTTP. The HTTP bots

can install malicious software on remote computers which can be controlled from a remote

website. The attackers send the malicious codes via spam or instant message with links to

victims which when opened installs the exploit code in the victims machine without the

5

knowledge of the later. On successful exploitation, the victim machine can be remotely

controlled for various malicious activities. Zeus bot(also called ZBot) was designed to steal

bank credentials is a special type of HTTP bot. Both IRC and HTTP botnets are vulnerable to

single point of failure. So in 2007 emergence of a new kind of botnet was seen which used

P2P protocol. One of its kind name Win32/Nuwar(later known as Storm worm) used an

encrypted implementation based on eDonkey protocol. It was majorly responsible for spam

distribution in 2007-2008 till it was taken down. The flexible and distributed nature of the

P2P botnet makes it more complex to combat. But maintaining such type of Botnet is also a

major challenge.

Recently botnet attacks have invaded into mobiles devices [3]. As mobile devics are

emerging with new technologies and features with a increased used of internet(eg 3G,4G and

LTE technologies), with the increaded use of such devices, the security of such devices are

becoming a major concern in the cyber world. Nowadays smartphones provide some

vulnerability to attract botmasters. Mobile botnet also works on three principle components:

propagation, C&C and communication infrastructure. Mobile botnets use SMS/MMS or

Bluetooth mechanism other than conventional IP network for communication. Looking into

the rise in usage of internet in mobile devices, development of new IP based C&C

mechanism (HTTP based) is seen. Researchers discovered botnet activities over wifi

connections. Recent studies also observed the use of social networking as a platform to

implement a Command and Control mechanism for mobile botnets.

1.1.2 History

The takeover of botnets for malware attacks and intrusion purposes started during the early

nineties. Early botnets used IRC channels as a medium until the emergence of C&C. In 2003

the hackers of Oregon in US launched a DDoS attack on eBay with the help of 20000

compromised bot hosts [4]. The emergence of P2P botnets was seen in 2004. The client of

P2P itself was programmed and linked to servers taking Gnutella and WASTE to do the

communication. In 2005, a newer and different kind of botnet virus named Zotob started

DDoS attacks to various websites in the United States. In early 2006, statistics derived from

CBI and Microsoft declared that around 57,783 hosts were infected by botnet and it rose to

around 88,136 by September which was indeed an threatening increase. In April 2008 , the

infection from the world’s largest botnet till then named Kraken botnet which compromised

at least 50 of the fortune 500 companies and the host capture count was over 400000 bots.

6

Damballa released the kraken botnet recovering arounf 495000 bots [5]. Zeus botnet was also

a very notoriuod botnet , emerged in 2012 was intended to rob about $47 million banking

customers from Europe . The historical list of botnets with maximum estimated bots is shown

in the following table [6].

Table 1.1 Historical list of Botnets(Timeline)

7

1.2 Botnet Architecture

In order to combat the ever increasing botnet challenges, much research is focused towards

new and complex methods of botnet detection and mitigation. This thesis work is also

focused towards bringing forth a solution towards detection of current and future botnet

related malicious attacks. The work mainly focuses on detection of Botnet based on its

architecture and deployment of Honeypot based mitigation techniques.

Botnet characteristics are primarily based upon the type of architecture it is built in [7]. Based

on this concept, the major architectures of botnet namely Centralized, Decentralized(P2P),

Hybrid have been studied in detail and careful measures are taken to present a java based

simulation for the most commonly used centralized botnet architecture.

The taxanomy of botnet architecture is shown in the following Figure 1.2

Figure 1.2: Taxonomy of Botnet Architecture

B
o

tn
et

 A
rc

h
it

ec
tu

re

Centralized

Peer to Peer

Hybrid

Protocols

Web Based

Application

Software

Servant

Client

IRC

HTTP

HTTP/S

Social

VPN
KAZAA

Emule

8

Based on its architecture botnets can mainly be classified into two types:

1.2.1 Centralized Botnets: The centralized C&C architecture is similar to the Client-Server

architecture. Here the bots maintain a strong communication between one or more

multiple connection points. Servers who send commands and control the bots are

deployed on the connection points. IRC and HTTP are the main protocols in this type

of architecture. Some advantages of centralized architecture are: 1) It is easy to

deploy, 2)No requirement of any specific hardware, 3)No third party involvement as

server is directly in contact with the bots due to which response is quick, 4) Direct

communication between the bots and the botmaster gives better accessibility, 5)

Updates in a timely manner and 6) Scalable. However the single point of failure

feature of centralized architecture might make it vulnerable from an attackers point of

view making it possible to bring down the entire botnet. Some of the popular IRC

based C&C botnets are SpyBot, Agobot, SDBot, GT Bot etc. Figure 1.3 shows a

Centralized C&C botnet architecture.

Figure 1.3 Centralized Botnet Architecture

9

1.2.2 Decentralized (P2P) Botnet: Unlike the centralized architecture a peer to peer

botnet does not have a C&C server. Here the botmaster is in direct contact with

individual bot peers which in turn communicates the command with other bots in the

botnet. P2P botnet is more complex and difficult to suspend. However maintaining

such botnets is not an easy task. The concept of single point of failure cannot be

applied to P2P botnets which also make it difficult to diagnose the total area affected

by the botnet. The interdependence between the bots in a P2P botnet is not strong.

The newly arriving web based botnets are distributed and decentralized in nature.

Social VPN is a P2P application which is free and allows computers to directly

communicate in a shared community. Moreover it allows authenticated and encrypted

communication. It provides Extensible Messaging and Presence Protocol(XMPP)

supported backends like jabber.org and google chat etc and also a flawless access to

remote files and servers. PhatBot, StormWorm etc are popular examples. Figure 1.4

shows a decentralized P2P botnet architecture.

Figure 1.4 Decentralized P2P Botnet

10

[6]. Other than the two major classifications, botnets can also be of Hybrid architecture [8]

which inherits the properties of both P2P and centralized architecture. This model is follows

the concept of Client bot and Servant bot. The servant bot behaves like a client and server and

is configured with a routable IP address whereas the client bot is configured with a non

routable IP address and is not concerned with listening to connections. Servant bots listens

for incoming connections through ports and updates the bot peers with the IP address

informations.

Honeypot Based detection techniques have come up to be an efficient mechanism in cyber

security. A centralized architecture is chosen in this particular work for its various advantages

and care has been taken to deploy the detector i.e a low interaction honeypot in a manner

which allow targeting the botmaster and mitigating the various attacks from the adversaries.

1.3 Botnet Detection

With the eminent growth of botnet related threats in the cyber world, detection and mitigation

measures have become a very major concern. Botnet architecture and various C&C channels

is also majorly responsible for detection of botnets [9]. Over the years different approaches

have been studied and proposed in academia [10]. Out of them, deployment of a decoy

system like honeypots or honeynets has been proposed and implemented for botnet tracking

and monitoring. Study from different papers reveal that honeynets provide more insight

towards understanding the botnet technology and its characteristics and also gives an

approach for detecting botnet related infections. Honeypots are computer systems with very

less production value and are used as traps to seek attention of cybercriminals to fall prey and

hence track down the source of the attack. Honeypots gather important information like [7].

i. Bot signatures for content based detection.

ii. Information of botnet Command and control methodology.

iii. Unknown security loop holes which enable bots to enter any network.

iv. Tools and techniques used by the botnet controllers.

v. The main motivation behind the attack.

11

Another approach of botnet detection is based on passive network traffic monitoring and

analysis. This approach is beneficial to detect the existence of botnets. These techniques can

broadly be classified into following four types. Figure 1.5 below shows the taxonomy of

various botnet detection techniques followed by brief explanation of each type:

Figure 1.5 Botnet Detection Techniques

A. Signature Based Detection

This technique makes use of knowledge of important signatures and existing botnet

behaviors. The benefits of this technique are immediate detection and very less false

positives. Snort is an example of Signature based detection which is an open source Intrusion

Detection System that monitors network traffic to detect intrusion. It is configured with a set

of rules to find traffic which are suspicious. This method however fails to detect unknown

botnets which means that zero day bots remain undetected when signature based detection

approach is used.

B. Anomaly Based Detection

This kind of botnet detection technique performs detection on the basis of various network

traffic anomalies such as huge volumes of traffic, high network latency, traffic directed

towards unusual ports and peculiar system behaviour that could signify presence of malicious

bots [11]. This technique can detect unknown botnets but sometimes it might detect an IRC

botnet which has not yet been used for attacks. Several algorithms were proposed by

B
o
tn

et
 D

et
ec

ti
o
n

 T
ec

h
n

iq
u

es

Honeypot/

Honeynet

Intrusion

Detection

System(IDS

)

Anomaly

Based

Signature

Based

DNS Based

IDS

Host Based

Network

Based

12

researches [12], one involved combination of TCP based anomaly detection with IRC

message statistics. One more algorithm that assisted in detecting encrypted botnet used

anomaly detection with flow data in transport layer. Botsniffer proposed by Gu et al [13] used

network based anomaly detection for identifying botnet command and control in local area

network. False positive rate is low in such detection techniques.

C. DNS Based Detection

This type of detection is mainly based on specific DNS information generated by a botnet. It

is quite similar to anomaly based detection techniques. For accessing the C&C server the bots

performs DNS queries to identify the C&C server hosted by the DNS provider. Thus DNS

monitoring helps in detection of DNS traffic anomalies. This approach might give false

positives. another setback for this approach is the high processing time necessary to monitor a

large scale of network. DNS based detection mostly concentrates on botnet tracking and

understanding botnet characteristics and technology and less on detection of botnet infection.

