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Changes in human gut microbiota induced by DOTS 

treatment in TB patients of Indian cohort 

NITIN THUKRAL 

Delhi Technological University, Delhi, India 

1. Abstract 

Objective: Dysbiosis of the gut microbiota can lead to many prolonged maladies such as 

inflammatory bowel disease, obesity, cancer and autism. It is now also known that antibiotic 

usage exert strong effects on metabolism of intestinal microbes and thus the human health. But, 

there is not much systematic characterization of microbiota associated with the Tuberculosis 

(TB) patients and DOTS. Accordingly, a comparative metagenomics analysis of human gut 

microbiota of fecal samples taken at several time points from TB patients subjected to DOTS 

(Direct Observed Treatment, Short-course) was conducted. 

Methods: Fecal DNA of 6 different TB patients were collected at three different time points viz. 

at the time of diagnosis, after 1 week and after 1 month of DOTS and from their healthy family 

member, was sequenced using Illuminia HiSeq 2000 sequencer at BGI, China. Metagenomics 

approach was adopted to investigate the taxonomic diversity and functional profile from the data 

thus obtained, for associated variations in the human gut microbiome of TB patients before, 

during and after 1 month of DOTS. Further results were compared with the taxonomic diversity 

and functional profile of healthy human gut microbiota. 

Results: We apparently observed oscillatory population dynamics in all the samples. Prevotella 

copri was the most abundant species in all samples except “T” and “U” controls. Also, striking 

difference in relative abundance of Prevotella copri in ‘Y’ sample was observed where controls 

displayed its high prevalence in the gut but it remained only a minority in ‘YTB’. An inverse 

relationship was observed between members of phylum Bacteroidetes and phylum Firmicutes. 

Many pathways were found to be enriched in TB (0th day) samples. We may conclude that short-

term surveillance of TB patients under DOTS pointed towards it minimal effect on the gut 

microbiota. Also, no fixed trends were observed in case of both taxonomic diversity and 

functional composition of the gut. 

Conclusions:  The present study envisioned inter-relationships between taxonomic diversity and 

functional profile of human gut microbiome and Tuberculosis. The study provides report of 

human gut microbiota variations to follow-up DOTS. However insights obtained until the 

midway of this study, suggests that further metagenomic investigations on larger population of 

TB patients are required to accurately describe the association of the human gut microbiome with 

TB and DOTS.  



 

3 
 

2. Introduction 

The human body is like a planet inhabited by tiny, not visible to the naked eye, organisms that 

we refer to as microorganisms. They have now been known to play vital role in virtually all 

ecosystems ranging from soil, sea and to those in human body environments (Baker et al., 2013; 

Fang and Evans, 2013; Philippot et al., 2013).  The human gut has been the most widely and 

recently studied ecosystem for deciphering the taxonomy, structure and function of its 

microbiome. This has been made possible by the use of metagenomic sequencing or culture-

independent techniques (De Filippo et al., 2012), which has established the existence of a vast 

ensemble of such microbes inhabiting the human gut leading to further enrichment of the host`s 

genetic resource with a new catalogue of genes. Thus, offering complementary metabolic 

pathways for detoxification, digestion, assimilation of otherwise inaccessible dietary factors, 

pathogen resistance or protection against pathogen evasion, regulation or development of 

immune responses and protection against cell injury, production of bioactive compounds and 

harvesting energy from them. (O’Hara and Shanahan, 2006; Qin et al., 2010; Turnbaugh and 

Gordon, 2009). Harboring more than 100 trillion microbial cells, the human gut, is one of the 

leading ecological niche known in the human body.   

Recent studies have shown that there exists a unique and relatively stable gut microbiota in each 

individual, majorly occupied by Firmicutes and Bacteroidetes, in addition to minorities like 

Actinobacteria, Proteobacteria along with some uncharacterized microbes. However, this 

relatively stable gut microbiota can be easily disrupted by external forces such as diet, migration, 

nonsteroidal anti-inflammatory drugs, antibiotics, smoking, alcohol consumption and the disease 

(Jernberg et al., 2007). Perhaps, one of the easiest way by which the human health is affected is 

through the diet and nutrition which in turn, is significantly influenced by the gut microbiota. 

Altering the diet from a plant polysaccharide rich, low fat diet to a high fat, high sugar diet 

(Western diet) led to prominent changes in the gut microbial composition in a single day in 

human gnotobiotic mice. The members of the phylum Firmicute classes Erysipelotrichi and 

Bacilli (Enterococcus) were more abundant in comparison to Bacteroidetes, associated with the 

Western diet (Turnbaugh et al., 2010). The composition of gut microbial communities can be 

altered by antibiotics therapy as well. Studies have shown that use of antibiotics led to reduction 

in Bacteroides and Bifidobacterium and enhanced the growth of members of the Firmicutes 

classes Erysipelotrichi and Bacilli, Campylobacter, genus Streptococcus and Candida Albicans 

in the gut (Hill et al., 2010). The liver metabolizing enzymes and the human gut microbiota both 

have an important role in nutrition, metabolism, immune response and pathogen resistance. 

Antibiotics administration is believed to disrupt these coevolved interactions, making many 

individuals susceptible to acute or chronic disease. Several complex human disorders also 

significantly correlates with the dysbiosis of specific microbial communities (D’Argenio et al., 

2013; Gollwitzer and Marsland, 2014; Marchesi et al., 2007). A recent study showed that 

Prevotella copri was carried in their intestinal microbiota by almost 75% of patients with new 

onset RA. Furthermore, Prevotella copri was abundant in the gut of approximately 37.5% of 
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psoriatic arthritis patients in comparison compared to 21.4% of healthy controls (Scher et al., 

2013).   

 

But the important questions still remain, how to recognize which microbes are responsible for 

the functional contributions; are the most abundant microbes most important; what role does 

less-abundant microbes have. Therefore, it is important to understand both the composition and 

the functional of the constituents of the human gut microbiota in diseased state to decipher their 

role in influencing the diagnosis, disease progression and treatment. It requires fast and accurate 

bioinformatics tools to analyze the enormous amount of metagenomics data. Evaluating the 

biodiversity, the structure, the richness of the microbial community and their role in a given 

environment requires an accurate taxonomic assignment (Ribeca and Valiente, 2011).  

Tuberculosis, as per WHO reports, is second to HIV/AIDS as the greatest killer worldwide, 

caused by Mycobacterium tuberculosis. A commonly used treatment regimen for Tuberculosis is 

a DOTS with isoniazid, rifampicin, pyrazinamide and ethambutol. DOTS is a prolonged 

treatment in which treatment lasts from six to nine month.    In current scenario, no survey has 

been conducted to study the gastro-intestinal disturbances on the human subjects under the 

patho-physiological diseased condition caused by Mycobacterium tuberculosis. Our study 

intends to evaluate the taxonomic diversity and functional contributions of the human gut 

microbiota in the TB patients. In the present study, we applied a combination of molecular 

biology and computational approaches to assess the impact of DOTS on the gut microbiota of 

TB patients. By using whole genome shotgun sequencing we aimed to determine the shifts in the 

microbial community structure in these samples. 
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3. Review of Literature 

Our microbes makes us genetically unique. “The Economist” magazine has cited humans as 

superorganism. The co-evolution of a vast and diverse microbial ecosystem with mammalian 

species has profoundly influenced the human health and thus our existence (Bengmark, 1998; 

Gill et al., 2006). Next generation ‘omics’ technologies and systems biology have it possible to 

describe the gut microbiome at transcriptomic, proteomic and metabolic levels, throwing light on 

the importance of  the gut microbiome in human health. Recent studies have shown that gut 

microbiome not only influences dietary calorific bioavailability (Hooper and Gordon, 2001), 

drug metabolism (Clayton et al., 2006), immune system maturation, conditioning and response 

(Macpherson et al., 2000; Mazmanian et al., 2005), post-surgical recovery (Kinross et al., 2011), 

phenotypic development but also has direct implications in the etiopathogenesis of diverse 

pathological states such as obesity (Ppatil et al., 2012; Turnbaugh et al., 2006), autism (Finegold, 

2008), inflammatory bowel disease (Greenblum et al., 2012; Marchesi et al., 2007), 

cardiovascular disorders (Holmes et al., 2008) and cancer (Schwabe and Jobin, 2013).  

