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ABSTRACT 

 

  

 Object tracking has always been a very interesting and important research area in 

the field of Computer Vision and Artificial Intelligence. Tracking an object of interest is an 

application that can benefit from multiple sensing modalities. If the object of interest emits 

sound then information from both audio and video sensors can be fused together to remove 

effects of clutter and background noise. Therefore, the use of same visual and audio 

interface modalities that humans take for granted can make indoor spaces more intelligent. 

Audio and visual modalities complement each other when background noise impairs a 

single modality. 

 This work presents a new approach for modeling and processing data from audio 

and visual sensors for tracking multiple objects simultaneously. This approach is based on 

graphical model for visual data and Time Delay of Arrival (TDOA) analysis for sound cue. 

Then both the cues are modeled by a data likelihood function. Finally, Particle Filtering for 

multiple target tracking and Dezert-Smarandache theory (DSmT) for fusing the 

information provided by audio-visual cues are combined. 

 For modeling the visual cue, initially dominant motion is detected from the video 

frames. Then some dominant motion points are selected for depicting movements of target 

object. When some occlusion occurs, these motion points estimate the object position from 

a graphical model. 

 As for modeling the sound cue, the Time Delay of Arrival (TDOA) which occurs 

between the two audio signals received by the two different microphones kept a fixed 

distance apart from each other provides an indication of the position of the sound source(s) 

relative to the microphone pair. This provides an estimate of the horizontal position of 

object in the image. 

 

KEYWORDS: Tracking multiple objects, multiple sensing modalities, Particle filtering, 

Dezert-Smarandache theory (DSmT). 
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1.   INTRODUCTION 

 

1.1 Motivation 

 Object tracking has always been a very interesting and important research area in the 

field of Computer Vision and Artificial Intelligence. Tracking an object of interest is an 

application that can benefit from multiple sensing modalities. If the object of interest emits 

sound then information from both audio and video sensors can be fused together to remove 

effects of clutter and background noise. Therefore, the use of same visual and audio interface 

modalities that humans take for granted can make indoor spaces more intelligent.  

Audio and visual modalities complement each other when background noise impairs a single 

modality. Tracking an object of interest is an application that can benefit from multiple 

sensing modalities. If the object of interest emits sound then information from both audio and 

video sensors can be fused together to remove effects of clutter and background noise. 

Therefore, the use of same visual and audio interface modalities that humans take for granted 

can make indoor spaces more intelligent. Audio and visual modalities complement each other 

when background noise impairs a single modality. 

This work presents a new approach for modeling and processing data from audio and visual 

sensors for tracking multiple objects simultaneously. This approach is based on graphical 

model for visual data and Time Delay of Arrival (TDOA) analysis for sound cue. Then both 

the cues are modeled by a data likelihood function. Finally, Particle Filtering for multiple 

target tracking and Dezert-Smarandache theory (DSmT) for fusing the information provided 

by audio-visual cues are combined. For modeling the visual cue, initially dominant motion is 

detected from the video frames. Then some dominant motion points are selected for depicting 

movements of target object. When some occlusion occurs, these motion points estimate the 

object position from a graphical model. 

 As for modeling the sound cue, the Time Delay of Arrival (TDOA) which occurs 

between the two audio signals received by the two different microphones kept a fixed distance 

apart from each other provides an indication of the position of the sound source(s) relative to 
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the microphone pair. This provides an estimate of the horizontal position of object in the 

image.  

 Overview of the system can be seen in fig. 1.  

 

Figure 1. Audio-Visual fusion using DSmT in Particle filtering process 

 

1.2 Literature Review 

 Recently Particle Filters, also known as Sequential Monte Carlo Methods (SMCM) 

[1], [2], [3] and [4] are popularly used as a tool to solve the tracking problem. Their popularity 

comes from their properties like : simplicity of the framework, flexibility and adaptability, 

their ease of implementation etc. Isard and Blake [3] proved the usefulness of particle filters 

for visual tracking and then coined the term CONDENSATION. This led to a vast body of 

literature in [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and [15] based on SMCM tracking 

which is not attempted to be reviewed here.  

 But one advantage of the SMCM based framework that makes it useful in multimodal 

tracking is that it provides provision for the fusion of information from different  measurement 

in its framework in a principled manner that is, multiple sensing modalities can be exploited 

for tracking purpose using particle filters. Although this property of SMCM has also been 

exploited by various trackers before, but it has not been fully explored for multi target 

tracking within a visual tracking framework. 

 Also tracking based on data fusion with SMCM based trackers has been mostly limited 

to applications for face and hand tracking [16], [17], [18], [19]. 

 But in this work a visual tracker that fuses data from audio and visual sensors in a 

novel way (Fig. 2.2) for tracking multiple objects has been proposed. The generic objective is 

such approach is to successfully track multiple objects or regions of interest in a given 
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sequence of images (video) and sound samples captured by a stationary camera and 

microphones. 

 Numerous methods [20, 21] have proved that fusion of information from multiple cues 

do increase the visual robustness of tracking algorithm especially in case of complex scenes 

resulting in occlusions. Also numerous probabilistic [20–23] and non-probabilistic methods 

[24–27] have been implemented for integration/fusion of the data from multiple cues for 

object representation. If we have the prior distributions along with their conditional 

probabilities, some probabilistic methods such as the Bayesian inference can provide a most 

simple, complete, scalable as well as theoretically justifiable modeling approach for data 

fusion. But, due to various problems such as occlusions, background noise, camera calibration 

and illumination problems in real time scenarios with multiple targets, that it becomes difficult 

to obtain such complete knowledge. 

  A probabilistic approach based solely on Bayesian inference has been proposed in [28] 

for data fusion, that is the Dempster-Shafer theory (DST). In DST, the uncertainty and 

imprecision of a knowledge source is represented in terms of confidence values that are 

committed to a single or a union of hypotheses. But certain inherent limitations of DST such 

as not being able to handle conflicting information sources pose a problem for its use as a 

fusion technique in real-world tracking scenarios.  To overcome this limitation, recently the 

Dezert-Smarandache Theory (DSmT) has been proposed [29]. DSmT is considered as a 

generalized version of the DST.  