D. Mining Based Detection

This technique is mainly based on the identification of the botnet C&C traffic which is not an

easy task. As botnets use familiar protocol like TCP, HTTP, IRC, FTP etc for C&C

communication, the botnet traffic clashes with normal traffic. The data mining approaches

includes machine learning, classification, clustering and correlation to detect the botnet C&C

traffic. Use of data mining technique for botnet traffic detection can be seen in Botminer [14]

which clusters similar communication and similar malicious traffic. Cross cluster correlation

is then carried out to detect the hosts that share same patterns in communication and

abnormal activities. Botminer is independent of botnet infrastructure and protocol. It can

detect real world botnets which includes IRC, HTTP and P2P based botnets and also gives a

very low false positiveness.

13

1.4 LifeCycle of a Botnet

Analysis of a botnet behavior can be done with its life cycle [15]. Botnet classification

reflecting its lifecycle and current resilience techniques are discussed in [16]. The botnet

lifecycle can be summarized into seven steps as depicted in the Figure 1.6 and briefly

explained as follows:

Figure 1.6 Botnet LifeCycle

Initialization

n

Registration

(DDNS and static IP)

Preliminary injection (Start to infect

the victim machines directly or

indirectly)

Building the bot Network

Rallying

(Between bots and C&C)

Attack Initiation

(DDoS, identity theft, spam etc)

Upgrading and Maintenance

14

1. The foremost step in the botnet lifecycle is ‘initialization’. In this step the

communication is initialized by the botherder by setting up the bot parameters.

2. The Distributed Domain Name System(DDNS) assigns a static IP address to carry out

the registration process with the botmaster.

3. In the preliminary injection stage, regular infection is started in different forms like

virus propagation, downloading of spam via email, running malicious attachments

that are downloaded or infection by removable disk drivers.

4. After the preliminary stage, building of the bot network starts. Search is done by the

infected systems and malware binaries from database are installed. The process of

download occurs through HTTP, FTP or IRC protocols.

5. Rallying between the bots and the C&C starts the ‘Connection phase’. Whenever the

bots restart, a connection is established between the bots and the botmaster and

commands are sent and received.

6. Next comes the attack stage where the C&C sends commands to the bots to begin the

malicious activities such as DDoS launch, search for loopholes or vulnerabilities in

the computer system, identity theft, phishing attacks, software counterfeiting etc.

7. The last stage in the botnet lifecycle is the ‘Upgradation and Maintenance’ of the

botnet stage. This process is performed by the botmaster so that all the bots stay up to

date for all coordinated attacks in future. By updating, different detection techniques

are being avoided, similar behaviours are avoided and addition of new features for

connecting to other C&C channels.

1.5 Related Work

Recent history in network and cyber security has witnessed that much research has been done

in botnet theory and its detection techniques. Honeypot research has also found equal

importance as being one of the efficient detection mechanism for various types of cyber

attacks including detection of botnets. This current thesis work is dedicated towards

techniques for detection and mitigation of botnets and botmasters by deploying a low

15

interaction honeypot in a centralized C&C botnet architecture. A few of the related work are

discussed below.

The Honeynet project [17] is an ongoing open source project which basically aims at

understanding honeynets to learn about bots. In this project, observation is done targeting the

people who is in control of the bots and it is accomplished by setting up network of honetpots

or honeynets. The paper discusses in depth about botnets, common attack mechanisms used

and the people involved in carrying out the attack.

Niels Provos in his work [18], ‘A virtual Honeypot Framework’ brings out a framework for

deploying a virtual honeypot namely Honeyd which can simulate computer systems at

network level. The simulated machines seem to run on IP address which is not allocated in a

particular network environment. Detection of network fingerprinting tools is done by

simulation of networking stack of various operating system by the honeyd system. Honeyd

proved to be very useful from security point of view. It could detect and disable worms,

distract adversaries or prevent the spreading of spam emails. J.S Bhatia et al [19] also came

up with an approach of botnet command detection using virtual honeynet. Researchers are

coming up with efficient solutions using virtual honeypots/ virtual honeynets [20].

Evan Cooke et al [21] in their paper ‘The Zombie Roundup’ outlined the origin of the bots

and their structures. They use data from the Internet motion sensor project and an experiment

with a honeypot. The effectiveness of botnet detection is studied by monitoring of IRC

communication flow. A botnet detection system is also implemented by utilizing advanced

C&C systems by correlation of secondary detected data from various sources.

Michael Vrable, Justin Ma et al have built a honeyfarm system known as Potemkin which

exploits virtual systems, extensively shares memory and resource binding in order to achieve

the goal of better scalability of honeypots. Potemkin emulated around 64000 internet

honeypots in tests run live using a limited number of physical servers.

Botnet initiated DDoS attack detection and mitigation has been described in [22] by Felix C.

Freiling, Thorsten Holz and Georg Wicherski in their work ‘Botnet Tracking: Exploring a

Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks’.

Sivaprakasam.V and Nirmal sam.S has proposed a technique [23] to mitigate the effects of

DDoS effects by collaborating a low interaction honeypot with a filtering technique named

Firecol [24].

16

Other botnet detection techniques which does not particularly involve a honeypot

implementation are Bothunters [25] which describes the detection with the help of

cooperative behaviours, Botsniffer [13] which proposed a statistical approach to detect

botnets based on their nature like spam distribution, binary download etc in a centralized

architecture. Botminer [14] is an extended version of botsniffer which proposed a detection

framework to do clustering on malicious activities and monitored C&C communication. The

final result is generated by cross correlating them. Karasaridis et al. [26] built a detection

mechanism to compare the distances between observed flow data and the IRC traffic flow

model.

Detection by signatures involve Goebel et al. using regular expressions to symbolize sets of

distrustful IRC names, and use of n-gram analysis and scoring systems for evaluation of the

IRC names to determine whether a particular conversation is coming from a bot contaminated

host . Detection also by observing attack behaviours have been proposed and implemented.

Brodsky et al. [27] assumed that botnet tends to send a lots of spam within a short duration

for detection of botnet generated spam. Also, Xie et al. [28] constructed a spam signature

framework with the help of spam server traffic properties and spam payload.

1.6 Organization of the Thesis

This thesis has been divided into five chapters. A brief introduction of each chapter is given

in this section.

Chapter 1 as discussed above gives us a broad understanding of the botnet threat and its

detection and mitigation techniques. A detailed study is done and an overview is provided

about the botnet phenomenon, its architecture, detection techniques and its lifecycle.

Chapter 2 introduces the Honeypot technology. It discusses about types of honeypots and

classification according to its level of interaction. A detailed discussion is made about the

importance of honeypots for network security. Also as per the main goal of this thesis,

honeypot in detection of bots and botnet is also discussed. The chapter concludes with the

recent advances and future treands in botnet technology.

17

Chapter 3 describes the proposed methodology of the current thesis work. It describes the

scope and goal of the proposed approach. How a command and control architecture can be

built with design structures and mechanism of the flow of control.

Chapter 4 gives a detailed understanding of the experimental setup and execution of the

proposed approach. Creation of simple centralized C&C botnet architecture in an

organizational private network has been explained in detail. Use of an external software

called Hamachi to change the network so that the approach works in different networks is

also discussed. Implementation of a low interaction Honeypot is explained along with the

deployment of the honeypot. And finally detection of the bot/botmaster is carried out with the

honeypot.

Chapter 5 discusses the experimental results that are obtained by implementing the proposed

methodology and by making certain observations. This chapter justifies the proposed

detection technique to be efficient and in contrast to the existing techniques.

Finally, Chapter 6 concludes the thesis by discussing the overall contribution of the research

in the context of related work in the area. In addition, this chapter also discusses the

limitations of the approach and points to future research directions.

18

Chapter 2 HONEYPOTS AND THEIR TYPES

2.1 Introduction to Honeypots

Honeypots can be defined in many ways and history lays numerous definitions dependent on

its usage and deployment. According to Lance Spitzner’s book “Tracking Honeypots”,

honeypots can be defined as follows:

“A Honeypot is an information system resource whose value lies in monitoring unauthorized

or illicit use of that resource”

By definition, any interaction with a honeypot is supposed to be unauthorized as it is

practically of no production value. A honeypot is legally expected to get attacked, exploited

and probed and in doing so it gives valuable information from security point of view.

According to Wikipedia ,”A honeypot is is a trap set to detect, deflect, or, in some manner,

counteract attempts at unauthorized use of information systems”. So basically a honeypot is a

real system acting as a decoy or trap when deployed in network system for the purpose of

logging and studying various types of attacks in the world of internet. Honeypots can be

applied as a solution to various security problems and one of the many solutions is tracking

and detection of malicious botnets. It can log malicious activities in a compromised system

which we call the bot or the zombie machine. Since there are plenty of configurations of

honeypots, it is difficult to conclude what a particular honeypot does and how successful it is

in meeting its objectives. For all requirements to be met including all legal, technical and

privacy concerns, the purpose and goals of the honeypot to be deployed must be clearly stated

in the security policy.

2.2 Types of Honeypots

Looking through the aim of honeypot [29], it can broadly be classified into two types namely

research honeypots and production honeypots.