It is also possible to map human gut microbiome variability between species, individuals and 

populations. The results from multidimensional scaling and principal component analysis 

(PCoA) of American, Japanese, Danish and Spanish (European) individuals revealed that 

according to their similarity in composition, all individual samples clustered around three robust 

points. Clustering was driven independent of age, sex, nationality, and continent or body mass 

index. “Enterotypes” was the term used to refer to these clusters. Bacteroides (enterotype 1), 

Prevotella (enterotype 2), and Ruminococcus (enterotype 3) form 3 different enterotypes based 

in the variations of the above mentioned genera. The existence of Enterotypes suggested that 

only limited number of harmonious host-microbial symbiotic relationships could be present 

whereas the discreteness of these balanced states suggested existence of important interactions 

between gut microbiota and obligate relationships with other species (Arumugam et al., 2011).  

The important gut bacteria in the order of numerical importance are Firmicutes, Bacteroidetes, 

Actinobacteria, Proteobacteria, followed by Verrucomicrobia and Fusobacteria (Hermann-Bank 

et al., 2013). The phyla Bacteroidetes, is composed of three classes of gram-negative bacteria 

and the most studied genus is Bacteriodes. Both the phylum Firmicutes and Actinobacteria, 

includes gram-positive bacteria but with high and low G + C content, respectively. Firmicutes 

includes the class of Clostridia and the lactic acid producing bacteria whereas Colinsella and 

Bifidobacterium spp. are the members of Actinobacteria phylum. Some of them are the first 

colonizers, right from the birth and some colonize the gut at different age. As mentioned earlier, 

gut bacteria contributes to the host`s gut defense system and aids in maintaining its normal and 

balanced functioning but several factors can have variable effect on it composition. 
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3.1 Gut microbes and gut immunity 

The mechanical barrier (particular layer of intestinal epithelial cells, mucus and the enterocytes) 

and the immune barrier (Immunoglobulins, macrophages, Peyer`s plaques, macrophages, NK 

cells, neutrophils and mesenteric lymph node) helps the gut in resistance towards pathogens. Gut 

bacteria maintain resistance against attacking pathogens by competing for nutrients and 

attachment sites with the pathogenic bacteria, a phenomenon known as colonization resistance 

(Stecher and Hardt, 2008). Commensal bacteria prevent the invasion of pathogens either by 

reducing intestinal pH by producing lactate and short-chain fatty acids (SCFAs) (Guarner and 

Malagelada, 2003) or by producing toxins or carcinogenic metabolites together with volatile 

fatty acids.  

 

Several factors significantly influence the gut microbiota (Fig 1).  The great shift in the structure, 

representation of the metabolic pathways and gene expression of the gut microbiota was 

observed when gnotobiotic mice were feed with a high-fat/high sugar diet instead of a usual low 

fat/plant polysaccharide rich diet.  A notable observation was increase in members of Firmicute 

classes Erysipelotrichi and Bacilli and reduction in Bacteroidetes (known to be associated with 

the Western diet). Another notable observation in humanized mice fed the Western diet was a 

significant increase in adiposity as compared to those feeding on the agrarian diet. Thus 

demonstrating that the gut microbiome could be liable to drastic changes over a very short period 

of time (Turnbaugh et al., 2010). 

 

Long term and short-term antibiotics therapy have shown to prominently effect the gut 

microbiota (Jakobsson et al., 2010; Jernberg et al., 2007). Studies have found relative decrease in 

the members of genera Bacteroides, Clostridium and Bifidobacterium and promotion in the 

growth of Campylobacter, Streptococcus, Leuconostoc, or fungi such as Candida Albicans in the 

gut (Hill et al., 2010). 

 

The bidirectional communication between the gut and the brain is the result of the gut-brain axis 

where neural, immunological and endocrine mechanisms are used by brain to monitor and 

modulates gastrointestinal system functions. It is believed that intestinal microbiome influences 

the growth and functioning of the enteric nervous system. In adults, chronic stress is correlated 

with the increase of class Bacteroides species and Clostridium species combined with increased 

levels of IL-6 indicating immune activation (Gilbert et al., 2011). Furthermore, investigations 

found that gut becomes leaky and level of circulating LPS increases as a result of chronic stress. 
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Figure 1: Representing different factors influencing the human gut microbiome 

 

 

3.2 Dysbiosis 

A healthy gut is characterized by the abundance of the gut microbiota. The disruption of the 

balance between pro-inflammatory and anti-inflammatory microbial species is often associated 

with low richness of gut microbiota and may trigger host inflammation. The relative abundance 

of microbial species often uses microbial richness as an accurate biomarker, and further can be 

used to measure the presence or absence of genes for both known and unknown microbial 

species in the sample. Interestingly, individuals exhibiting microbial gene counts < 480.000 are 

characterized by noticeable increase in overall insulin resistance, adiposity, leptin resistance, 

dyslipidemia, and a more prominent inflammatory phenotype in comparison to high-gene-count 

individuals. It was reported from a functional perspective that low diversity corresponded to 

increase in hydrogen sulfide formation and reduction in butyrate-production, reduced production 

of methane and hydrogen and increased mucus degrading potential. The less healthy state thus 

can be attributed to gene-poor microbiota (Le Chatelier et al., 2013). 

Usually, gut microbiota has a commensal relationship with the host but its imbalance can cause 

many diseases under abnormal conditions. For instance, pseudomembranous colitis can occur 

following antibiotics therapy and surgical procedures due to toxin produced by Clostridium 

difficile (Moss and LaMont, 2003). Also, diarrhea was found to be associated with decline in 

members of genus Streptococcus, particularly in S. alactolyticus (Hermann-Bank et al., 2013). 
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Diabetes has been a widespread problem affecting many all around the world. Recently it has 

been shown to be considerably linked with gut bacteria. The early intestinal microbial 

colonization at birth impacts the occurrence of diabetes which, in turn is affected by feeding 

ways, delivery method for birth and Body-Mass Index (BMI) (Burcelin et al., 2011). Type-1 

Diabetes (T1D) is an autoimmune disease resulting from the interactions between genetic and 

environmental factors leading to the destruction of islet beta-cells and thus the ability to produce 

insulin. The manipulation of gut bacteria controlled mucosal oxidative stress and pro-

inflammatory balance leading to restoration mucosal barrier function of intestine, thus providing 

protection against T1D (Musso et al., 2011). There exists cross-talk between gut microbiota and 

the innate immunity which may be involved in islets of Langerhans destruction. This means that 

aberrant gut bacteria could be the potential contributor to pathogenesis of T1D (Hara et al., 

2013).  

 

Chan and colleagues used metagenomic approach using DNA from mummified body of Terézia 

Hausmann to described two Mycobacterium tuberculosis genotypes infecting the mummy. This 

would not have been possible with the use of routine culture techniques. This study shows the 

power of metagenomics in studying historical specimens and also points to the amount of 

information we miss while diagnosis individuals using culture-based techniques (Chan et al., 

2013). Patil et al. (2012) reported a comparative analysis and quantification of human gut 

microbiota of Indian cohort (lean, normal, obese and surgically treated-obese individuals) using 

16s rRNA sequencing of fecal matter. Though they observed no trend in the distribution of 

bacteria among different individuals but short chain fatty acids (SCFAs) content was found to be 

elevated in obese individuals. The treated-obese individuals show reduced levels SCFAs along 

with reduced Bacteroides and archeal counts (Ppatil et al., 2012).  

 

The imbalance in the native gut microbiota contributes significantly to the expansion of different 

types of tumors such as prostrate, colon and gastroinstestinal cancer. There is a visible difference 

between gut microbial composition among colon cancer patients and healthy individuals. Two of 

the Prevotella species were completely absent, several bacterial genera producing butyrate were 

reduced, in case of colon cancer patients. On the other hand, in colorectal cancer fecal samples, 

Citrobacter farmer and Akkermansia muciniphila (mucin-degrading species) were over-

represented bacteria species (Weir et al., 2013).  It is also believed that the gut microbiome may 

be modulated for the benefit of the host organism. A significant suppression in the incidence of 

colon cancer, tumor volume and tumor multiplicity was observed upon dietary administration of 

Bifidobacterium longum (Singh et al., 1997). In addition, ingestion of B. longum led to 

considerably inhibition in Azoxymethane-induced cell proliferation, expression of ras-p21 

oncoprotein activity and ornithine decarboxylase activity. 