 In this work, a novel method for multiple targets using audio and visual cues is 

proposed. The audio-visual cues are combined using DSmT. When the target is partially or 

fully occluded, the conflict that arises between the cues is analyzed using DSmT and then 

exploited in the tracking process. This proposed scheme is simple, novel and provides 

accurate tracking results even in cluttered scenes.  

 

1.3   Objective and Scope of the Project 

The objective of this project is to track multiple objects/targets in a given video sequence by 

utilizing both audio and visual information collected from a still camera and a microphone 

pair. This approach is based on using a graphical model for visual data for detecting some 
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dominant motion points and TDOA analysis for sound cue. Then both the cues are modeled 

by a data likelihood function. Finally, Particle Filtering for multiple target tracking and 

Dezert-Smarandache theory (DSmT) for fusing the information provided by audio-visual cues 

are combined. 

 Using this approach, this work aims at successfully tracking all the objects of interests 

simultaneously in a given video sequence even in presence of background noise and 

partial/full occlusion. For modeling the visual cue, initially dominant motion is detected from 

the video frames. Then some dominant motion points are selected for depicting movements of 

target object. When some occlusion occurs, these motion points estimate the object position 

from a graphical model. 

 As for sound model, Time Delay of Arrival (TDOA) between the audio signals 

arriving at the two different microphones provides indication of the position of the sound 

source relative to the microphone pair. This provides an estimate of the horizontal position of 

object in the image. 

 Finally information from both sound and motion model is fused together using DSmT 

data fusion technique and combined with Particle filtering. 

 

1.4   Organization of Thesis 

This dissertation has been divided into five chapters. A brief overview of each chapter is 

presented below. 

Chapter 2:  Object Tracking Overview        

 It explains the basics of object tracking. It first presents the details about Particle 

filtering for tracking objects. Then it explains the meaning of multimodal object tracking 

using multiple cues. Then it provides the method for tracking more than one object of interest 

that is, multi target tracking. Finally it explains the DSmT theory used in this dissertation for 

data fusion.                

Chapter 3: System Overview 
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This chapter provides the complete details about the proposed system for multi modal 

multi target tracking. It explains the motion model adopted for processing of data from visual 

cue along with sound model used for audio cue. It also describes the final tracking including 

data fusion with Particle filter. 

Chapter 4: Results 

 In this section the performance of our tracking algorithm will be demonstrated. It 

shows the results that are obtained by implementing the proposed approach to track multiple 

(two in this experiment) targets walking in a video sequence captured by a single stationary 

camera and a pair of stereo microphones kept apart at a fix distant. This chapter then justifies 

the proposed approach in contrast to the already existing algorithms for tracking. 

Chapter 5: Conclusion and Future  work  

 This chapter concludes this thesis by discussing the overall contribution of this 

dissertation in the research field of object tracking. It also enlists the limitations of the 

approach and points to future research directions. 
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2.     OBJECT TRACKING OVERVIEW 
                    
  Object tracking has always been a very interesting and important research area in the 

field of Computer Vision and Artificial Intelligence. In general sense object tracking basically 

refers to first detecting moving object of interest in a sequence of images and then tracking 

that detected object from frame to frame in that sequence over a period of time. Object 

tracking can then also be used for analyzing the tracks of the objects in order to estimate and 

predicting their behavior in cluttered sections of the video sequence. Therefore tracking of 

objects can be applied in numerous online and offline image and video processing based 

systems, such as motion-based recognition (a system where automatic human identification is 

done based on automatic object detection), traffic monitoring (a real-time (online) application 

for analysis of traffic data from live traffic video feed to direct traffic flow),  automated 

surveillance and anomaly detections (monitoring video sequence for suspicious activities and 

anomalous behaviors), video indexing (basically meaning automatic searching and retrieving 

of the videos from online multimedia databases, gesture recognition based human-computer 

interaction, vehicle navigation systems.  

2.1 Particle Filtering 

 SMCM based particle filters have been widely used for visual tracking [1], [2], [3], 

[4]. Here we are discussing a brief summary of its framework, and some details about  the 

architectural variations that are require due to the presence of multiple measurement sources. 

 If    and    are the hidden state of the object of interest and the measurements at 

discrete time step n, respectively, then            gives the tracking posterior distribution of 

object of interest, called the filtering distribution, where                     gives all the 

measurement observations up to the current time step n. Using Bayesian Sequential 

estimation, the filtering distribution is computed according to the two step recursion: 

Prediction: 

            ∫                                      (1) 
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Filtering: 

                                                  (2) 

 The above recursion requires a dynamic model describing the state evolution,      

      and a likelihood model providing the likelihood of any state in the light of the current 

observation,          . After initializing the sequence of filtering distributions, the point 

estimates of the state    is obtained using any appropriate loss function such as the Maximum 

a Posteriori (MAP) estimate (arg max      
            or the Minimum Mean Square Error 

(MMSE) estimate. 

 The basic idea behind particle filters is very simple. As the name suggests, starting 

with a weighted set of particles (samples)      
         

          
                 which are 

normalised and are distributed according to                approximately. At each time step 

new samples are generated according to a distribution depending on the old state and the new 

measurements i.e.,    
             

                    . To maintain a reliable set of 

samples at the end of each recursion step, the new importance weights are set calculated and 

the target‟s estimate as calculated as: 

   
           

    
       

         
        

    

         
        

   

and  

 [  ]   ∑   
        

     
       (3) 

 Now, the new particle set    
       

        
      is distributed according to           . 

Also, to avoid the problem of degeneracy of the weights of the particles, it is necessary to 

resample [1] the particles, that is the concentration of most of the weight on a single particle 

from time to time. The resampling procedure basically involves multiplication of particles 

with high importance weights, meanwhile discarding those with low weights. This procedure 

can be optionally applied after each time step, or when a measure of the “quality” of the 

importance weights falls below a certain threshold value. A detailed discussion about 

degeneracy and resampling can be studied in [1]. 