2.2.1 Research honeypots are mainly used in research, military operations and government

organizations [30]. They can capture a large amount of information motivated towards

capture of new threats and learn about blackhat techniques. Major objective of research

honeypot is learning of protection measures and approaches. Security of an organization is

not a primary concern in research honeypots. However, simulation of of the whole operating

system is possible with research honeypots which present the attacker with a familiar set of

19

vulnerabilities within the system. For example, in case of web related attacks, a default linux

installation with apache can be done to observe the results. With a strict deployment, research

honeypots can perform response tasks like trace-back. [31] The various uses of these type of

honeypot includes security professionals trying to finds new attack techniques, government

and law enforcement agencies looking for preventive measures in terms of predictions from

research analysis. Honeynet is a example of a research honeypot [32] [33]. Honeynet research

helped in revealing an increased trend in credit card fraud.

2.2.2 Production honeypots are mainly used as a protection system in an organization from

external attacks. It is deployed inside a production network to improve the overall security. A

lesser amount of information is captured compared to research honeypots. They can vary as

per the level of interaction with the attacker. Production honeypots might pose some risks to

the organizations existing security structure as honeypot features might misuse other systems

without the knowledge of the network administrator. Production honeypots mainly aims at

capturing data by emulating services and sending them to the network administrator. A

honeypot is more efficient defensive mechanism than Intrusion Detection System and

firewalls. As honeypots are of no production value any traffic coming towards it is malicious.

Production honeypots also helps in noise reduction for malicious activity with lesser false

positives. According to Bruce Schneier’s model , honeypot security phases are primarily

classified as prevention, detection and response.

2.2.2.1 Prevention

The foremost thing to consider in building any security model is prevention i.e preventing the

system from being hacked. This can be done in many ways like using firewalls to control

network traffic and adding some rules to stop or allow it, using authenticated access, digital

certificates, password protection etc. Use of encryption algorithms are also seen for message

protection . Using honeypots in a company network can provide prevention in many ways. A

hacker aware of such honeypots will be scared or confused. Thus use of honeypots can help

in prevention of any security breaches in an organization.

2.2.2.2 Detection

In cases where prevention did not work and a system is compromised by an intruder, there

are ways for detecting those attacks. Network Intrusion Detection Systems is one of such

detection solution. This type of solutions help users to know if their system or network is

20

breached or attacked but it cannot prevent the intruders to get into the system. A valuable

monitoring technique at this point is deployment of honeypots.

2.2.2.3 Response

At response stage, it is quite certain that a system has been attacked and a response has to be

generated. Forensic investigation begins at this stage. When an intruder compromises a

system, some traces are left behind by them. With the help of appropriate data as clue, results

can be derived as to what might have happened and how. Honeypots has the provision of

logging files and information which are valuable for later investigation.

2.2.3 Honeynets

The idea of Honeynet comes from setting up a network of honeypots [32]. In a classical

method, a single honeypot is deployed in a production network. But it is possible that more

than one honeypot is deployed each being a standalone solution. A honeynet deployment

requires a honeypot and a honeywall. The intruder can access a honeypot which is a real

operating system and perform attack operations such as launching a denial of service attack.

For risk reduction, a firewall is configured on the honeywall so that outbound connections are

limited. Thus the production network remains completely unaccesible. The Honeywall can

even maintain an Intrusion Detection System to monitor and record the packets going and

coming towards the honeypot.

According to the Honeynet project, there are two honeynet architectures: First Generation

(Gen-I) and Second Generation(Gen-II) [34] . Blackhats can easily discover the Gen-I types

and they are easy to fingerprint. Due to lack of sensor on the honeypot operating system, the

activities on the host are not stored separately and can be removed by the hacker. A honetnet

can be accessed easily by a layer-3 firewall.

Gen-II honeynets are more advanced and not easily detectable. They can record events in the

host and recording of keyboard stokes is possible even if the message used by the attacker is

in encrypted form.

Figure 2.1 below shows a diagram which depicts a Honeynet setup with four honeypots.

Acting in a bridge-mode, the honeywall does the functions same as the switches. This was,

the honeywall is logically connected to the network by keeping the honeynet in the same

address range.

21

Figure 2.1 Honeynet Setup

2.3 Level of Interaction

Honeypots can be classified into three types according to their level of interaction with the

attacker.

2.3.1 Low-interaction Honeypots

A low-interaction honeypot [35] can emulate a limited number of network services such that

an intruder cannot perform any specific action [36]. They can be primarily used for detection

22

and logging purpose and work as production honeypots. Sometimes they also respond to to

some login attempts. An attacker can have access to a limited services and the underlying

operating system is not hindered. Hence low interaction honeypots provide a secure solution

promoting very less risk to the underlying environment. They are also successfully

implemented in capturing and analyzing malicious packets in VoIP environment [37].

Example of low interaction honeypot is Honeyd.

2.3.2 Medium-interaction Honeypots

Medium-interaction Honeypots can emulate full services i.e they can emulate behaviour of

web servers or operating systems with the primary purpose of detection as production

honeypots. They are also used as an application on the host operating system like the low

interaction honeypots and only emulated services are presented to the users. They differ from

the low interaction ones in terms of chance of failure making them more vulnerable to

attacks. Nepenthes [38], Honeytrap, Honeyfarm [39] etc are some examples of medium

interaction honeypots. Nepenthes honeypot was used in malware collection along with anti

virus scanning in [40].

2.3.3 High-interaction Honeypots

High-interaction honeypots are the most interactive amongst the three. Emulation of a full

operating system or installing a real operating system or server is done in addition to

monitoring systems. The primary purpose of high interaction honeypots are focused towards

research although they can use as production honeypots also. The vulnerabilities are higher

compared to low and medium interaction honeypots. An intruder can benefit highly by using

the compromised systems to perform attacks in the network, launch a DDos etc. SQL

injection analysis can be performed with the help of high interaction honeypots [41]. A good

example of high interaction honeypot is Honeywall.

2.4 Honeypots in Network Security

In the field of network security, honeypots does the work of turning the table for both

attackers and security professionals. In the world of honeypots, security breaches are exposed

on purpose and various internet threats are invited. The primary purpose of honeypots is

detection and learning from various types of attacks and using those information to improve

existing security infrastructure. Unknown security holes and network vulnerabilities can be

analysed using the information gathered from honeypots and thus protected. Depending on

23

the deployment of honeypots, security holes can be observed and analyzed. Information of

attackers who gained access to the network can also be studied and their tactics can be noted.

Earlier network monitoring techniques like Intrusion detection and prevention systems used

passive network traffic monitoring based on specific patterns. Such methods give false

positive errors due to mismatch in patterns and sometimes even false negative errors on

actual attacks. But on a honeypot, as the system is of no production value, every packet is

malicious clearly stating that every device connected to a honeypot is either wrongly

configured or with an evil intention. Hence attack detection becomes an obvious scenario in

honeypot environment. A honeypot can be deployed in a network within or outside the

firewall. These are the most vulnerable places from where attackers try to access the system.

Honeypots has application in various fields, research honeypots can be used in education ,

honeypots in internet to measure actual attacks in the internet, hybrid honeypots or

honeynets, honeypots with Intrusion Detection are few of the applications [42]. Research

honeypots can particularly be used for the purpose of collecting malwares and monitoring of

malicious activities [43]. A very effective solution came up when Koniaris et al depoyed two

research honeypots where one behaved as a malware collector and the other acted like a

decoy system which logs every malicious actions from the attackers. The system have been

kept online for a long time to collect the information and detailed study has been done.

A good amount of research has been focused towards visualizing attacks on networks and

computer systems by the information security community. A visualization tool for the

popular low interaction honeypot, Nepenthes was presented by J Blasco. Nepenthes honeypot

here acted as the malware collector which could simulate vulnerable services that are target to

malwares so that binaries corresponding to worms are safely captured [44]. The honeypot

Dionaea was also used in a visualization project named carniwwwhore which was designed

in the form of a web interface for one of Dionaea’s databases and a recent development in

terms of utility was also seen for the Nepenthes platform [45].

2.5 Honeypots for detection of bots and botnets

Detection of botnets is a multiple step operation. The first step is to collect some information

about the existing botnet which can be done with the help of honeypots or by studying the

captured malware. For example the honeypot nepenthes automatically captures malicious

packets and incoming traffic [40]. This way botnet related information can be analysed and

24

studied. With the use of a proper honeynet /honeypot architecture malwares and worms can

be detected.

Bot and Botnet behaviour can be classified through bot commands as these commands

corresponds to a particular action to be executed by a bot program [46]. Bot commands can

be of different categories like general commands which are invoked by intruders to

manipulate the botnet [47]. Examples of such commands are acquiring a nickname for the bot

with nick command, terminating operation with terminate command etc. Second category is

the Host Control Commands which are used in obtaining details of the host and causing some

abnormal actions to the host. Examples are execute command to for executing an application.

A third category is of network control commands which are purposed to extract information

out of the host network and manage the behaviour of the network. Examples are net info,

scan etc. The fourth category is of those commands which are meant to launch attack on

victim machines. Examples include DDos, email spam etc. Table 2.1 below gives the group

classification of the bot commands.

General Commands Host Control

Commands

Network Control

Commands

Attack

Commands

login/logout,

reconnect, id, alias,

action, join, part,

privmsg, mode,

cmdlist,

about/version,

disconnect, nick,

rndnick, status, quit

remove/die, clone, open,

delete, sysinfo, shutdown,

listprocess, passwords,

killthread, killprocess,

execute, sendkey/

getcdkey, keylogger,

threads, opencmd

server, netinfo,

download,

update, dnsredirect,

 httpd/ httpserver

scan, visit

synflood,

updflood

httpflood,

pingflood

email spam

Table 2.1 Classification of Botnet Commands

25

Chapter 3 PROPOSED METHODOLOGY

3.1 Scope of the Methodology and Main Goals

As discussed in the previous chapters there are two major approaches in detecting a botnet.