 

It has also been hypothesized that microbial alterations in the human gut has a significant 

connection with HIV infection pathogenesis (Gori et al., 2011). Such a hypothesis is evident 
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from the fact that certain gut bacteria such as Proteus mirabilis, Citrobacter freundii, E. coli, 

some Staphylococcus species and Enterobacter aerogenes found in the HIV-patient`s gut held 

90% sequence similarity with HIV-1 (Zajac et al., 2007). HIV infection cause disruption of gut 

homeostasis, leading to increased concentration of bacterial compounds such as 

Lipopolysaccharide, peptidoglycan and bacterial DNA, in the circulation further stimulating the 

immune activation, thus contributing to viral replication and causing further disease progression 

(Gori et al., 2011). It is believed that disproportionation of the intestinal immune barrier, 

translocation of immunostimulatory microbial products, and chronic form of systemic 

inflammation, drive HIV infection to AIDS. A study conducted by Vujkovic-Cvijin et al. found 

enrichment of 579 taxa and depletion of 45 taxa in viremic untreated HIV-infected individuals in 

comparison to healthy individuals. The significantly enriched taxa were Erysipelotrichaceae 

(known to be associated with obesity and increased cardiovascular disorders), members of 

phylum Proteobacteria, and genera such as Salmonella, Shigella, Escherichia, Serratia and 

Klebsiella species. Additionally, highly opportunistic pathogens and sources of bacteremia were 

abundant in mucosae of viremic untreated HIV subjects. However, the relative abundances of 

Clostridia and Bacteroidia exhibited a decline in case of viremic untreated HIV subjects 

(Vujkovic-Cvijin et al., 2013). 

 

A higher abundance of pathogenic microbes such as Candida albicans and Pseudomonas 

aeruginosa and dramatic reduction of Bifidobacteria and Lactobacilli was observed in patients 

living with HIV. Probiotics display potential in significantly assisting the defense system of 

people living with HIV infection, for instance, Lactobacillus rhamnosus (Hemsworth et al., 

2011). Gori et al. significantly reported the inversely proportional relationship between 

bifidobacteria and Clostridium coccoides, Clostridium lituseburense, Eubacterium rectale and 

Clostridium histolyticum under probiotic intake condition (Gori et al., 2011).  

 

Gut microbiota is also related to several other maladies and diseases such as rheumatic arthritis 

(RA) and disorders affecting kidney (Kotanko et al., 2006; Smith and Macfarlane, 1996). RA 

patients exhibited significantly reduced levels of Bifidobacteria and Bacteroides fragilis in their 

gut. Obesity is also thought to be a risk factor for RA. It is postulated that enhanced systemic 

exposure to lipopolysaccharide in obese mice models could increase the risk for RA on the 

observation of increased uptake of LPS through gut lumen to other tissues (Yeoh et al., 2013).  

In a recent study, intestinal microbiota showed expansion of Prevotella copri in about 75% of 

patients with new onset RA (NORA), thus hinting its association with increased susceptibility to 

RA.  Furthermore, Prevotella copri was also found in the gut of 37.5% of psoriatic arthritis 

patients as compared to 21.5% of healthy controls (Scher et al., 2013). 
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3.3 Functional screening of gut microbiota 

Functional analysis relies on sequencing and analyzing all the additional genetic material apart 

from the host in the sample, including taxonomically unknown microorganisms, and finally 

predicting their function based on homology or similarity. Recent investigations provide 

interesting information related to the functions performed by representative microbial 

communities within the human gut. It is estimated that this extensive non-redundant catalogue of 

microbial genes, in the intestinal habitat, translates into proteins involved in up to 20,000 

biological functions (Qin et al., 2010). Some of them are important protein complexes (RNA 

polymerase, ATP synthase, secretory proteins) and some are the ones common to free-living 

bacteria such as central carbon metabolism, synthesis of amino acid, alanine metabolism and 

nucleotide sugar metabolism. Some other gene clusters encode proteins important for microbial 

sustenance such as those involved in linkage to the host or in garnering energy from glycolipids 

secreted by epithelial cells.  

Despite numerous studies revealing highly differing taxonomic compositions of human gut 

microbiota, interestingly functional compositions are rather similar in healthy individuals. 

(Methé et al., 2012). Such studies points to the fact that there exists functional redundancy across 

differing taxonomic compositions, and different microbial species may have similar pathways. 

Thus, implying that functional profiling may eventually become an optimal approach for 

defining a “healthy” human gut and segregating it from “diseased” human gut ecosystems.  

Owing to the decreasing cost and faster processing, DNA sequencing has come a long way from 

being just limited to 16s rRNA sequencing. As a result, it is now feasible to analyze and 

characterize whole genome with reasonable coverage. Importantly, whole-genome sequencing 

and metagenomic analysis of human fecal samples is capable of describing collective and non-

redundant genetic composition of the community from where we could infer important 

functional and metabolic networks. Apart from providing information about non-bacterial 

members in the gut microbiota, it can describe viruses, yeasts and protists (Li et al., 2014). 

Though many recent studies have often been able to link the changes in the taxonomic 

composition of the gut due to pathologies such as inflammatory bowel diseases, obesity, type 2 

diabetes, Clostridium difficile–associated diarrhea, advanced chronic liver disease, and others 

(Cho and Blaser, 2012) but consistency remains still poor among such studies. This can be 

attributed to the lack of standardized methodology. Also, such associations have not been really 

able to significantly assign causal or consequential role to microbes in the pathogenesis of a 

disease. This calls for follow-up studies and, particularly, intervention studies aiming at 

recovering the structure of the gut microbiota to the baseline. 

 

 



 

11 
 

3.4 Characterizing the shotgun sequencing metagenomic data 

As described above, the benefit of using metagenomic sequencing is that it can yield in-depth 

information about diversity and functional potential of the gut microbiota. This functional profile 

makes it possible to visualize community dynamics and metabolic properties of the gut. The 

sequences obtained from each sample for the entire community metagenome, marks the 

beginning of the whole-genome shotgun analysis. These can be analyzed in different ways for 

taxonomic composition: either by binning or assembling into contigs or partially assembling into 

ORFeomes or by simply annotating at the read level. Several freely available software packages 

are present that compare the metagenomic reads to a database of whole genome sequences or to a 

database of marker genes using BLAST to determine the phylogeny of microbes in the gut 

microbiome. The most identical match is then likely used to determine phylogeny of the 

sequence. Once ORFs in the metagenome are defined, they can be either BLASTed to the 

reference database or analyzed using codon frequencies or Markov models. Then, the 

frequencies of the gene/gene products can be linked with the pathways. This allows to define the 

overall metabolic profile of the sample thus, paving way for inferencing diagnostic and potential 

explanatory functional biomarkers. 
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4. Material and method 

 

4.1 Human subject and extraction and purification of DNA 

The use of human subjects was approved by IGIB, all participants signed informed consent. In 

order to study whether prolonged antibiotic treatment disrupts the coevolved interactions 

between host and gut microbiome, we collected the stool samples from 6 patients before and 

during the tuberculosis treatment. A commonly used treatment regimen for Mycobacterium 

tuberculosis is a DOTS. The samples were taken at three different time points: at the time of 

diagnosis (0th day (0)) and during treatment (After 1st week (W) and 1st month (M) of antibiotic 

DOTS) and their individual healthy family members acted as controls.   