 Now the main challenge that affects the performance of particle filtering for tracking 

application is to find an efficient proposal distribution. Special consideration has been given to 
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this issue in the design of our tracker in Section II(C) where DSmT, a data fusion technique 

has been exploited for designing the proposal distribution function. 

 For multiple sensing sources this general particle filtering framework can be used, by 

exploiting the relation between the structure of the model and the information from the 

measurement modalities. If we have M information sources, then the instantaneous 

measurement vector can be given by            . Also as measurements are assumed to 

be conditionally independent, so the likelihood can be factorized as 

         ∏         
           (4) 

Also, the weight update step involving M likelihood evaluations can be according to (4).  

2.2     The Dezert-Smarandache Theory  

 DSmT proposed in [29] for the sole purpose of information fusion  is a generalized 

version of the classical data fusion theory that is, Dempster-Shafer theory (DST). DST 

initially became popular for providing a formal framework for combining information arising 

from multiple independent but potentially highly conflicting, paradoxical, uncertain and 

imprecise sources. But as the complexities grew in terms of the conflicting sources, some 

inherent limitations of DST became evident. Therefore DSmT was proposed in [29]. DSmT is 

able to successfully solve complex data fusion problems where DST normally fails, especially 

in the case where conflicts between sources become high. Data fusion techniques based on 

this recent DSmT has also been exploited for fusing data in multiple target tracking systems. 

In this section, firstly a quick review of DST is presented before we go into the details of the 

DSmT. 

2.2.1   Dempster-Shafer Theory 

Dempster‟s rule of data fusion (DST) is used for making inferences from conflicting, 

uncertain, imprecise and incomplete knowledge by combining several sources of confidence, 

for example in the case of partially conflicting and contradictory sensors. It represents the 

uncertainty and imprecision in the measurements from multiple sources in terms of confidence 

values. One of the advantages that led to its popularity is that it does not require any 

knowledge of the prior probabilities.  Also Bayesian theory of partial belief as included in 

DST a special case. 
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 Dempster‟s rule of data fusion basically combines the given imprecise measurements 

from multiple sources and from them provides a reliable assessment of the uncertainty.  But it 

is successful only in case of low conflicts between the sensors/sources. As when the conflict 

between the sources grows to a high level, Dempster‟s rule of combination results in false 

conclusions and therefore cannot be trusted for providing a reliable fusion result at all.  

 While DST strictly considers the participated sources/sensors as a set of mutually 

exclusive elements (that is all the information sources should be completely mutually 

exclusive), DSmT relaxes this exclusion condition and allows for intersecting, interdependent 

and overlapping hypotheses (sources need not be fully exclusive). This also requires DSmT to 

quantify the conflicts that might result between the overlapping sources/sensors due to noise 

and occlusion. 

2.2.2   DSmT  

Let us consider a set of some n potentially overlapping elements represented by    

{              }. Then, by using the operators intersection ( ) and union (    on the set  , 

the hyper-power set    is defined as a set of the entire composite hypothesis such that: 

i)                     

ii)  If            then              and (A           . 

iii) Except the elements defined in i) and ii),    contains no other element. 

 As given in [29] by F. Smarandache and Dezert, if the cardinality of Θ equals n, the 

cardinality of    in terms of n is given by    
. Actually, the Dedekind‟s problem for 

enumeration of Boolean functions defines the generation of    in [39]. Also for any finite set 

Θ if  |  |   |  |      then is the hyper-power set of the set Θ.  

  DSmT assigns a generalized basic belief mass (gbbm) function m(A) for each 

hypothesis A in    (similar to DST). This gbbm function m(A)  is defines a map m (.) :     

→ [0, 1], satisfying the conditions expressed in i) , ii) and iii).  
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 Bel (A) and  Pls ( A ) representing the belief function and the plausibility function 

respectively are expressed in DSmT in the same way as for the DST. They are given as: 

Bel (A) = ∑             

     
 

 ,         (5) 

Pls ( A )=  ∑              

         
 

     (6) 

 Generally the Classical DSm (DSmC) rule for source combination is used by DSmT 

for combining the gbbms assigned to the information sources, while assuming a free DSm 

model. So, the DSmT rule for combining overlapping (conflicting), uncertain and imprecise 

sources of information is given by: 

m (A )=  ∑ ∏        
 
                   

                 
 

    (7) 

 Now, for combining d number of independent sources, the hybrid DSm (DSmH) rule 

of combination is applied. DsmH is again a generalized version of DSmC and is given by: 

m(A)=      [                   ]  ,     (8) 

where  

     =  ∑ ∏        
 
                   

                 
 

, 

     =  ∑ ∏        
 
                   

                 
 

 

     =  ∑ ∏        
 
                    

               
 

                  

 

2.3   DSmT Based Tracking  

 As mentioned in section 2.1, main challenge that affects the performance of particle 

filtering for tracking application is to find an efficient proposal distribution. So, now we will 

discuss the fusion of audio and visual cue using DSmT for designing the proposal distribution 

function for calculating the new importance weights of the particle set (   
   

). 