One is setting up a honeypot/ honeynets and other being passive network traffic monitoring

and analysis. The main aim of this thesis is detection of botnet command and control through

deployment of a low interaction honeypot. In order to achieve that goal, a botnet C&C

environment had to be build which will be in direct contact with the botherder [48]. A

centralized architecture was chosen particularly as it is easy to deploy and also it is beneficial

in terms of security perspective due to its single point of failure feature. The choice of low

interaction honeypot is also due to easy deployment facility and low risk involvement as it

emulates services and do not have real services which prevents the attackers from fully taking

over control of the machine. Taking all these requirements into consideration, an attempt has

been made to create and implement a simple botnet dubbed environment. By creating a

simple botnet from scratch, some techniques used in real botnets can be highlighted which

can help in better understanding the threats imposed by botnets and hence come up with

better mitigating techniques.

3.2 Implementation idea

The current work focuses on building a simple web based command and control(C&C) server

with encryption and it is capable of the following tasks:

 Tracking of bots

 Receive reports from bots

 To give commands to the bots like sleep, spam, scan, start etc. Also a java based bot

program is implemented which reports to the C&C

 Malicious traffic sniffing.

 Send spam/ malicious messages/packets as directed by the C&C

3.2.1 Command and Control Server Implementation

A domain has to be first secured in order to build the botnet C&C server. The environment

needs to be built with windows host and Apache, MySQL and PHP deployed in it. The host is

26

connected to a dedicated network (LAN network) with a static IP address. A facade website

deployment will help in hiding the botnet C&C which contains a MySQL database and a

directory named botcandc deployed at the root of the web server. The directory botcandc

consists of two main files namely connect.php and dbConnect.php. For reporting to the C&C

server and receiving further orders, the bots will be connecting to the main script file,

connect.php. The botmaster will use the script dbConnect.php to manage the botnet. The

design of the botnet dubbed environment is depicted in the following diagram.

Figure 3.1 Design of Botnet C&C

The bots initiate the communication with the C&C Server via HTTP by sending data inside a

POST which is the HTML method used in submitting data to be processed by a web server.

The C&C will send the response in the form of simple commands for the bots to execute.

When HTTP is used as the method of communication, detecting becomes a difficult task as

HTTP traffic is too common for any POST requests to be lost among the valid traffic. That is

the reason real botnets like Torpig and Rustock used HTTP as communication protocol. Also

encrypted traffic makes it difficult for communication to be captured easily and also makes

eavesdropping difficult. The bots are instructed to trust a self assigned SSL certificate which

dbConnect.php

C&C Server

Database

Connect.php

Botmaster

Bots

27

provides protections to the transmitted data and the path of C&C files

(botcandc/connect.php).

However a person or an attacker attempting to connect to the C&C server using HTTP cannot

be stopped if he accepts the SSL certificate to be trusted. For these reasons a fake website

need to be run in the C&C server. The encryption methodology will hide the traffic data but

not the fact that communication is happening between with server. So it should be kept in

mind that the botcandc directory remains hidden from anyone trying to access the fake

website. This can be done by turning off indexes, website fingerprinting. Indexes can be

turned off by editing the configuration files of the Apache web server.

3.2.2 Bots finding the C&C

After the command and control server had been built, the second step is to allow the bots to

connect with the C&C. The URL with IP address of the host was hardcoded in the bot code:

ccInitialURL = “10.18.3.123/botcandc/”;

Botmasters can use a Fully Qualified Domain Name(FQDN) instead of an IP address so that

they can change the IP addresses of the C&C that has been compromised. Sophisticated

botnets uses even more complex algorithms. Use of domain flux which uses a domain

generation algorithm to find the C&C was used in the Torpig botnet [49]. Botmasters can

even use ISPs for hosting websites, registrars for registering the domain names, and

DNS/DynDNS providers for resolving the host names in the C&C.

3.2.3 The Bot model and transitions

The bots in their life cycle will go through various phases and transition which have been

depicted in the following Figure 3.2 The information exchange between the bot machines and

the C&C should be clear. Separate java classes need to be run in order to support the various

functions to be carried out. A few of the classes will be discussed in the next chapter.

28

Bot going through various transitional stages:

Figure 3.2 Various Transitions of bots

3.2.4 Bot reporting C&C

The bots , after identifying the C&C ensures that the commands are transmitted in a secure

manner. The encrypted POST does this task by asking the bots to trust the SSL certificate of

the C&C server. This is done in the method setupTrust() in the class cc_Connector.

Bot in init mode initializes itself and tries to

connect to the C&C server in the first place.

In the start mode, the bots collect detailed

information of the host including the unique ID

and sends report to C&C

In the command mode the bots begin passive

TCP listening by starting a thread and starts

accepting commands from the C&C

In the scan mode bots scan

the subnet and reports to the

C&C with its results.

In the sleep mode, an updated

report is sent to the C&C in

random intervals.

In the spam mode, the bots

retrieve the spam template

and distribute spam

messages.

No reply

from C&C

Start

C&C replies with public IP of botnet

No reply

from C&C

Scan Sleep Spam

Public void setupTrust()

{

Properties systemProps=System.getProperties();

systemProps.put(“javax.net.ssl.trustStore”,”./jssecacerts”);

System.setProperties(systemProps);

}

29

The file which is used as a trust store is named jssecacerts which consists of the public part of

the SSL certificate used by the C&C web server. Implementation of a shared password has to

be done to ensure that only the particular bots can connect to the C&C. The password is set

when the bot object is created.

The bot class has a parameter called the sleepCycle which helps the bots to connect with the

C&C at random intervals. To avoid obviousness from specific patterns the parameter

sleepCycleRandomness is also implemented in the bot class.

The POST methods used are built with an array. When the bots use POST to send any

message a multidimensional array is created which holds the names of the parameters and

their values. The class cc_Connector processes the data and encodes the parameter name and

value pairs. These data is collected by the C&C through connect.php file. The C&C sends

response in the form of one-word command eg scan, sleep etc and the bot requests for

specific details.

For all the exchange that takes place between the bot and the C&C, the password submitted

by the bot is authenticated and if found to be false, the bot will be misdirected to catch error

pages.

3.2.5 Tracking and Detecting Bots

Much research has been focussed into tracking and detection of bots and botnets till now.

However keeping up with the new and emerging techniques of hackers and intruders, this

field is still an open platform for researchers to have a fair assessment of botnets’ footprints.

Tracking of botnets through honeypots has grabbed much attention from security point of

view. It has been proven to be better than most other techniques of botnet detection. Clubbed

with other techniques like anomaly detection, intrusion detection etc, efficient methods can

come up for both detection and mitigation of threats posed from botnet attacks.

30

Chapter 4 EXPERMENTAL SETUP AND IMPLEMENTATION

4.1 Botnet Implementation

To keep the design simple and understand better, the Command and Control (C&C) in this

particular experimental setup resides with the botmaster machine itself. The architecture

which has been implemented is shown in the following Figure 4.1. It consists of a server

machine which is the botmaster and one or more client machines which are the compromised

bots controlled by the C&C residing within the botmaster. Generally the botmaster and the

bots dwell in the same network (LAN/Wifi). However with the help of router port forwarding

it is possible for the C&C to control the bots residing in different networks too. The current

work focus towards implementing the C&C architecture where the client and server are in

different network.

Port Forwarding is a NAT (Network Address Translation) function that forwards a

communication request from one IP address and Port number grouping to another during the

traversal of the packets/ messages through a network gateway like a router or a firewall. In

my case, I have used the LogMeIn Hamachi software to have the port forwarding done when

a bot / client machine from a different ISP than my organization’s private network attempts to

connect to the botmaster(C&C) or vice versa. The Hamachi software is run in the background

of the client or the server machine. When it runs, a public IP address is generated which can

be accessed across a network gateway like the router or the firewall. For example if the

software is run on the server/ botmasters machine, the SocketClient.java class is fed with that

public IP address with the specified port number and thus connection is established between

computers working on different networks. This feature can be further extended to build

network in P2P platform and also in the cloud environment where distributed computing

paradigm are used.

As explained in the botnet life cycle, a computer is said to be compromised when a botmaster

attacks the computer with its binaries. When those binaries or executables are knowingly or

unknowingly run by the users, the bot’s code (malicious packet/ virus/spam) is downloaded

in the computer and the bot machine is compromised. The direction of flow of the

implementation is as shown in Figure 4.1

31

Figure 4.1Botnet Implementation Flowchart

Start

6. Bot sends Botmaster

HostDetails via HTTP

5. The bot machine runs

the class runBot.java

7. HostDetails saved in MySQL

table using connect.php file at

the botmaster

4. Botmaster sends RunX

command to the bot and a file

via FTP

2. Class SocketClient.java is run

in the bot machine. The client/bot

connects with the botmaster

3. Bot waits for the botmaster’s

command

1. Class SocketServer.java is

run in the botmaster machine

and waits for clients (bots) to

connect

End

Db-botmaster

table-bots

32

Programming Platform

Java is used as the programming language due to the following reasons-

 Java provides efficient networking modules to work with.

 The inbuilt libraries provided by java can be extensively used for easy development.