 

4.2 DNA extraction, metagenomic whole genome shotgun sequencing and quality filtering 

The DNA was isolated using QiaAmp Stool DNA kit using manufacturer`s guidelines. The 

concentration and purity of DNA was observed using Nano Drop spectrophotometer (NanoDrop 

ND-2000) and gel electrophoresis, respectively. DNA samples were later pre-processed by using 

DNA sample preparation kit protocol (Illumina. San Diego, CA, USA). Then, the samples were 

subjected to HiSeq sequencing as per the manufacturer’s (Illumina) protocol. Illumina Hiseq 

GAII technology was used to generate 2 x 90bp paired end read with average insert size of 

350bp. Base calling was performed using Illumina Genome Analyzer  Pipeline software version 

1.5.1. Individual metagenome reads were trimmed using following parameters: Q20 quality cut-

off, a minimum read length of 85bp and allowing no ambiguous nucleotides. All the patients 

included in the present study were diagnosed with the TB-infection for the first time and tested 

negative for HIV, all the subjects were non-diabetic and non-smokers. The serum levels were 

also measured for the patient. Sequence reads obtained were of high quality but still their quality 

control was performed using NGSQC Toolkit v2.3.3 (Patel and Jain, 2012). 

 

4.3 Taxonomic classification 

Taxonomic classification was obtained using MetaPhlAn (Segata et al., 2012) with raw reads as 

input. According to the ‘paired end’ criterion, relative abundance was calculated.  

 

4.4 Metagenomic assembly and annotation 

Quality filtered reads of all the samples (n=24) of gut microbiome were assembled by using 

Velvet 1.2.10 (Zerbino and Birney, 2008) set at different k-mer length ranging from 41 to 61, 

insertion length of 350 bp, an expected coverage of 200 and coverage cut-off of 5 for all 

samples. The assembled sequences have the average assembly size of 80.34Mb. 
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4.5 Functional Analysis and pathway reconstruction 

For the functional assessment, ORFs were predicted for all the assembled metagenome samples 

i.e. AB, T, U, V, Y, and Z using FragGeneScan (Rho et al., 2010). Two-step approach was 

followed for pathway reconstruction, first the KEGG orthologs were assigned to the contigs 

using KEGG automatic annotation server (KAAS) (Moriya et al., 2007) which was followed by 

final pathway mapping using Minimal set of pathways (MinPath) (Ye and Doak, 2011). MinPath 

uses parsimony approach to eliminate noticeably spurious pathways (redundancy) annotated 

using naïve approaches (such as KAAS and RAST). Furthermore, the reconstructed pathways 

were normalized by calculating relative abundance with respect to total hits obtained for all the 

pathways deciphered for each sample. Comparative metabolic potential was further studied both 

intra-sample (i.e. between control, zero, week and month) and also inter-sample (i.e. between 

AB, Y, Z, T, U, V).  

The assessment is still underway for investigating the metagenomics data of distal gut bacterial 

communities obtained from the fecal samples of TB patients.   
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5. Result and Analysis 

To investigate the influence of TB and DOTS on the human gut microbiota, we analyzed the 

human gut microbiome using whole genome shotgun sequencing method followed by 

metagenomic analysis of the fecal DNA. The samples were obtained from TB patients at three 

time points viz. at the time of diagnosis (0th day), after one week of DOTS (7th day) and then after 

one month of DOTS (30th day) and their healthy family members represented the controls. The 

control and patient`s metadata is represented in the Supplementary Table 1 (Appendix) and its 

corresponding summarized information is provided in the Table 1.  

 

  AGE GENDER DIET WEIGHT BMI 

  Range Mean Male Female Veg Non-

Veg 

Range Mean Range Mean 

Controls 19-35 

years 

26.5 6 0 1 5 58-79 kg 70.17 25.4-35.1 31.01 

TB 

patients 

14-47 

years 

30 3 3 1 5 36-60 kg 46.5 18.07-

28.06 

21.28 

Table 1: Representation of the range and mean of age, weight and BMI along with gender and type of diet in the 

control and patients 

 

The quality of the short reads obtained following whole genome shotgun sequencing was 

evaluated using NGSQC Toolkit 2.3.3 (Patel and Jain, 2012). The statistics of the quality control 

analysis is given in the Supplementary Table 2 (Appendix). This was followed by estimating 

taxonomic composition of each sample using MetaPhlAn 1.7.8. MetaPhlAn 1.7.8 (Segata et al., 

2012) identifies population of microbes in a microbial community and their relative abundances 

for large data sets. It uses clade-specific marker genes database for unambiguously and 

accurately assigning reads to microbial clades and then measuring their proportions in a given 

sample. The samples were mapped to phylum, classes, order, family, genus and species level. 

 

5.1 Microbial diversity in Controls 

The healthy family member of the TB patients, who have not taken antibiotics from past 6 

months acted as controls. All of them have high BMI and all were on non-vegetarian diet except 

sample “T”. Upon taxonomic analysis, we found the controls to be rich in microbial diversity 

with kingdom Bacteria as the most abundant kingdom Archaea as less abundant. At the phylum 

level, Bacteroidetes which included class members of Bacteroidia were most abundant followed 

by Firmicutes, which included class members of Clostridia and Negativicutes and 

Actinobacteria. The phyla such as Spirochaetes (Class Spirochaeta), Synergistetes (Class 
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Synergistia), Cyanobacteria, Acidobacteria were almost absent in all the controls whereas phyla 

Proteobacteria, Thermi, Chlymadiae, Chloroflexi, Fusobacteria, Euryarchaeota and 

Lentisphaerae were among the rare phyla. Prevotellaceae, Veillonellaceae and Eubacteriaceaei 

represented the most abundant families whereas Actinomycetaceae, Aeromonadaceae, 

Camplylobacteraceae, Cardiobacteriaceae, Carnobacteriaceae and Fusobacteriaceae were the 

absent families in the control samples. Genera such as Prevotella (specifically Prevotella copri), 

Eubacterium (specifically Eubacterium eligens, Eubacterium rectale), Faecalibacterium 

(specifically Faecalibacterium prausnitzii), Bacteriodes and Megamonas were relatively more 

abundant in controls. Prevotella copri was the most prominently abundant species in all the 

controls (figure 3).  

 

5.2 Microbial diversity in TB patients 

All of them had low BMI as compared to their healthy counterparts and all were on non-

vegetarian diet except sample “T”. In TB patient samples (0th day), taxonomic analysis found 

kingdom Bacteria to be most abundant and kingdom Archaea (present only in VZ, YZ, ZZ and 

was absent in ABZ and TZ) to be in minority only in comparison to its healthy counterparts.  

Kingdom Archaea disappeared during treatment in samples ‘Y’ and ‘U’, rest all samples only 

showed up-down fluctuations in its relative abundance in comparison to healthy controls, who 

had not consumed antibiotics from past 6 months. 

Phyla Bacteroidetes and Firmicutes were most abundant in TB patients. An inverse relationship 

was observed between phyla Bacteroidetes and Firmicutes i.e. as the abundance of Bacteroidetes 

decline, the abundance of Firmicutes increases. Also, phylum Proteobacteria showed significant 

increase in its abundance alongside Firmicutes. The relative abundance of class Actinobacteria 

was observed to swings on both sides and the final value after 1 month of DOTS was close to 

that observed in normal healthy controls. Negative correlation between phyla Bacteroidetes and 

Firmicutes was reciprocated in their respective classes as well (Class Bacteroides and Class 

Clostridia) (figure 5). Class Negativicutes belonging to phylum Firmicutes, which represents 

only gram-negative bacteria, was also abundant in some samples. 

Genus Bacteroides shows variable behavior among different samples. It was observed to be most 

prominent in sample ‘Y’ with very high relative abundance. Genus Escherichia showed high 

abundance in TB patients not undergoing any treatment (untreated TB patients) and it also shows 

a decreasing trend with antibiotics dosage except in one sample “Y”, where it goes on increasing. 

Genus Eubacterium and Faecalibacterium were found to be positive correlated. Genera such as 

Lactococcus and Mycobacterium showed decrease in relative enrichment. Our samples were 

mostly enriched with genus Prevotella. No clear trend was found across all samples and even 

after 1 month of DOTS. Though gut was highly enriched with genus Prevotella in all healthy 

individuals and in almost all TB samples. Though high fluctuations were observed in two 
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samples, “Y” and “T” which calls for increasing the sample size for more visible and fruitful 

results (figure 3).   