 This work essentially aims for multimodal multi-target tracking. So, let the number of 

targets and the number of cues be τ and c. {  }          be the tracks associated with each 
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target up to time step n–1. At the next time step n, as an image and sound sample frame is 

obtained from the video and audio sequence,  a number of measurements are obtained from all 

the c cues for each target candidate. Thus, we need to combine these measurements for 

estimating the best track for each target candidate. It is important to note that a target 

candidate here refers to a particle sample. As discussed in the previous section, the hyper-

power set    represents the set of the hypotheses for which the different cues have provided 

some confidence levels. The possible hypotheses can correspond to: (1) individual tracks    , 

(2) union of tracks        (representing ignorance), (3) intersection of tracks        

(representing conflict) or (4) any tracks combination obtain by   and ∩ operators. Now, if 

    
     gives the confidence level with which cue l associates particle i to hypothesis A at 

time n , then a single map function   
     providing confidence for particle i at time n  can be 

expressed using the DSmT combinational rule (eq. 7) as follows: 

  
          

          
            

        (9) 

 As all the target are associated with individual tracks, only single hypotheses (tracks) 

are considered for decision making using the notions of the belief or plausibility functions : 

    
  (  ) = ∑   

           

     
 

 , 

    
  (  )=  ∑   

           

         
 

          (10) 

 The confidence levels in (10) quantify the weight of the candidate (or particle) as a 

sample of the state posterior distribution to            that is, 

      
   

      
  (  ) or      

   
      

  (       (11) 

  

 

 

 

 

 

 

 

 



12 

 

The DSmT based particle filtering algorithm employed in this paper for multimodal multi-

target tracking can be summarized as below:                    

Step 1: Initialize 

– Set n = 1, N=100, j=1 

– Generate N samples                
        

     , i=1,…,     for each target j 

independently, with      
        .  

Step 2: Propagate 

–      
             

           
     

where H is a square matrix indicating the deterministic component of the target‟s 

motion model and    is a random component of the target‟s motion model. 

Step 3: Observe (for each particle i) 

– Compute     
       for       from sound model.       .    

   If a new pitch frequency found, the set        &  initialize a new track for it.  

– Compute     
       for       from motion model        

   (initialize the KLT tracker for new target using its estimated position from sound 

model) 

– Compute   
       according to (7) 

– Calculate the particle weight as in (11) :  

          
         

  (  ) or      
         

  (   ∗ 

 – Normalize the weights. 

Step 4: Estimate 

 –Each Target j is given by   [    ]   ∑     
          

     
    . 

Step 5: Resample (for each target) 

 – Generate      {     
          

   }            by resampling    times from   ∗    

  where        
   

 =   ∗  
   

    ∗  
   

 . 

Step 6: Increment 

– set      , then go to step 2. 

 



13 

 

  3.    SYSTEM OVERVIEW 

 Now we will provide the details of all the components of our tracking algorithm based 

on dominant motion and sound. First, the system setup is presented along with the object 

model, and then we proceed to discuss the motion & sound cues and their impact on the 

tracking algorithm in more detail thereby summarizing the proposed tracking algorithm. 

3.1   Audio-Visual System Setup  

 The setup consists only of a single stationary camera and pair of spatially separated 

microphones (kept at a fixed distance part from each other). The placement of camera and 

microphone pair is such that the line that connects the microphone pair is orthogonal to the 

optical axis of camera and also goes through the optical center of the stationary camera. The 

simplicity of the setup can be seen from the fact that performance of this system depends only 

a small number of calibration parameters, namely: the spatial separation „d‟ between the 

microphone pair, the optical focal length „f‟ of the camera used, the actual width of the image 

plane captured by the camera, denoted by „ ̂‟ (expressed in meters),  and the width of the 

digital image captured by camera in in pixels denoted by „W‟.  All these parameters can either 

by measured manually (d &  ̂) while capturing the dataset or can be easily obtained (f & W) . 

  As the inaccuracies in setup and calibration parameters are probabilistic in nature, our 

tracking algorithm is robust to these errors by accommodating them in the likelihood models 

for motion and sound by explicitly modeling the measurement uncertainty. 

 The objective of this work is to successfully and accurately track multiple objects or 

regions of interest in the video sequence captured by the still camera. The data available to us 

here is the raw measurements of camera & microphone in terms of the image frames and 

audio samples. 

 

3.2  Multi-target Multi-modal Tracking 
  

 As described previously, the DSmT based particle filter is now applied for multi-target 

tracking using dominant motion and sound. Here the complete tracking algorithm is concluded 

by summarizing the framework of our multimodal multi-target tracking algorithm. Although 

the proposed framework is capable of tracking any number of targets, for simplicity, we are 
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considering the case for two individual objects (A and B).Now our multi modal fusion 

problem can be characterized by the frame of discernment: 

Θ = {  ,   ,      
̅̅ ̅̅ ̅̅ ̅̅ ̅},      (12) 

where the hypothesis    indicates target 1,   denotes target 2 whereas      
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the false 

alarm hypothesis, originating from the background clutter (as it refers to the rest of scene, 

which tends to change during). Also, in this model          as it refers to the possible 

occlusion and   ∩       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    for j=1, 2.  

3.3   Sound Model  

  Since the actual tracking is performed in the video sequence, the discrete time index n 

corresponds to the video frame number captured by the still camera. As opposed to the video 

sequence which is naturally discretized, the audio samples arrive in a continuous manner, and 

there is no concept of natural audio frames. But for the purposes of the tracking algorithm, 

however, the     audio frame is defined as a window of    audio samples centred around the 

sample corresponding to the     video frame. If         and         denote the sampling 

period for video frames and audio samples, respectively, then the centre of the audio frame 

corresponding to the     video frame can be computed as:  

      [                       ]                 (13) 

where [ . ] denotes the rounding operation. In the audio frame     the number of samples 

taken is normally such that the duration of the audio frame is roughly 50ms. Now the next step 

in developing sound model is to extract the Time Delay of Arrival (TDOA) features from the 

audio data.  Then a likelihood model is derived for the TDOA measurements. After that, 

finally an efficient TDOA based proposal is developed for the Kalman filter, based on an 

inversion of the likelihood model. This proposed method is especially useful for initialization 

and recovering of tracks when they are lost during brief periods of partial or full occlusion. 

3.3.1 Frequency Analysis 

  The main requirement for performing frequency analysis is that this approach is based 

on multiple target tracking. Therefore in order to identify more than one object and relate it to 

a particular track, frequency analysis is done. 
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Figure 2 Cepstrum analysis of a window 

This part first starts with cepstral analysis of speech frames obtained in the above section. The 

basic aim is to identify some sound parameters through which individual objects can be 

distinguished. Here we are using pitch as one such parameter.   