 Implementing network socket program is easy and stable.

 Java provides an extensive thread library for developing multi-threaded applications.

IDE(Integrated development Environment)

Eclipse IDE is used for the following reasons-

 It is open source software so comes free of cost.

 The features of the IDE include modularity, refactoring, code completion and package

management.

 Eclipse also provides support for JavaDoc for documentation of source codes

efficiently.

The machine with the botmaster runs a XAMPP server in its machine with Apache and

MySQL module running at all times.

4.2 Communication Methodology

A network socket implementation is done using simple client-server architecture. The

botmaster machine serves as the servers and the machines running the bot codes act as the

clients. The socket is programmed to serve multiple clients at the same time and to have a

bidirectional communication between the server and the clients. This is possible because of

the multithreading feature of Java programming.

The series of steps carried out is as follows:

 Server package is deployed in the botmaster machine which contains the files

SocketServer.java and SocketClientHandler.java. A new thread for each client is

created using SocketClientHandler class. A botnet with a network of bots can be

controlled in this manner by a botmaster. The server is always listening for

connections with SocketServer.java always running.

 The machine containing the bot code is considered to be compromised with the class

SocketClient.java being run on the machine. During execution of that class, the client

33

or the bot machine makes a connection with the botmaster hence creating a two way

connection between the two socket end points.

 When SocketClient.java class is run on the bot machine, it asks for command from the

botmaster via a message, ‘Waiting for Command??’.

 Upon receiving the message, ’Waiting for Command??’ from the bot/client machine,

the botmaster machine, with the help of the class SocketClientHandler.java responds

to individual clients by sending the command ‘RunX’ . Along with the command the

botmaster can also send any file to the bot which can be inclusive of some encryption

key or other malicious executables. Botmaster uses Telnet (via FTP) to transfer files.

 As soon as the bot machine receives the ‘RunX’ command, the class

SocketClient.java executes the botRun() method of the class RunBot.java file.

 The main class which drives the entire bot code to carry out the tasks like scanning

compromised machine, sending out details to the botmaster is RunBot.java.

HostDetails are send from the bots to the botmaster with the help of HTTP by sending

data inside a POST (the HTML method which is used for submitting data to be

processed by a web server). The C&C residing in the botmaster will send the response

in the form of simple commands for the bots to execute. When HTTP is used as the

method of communication, detecting becomes a difficult task as HTTP traffic is too

common for any POST requests to be lost among the valid traffic.

The Botmaster on receiving the information from the bots, stores them using PHP. The URL

with the IP address of the host was hardcoded in the bot code. It typically looked like-

ccInitialURL= http://192.168.137.239/botcandc/connect.php

 The IP address 192.168.137.239 is the IP address of the server machine. Mine is a

wifi network provided by our college. It will be changed according to the network to

which the botmaster connects.

 botcandc is a folder in the root directory of the botmaster machine. The server used in

this case is XAMPP server. So the root directory resides in the directory named

htdocs in the XAMPP folder.

 Botcandc folder contains a file named connect.php which handles the POST data

comprised of hostDetails and saving them in a MySQL table using basic SQL

commands. Botcandc contains another file named dbConnect.php which makes the

connection with the database.

http://192.168.137.239/botcandc/connect.php

34

 A database named botmaster is created in the XAMPP server and a MySQL table

named bots is saved which contains the scanned information of the bots. We can later

view the table via the XAMPP control panel.

The main classes which drive the class RunBot.java are briefly explained below. The actions

of the bot machine is driven by the method botRun() present in RunBot.java.

Class Name Purpose

Bot It contains the features of each bot such as the current status, unique ID,

sleep time, network specification

BotMain The main class which is responsible for every bot actions

CC_Connector It describes the connection of the brokers with the C&C via POSTS

CC_DataExchanger Encoding of the data and request and response between C&C and data .

Tools It contains some helper methods which are called from different

functions.

HostDetails It contains the detailed data regarding the host like OS information,

uptime.

Table 4.1Main Classes of the botnet Package

The various parameters which characterize the bots are as follows:

 Status- Current status of the bot (init)

 ccInitialURL- The initial URL given to the command and control

 sleepCycle- Duration in seconds to poll the C&C for instructions

 sleepCycleRandomness- Random behaviour in the sleep cycle

 id- It is the unique ID of the bot which is generated using computeMD5 function of

Tools.java. This function receives hostname as the parameter and compute MD5

checksum of the same.

The MySQL table, ‘bot’ at Botmaster’s C&C server-

35

Table 4.2 Bots Table

Each row in the above bot table corresponds to details of the bots. The unique ID in each row

is the botID. The table includes following columns-

 BotID- It is the unique id for each bot machine which is generated using MD5

encryption on the hostname of the particular bot machine. It acts as the primary key

and does not accept duplicate values but updates the last updated field in the table if

same botID is received in the database.

 Status- It refers to the mode of the bot machine. For example start or init.

 Hostname- It refers to the name of the bot machine.

 osName- The name of the Operating system of the bot machine

 osVersion- The operating system’s version of the bot machine

 osArch- The operating system architecture of the bot machine

 hostIps- IP address of the infected bot

 sourceIP- IPaddress of the bot machine

 proxySourceIP- IP address of botmaster

 created- Date and time when the bot was created.

 LastUpdated- Date and time when bot was last updated.

4.3 Detection with Honeypot

Having set the botnet C&C architecture, now the detection of bots is done with deployment

of honeypots. A low interaction honeypot named honeyRJ was implemented in a java based

environment and eclipse as the IDE. HoneyRJ was developed in the Spring of 2009 . It was a

part of syllabus for a course project in CSE5715 named “Network Security at Washington

University in St. Louis”. As stated in previous sections a low interaction honeypot can serve

one or more functionality protocols with limited services. HoneyRJ supported the following

features:

 Multiple Protocols: Support for multiple protocols is provisioned by the application.

The class which implements the interface can be included in the honeypot package

and its logic will define the interaction of the honeypot with the clients.

36

 Can have an unlimited number of client connections: Due to its multi threaded design,

the honeypot can make connections to any number of clients simultaneously. depicts

the multithreaded design of the HoneyRJ.

 Logging : Each connection to the system with the honeypot has its logs recorded

along with the information of the sent and received packets.

 Graphical interface: A user interface is created which allows a user to handle the

application.

 The honeypot has also an inbuilt feature to prevent Denial of Service attacks. The two

main features are Connection timeout and Waiting period. The connection timeout

feature enables every connection to the honeypot to be closed after a configured

timeout period of 2 minutes. It will force disconnect the connection if it remains idle

for the timeout period or does not become idle at all. The waiting period feature will

configure a period of 5 seconds between simultaneous connections of a protocol

during which an attacker won’t be able to establish new connections with the

protocol.

4.4 Deployment of the Honeypot

The low interaction honeypot is deployed in the bot machines and it is run in the background

of the client systems. When the bots try to connect to the C&C server in order to receive

commands from the botmaster, the honeypot detects the connection and keeps a log of that

connection as mentioned previously with the information derived from the bot machine. The

GUI of the honeypot helps to identify how many connections are made simultaneously. The

log files are created in the form of text documents in a specified directory with automatic

updation. A user can even monitor the number of active connections from the log files. The

format of a log file can be explained as follows:

******Started at: Sat Jun 13 16:28:55 IST 2015********

TIMESTAMP,SRC_IP:PRT,DST_IP:PRT,PACKET

The line after the header logs the details of each sent and received packets. In left to right

order the information held are:

 Timestamp which says the time when the packet was sent or received.

37

 Source IP holds the IP address of the packet where it was sent from. For this scenario

IP address of the bot machine for sent packet.

 Source Port gives the the port number used to send the packets.

 Destination IP is the IP address of the system where the honeypot is running.

 Destination Port gives the port number from which the packet was received.

 Packet means the string contained in the packet.

4.5 Key Implementation Features of the Honeypot used .

As included in the feature of HoneyRJ, the honeypot implemented in this case also has been

programmed or modified to implement a multithreaded environment to give support for

monitoring and interacting with more than one users simultaneously. This feature gives the

provision of communication mechanism to be carried out by two clients on the same port

with the help of different threads. A main thread continues to listen for new connections

while new threads are used for handling connected clients.

In this particular work , the honeypot has been configured to operate in File Trasfer Protocol

(FTP) which means that the honeypot can listen to and capture packets which are

communicated between the clients (bots) and the server (botmaster) via FTP only.

The honeypot can be extended to provide support for additional protocols as inspired from

HoneyRJ. It can happen with the help of the interface LIProtocol.java.

As the HoneyRJ logs the informations of connections, this honeypot also is designed with a

provision of logging text files in an easily readable format for monitoring and analysis in

future. Figure 4.2 shows the multithreaded design where two clients are connected at the

same port.

38

Figure 4.2 Multithreaded design showing two clients connected at the same port.

4.6 Honeypot Graphical User Interface

Typically the GUI of the low interaction honeypot looks like the one depicted in the Figure

4.3. The graphical user interface allows the user to control the application. This honeypot’s

GUI is created using Java’s AWT (Abstract Window Toolkit) library. A user can start, stop,

pause the application with the help of the GUI which are depicted with particular colours and

hence change the listening mode for the implemented protocol (FTP in this case). Orange

colour in the start button depicts an error.