 

5.3 Comparative taxonomic diversity analysis 

This was followed by comparative analysis to assess the effect of disease and treatment 

(antibiotics dosage in this case) on the human gut microbiome. Inter-individual (controls versus 

TB patients (0th day)) analysis and intra-individual analysis (TB patients on 0th day, TB patients 

on 7th day, TB patients on 30th day) was performed using the relative abundance values obtained 

using MetaPhlAn. The mean relative abundance of genus Prevotella was lower in TB patients as 

compared to their healthy counterparts. It suddenly showed a jump in abundance after 1 week of 

DOTS and continued the same trend at the end of 1 month of DOTS. However, the behavior 

shown by sample ‘Y’ in terms of genus Prevotella was strikingly different which was evident 

from it being reduced to only a minority genus in TB patients as compared to its healthy 

counterpart and other TB samples. Even after 1 week of DOTS, the abundance was very much 

below the average level and this was even visible after 1 month of DOTS. Genus Mycobacterium 

had same abundance in “T” control and “T” sample obtained after following 1 month of DOTS. 

In case of sample “AB”, it increased with TB and then declined with DOTS. The untreated TB 

samples and samples obtained following 1 month of DOTS were rich in Lactobacillus ruminis, 

specifically in sample “T”. Eubacterium rectale showed high abundance in TB (0th day) samples. 

After 1 month of DOTS, in TB patients’ genus Ruminococcus was always found to be less 

abundant but its relative abundance was close to that of their controls. Genus Escherichia was 

relatively more abundant in TB patients (0th day). They also showed a decline after 1 week of 

DOTS and after 1 month of DOTS except in ‘Y’ sample where the its abundance increased at the 

end of 1 month of DOTS. 

Some species were found to be absent in all the samples irrespective of the disease or antibiotics 

intake, which include Fusobacterium mortiferum, Gardnerella vaginalis, Gemella haemolysis, 

Gemella moribillum,  Gemella unclassified, Gramicatella adiacens and Haemophilus influenzae.  

Samples with BMI >= 25 (UTB and all controls) had mean relative abundance of 72.18, 2.38, 

4.0477 for genera Prevotella, Bacteroides and Eubacterium respectively whereas samples with 

BMI <25 (all TB patients except UTB) had mean relative abundance of 47.45, 11.23 and 14.86 

respectively for all the above genera.  

As medication, in particular DOTS, can affect the gut microbiota but we found only minor 

effects of antibiotics within TB patient and among comparison of TB patients and healthy 

individuals. An interesting generalizable finding is that the genera Prevotella, in particular 

Prevotella copri is most abundant in healthy as well as TB patients. 

The summarized results of comparison of few abundant taxa in controls and TB patients (0th day) 

is represented in the figure below up to the family level of hierarchical classification (figure 2) 
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whereas the heatmap presenting top 25 species with horizontal and vertical clustering on a ‘log’ 

scale of all the 24 samples was plotted using MetaPhlAn_hclust_heatmap.py script of 

MetaPhlAn 1.7.8 (figure 4). 

 

 

 

 

Figure 2: Schematic diagram indicating taxa/lineages average overabundance in TB patients and healthy people gut 

data sets. Area shaded in grey: lineages/taxas observed to be overabundant in healthy controls. Green boxes: taxa 

abundant in healthy people and red boxes: taxa abundant in TB patients (zero days) 
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E              F 

 

Figure 3: Heatmaps drawn using MetaPhlAn_hclust_heatmap.py script of MetaPhlAn 1.7.8 displaying top 20 

results along with horizontal and vertical clustering at different hierarchical levels. A. Heatmap of all the controls at 

phylum level showing phylum Bacteroidetes to be most abundant in all samples and followed by phylum Firmicutes. 

B.  Heatmap of all TB patients (0th day) at phylum level phylum Bacteroidetes to be most abundant in all samples 

and followed by phylum Firmicutes. C. Heatmap of all the controls at genus level where genus Prevotella appeared 

to be most abundant in all samples and followed by genera Bifidobacterium and the Eubacterium D. Heatmap of all 

the TB patients at genus level where genus Prevotella appeared to be most abundant in all samples with an 

exception in sample “Y” and followed by genera Eubacterium, Faecalibacterium and Bacteroides. E. Heatmap of 

all the controls at species level where Prevotella copri shows higher relative abundance F. Heatmap of all the TB 

patients at species level where Prevotella copri shows higher relative abundance except the sample “Y”. 
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Figure 4: Heatmap showing comparative relative abundances at species level in all the 24 samples on a log scale 

with species and sample clustering. 
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Figure 5: Barplot for relative abundance of phyla Bacteroidetes, Firmicutes and Proteobacteria. Phylum 

Bacteroidetes and phylum Firmicutes display an inverse relationship in almost all the samples, with phylum 

Bacteroidetes being the most abundant in all the samples.  

 

Table 2: Table depicting abundant genera and their reported functions    

Reported Genus in 

Control 

Reported Functions Reported Genus in  

TB Patients 

Reported Functions 

A: Bifidobacterium  Used as Probiotic  A: Bifidobacterium  Used as Probiotic 

B: Collinsella  Core Microbiome 

Community 

B: Coprococcus  Core microbiome 

Community 

C: Blautia  Assimilation of 

Nutrients 

C: Roseburia  Production of 

Butyrate 
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D: Roseburia  Production of 

Butyrate 

D: Ruminococcus  Cellulose 

Metabolism 

E: Butyrivibrio  Degradation of Plant 

fibers 

E: Faecalibacterium  Potential Probiotic 

for IBD 

F: Coprococcus  Core Microbiome 

Community 

F: Eubacterium  Production of Fatty 

acids 

G: Dorea  Not Reported G: 

Phascolarctobacterium  

Not Reported 

H: Ruminococcus  Cellulose Metabolism H: Veillonella  Reported to cause 

Irritable Bowel 

Syndrome 

I: Faecalibacterium  Potential Probiotic for 

IBD 

I: Mitsuokella  Prevention and 

Treatment of 

Hyperlactation 

J: Eubacterium  Production of Fatty 

acids 

J: Megamonas  Associated with 

Diabetes Mellitus 

Type II 

K: Veillonella  Reported to cause 

Irritable Bowel 

Syndrome 

K: Catenibacterium  Improvement in 

Immunity 

L: Mitsuokella  Prevention and 

Treatment of 

Hyperlactation 

L: Lactobacillus Native member of 

Gut Microbiota 

M: Megamonas  Associated with 

Diabetes Melliatus 

Type II 

M: Bacteroides  Lean Body Profile  

N: Catenibacterium  Improvement in 

Immunity 

N: Alistipes  Not Reported 
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O: Lactobacillus Native member of Gut 

Microbiota 

O: Odoribacter  Reported to cause 

Colon Cancer 

P: Streptococcus Pathogenic P: Parabacteroides  Reduction in the 

severity of Intestinal 

Inflammation 

Q: Bacteroides  Lean Body Profile  Q: Prevotella  Pathogenic 

R: Prevotella  Pathogenic R: Escherichia Native member of 

Gut Microbiota 

S: Alistipes  Not Reported S: Klebsiella  Facultative Pathogen 

in Immuno-

compromised 

patients 

T: Escherichia Native member of Gut 

Microbiota 

    

U: Haemophilus  Pathogenic     

V: Desulfovibrio  Pathogenic     

W: Sutterella  Associated with 

autism 

    

 

 

 



 

24 
 

5.4 Functional Analysis 

Comparative metabolic potential analysis revealed interesting results providing useful insights on 

the gut microbiota between the control and zero day TB patient samples. In congruence with all 

the control as well as zero day samples, pathways like tetracycline biosynthesis, polyketide sugar 

unit biosynthesis, D-alanine metabolism and biosynthesis of vancomycin group antibiotics were 

revealed to be the among the most enriched. These pathways irrespective of the physiological 

state were found to be generally enriched contributing majorly to the gut metabolism. Although, 

opposed to this pattern sample “Y” showed variations; Y control revealed all the above pathways 

to be abundant but its TB counterpart (0th day) sample showed enrichment of selenoamino acid 

metabolism, Glycolysis/Gluconeogenesis, Galactose metabolism and benzoate degradation 

pathway. Here, we can hypothesize the individual sample variation to be the cause of such 

striking difference. Similarly, sample AB also showed small variation in the overall pattern with 

the control sample showing enrichment of tetracycline biosynthesis, biosynthesis of vancomycin 

group antibiotics , D-Alanine metabolism and polyketide sugar unit biosynthesis whereas in case 

of the zero day patient sample pathways like methionine metabolism, streptomycin biosynthesis, 

inositol phosphate metabolism, and nucleotide excision repair were more abundant.  