 Pitch (frequency   ) can be defined in simple terms as the base of the speech signal. It 

is also the frequency of oscillation of vocal cords present in our vocal tract. This is a 

characteristic of the vocal tract and has different values for different individuals in different 

conditions. The pitch however is found to vary within a small range for the same person while 

producing different sounds. Children have the highest pitch frequencies in the range of 300 Hz 

followed by adult females who have frequencies around 225 Hz which are still more than 

adult males lying in the range of 120 Hz. This pitch however is variable within individuals as 

well and varies with different sounds. The pitch of a speech window maybe determined by 

finding the location of the first autocorrelation peak of the speech signal, alternately this may 

be found out by the use of cepstral analysis of speech. 

 For finding the pitch value, cepstral analysis is done on the voiced part of the signal (as 

unvoiced part is only a type of noise signal). So, if a signal frame window is found to be 

voiced then its cepstrum is formed. From this cepstrum, pitch period corresponding to the 

cepstral peak in the signal, post 4 milliseconds, is calculated. The cepstrum is calculated for 

each frame. Mathematically, cepstrum is given as:  

                                                    (14) 

where    is the sound frame window (obtained after windowing). Magnitude of c(t) is plotted 

with qerfuency (inverse of frequency). Cepstrum before 4ms is neglected (this part is used for 
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calculation of formant frequencies). Post 4ms part is scanned and peak value is selected. The 

index corresponding to this peak gives the pitch period. This is demonstrated in fig. 2 (Peak 

gives the pitch period). 

 
Figure 3 Analysis of an overlapping sample, containing two peaks. 

  

 Therefore if a speech signal corresponds to a single source, its pitch contour will have 

a single visible peak (as shown in above figure). But if it contains voices from two or more 

sources; it will contain multiple peaks equal to the number of sources present. In order to 

separate samples from those two or more, narrow band filtering is done in the cepstral domain.  

For each peak, in the cepstrum, an active narrow band filter (in time domain) is used with 

central frequency    equal to that peak frequency with cut-off equal to     . Then the 

segmented samples are processed separately using TDOA.  

 But as the main of frequency estimation was identification of the sound sources, 

therefore, as each audio frame is processed, first the pitch present in that frame is calculated 

(before performing TDOA). If a single pitch peak is found, it is identified as an individual 

object and a track     is associated with. Then TDOA is performed for tracking that object 

with track    . If two or more peaks are present (fig. 3), then segmentation of overlapping 

sound sample is done to separate the samples corresponding to different pitch values. 

Although fig.3 shows the cepstrum plot but it has been plot against frequency (inverse of 

qerfuency) to illustrate the presence to two peak frequencies.  

 Then those pitch values are checked. If the values are already identified in any 

previous frame, then their tracks from TDOA are related to the previous tracks       
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corresponding to those pitch values (with some allowance for variation), else new tracks 

(corresponding to new objects in frame) are initialized. 

 Therefore using pitch analysis, individual objects can be distinguished and tracked 

accurately. 

3.3.2 TDOA Measurement  

 For object tracking application using sound samples, one of the commonly used 

approaches is calculate the TDOA which occurs between the two audio signals received by 

the two different microphones kept a fixed distance apart from each other. This provides an 

indication of the location of object in the image frame.  

 The strategy that we have used in this research work for measuring TDOA [30], [31] is 

the maximization of the GCCF (Generalized Cross-Correlation Function). [30], [31] provides 

the complete details of GCCF. 

 As it suggests, GCCF is a correlation function calculated between the audio samples 

received from each other by the two microphones (kept spatially apart). Then the peaks of this 

GCCF signal are found, as positions of these peaks indicate an estimate of the TDOAs of the 

objects (sound sources). Background noise can also infect the sound samples, thereby leading 

to some false peaks in the GCCF. Therefore, these false audio peaks are filtered out by, 

eliminating all the peaks below a predefined threshold as candidates for the true TDOA 

values. Therefore, sound vector for any audio sample is given by    = (  ,           ), 

where,      [          ],   i = 1, 2,…,    . 

 The threshold TDOA value for noise filtering that is      is calculated from the setup 

parameters: microphone separation d and speed of sound c (normally 342m/s). Thus the 

maximum TDOA that should be measured is defined as:           . 

 For handling the uncertainty due to the presence of multiple active sources of sounds 

(multiple-targets) for the true TDOA value, we have used a multi-hypothesis likelihood 

model, which is described in the next section. 

 3.3.3   Likelihood Model 

 To obtain the likelihood of presence of an active sound source(s) at a position   from 

the true TDOA values for sound model, a likelihood model is generated.  The modelling starts 
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with processing the TDOA measurements (obtained from filtered peaks of GCCF depending 

only on the (horizontal) position of the source in the image (video frame) that is the   position 

of source. So, the object position   in the image frame, can be estimated from a deterministic 

hypothesis from TDOA, which is computed as follows: 

       ) =   .   .    ( );           (15) 

 

with    ̂    =     ( )  =  ̂ (x/W- 0.5) 

       =     ( ̂) = arctan (f/ ̂)                   

          =    ( )  =       Cos                 (16) 

 These functions are described now. Function    is a linear mapping relating the   

(horizontal position) of the source in the image frame to the corresponding  ̂ position (output 

of   ) in the actual image plane captured by the system‟s still camera. As mentioned earlier, 

the actual width of the image plane „ ̂‟ is expressed in meters, and the width of the digital 

image W captured by camera in in pixels. Function     is a mapping relating the  ̂  position 

(output of   )  to the sound source (it terms of angular position) using camera focal length f. 

Finally, the function    relates the sound source location to the hypothesized TDOA using the 

Fraunhoffer approximation. Now the likelihood of presence of a source at   can written as  

p(      = p(       .  