39

Figure 4.3 Honeypot GUI

4.7 Internal Mechanism of Honeypot Application

The various steps in the honeypot application describing the flow of events has been

explained in this section. Whenever the application is launched and any protocol specific

module is run like FTP start or stop some actions are triggered. The honeypot in this

particular case aims towards tracking down and logging the details of any possible threat or

attack from the botmaster with the help of a number of modules. These are low interaction

modules which makes interaction with the protocol interface and the class which handles the

threads that are launched to communicate with the clients. The honeypot application consists

of mainly two classes namely honeyRJ.java which is the main application class and

LIModule.java (Low Interaction Module) which provides support for communication with

the protocol. Also there are two helper classes namely LIModuleThread.java and

LIProtocol.java. A class in LIModule implements LIProtocol interface to give relationship

logic with the clients connected. The LIModule also launches a LIModuleThread each time a

client wishes to connect.

40

Three steps to describe the entire mechanism is described as follows:

1) Launch of the honeypot and initialization

2) Initialization of the LIModule

3) LIProtocol (FTP) interaction with client

4.7.1 Launching and Initializing of the Honeypot

The honeypot class consists of some specific modules and has a provision to manage

modules by providing some services. As depicted in

Figure 4.4, the launch and initialization of the honeypot can be described in the following

steps.

1. On launching the honeypot application, the honeypot class constructor is called.

2. A hashmap structure is created by the constructor which stores the implemented

modules. The hashmap maps a port number to the LIModule to make sure that each

port is loaded with a single module.

3. After initialization of the hashmap, next is creation of the logging directories. A

reference is saved corresponding to each logging directory as a member variable so

that it can be later passed to the added modules.

4. The Honeypot is ready to accept additional LIModules.

5. An instance of LIModules is launched and is sent to the RegisterService() method of

the honeypot class wherein the hashmap adds up to make sure that the port is defined

for that particular module. The method RegisterService() being called after addition of

the hashmap, the logging directory gets access to it. By repetition of this process,

other modules can be added.

6. The user then starts the module with the help of the GUI.

7. Once the module is started, the honeypot starts to actively listen for connections.

41

Application Launch Flow of the Low Interaction Honeypot:

Figure 4.4 Honeypot Application Launch Flow

4.7.2 Initialization of the LIModule

This section provides an understanding of the steps that prevails after the LIModule is started.

As explained in

Figure 4.5, the LIModule handles the implemented protocol in terms of communication and

logs. The steps are described as follows:

1. For creation of the LIModule, the LIModule constructor is called and the initialized

class implements the LIProtocol interface.

2. The constructor stores the LIProtocol class as member variables.

Constructor of the

main class of the

honeypot is called

Creation of

LIModules and

registration with the

honeypot

Creation of

data structures

Logging

directory formed

for current

session

Honeypot

prepares to accept

LIModules

The LIModules

are started by the

user

The honeypot is ready to

listen for connections

from attackers

42

3. In this step, the LIModule starts waiting for the honeypot class to register itself with

the module. For this, the registerparent() method is being called.

4. After registration, a reference to the parent is stored by the LIModule for accessing

the logging directory of the parent in future.

5. The modules become ready for the user to start it.

6. The user then starts the module by clicking the ‘start’ button in the GUI

corresponding to the specific protocol.

7. After start, the module is launched to a thread and a ServerSocket is created to listen

on the port which has been specified by the implemented protocol. In this particular

case, port 21 is used for the FTP protocol.

8. The module now listens for connection from clients. While a hacker or in this case,

botmaster connects to the port, the LIModule worker thread is launched with the

connected socket.

9. The LIModuleThread then connects with the botmaster in accordance with the

LIProtocol and the LIModule keeps listening for new connections.

1. LIModule

constructor is

called with

LIProtocol

2. Initialization

of Data

structures and

variables

3. Module waits

for parent to

register

9. LIModuleThread

interacts with the

attacker according to

the LIProtocol

4. Honeypot

registered with

LIModule

5. Module is

ready for the

user

6. User starts the

module using

GUI

7. ServerSocket

created on the protocol

at port no 21

8. Module listening

for client connection

43

Figure 4.5 Flow of Events in LIModule

4.7.3 LIProtocol (FTP protocol) interaction with Client

 6. Response from client

 1. Message sent from client

Figure 4.6 FTP communication between the client (Botmaster) and server (Honeypot)

The LIProtocol’s FTP implementation is shown in the above Figure 4.6. Of all the

methods, the major work is carried out by the method processInput(). The other four methods

are used to provide information about the protocol. LIModuleThread creates an instance of

the class and implements the LIProtocol interface while launching to handle client

4. processInput() method

return a vector of strings

to send to the client

5.

LIModuleThread

sends the client

one String per line

LIModuleThread is

launched to handle

the client’s

connection

Instance of

FTPProtocol in

the

LIModuleThread

3. The method

processInput() is called

with the string received

2. Conversion of

message from

client to a string

44

connection. The process of flow of messages is shown in the figure 4.6 using the

implemented protocol which is FTP in this case. Each packet received from the client on the

socket is converted into a string object and passed as a parameter to the method

processInput() when then processes the string and return its response to the client.

The honeypot implemented in this thesis work uses FTP protocol to process the commands

and packets received from the clients(Botmaster in this case). This is accomplished with the

help of the class FTPProtocol.java in the following manner.

 When the honeypot establishes connection with the botmaster, null message is

received and the later returns the response as ‘Suspect is detected’. Another instance

of message/packets sent from the botmasters end will confirm the presence of some

malicious activity by the honeypot giving out the message ‘Malicious attack

attempted’.

 As stated earlier a honeypot is a system which is solely dedicated towards attracting

hackers and hence is of very less or no production value. So any connection or traffic

directed towards it may be considered as malicious. To keep a check on the security

of the network the botmaster’s machine has to be monitored regularly.

The honeypot as mentioned earlier logs every communication made to it. The logging is done

in text file in the format mentioned in earlier section. The logs are saved in a local directory

and can be processed and analyzed later for extracting useful information in detecting the

botnet. The information directs towards the IP address of the botmaster which can be tracked

down and necessary action can be taken to mitigate the malicious activities of the botmaster

or the botherder. Some of such measures are stated as follows:

 The IP address detected in the honeypot to be harmful can be blocked from the

network. This way an organizational private network can be secured from a known

hacker.

 Any other system which are connected to each other via LAN/ Wifi or any other

shared network can be intimated about the occurrence of probable attack by the

hacker. So any kind of communication from that particular IP address can be

restricted.

 On detection of the botmaster’s machine, other useful information can be extracted

out of it. For example number of compromised hosts or resources, technologies used

45

by the botmaster, type of attack carried out , whether it is a DDoS / spam/ virus etc.

The botmaster’s main motive behind the attack can also be tracked down.

As a whole we can say that detection with a honeypot can be an efficient mechanism to track

down a botnet architecture along with its originator.

46

Chapter 5 EXPERIMENTAL OBSERVATION AND

DISCUSSION

A java based environment is used for carrying out the client-server and the low interaction

honeypot implementation. Experiments were carried out in eclipse IDE and the console

results of the main classes are shown below which includes the results in terms of Botmaster

(attacker/intruder), bots (machines which are compromised), details of the information that

has been exchanged between the bots and the C&C, results from honeypot deployment, log

files the honeypot stores in a local directory etc.

The current work puts particular emphasis on the client server architecture to work on

different networks i.e network provided by different ISP’s. This way the architecture can

extend to the broader horizon of the internet and even to cloud architectures. To achieve this,

a software to create VPN (Virtual Private Network) which provides extension of LAN-like

networks to distributed teams has been kept running continuously in the background. The

name of the software is LogMeIn Hamachi. It gives remote users provision of secure access

to any private network/LAN including its resources from a centralized gateway like a router

or a firewall. Just like router port forwarding, a client running on a network provided by my

institution LAN network can connect to the server which is running on a network provided by

Airtel ISP.

Client (bot) machine’s console output

Figure 5.1 shows the console outputs of the bot (client) machine when the botmaster (server)

is in the same LAN network and Figure 5.2 shows the console output of the same bot (client)

machine when the server is running on a different network ie running on network provided by

Airtel ISP. The public IP address 25.137.47.190 is provided by the hamachi software.

47

Figure 5.1 Client side console output (client-server in same network)

Figure 5.2 Client side console output(client-server in different network)

The client with ip 10.60.2.33 is

trying to connect to server on the

same network with ip address

10.60.4.156. Communication is

made with response being

received from server to run RunX

command

The client with ip 10.60.2.33 in

LAN network is trying to connect

to server on the network provided

by Airtel ISP 25.137.47.190.

Communication is made with

response being received from

server to run RunX command

48

Server (botmaster) machine’s console output

On running the class ServerSocket.java, the server starts a socket at port no 21 and it waits

for clients to connects. Technically it starts listening for connections via FTP protocol at port

number 21. On connection with any client commands are exchanged. Multiple threads can be

created to connect multiple clients to the server.

Figure 5.3 shows the console output of the server program which displays thread number

along with ip address of their respective clients. The thread name happens to be the host

name itself. The XAMPP server running in the baclground runs a PHP script to extract

information from the bot machine. A database is predefined to store the information as per

the respective attributes.

Server side console output:

49

Figure 5.3 Server side console output

Database at the server machine

Figure 5.4 Bots Table at botmaster database

The information retrieved from the bots machine is stored in the table named bots created in

the botmaster database. The database includes the details such as unique ID of the bot

machine, status of the activity such as start, stopped, name of the bot machine, bot operating

50

system(OS) name, OS version, OS architecture, IP address of the bot machine, time of its

creation and updation.