Pathways abundant only in TB (0th day) samples: ABC transporters-General, Aminosugar 

metabolism except in “T” sample, Bacterial chemotaxis, Beta-Lactam resistance with exception 

in “T” sample, Butanoate metabolism with exception in ‘T’ sample, Fatty acid metabolism with 

exception in “Z” sample, Gamma Hexachlorohexane degradation, Glutamate metabolism, 

Glycerophospholipid metabolism, Glutathione metabolism, Glycine, Serine and Threonine 

metabolism, with exception in ‘T’ sample, Glycolysis/Gluconeogenesis with exception in ‘T’ 

sample, Glyoxylate and dicarboxylate metabolism, peptidoglycan biosynthesis, Phenylalanine 

metabolism, Purine metabolism, Pyruvate metabolism, Selenoamino acid metabolism with 

exception in ‘T’ sample, Sphingolipid metabolism with exception in ‘T’ and ‘U’ sample where it 

is 0, Synthesis and degradation of ketone bodies osbserved in AB, U, Y TB patients,  

Trinitrotoluene degradation with exception in ‘T’ sample, Two-component system-General, 

Ubiquinone biosynthesis, Valine, Leucine and isoleucine biosynthesis, Lysine degradation. 

Pathways abundant in control samples: Alkaloid biosynthesis-II, Type IV secretion system in 

most controls.  

This has been shown in the form of heatmap in Supplementary Figure 1 (Appendix). 
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6. Discussion 

TB is a widespread infectious disease caused by various strains of Mycobacterium. Though the 

main cause of TB is Mycobacterium infection but a number of factors such as HIV, smoking, 

chronic lung diseases (example silicosis), overcrowding and malnutrition make individuals more 

susceptible to TB. The standard DOTS treatment for TB includes isoniazid (along with pyridoxal 

phosphate), pyrazinamide, rifampicin and ethambutol for 2 months, then for 4 months isoniazid 

and rifampicin alone are administered. After six months, the patient is generally observed to be 

free of Mycobacterium infection. The present study with the help of metagenomic whole genome 

sequence analysis, highlights how the gut microbial composition differs between healthy and TB 

patients along with the changes it undergo during DOTS. The study was primarily motivated by 

the observation that the composition of the microbiota tends to change with the administration of 

antibiotics and disease progression (Ferrer et al., 2013; Hara et al., 2013). 

The abundant phyla in TB patients were Bacteroidetes, Firmicutes, Proteobacteria and 

Actinobacteria but there level of richness is less as in healthy controls. A negative correlation 

was observed between phylum Bacteroides and phylum Firmicutes in all the samples irrespective 

of the pathophysiological condition and antibiotics intake with phylum Bacteroidetes being the 

major phylum (figure 5). This trend was visible up to the subsequent order level. Phylum 

Bacteroidetes include three classes of gram-negative, non-spore forming, aerobic or anaerobic 

bacteria. Class Bacteroidia is the most studied class which includes the genus Bacteroides 

(usually abundant in the warm-blooded animals including humans). These are mostly 

opportunistic pathogens. The capability of Bacteroidetes to feed on carbohydrates, their ancient 

symbiotic relationship with their hosts (Bäckhed et al., 2005; Xu et al., 2007) and their known 

vital position in the gut microbiome might have helped to sustain their abundance over time. 

Phylum Firmicutes includes mostly gram-positive bacteria exhibiting low G+C content in their 

genome. It has two major classes: class Clostridia and Bacilli. A recent study has demonstrated 

the existence of mainly three Enterotypes in the gut: Prevotella, Bacteriodes and Ruminococcus. 

Prevotella strives on carbohydrate and simple sugars, indicating their association with 

carbohydrate-rich diet typical of agrarian societies whereas Bacteroides enterotype is associated 

with diet components like animal proteins, amino acids and saturated fats, typical of western diet 

and Ruminococcus prevailed in those individuals that consume lot of alcohol and 

polyunsaturated fatty acids (PUFA). Though it is not clear, the type of microbial flora which is 

healthier in comparison to the others (Arumugam et al., 2011). Further, phylum Proteobacteria 

seem to be the early colonizers of the mammalian gut and may, therefore, be less competitive 

and abundant than well-adapted late colonizers (Trosvik et al., 2010).  

 

 

 

https://en.wikipedia.org/wiki/Pyridoxal_phosphate
https://en.wikipedia.org/wiki/Pyridoxal_phosphate
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There were lot of exceptional changes both from the point of diversity and functional 

composition, specifically in sample “T” and sample “Y”. Prevotella copri was found to be highly 

abundance in healthy controls, particularly in “AB”, “V”, “Y” and “Z”. Prevotella copri`s 

abundance increased after 1 week of DOTS and then sublimes a bit after 1 month of DOTS. ‘T’ 

and ‘U’ samples showed a dissimilar trend. In sample “U”, its abundance increased with the 

treatment progression and was less abundance in control samples. Genus Eubacterium also 

showed an increase in abundance in TB patients except in ‘T’ where it declined. This can 

certainly be attributed to the diet or BMI as only sample “T” was consuming a vegetarian diet. 

Genus Flavobacterium was absent in all samples irrespective of the physiological state. This 

means it is unaffected by diet, age, TB or DOTS (antibiotics). Also genera Stenutrophomonas 

and Solobacterium were also found to be absent from all the samples. Additionally, as mentioned 

in the result section, contrary to the trends observed in other samples many pathways were less 

or more abundant in “T” samples (0th day) in comparison to controls. This could be attributed to 

the type of diet consumed, as only sample “T” was known to live on vegetarian diet.  

Some genera and species showed only slight fluctuations in their relative abundances in all the 

samples. They didn`t seem to follow any logical trend. We hypothesized that this behavior may 

be attributed: to the fact these genera or species fluctuations is a natural phenomenon even in 

healthy individuals, or some genetically and functionally similar genera or species tries to cover 

up for such fluctuations i.e. they might have negative correlation with any other genera or 

species. Relevant to this, we could say that antibiotics might not have much effect on these 

genera or species. Though, we have summarized the reported functions of the abundant genera in 

our controls and TB patient samples, for a quick reference (Table 2). 

Some studies have reported the recovery of gut microbiota towards baseline in model animals 

after short-term antibiotic treatment therapy (Robinson and Young, 2010) but several weeks after 

the withdrawal of antibiotics for instance, quinolones (Dethlefsen et al., 2008) and cefoparazone 

(Robinson and Young, 2010) evident changes were observed. Another study has revealed the 

effect of long-term antibiotic treatment with rifampicin on termite gut microbiota, leading to 

irreversible changes in microbial community composition along with effecting weight, longevity 

and fecundity (Rosengaus et al., 2011). 

The isoniazid, pyrazinamide, ethambutol are MTb specific drugs whereas Rifampicin is a broad-

spectrum antibiotic. There seems to be minimal effect of short-term DOTS treatment on the 

human gut microbiota. However, complete DOTS treatment could have significant impact on the 

gut microbiota. 

While relative importance of these results may not be able to disentangle the wires linking the 

gut microbiota and TB/DOTS treatment but we could definitely state certain conclusive results 

from them. The patterns of microbial abundance observed in our study seems to be relevant if 

not conclusive, for diagnostic and /or therapeutic approaches targeting the human gut 

microbiome. The results call for more extensive study which includes following up healthy 
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controls and patients for longer time and extending the study to metatranscriptomic and 

metaproteomic levels.  