 Of the entire TDOA measurements at most only one peak is related to the true sound 

sources, whereas all the remaining measurements are due to noise. For separating these two 

cases, a classification label    is used such that     = T  if     is comes from the true audio 

source and     = C if      is related with clutter. The conditional likelihood that is, for a TDOA 

measurement associated with a true source is given by: 

                                              (17)  

where    (.) representing the indicator function on the set D, assuming that an additive 

Gaussian noise is corrupting the true TDOA with noise of deviation     . For measurements 

associated with clutter, the likelihood is calculated as  

                         (18) 

 Thus, for    TDOA measurements, (   + 1) hypotheses are possible. In other words 

these hypotheses can be written as, 
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                                   (19) 

with           . Also, note the for each sound sample, we already have a track 

  associated with it. So, now the likelihoods can be expressed as: 

p(       =      
(   .p(               

=                             
  (          (20) 

where    is indicating a uniform distribution within the allowed interval and independent of 

the TDOA measurement from the true sound source. However, the correct hypothesis and 

therefore the final likelihood is expressed as the summation of all the (   + 1)  possible 

hypotheses i.e. 

p(           = ∑                          
  
      (21) 

where           gives the     hypothesis‟s prior probability. If a situation occurs where no 

source is present (i.e. no TDOA measurement) the likelihood is then set to p(        1. 

3.3.4 TDOA based Proposal Distribution 

  Now, it is possible to develop an efficient proposal distribution function for the 

particle filter using the sound localization cues.  This can be done by designing a proposal 

distribution for the object position x \ incorporating the TDOA measurements while they are 

available. The inverse of the mapping in (15) can be obtained easily. Then passing the TDOA 

measurements through the resulting inverse mapping     yields a plausible x  position for the 

object. Therefore object position    can be proposed using the information in the TDOA 

measurements as: 

 ̃    (
  

    
   

 
    )       (

  

    
   )   

      

  
 |

       

     
|  ∑                   

  
      

(22) 

 The first part with      in the above equation represents the Gaussian component used 

in the state evolution model for the x component. In the second component of the equation a 

mixture is represented including the TDOA measurement values, obtained from inversion of 

the non-clutter part of the likelihood model. The derivative of the mapping   is obtained by 

the chain rule. But it should be noted that the TDOA process is only bale to estimate the x 

positions of the sources only. 
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 So, at each time step n, for each particle i, located at some (   
       

   
), the x position 

( ̃) returned by TDOA along with the associated track    is used to calculate the likelihood of 

that the particle belongs to track target  j=1,2. as a Gaussian pdf as: 

     
      (         ) 

 

√    
 

 
    

   
  ̃  

   
           (23) 

 In the case where only one sound source is active, we get only likelihood  (         ) 

for only j=1 or 2 from sound model. In that case, the likelihood for the missing track is set to a 

very small value (  ) to indicate that sound model has not actually detected that target.  And 

likelihood that the particle belongs to false alarm (      
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) directly becomes: 

      
                  (24) 

 Now, the mass functions of particle i depending on its x location are defined as: 

    
   

(   )  
     

   

     
   

      
   

       
                    (25) 

 

    
          

̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
      

   

     
   

      
   

       
                    (26) 

Also, note that  

    
         

Here subscript 1 represents the cue 1 which is the sound cue. 

3.4   Motion Model  

 The motion model used in this work starts with detecting some dominant [32] motion 

points in the video frames, which is a very challenging and important task. A system is 

developed for automatically identifying the dominant motion in terms of some points in a 

image frame/scene. Then the statistics of these points are used for accurately tracking 

individual targets in scenes when it is difficult to track them otherwise due to full or partial 

occlusions and clutter.  

 Our approach begins by initially tracking some low-level features using the optical 

flow methodology. But most of the point feature tracks are unreliable. So this problem can be 

eliminated by clustering them into dominant motion points using some distance measure. 
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 Then using graph theory, a method of association is adopted, where some statistical 

measures of these motion points are calculated and are feed into a Bayesian network. The 

purpose of using Bayesian network is to predict these motion points even when they are 

occluded due to object overlapping. Then these predict point locations help in tracking the 

object accurately. 

3.4.1   Dominant Motion  

 As proposed in [32] for detecting dominant motion points, first task is to identify some 

low-level point features by manually selecting the region of interests in the initial frame using 

the famous Shi–Tomasi–Kanade detector [32] , a fast algorithm for finding corner points. 

Then the selected dominant motion points in the form of low-level features are tracked in each 

frame using optical flow by the Kanade–Lucas–Tomasi algorithm (KLT) [33] and are 

associated with a particular object in the frame. To decrease computational time and load, new 

features points are detected for each object only in every fifth frame. Then these feature points 

are clustered into dominant motion points for each object present in the frame using eign 

distance measure. That is, if new point is spatially too close to an already existing point, then 

it is discarded, else it is retained. Then all the feature points are again tracked over time. Fig. 4 

shows some feature points (representing dominant motion) identified in an example frame. 

3.4.2   Method of Association 

 These detected motion points are associated to each other using some statistical 

measure like Mahalanobis distance. For each frame, the feature points detected for each object 

identified in that frame are averaged together to find an approximate centroid location of that 

object. The variance and standard deviation between the points are calculated. Next, at each 

time step , these measures are calculated and used in Bayesian inference and updating of the 

target‟s location. Fig. 4 shows the detected motion points connected together along with a 

centroid point. If no occlusion occurs in the next time step, the procedure we just explained is 

followed. But when occlusion occurs, most of the dominant get hidden. But, if any one of the 

dominant point is detected, then Bayesian prediction is employed, which estimates the 

posterior probability of target‟s location using the prior probability and a "likelihood function" 
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derived from a statistical model for the observed statistical data. Bayesian inference computes 

the posterior probability according to Bayes' theorem.  

3.4.3 Likelihood Model  

 Now we propose to embed the information obtained from the statistical measures of 

dominant points (after applying method of association) in a probability likelihood model in a 

manner similar to the followed in sound model for the sound measurements. 