On establishment of a new client connection, the information of the bots are forwarded to the

server in an array. The php script checks match between the botid and the id saved in the

table. The LastUpdated table is updated id there is a match. SQL queries can be run on the

table for further use.

51

GUI of the Low Interaction Honeypot

Figure 5.5 Graphical User Interface of the low interaction honeypot

The graphical user interface of the low interaction honeypot similar to HoneyRJ is shown in

the Figure 5.5. In this particular honeypot FTP protocol is used as a communication

mechanism and is listening at port number 21. As seen in figure, five states of the module are

represented with five different colours. At the initial state, the module is in idle state

(represented by blue colour) and honeypot is not started in this state.

The START state represented by green colour states the Running state of the Honeypot. On

clicking it we allow the honeypot to run and start listening for connections at port 21.

The STOP state represented by red colour states that the honeypot has stopped listening for

connections.

The PAUSE state with yellow colour describes pause state for the honeypot and orange

coloue will depict ERROR state.

52

Honeypot in START state with three clients / hackers connected

Figure 5.6 Honeypot GUI with client connected

While the honeypot is in running mode i.e when the start button is on, it is open to accept

client connections. So whenever an attacker tries to perform any malicious activity via the

protocol specified (i.e FTP), then the honeypot detects that connection and signals about the

suspicious activity by showing an increment in the hacker count from 0 to 1. The count

increases with increase in the number of clients or hackers. File Transfer Protocol has been

extensively chosen because of the fact that it is a common scenario that hacking or any

malicious activity is carried out mostly using FTP. Error state is observed with change to

organge colour whenever the port 21 is used more than once and is in preoccupied state. This

honeypot has the provision of connection time out and so after a particular timeperiod the

hacker count automatically decrease and eventually comes down to 0.

53

Communication over Telnet between the bots and the botmaster.

Figure 5.7 Botmaster telnet window when bot is connected

The honeypot detects the attacker and sends a message to the server side i.e the botmaster

that his attempt to connect has been suspected. It is indicated by a message displayed at the

botmaster machine’s telnet window,’ Suspect is Detected’ as shown in the Figure 5.7. If the

attacker continues to maintain the communication with another message like start, the

honeypot will display the message ‘Malicious activity attempted’. The flow of

communication is in the following sequence:

1. The botmaster is warned of his suspicious message by the honeypot.

2. Botmaster continues to send commands to the clients to run a suspicious packet or

download and run a harmful executable.

3. Indication of suspect detection on the telnet window by the honeypot.

4. The connection breaks in between the bot and the botmaster in order to save the user

machine from any intended damage.

Suppose an attacker tries to launch a DDoS attack from the client machine with an

intention to bring down the system. It often happens when an attacker becomes aware of

the presence of honeypot . So in order to prevent itself from getting detected or its

activities getting monitored, they try to crash the honeypot system. Such attacks often

fails the security firewalls leaving the system vulnerable to unknown attacks.

54

Log files created by the honeypot saved in a local directory

Figure 5.8 Console output of the log file created by honeypot

As mentioned in previous chapters, a log file has been created by the honeypot and stored in a

local directory as assigned in one of the java classes. A typical log file looks like the ones

shown in Figure 5.8 and Figure 5.9 displayed below.

Figure 5.8 shows the log file that outputs in the console window when the bot and the

botmaster try to communicate. It starts with the line ‘Started at’ indicating the starting time

and date of the communication.

Figure 5.9 is the log file saved as text format in one of the local directories to be observed and

analysed for later purpose. It also has the same format which starts with line: started at

followed by the corresponding timestamp once a connection is established.

55

The log file stores the source and destination IP address and corresponding port numbers

followed by the information of packet exchange. Each of the sentences starts with the

timestamp of respective event. By source and Destination, it means the source from which

packets are sent and and destination to which the packets are sent to. For example if the

honeypot is deployed in the client(in this case the bot) machine and if the botmaster try to

send any command to it, then the source will be the botmaster and the destination would be

the bot.

Figure 5.9 Log file saved in text format

56

Chapter 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

The threat posed by botnet attacks have been in an increasing trend since its inception. Recent

attackers are mostly driven by the financial gain most common among the internet attackers.

As the threats imposed keeps increasing, the security defenders are also in a continuous effort

to come with efficient solutions and approaches to combat those threats. Although researches

have put forward their best practices to come up with efficient detection mechanism, botnet

research is still in infancy. Research in honeypot / honeynet and its deployment has a

significant impact and value in the security community. But use of honeypots in detection

and mitigation of botnets is still a novel concept. Keeping in mind that mitigating the ever

increasing botnet protocols and structures is quite a challenge, an attempt has been made in

this thesis to come up with an efficient solution for detecting bots and botnets with the help of

honeypots.

Botnet detection has broadly been categorized into six types which includes detection by

honeypots. Considering a few limitations in detection techniques like the signature based

detection which can detect only known bots in the network, mining based detection not being

real time and comparing the various detection mechanism [7], the honeypot mechanism is

concluded to be one of the effective and promising mechanism. So in this thesis, a centralized

botnet architecture is implemented with a low interaction honeypot deployed in the network

for its detection.

Botnets commonly use the centralized architecture for its communication mechanism even

though the P2P concept is also emerging. A centralized C&C structure is used for the bots to

connect with the botmaster or the botherder in a network. This thesis implements a

centralized botnet architecture with a server being the botmaster and different clients as the

bots trying to communicate with each other. The client server architecture is implemented

using java socket programming. The botmaster controls its network of bots by sending

malicious commands and scope is provided for carrying out other attacks like DDoS, spam,

phishing, sniffing etc. Then for preventing and mitigating the effects of the malicious attacks,

the honeypot detection technique is also implemented to detect any hacker or the botmaster in

this case which try to connet to the botnet or the bots. A low interaction honeypot inspired

from the open source honeypot HoneyRJ is implemented also using a java based

57

environment. The honeypot does the detection of the botmaster and bots trying to

communicate with other by increasing the hacker count in the GUI and also by logging the

details of the host and destination machines in a specified format for later analysis and

mitigation. With inbuilt features like connection timeout and waiting period in the low

interaction honeypot, it is possible to break connections within a stipulated time period and

also prevent dos attacks.

In the server side of the botnet architecture, various attributes are added to the database

botmaster’s table named bots with the help of which necessary information can be retrieved

for further analysis and observation. In order to minimise the risk of any massive attack on

the server system, timeout period and waiting period are specified. The impact of the attack is

defined from the impact of the malware sent by the attacker. Transfer of any such malware

packets would get detected in the honeypot residing in the bot machine and then

instantaneously report the botmaster in the botnet and it will break the connection so that

further attack can be restricted. This way the client machine also gathers the information of

the IP address of the attacker. The IP address information can further be used to track the

actual botmaster i.e the origin of the attack can be detected and mitigation techniques can be

applied.

The low interaction honeypot which was chosen for its easy deployment , maintainability and

low risk entailment was hence successfully deployed in all of the bot/client machine . The

honeypot is kept to run continuously in the background waiting for client connection via FTP

protocol at port no 21. On connection establishment between bots and the botmaster the

honeypot was successful in its detection and logging informations.

58

6.2 Future Scope

 Botnet need not always be considered only as threat in the security community. The

phenomenon can also be used in ethical sense by security professionals when it is

used as a trap for defence against the threat. A botnet architecture like the one

implemented can be created with a facade botmaster and bots. As it is disguised from

the real attackers, whenever a real botmaster tries to harm the bots by performing any

malicious activities , the facade system created can monitor the activities and report

abuse or simply observe the activities of the real attackers in the network for later

analysis. This method can especially be useful when both anomaly detection

technique and mining based techniques for passive analysis are merged to form a

hybrid architecture for efficient detection and mitigation schemes.

 After detection, efficient mitigation techniques are also left as further scope for this

thesis. Mitigation techniques might include blockage of the IP address of the detected

attacker from the nework and intimating all those concerned for non compliance with

such malicious systems.

 Instead of using a single honeypot, we can use a network of honeypots to deploy in

both the bot and botmaster systems.Use of honeynets will increase the level of

security which will leave the attackers to fetch more time for accessing several

honeypots instead of one. Connecting honeypots outside of the university network to

lure attackers especially disguised as attractive e-commerce sites etc can attract and

trap more real attackers.

 The connection time when the bots and the botmaster communicates with each other

can be increased so that a more detailed analysis can be done and all information sent

from the botherder can be attained.

 Current work focuses only on the FTP protocol as the main communication module

although TCP is the basic medium of communication used. Others protocols such as

commonly used IRC channels, HTTP etc can be implemented in the same architecture

and the honeypot can also be built to run on those protocols. The port used for

listening to connections can be changed from the standard FTP port 21 to any user

given port number from the wide range of allowed ports.

 As an interesting scope, the whole botnet architecture and the detection system can be

deployed in a cloud infrastructure. However a more scalable and robust architecture

59

would be required for the same. This might involve development of a good virtual

honeypot or virtual honeynets to be deployed efficiently on a cloud domain.

 The centralized botnet architecture can be extended to a P2P domain or hybrid

network architecture depending on the latest trends of attackers. With the increasing

popularity of mobile botnets, a P2P architecture must be made more robust and

efficient.

 The current architecture could also be tried to deploy honeypots other than low

interaction ones. That would include deployment of medium and high interaction

honeypots and comparison made. A high interaction honeypot system especially

would emulate a full operating system or host complete services. A DDoS attack can

be attracted by use of such high interaction honeypots and hence an efficient trapping

mechanism might be built.