From the literature survey and based on the present study, we could additionally state few more 

things with quite a lot of certainty. In order to decipher links between gut microbiota and 

physiological or disease states, one theme that seemed common to the both taxonomic and 

functional analysis is that it would be more revealing to use larger sample size than to sequence 

each sample at greater sequencing depth. However, far deeper sequencing would be required for 

certain associations involving minority species and rare genes. In such cases, it might require 

direct gut mucosal sampling rather than relying on stool samples as a proxy. Relevant to this 

issue, it is also possible that certain undetectable genes or species might have disproportionately 

larger impact on the microbiota relative to its abundance.  To this context, it becomes really 

important to distinguish the presence or abundance of which genes and species is affected due to 

a particular physiological states and due to which physiological states is the result of presence or 

abundance of certain genes and species. Though, it has been possible to establish causality in a 

few cases such as the one involving, stool transplantations between different humans leading to 

cure persistent Clostridium difficile infections, involving transfer of microbial communities that 

are collectively associated with a physiological state between different mice or even between 

humans and mouse. However, several ELSI (Ethical, Legal and Social Issues) prevent the 

manipulation of the human microbiome. 

 

Our study also has some drawbacks: small sample size, less prolonged treatment samples, DNA 

was not extracted for healthy sample at the same time points as for the diseased individual, lack 

of standardized protocol for taxonomic and functional assignment of sequence reads. 

 

Differentiating between causal and mere side effect associations between microbiota and 

physiological states from the prospective time series studies, is still an undoable task. Also, the 

understanding of our microbial counterparts harbored in the human body is still shallow. 

Numerous research projects in a wide variety of microbes for sequencing their complete 

genomes are underway. Additionally, it can be challenging to interpret and understand the 

biological relevance of a differentially represented group of gene functions between two or more 

samples. Though an increasing number of tools and approaches that allow the identification of 

considerable differences between this lists are being developed (Kuczynski et al., 2011). All this 

is thought to have an intense effect on our understanding of the disease-associated strains and 

pathogenicity. 
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7. Future Perspective

 

The results obtained till now from our current study combined with the recent studies reveal that 

though studying metagenomics using fecal samples gives quite a good results but we need to 

move on with direct sampling of the gut cells. They also compel us to take the next step and 

perform systematic studies that involves multiple disorders. We hereby can say that we also have 

plans to study the human gut microbiota associated with HIV-TB patients. These studies should 

be guided by standardized pipelines and experts to obtain meaningful results. The results would 

help address questions pertaining to the loss and recovery of microbial community during the 

course of treatment.  Additionally, our findings emphasize to conduct large scale, well 

characterized epidemiological studies to detect variations among healthy and diseased 

individuals.  

 

Our findings have added to the perspective of using metagenomic analysis of whole genome 

shotgun sequencing of DNA obtained from fecal matter aimed at characterizing disease-

associated deviations from a healthy gut microbiota. This study gives us many additional 

research assignments such as: comparative study of the human gut microbiota among different 

populations including Indian populations using the whole genome sequencing data, new studies 

to separate from the fecal DNA virus-like particles and identify CRISPR elements using 

sequencing data, identifying additionally the antibiotic resistance genes (ARDB) in the available 

data and thus interpret the effect of antibiotic resistance genes on the variations in human gut 

microbiota, study long-term effect of DOTS on human gut microbiota of TB patients. 

Additionally this study provides us the opportunity to standardize the pipeline for analyzing the 

whole genome metagenomic sequencing data as well as comparing these results with the results 

obtained using 16s rRNA sequencing data, thus differentiating between them in the terms of 

efficiency and accuracy. 
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8. Conclusion 

The human gut encompasses an ensemble of microbes mainly bacteria along with virus, fungi 

and eukaryotes which have been linked to a wide range health phenotypes and 

pathophysiologies. Molecular approaches have provided spectral insights into the taxonomic 

diversity and functional profile of the human gut microbiota and allowed tracking changes 

associated with the disease and associated treatment therapies. Designing novel interventions 

aimed at improving symbiotic relationships and diseased state is tend to improve with better 

understanding of the relationship between microbial communities and the host health. 

With respect to our understanding and interpretation of the microbial patterns associated with 

disease and DOTS, we may conclude that short-term surveillance of TB patients under DOTS 

pointed towards it minimal effect on the gut microbiota. Also, no fixed trends were observed in 

case of both taxonomic diversity and functional composition of the gut. We may hypothesize that 

microbial shifts observed may be the result of positive or negative correlations between different 

genera or species. This also points to the fact that there is functional redundancy across 

taxonomic diversity, and different microbial species in our sample may have similar pathways. 

These results also suggests us that we cannot accurate make conclusions on such a small sample 

size and thus emphasize to conduct large scale, well characterized studies to detect variations 

among healthy and diseased individuals.  

This research will open doors for further investigations for engineering microbiota either directly 

(using prebiotics, probiotics, drugs) or indirectly (using diet as preventive measures or treatment 

therapy) for TB. Also, metatranscriptomic and metaproteomic quantification of metagenomic 

sample is expected to yield fascinating insights into our relationship and that of TB with our gut 

microbial ecosystem. 
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 Appendix 

 

Supplementary Table 1: Table showing patient identities with the corresponding controls along with metadata 

(Age, Sex, Height, Diet pattern & BMI) 

PATIENT_ID AGE 

(yrs.) 

SEX HEIGHT (cm) Wt.(Kg) Diet BMI 

ABTB 14 F 145 38 NON-VEG 18.07 

VTB 20 F 145 40 NON-VEG 19.02 

TTB 47 M 156 60 VEG 24.65 

YTB 22 M 140 36 NON-VEG 18.37 

ZTB 35 M 160 50 NON-VEG 19.53 

UTB 40 F 140 55 NON-VEG 28.06 

CONTROL 

(corresponding) 

AGE 

(yrs.) 

SEX HEIGHT(cm) Wt.(Kg) Diet BMI 

ABC 23 M 148 64 NON-VEG 29.2 

VC 19 M 151 58 NON-VEG 25.4 

TC 27 M 153 69 VEG 29.4 

YC 31 M 149 76 NON-VEG 34.2 

ZC 35 M 150 79 NON-VEG 35.1 

UC 24 M 151 75 NON-VEG 32.8 
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NGSQC Toolkit 

A toolkit for the quality control (QC) of next generation sequencing (NGS) data. The toolkit 

comprises of user-friendly standalone tools for quality control of the sequence data generated 

using Illumina and Roche 454 platforms with detailed results in the form of tables and graphs, 

and filtering of high-quality sequence data. It also includes few other tools, which are helpful in 

NGS data quality control and analysis. 

 

Supplementary Table 2: NGSQC Toolkit 2.3.3 quality control statistics for each file of paired end reads. 

Sample 

Name 

Raw Reads Trimmed 

Reads 

QC Filtered %Trimmed %QC 

Filtered 

ABC_1 38839511 38678053 38678053 0.415705543 100 

ABC_2 38839511 38678053 38678053 0.415705543 100 

ABZ_1 43567167 43420857 43420857 0.335826289 100 

ABZ_2 43567167 43420857 43420857 0.335826289 100 

ABW_1 47225694 46989475 46989475 0.500191696 100 

ABW_2 47225694 46989475 46989475 0.500191696 100 

ABM_1 44317517 44117024 44117024 0.452401248 100 

ABM_2 44317517 44117024 44117024 0.452401248 100 

TC_1 38983138 38920741 38920741 0.160061512 100 

TC_2 38983138 38920741 38920741 0.160061512 100 

TZ_1 48448506 48202662 48202662 0.507433604 100 

TZ_2 48448506 48202662 48202662 0.507433604 100 

TW_1 39267846 39090046 39090046 0.452787759 100 

TW_2 39267846 39090046 39090046 0.452787759 100 

TM_1 38044449 37910909 37910909 0.351010472 100 

TM_2 38044449 37910909 37910909 0.351010472 100 

UC_1 39702579 39543025 39543025 0.401873138 100 

UC_2 39702579 39543025 39543025 0.401873138 100 

UZ_1 40242362 40101628 40101628 0.349716053 100 

UZ_2 40242362 40101628 40101628 0.349716053 100 

UW_1 45447473 45372663 45372663 0.164607612 100 

UW_2 45447473 45372663 45372663 0.164607612 100 

UM_1 38719937 38623078 38623078 0.250152783 100 

UM_2 38719937 38623078 38623078 0.250152783 100 

VC_1 43947901 43876691 43876691 0.162032767 100 

VC_2 43947901 43876691 43876691 0.162032767 100 

VZ_1 49826432 49620005 49620005 0.414292157 100 
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VZ_2 49826432 49620005 49620005 0.414292157 100 