 Let at time n-1,                            denote the position of the centroid 

providing the estimate of location of track associated with candidate j (track    ) and      be 

the observed data vector containing statistical measures indicating the distribution of dominant 

motion points associate with track    at next time step n. That means          . If  , is the 

hyper parameter for the parameter  , then the posterior predictive distribution likelihood of 

the of a new data point  , marginalized over the posterior is given by: 

           ∫                                                 (27) 

 

Figure 4 An example frame showing the dominant motion points detected in that frame. 

 

 This new data point                       gives the estimate of target‟s location at 

time n associated with track   ,. Now the likelihood that a particle i, located at some 

(   
       

   
), belongs to track target j=1,2 is defined as a Gaussian pdf as: 
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 Here    is a bandwith parameter. Siilarly, the likelihood that the particle does not 

belongs to target 1 & 2 or    and   , implies that it belongs to false alarm        
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

hypothesis. The measure of likelihood that the particle belongs to false alarm hypothesis is 

given by: 
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      (29) 

 

where     is the radius of the circles centered on the midpoint of line joining the centroid of 

target 1 & 2 and contains all the particles used in tracking at previous time step      And 

      is the separation between the particle and the midpoint of the estimated positions of 

target 1& 2 : 

     
       

                  
       

                  
    (30) 

Now, again the mass functions of particle i   depending on its location are defined as: 
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    , j=1,     (31) 

and 
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        (32) 

Also  

    
               (33) 

 Here subscript 2 represents the second motion cue. 

3.5  Tracking Architecture 

 Here have already presented the complete tracking algorithm by summarizing the 

framework of our multimodal multi-target tracking algorithm in this section. What all is left is 

the final cue combination for defining the mass functions required for allocating importance to 

the particles. 
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 Now at time step n, the final mass function of particle i   providing the confidence 

level that it belongs to track    using DSmT is given by: 

  
              

               
            (34) 
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         (36) 

  
          

̅̅ ̅̅ ̅̅ ̅̅ ̅̅        
          

̅̅ ̅̅ ̅̅ ̅̅ ̅̅        
          

̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (37) 

 Equation (34) & (35) expresses the confidence level values with which both the cues 

associate particle  i at time step n to target 1 and 2 respectively. Equation (36) represents the 

conflict between the cues for association of the particle to target 1 or 2.  Equation (37) gives 

the confidence level values with which both the cues agree that the particle belong to false 

alarm.  

 For the frame of discernment (Θ = {  ,   ,      
̅̅ ̅̅ ̅̅ ̅̅ ̅}) defined in this case for tracking 

two targets , the plausibility and belief functions (expressed by equation 10) results in 

identical values. They are now used to calculate the weight of particles as: 

          
         

  (  )       
  (       

   
(   )    

   
               2  (38)  

The estimate of target       is calculated as defined in (3): 

 [    ]   ∑      
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 4.     RESULTS 
 

 In this chapter, the actual tracking results of our approach developed in this 

dissertation to track multiple (two in this experiment) targets (persons) are the presented. The 

video sequence used for the experiment is captured by a single camera (still) and a stereo 

microphone pair (kept at a fixed distance part from each other). So, In this section the 

performance of our tracking algorithm will be demonstrated. Also our results will be 

compared with a general Kalman Filter tracking method where no motion and sound cues 

were used. The aim here is to show the uniqueness and accuracy of our approach.  

 The values of the fixed parameters used in the likelihood models are presented in 

Table I for the motion and sound cues. 

TABLE I 

Model Parameters for The Tracking Experiments. 

Parameters Symbol used Value 

Speed of sound c 342 m/s 

Microphone separation d 1.5 m 

Optical Focal length of camera f 0.5 m 

Width of the actual image plane  ̂ 3 m 

Width of the digital image W 640 pixels 

Sampling rate for video frames        1/30 SEC 

Sampling rate for audio sample        16 KHz 

Additive Gaussian noise deviation    0.0001 

 Before tracking, both motion and sound frames were preprocessed for synchronization 

and cleaned to avoid misalignment problems. Also in motion model, as the purpose of this 

work is tracking and simply not just detection, all the regions of interest were selected 
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manually for the first frame in dominant motion based cue. For the sake of simplicity and 

clarity, this experimental video contains only two moving targets.. Although our method is 

able track any number of targets successfully. A set of    = 30 particles are randomly 

generated around each target. To prove the efficiency of our multimodal tracker, we will first 

present the behavior of the tracker when using each of the cues in isolation, and after that, we 

will  show how the shortcomings of such single modality trackers is eliminated by fusion of 

information from multiple cues. 

4.1   Single Modality Tracker 

4.1.1   Sound Tracker 

 In this section the behavior of the sound only tracker is presented. But as mentioned 

earlier, that sound cue estimates the horizontal position only, so here only the horizontal 

position of a active sound source(s) in the image is tracked, based on the TDOA 

measurements obtained from the stereo microphone pair. Also, it will be evident that this cue 

is able to track (focus on) only the active sound sources present in the frame even if one or 

more silent targets are present. 

 We have presented three sequences, each featuring two targets in the video frames. In 

the first sequence the both the targets are silent. Therefore no tracking is performed as there is 

no active sound source. Fig.5 (a), (b) shows snapshots of the tracking result for this sequence. 

In the second sequence, both the targets generate sound samples simultaneously (although for 

a short duration only). Here the sound cue successfully tracks both the targets. Fig.5 (c), (d) 

shows snapshots of the tracking result for this sequence. In the third sequence, both the target 

are present, but only one is an active source of sound. So, here the target which is active, is 

tracked. Fig.5 (e), (f) shows snapshots of the tracking result for this sequence.  