60

Chapter 7 REFERENCES

[1] H. R. Zeidanloo, M. S. M. Zamani, M. J. Z. shooshtari and P. V. Amoli, "A Taxonomy

of Botnet Detection Techniques," IEEE, 2010.

[2] Z. Bu, R. Kashyap and A. Wosotowsky, "The New Era of Botnets," McAfee Labs, 2010.

[3] M. Eslahi, R. Salleh and N. B. Anuar, "MoBots: A New Generation of Botnets on

Mobile," in ISCAIE 2012, Kinabalu Malaysia, 2012.

[4] P. Diebold, A. Hess and G. Sch afer, "A Honeypot Architecture for Detecting and

AnalyzingUnknown Network Attacks," in KiVS05, Germany, 2005.

[5] K. L. Kyaw and P. Gyi, " Hybrid Honeypot System for Network Security," World

Academy of Science, Engineering and Technology, Vols. Vol:2 2008-12-29 , 2008.

[6] A. KARIM, R. B. SALLEH, M. SHIRAZ and e. al, "Botnet detection techniques:

review, future trends, and issues," Botnet detection techniques: review, future trends,

and issues, 2014.

[7] N. Raghava, D. Sahgal and S. Chandna, "Classification of Botnet Detection Based on

Botnet Architechture," in Internationsl Conference on Communication systems and

Network Technologies, 2012.

[8] P. Wang, S. Sparks and C. C. Zou, "An Advanced Hybrid Peer-to-Peer Botnet," in

USENIX, 2007.

[9] G. Fedynyshyn, M. C. Chuah and G. Tan, "Detection and Classification of Different

Botnet C&C Channels," in ATC, 2011.

[10] M. Feily, A. Shahrestani and S. Ramadass, "A Survey of Botnet and Botnet Detection,"

in 2009 Third International Conference on Emerging Security Information, Systems and

Technologies, 2009.

[11] J. Binkley and S. Singh, "An algorithm for anomaly-based botnet detection," in

Proceedings of USENIX, 2006.

[12] S. Siboni and A. Cohen, "Botnet identification via universal anomaly detection," in

Information Forensics and Security (WIFS), IEEE International Workshop, 2014.

61

[13] G. Gu, J. Zhang and W. Lee, "BotSniffer: Detecting Botnet Command and Control

Channels".

[14] G. Gu, R. Perdisci, J. Zhang and W. Lee, "BotMiner:clustering analysis of network

traffic for protocol- and structure-independent botnet detection," in SS'08 Proceedings of

the 17th conference on Security symposium, Berkeley, CA, USA ©2008 , 2008.

[15] R. A. G. Rodriguez and M. Fernandez, "ANALYSIS OF BOTNETS THROUGH LIFE-

CYCLE," in SECRYPT 2011 - International Conference on Security and Cryptography,

2011.

[16] N. Hachem, Y. B. Mustapha, G. G. Granadillo and H. Debar, "Botnets: Lifecycle and

Taxonomy," in IEEE, Evry, France, 2011.

[17] P. Bacher, T. Holz, M. Kotter and G. Wicherski, "Know your Enemy: Tracking Botnets

Using honeynets to learn more about Bots".

[18] N. Provos, "A Virtual Honeypot Framework," in Proceedings of the 13th USENIX

Security Symposium, San Diego, CA, USA, 2004.

[19] J. Bhatia, R. Sehgal and S. Kumar, "Botnet Command Detection using Virtual,"

International Journal of Network Security & Its Applications, vol. Vol.3, no. 5, 2011.

[20] C. O. Varian, R. Rughini and O. Purdila, "A Practical Analysis of Virtual Honeypot

Mechanisms," in 9th RoEduNet IEEE International Conference , 2010.

[21] E. Cooke, F. Jahanian and D. McPherson, "The Zombie Roundup:Understanding,

Detecting, and Disrupting Botnets," in SRUTI'05 ,USENIX Association, Berkeley, CA,

USA, 2005.

[22] F. C. Freiling, T. Holz and G. Wicherski, in Botnet Tracking: Exploring a Root-Cause

Methodology to Prevent Distributed Denial-of-Service Attacks, Springer, pp. 319-335.

[23] H. Parimala and K. Balamurugan, "ACHIEVING HIGHER NETWORK SECURITY

BY PREVENTING DDOS ATTACKS USING HONEYPOT," International Journal of

Computer Network and Security (IJCNS), vol. Vol 6.1, 2014.

[24] J. Francois, I. Aib and R. Bouta, "FireCol: A Collaborative Protection Network For the

Detection of Flooding DDoS Attacks," in IEEE, 2012.

[25] G. Gu, P. Porras, V. Yegneswaran and M. Fong, "BotHunter: Detecting Malware

Infection Through IDS-Driven Dialog Correlation," in 16th USENIX Security

Symposium.

[26] A. Karasaridis, B. Rexroad and D. Hoeflin, "Wide-Scale Botnet detection and

62

characterization," ACM DL, 2007.

[27] A. Broadsky and D. Brodsky, "A Distributed Content Independent Method for Spam

Detection," in HotBots'07 Proceedings, 2007.

[28] Y. Xie, F. Yu, K. Achan, R. Panigrahy and G. Hult, "Spamming Botnets: Signatures and

characteristics.," in ACM SIGCOMM’08, Seattle, 2008..

[29] I. Mokube and M. Adams, "Honeypots: Concepts, Approaches, and Challenges," in

ACM-SE 45 Proceedings of the 45th annual southeast regional conference, 2007.

[30] J. G, J. B, B. GRIZZARD and H. L. Owen, "Using Honeynets to Protect Large

Enterprise Networks," THE IEEE COMPUTER SOCIETY, 2004.

[31] L. Yongli, Z. Jie, W. Shufang and W. Zixian, "Model and Evaluation of a New

Honeynet," in 2012 IEEE Symposium on Robotics and Applications(ISRA), 2012.

[32] L. SPITZNER, "The Honeynet Project:Trapping the Hackers," IEEE SECURITY &

PRIVACY, MARCH/APRI 2003.

[33] B. MCCARTY, "Botnets: Big and Bigger," IEEE SECURITY & PRIVACY,

JULY/AUGUST 2003.

[34] "Know Your Enemy:GenII Honeynets," 12 May 2005. [Online]. Available:

http://old.honeynet.org/papers/gen2/index.html. [Accessed 29 June 2015].

[35] A. S., C. A, M. G and Z. J, "A Technique for Detecting New Attacks in Low-Interaction

Honeypot Traffic," in Internet Monitoring and Protection, 2009. ICIMP '09. Fourth

International Conference, Venice/Mestre, 2009.

[36] A. Ramani, S. Chamotra, J. Bhatia and R. Kamal, "Deployment of a low interaction

honeypot in an organizational private network," in ETNCC,IEEE, Udaipur, 2011.

[37] R. J. d. S. V. I, S. Andre and J. Kleinschmidt, "Capture and Analysis of Malicious

Traffic in VoIP Environments Using a Low Interaction Honeypot," in IEEE, 2015.

[38] P. Baecher, M. Koetter, T. Holz, M. Dornseif and F. Freiling, "The Nepenthes Platform:

An Efficient Approach to Collect Malware," in RAID 2006 Springer, Verlag Berlin

Heidelberg, 2006.

[39] "COLLECTING MALWARE FROM DISTRIBUTED HONEYPOTS -

HONEYPHARM," in IEEE GCC Conference and Exhibition (GCC, Dubai, United Arab

Emirates, 2011.

[40] S. Kumar, R. Sehgal and P. Singh, "Nepenthes Honeypotsbased Botnet Detection,"

63

Journal of Advances in Information Technology, vol. 3, no. 4, pp. 215-221, 2012.

[41] J. Ma, K. Chai, Y. Xiao and T. Lan, "High-Interaction Honeypot System for SQL

Injection Analysis," in IEEE, Nanjing, Jiangsu, 2011.

[42] H. Artail, H. Safa, M. Sraj, I. Kuwatly and Z. Al-Masri, "A hybrid honeypot framework

for improving intrusion detection systems in protecting organizational networks,"

ScienceDirect(Computers & Security), vol. 25, no. 4, p. 274–288, 2006.

[43] I. Koniaris, G. Papadimitriou, P. Nicopolitidis and M. Obaidat, "Honeypots Deployment

for the Analysis and Visualization of Malware Activity and Malicious Connections," in

IEEE ICC 2014 - Communications Software, Services and Multimedia Applications

Symposium, 2014.

[44] P. Baecher, M. Koetter, T. Holz, M. Dornseif and F. Freiling, "The Nepenthes Platform:

An Efficient Approach to Collect Malware," Recent Advances in Intrusion Detection

(RAID), p. 165 – 184, 2006.

[45] "Dionaea honeypot," [Online]. Available: http://dionaea.carnivore.it/.

[46] M. Feily, S. A and R. S, "A Survey of Botnet and Botnet Detection," in IEEE, 2009.

[47] W. Strayer, W. R and C. Livadas, "Detecting botnets with tight command and control,"

in IEEE, 2006.

[48] F. Begin, "BYOB: Build Your Own Botnet," in GIAC (GSEC), 2011.

[49] "Analysis of a Botnet Takeover," in IEEE COMPUTER AND RELIABILITY

SOCIETIES, 2011.

[50] P. Bächer, T. Holz, M. Kötter and G. Wicherski, "Know your Enemy: Tracking

Botnets".