VW_1 44085385 43868941 43868941 0.49096543 100 

VW_2 44085385 43868941 43868941 0.49096543 100 

VM_1 43236720 43043862 43043862 0.446051412 100 

VM_2 43236720 43043862 43043862 0.446051412 100 

YC_1 40020082 39879681 39879681 0.350826368 100 

YC_2 40020082 39879681 39879681 0.350826368 100 

YZ_1 45777551 45552526 45552526 0.491561901 100 

YZ_2 45777551 45552526 45552526 0.491561901 100 

YW_1 41449279 41263314 41263314 0.448656779 100 

YW_2 41449279 41263314 41263314 0.448656779 100 

YM_1 35599565 35510730 35510730 0.249539566 100 

YM_2 35599565 35510730 35510730 0.249539566 100 

ZC_1 47925728 47846351 47846351 0.165625027 100 

ZC_2 47925728 47846351 47846351 0.165625027 100 

ZZ_1 36989970 36838346 36838346 0.409905712 100 

ZZ_2 36989970 36838346 36838346 0.409905712 100 

ZW_1 34895276 34809655 34809655 0.24536559 100 

ZW_2 34895276 34809655 34809655 0.24536559 100 

ZM_1 32095327 32016761 32016761 0.24478953 100 

ZM_2 32095327 32016761 32016761 0.24478953 100 

 

 

Velvet 1.2.10 

Velvet is an algorithm package that has been designed to deal with de novo genome 

assembly and short read sequencing alignments. This is achieved through the manipulation of de 

Bruijn graphs for genomic sequence assembly via the removal of errors and the simplification of 

repeated regions 

$ ./shuffleSequences_fasta.pl filename1.fq filename2.fq > shuffledfilename.fq  

[Where filename1.fq and filename2.fq represents the two paired-end short reads 

$ ./velveth foldername 51 –fastq –shortPaired shuffledfilename.fq   

[51=k-mer, shuffledfilename.fq is the file obtained after running shuffle commands] 

$ ./velvetg foldername –exp_cov 200 –cov_cutoff 5 –ins_length 350 –ins_length_sd 20 –

min_contig_lgth 500 –scaffolding no 
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Supplementary Table 3: Table showing finalized Assembly statistics of all the fecal sample DNA ran on different 

k-mer.          

S. 

No. 

Sample_ID K-mer Exp_Cov Cov_cutoff Nodes N50 Assembly 

Size 

(Mbp) 

1 AB Control 45 200 5 98986 5012 46 

2 AB Zero 51 200 5 177785 5203 145 

3 AB Week 57 200 5 55461 19560 38.8 

4 AB month 61 200 5 54500 19041 49 

5 T control 45 200 5 114960 7827 105.4 

6 T zero 51 200 5 65593 5197 48.4 

7 T week 47 200 5 76679 20387 51.9 

8 T month 55 200 5 56238 15569 64.3 

9 U Control 47 200 5 156426 8036 102.1 

10 U Zero 41 200 5 110382 11657 130 

11 U week 55 200 5 45285 23578 78.2 

12 U month 55 200 5 31641 11073 55.2 

13 V control 57 200 5 81060 10447 46.5 

14 V Zero 55 200 5 69342 8968 64.8 

15 V Week 51 200 5 37281 12279 49.6 

16 V Month 41 200 5 113572 11496 100.2 

17 Y Control 59 200 5 75368 10438 47.4 

18 Y Zero 51 200 5 41199 33351 100 

19 Y week 49 200 5 56315 20581 115.8 

20 Y month 41 200 5 86644 14758 114 

21 Z Control 57 200 5 102671 7421 54 

22 Z Zero 49 200 5 133792 11575 110.3 

23 Z week 45 200 5 164375 6603 91.5 

24 Z month 45 200 5 170111 7073 119.8 
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FASTX Toolkit 

The FASTX-Toolkit version 0.0.6 is a collection of command line tools for Short-Reads 

FASTA/FASTQ files preprocessing. Next-Generation sequencing machines usually produce 

FASTA or FASTQ files, containing multiple short-reads sequences (possibly with quality 

information). It is sometimes more productive to preprocess the FASTA/FASTQ files before 

mapping the sequences to the genome - manipulating the sequences to produce better mapping 

results. It was used to convert FASTQ files into FASTA files. 

$ ./fastq_to_fasta –v –i ABC12.fq -o ABC12.fasta 

 [-v] = Verbose - report number of sequences. 

 [-i INFILE]  = FASTA/Q input file. default is STDIN. 

 [-o OUTFILE] = FASTA output file. default is STDOUT. 

 

MetaPhlAn 

MetaPhlAn is a computational tool for profiling the composition of microbial communities from 

metagenomic shotgun sequencing data. MetaPhlAn relies on unique clade-specific marker genes 

identified from 3,000 reference genomes, allowing: 

 up to 25,000 reads-per-second (on one CPU) analysis speed (orders of magnitude faster 

compared to existing methods); 

 unambiguous taxonomic assignments as the MetaPhlAn markers are clade-specific; 

 accurate estimation of organismal relative abundance (in terms of number of cells rather 

than fraction of reads); 

 species-level resolution for bacterial and archaeal organisms; 

 extensive validation of the profiling accuracy on several synthetic datasets and on 

thousands of real metagenomes 

 

For generating blast and abundance files 

$ ./MetaPhlAn.py –input_type multifasta mergedfiles.fasta –t rel_ab –blastdb blastsdb/mpa –

blastout Abundances/blastoutput_filename –nproc 8 >Abundances/samplename_abundance.txt 

For extracting relative abundances at individual taxonomic levels 

$ ./metaphlan.py -t rel_ab –tax_lev g –input_type blastout ABC12_Blastout.txt > 

ABC12_Abundance_genus.txt 
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Merging output files for different samples 

$utils/merge_MetaPhlAn_tables.py Abundances/*.txt > output/merged_abundances.txt 

The resulting table contains relative abundances with microbial clades as rows and samples as 

columns. 

Plotting heatmaps 

$ plotting_scripts/metaphlan_hclust_heatmap.py –tax_lev k -c bbcry –top 25 –minv 0.1 -s log –

in output/merged_adundances_reads.txt –out output_images/adundances_heatmap.png 

 

FragGene Scan 1.16 

FragGeneScan is an application for finding (fragmented) genes in short reads. 

$ ./run_FragGeneScan.pl –genome=read12.fasta –out=output12 –complete=1 –train=illumina_5 

Upon completion, FragGeneScanR generates three files. The first file is [output_file_name].out, 

which lists the coordinates of putative genes. This file consists of five columns: start position, 

end position, strand, frame, and score. The second file is [output_file_name].ffn, which lists 

nucleotide sequences corresponding to the putative genes in "[output_file_name].out". The third 

file is [output_file_name].faa, which lists amino acid sequences corresponding to the putative 

genes in [output_file_name].out.  

 

KEGGKAAS 

KAAS (KEGG Automatic Annotation Server) provides functional annotation of genes by 

BLAST or GHOST comparisons against the manually curated KEGG GENES database. The 

result contains KO (KEGG Orthology) assignments and automatically generated KEGG 

pathways. The FASTA sequence file is uploaded on the web tool and e-mail ID is mentioned 

alongside to obtain results when done. 

 

MinPATH 

MinPath (Minimal set of Pathways) is a parsimony approach for biological pathway 

reconstructions using protein family predictions, achieving a more conservative, yet more 

faithful, estimation of the biological pathways for a query dataset. The ko files obtained using 

KEGGKAAS were uploaded directly onto the web tool to obtain the pathways involved in the 

given sample. 
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Supplementary Figure 1: Heatmap showing comparative abundances of pathways in the gut microbiome in all the 

24 samples on a linear scale without clustering. “AB”, “T”, “U”, “V”, “Y” and “Z” are the sample names. “C” in the 

suffix represents control sample, “Z” in the suffix represents zero day samples, “W” in the suffix represent samples 

after 1 week of DOTS and “M” in the suffix represents samples after 1 month of DOTS.  

 

 