 Since the sound cue lacks accuracy and persistence, either due to only horizontal 

detection or due to the absence of speech, the sound based tracker is unable to provide 

consistent tracking over the complete period of time. But we will see in section V-B how the 

fusion of sound with motion will solve all these problems. 
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(a)        (b)    (c) 

    

        
(d)      (e)                (f) 

Figure 5 Sound only tracker results. (a), (b) shows no tracking as both targets are silent. (c), (d) shows tracking of both 

the  targets successfully as both targets  generate sound samples simultaneously. (e), (f) both the target are present, but 

the only target which is an active source of sound is tracked. 

 

 
(a)        (b)    (c) 

 
        (d)    

Figure 6 Motion only tracker results. (a), (b) the second target is not tracked initially (in frame 46), but only after 4 

frames (in frame 50). (c), (d) shows the results of tracking during occlusion. 
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4.1.2 Motion Tracker  

 Motion of an object is most persistent feature as compared to speech. Only motion 

based tracker, (using dominant motion) is able to robustly track objects even during occlusion. 

Fig.6 shows snapshots of the tracking result for this motion tracker. But the KLT feature 

detector used in motion model requires, either manual selection of region of interests 

corresponding to a target in the first frame (done using the estimate of the target from sound 

model, if available) or it uses some initial frames for automatic detection of dominant motion 

points corresponding to a target. Therefore as the new target enters the scene, it is tracked, 

only some frames.  This is exemplified by the sequence of tracking snapshots presented in Fig. 

6 (a), (b) where the second target is not tracked initially, but only after 3-4 frames. Fig. 6 (c), 

(d) shows the results of tracking during occlusion. 

4.2 Multiple Modality Tracking 

 Here by fusing the sound and motion cues the accuracy is greatly increased. As the 

main aim of this approach is to accurately track multiple targets, even in the presence of 

partial and full occlusion, therefore the tracked video results are shown in 4 parts.  

Section/Phase 1 contains the pre-occlusion part of the video, phase 2 corresponds to the 

occluded part of the video, and phase 3 is the post-occlusion sequence. In phase1, the tracking 

is done on the initial section of the video where no occlusion was present is shown. That is, 

there was no overlapping between multiple regions of interest. The tracking results from this 

section of video are shown in figure 7(a), (b). Here both the targets are spatially separated and 

are successfully tracked. For visual clarity, the target on the LHS, denoted as target 1 is 

tracked with a red rectangular bounding box and the target on RHS, denoted as target 2 is 

tracked with the green rectangle. 

 In the phase 2, the targets cross each other, occluding each other as they walk. Initially 

this sequence starts with partial occlusion, but as the video proceeds, full occlusion occurs and 

the again the amount of occlusion decreases. The tracking results from this phase are shown in 

figure 7(c), (d). They demonstrate that the approach presented in this work is successfully able 

to deal with the cluttered scenes, involving partial or total occlusion. 
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(a)           (b) 

        
(c)             (d) 

Figure 7.  Audio-Visual tracking results. (a), (b) Result from phase 1(pre-occlusion) where both the targets are spatially 

separated and are successfully tracked. (c), (d) Result from phase 2 (occlusion) where both the targets are spatially 

occluded. 

 

      
(a)     (b)              (c) 

Figure 8. Tracking results of a general Particle Filter. (a), (b) shows tracking during full occlusion between target 1& 2 

only one combined target is detected, (c) shows even during partial occlusion only one target is detected instead of two. 
 

      
(a)       (b) 

Figure 9. Tracking results from phase 3 (post occlusion). (a), (b) tracking  where again target 1& 2 are spatially separate.
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Although tracking in this occlusion phase spatial overlapping of the targets make tracking 

particularly challenging by infecting the cue measurements and leading to false 

identifications otherwise, but due to our dominant motion and sound model, our algorithm 

is able to overcome these problems while tracking.   

 In order to test the performance of our algorithm during this phase of occlusion, we 

have also presented the results (in Figure 7 of a simple particle filtering approach for multi 

target tracking without our motion and sound cues. As mentioned above that the spatial 

closeness and overlapping of the targets make tracking in this occlusion phase is 

challenging, corrupting the cues. The single location cue used in Particle filter gradually 

fails to separate target 1 and 2 and detects them as a single moving entity. From figure 8 

(a), (b), it can be seen that during occlusion, this tracking algorithm fails to distinguish 

between multiple targets and only a single combined target is detected.  

In phase 3, the tracking is done on the post occlusion section of the video where no 

occlusion was present. That is, there was no overlapping between multiple regions of 

interest. Fig. 9 shows the results of this sequence. 

 It is evident from the tracking results shown in this chapter that our proposed 

method is able to track multiple targets accurately in all the scenarios, especially in partial 

and fully occluded scenes. 
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5.   CONCLUSION & FUTUREWORK 

 This chapter concludes the work presented in this thesis and also the future aspects 

of the proposed multimodal multi target tracking algorithm. Other researchers can extend 

the work upon this research work and particularly on this proposed tracking methodology. 

These all aspects are discussed here. 

5.1 CONCLUSION 

 In this work we introduced a novel technique for multi target tracking using for data 

fusion within particle filtering. This particle filter based tracker combines sound and motion 

cues in a novel way using DSmT. A set of particles is used to track each target using both 

the cues. Sound and motion model evaluates a likelihood for every particle. Then the 

DSmT model assigns confidence level values for the membership of each particle, while 

considering the conflict between the cues, thus resulting in a better tracking performance. 

The experimental results presented in section IV illustrate the accuracy and effectiveness of 

our algorithm in case of multiple targets.  

These cues also allow detection and initialization of multiple tracks for the particle filter 

and aid the recovery of lock following periods of partial or complete occlusion. For  multi-

object tracking such event based proposals are essential for the detection of new objects 

when they appear in the scene. 

5.2   FUTURE WORK 

In future this work can be extended by performing a number of modifications to have better 

results. Let us discuss some points which can be implemented in future: 

 More information can be embedded in our proposed algorithm by integrating other type 

of cues. For example, shape cues can be included for tracking a predefined class of 

object. 

 Also this work can be deployed in some real-time platforms to handle the real time 

issues like traffic monitoring, anomaly detection and surveillance systems. 
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