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CHAPTER-I 

Introduction 

 

The software is becoming an integral part of the human life and the dependency is increasing 

with the advancement of technology, now its usages are inevitable. The use of software is 

inevitable to many aerospace, medical, industrial, military, and even commercial systems and 

the dependency over the software is increasing exponentially. Software reliability is an 

important factor of the software quality. A few of the reasons for increasing demand of 

software quality and reliability are given below (Boehm, 1991) 

a) Software is the heart of many life-critical systems,  

b) Software is created by humans, who can commit mistakes,  

c) The software is executed machines which are error-intolerant,  

d) Software development life cycle is more affected by budget and time rather than 

reliability.  

When software has become integral part of human life and the dependency is further 

increasing day by day, in such situation, quality of the software system is foremost necessary.  

 

1.1 Software Quality 

For successful businesses that develop software, quality cannot be an optional, it must be the 

basic requirement. “The Quality is the degree to which a system, component, or process 

meets customer or user needs or expectations” (IEEE Standard 729, 1983). Quality is an 

important factor of a system at the present time and the survival and sustaining of the 

organization in the fast changing era is largely depends on the quality of its products.  

 

To ensure and manage quality, it is required to plan, determine the standards to be followed; 

perform, implement the plan to ensure that they are achieved; and monitor, verify results to 

confirm that the standards have been meet and identify and remove problems that affect the 

quality of the system.  

 

The software quality is measured in terms of functionality, usability, testability, adaptability, 

maintainability and reliability. All these quality attributes are independent of each others. All 

the attributes are important from the quality aspect. The reliability attribute of a software 

system is one of the most important and demanding feature of the quality. 
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1.2 Software Reliability 

Reliability shows the trustworthiness or dependability of the software product. Reliability is 

the probability with which the software system work “correctly” for the given period of time.  

It is true that software with more defects is unreliable. It is also true that the reliability 

improves by removing the detected defects and defects get reduced over a period of time.  

 

Software reliability is the probability that the given software will perform the intended task 

without causing failure for the given time interval under specified environment. Here, failure 

is the incapability of performing a task as 

specified in the requirement document. 

Since reliability of software is a 

probabilistic statement, it is important to 

define the term and condition under which 

the statement about the reliability is made. 

(Xie, 1991). 

 

Software is not susceptible to the age and 

work environment whereas the hardware 

product is susceptible to the age and 

environmental factors. Hence, we can 

conclude that the software life cycle curve is free from age and environmental effects. Hence, 

the failure rate curve for should follow the “idealized curve”, as depicted in figure 1.1. The 

undetected faults results in high failure rates in the initial phase of life of a program. Once 

these faults are attended, the curve flattens. Due to the upgrades in the software product, the 

failure rate increases drastically. The upgrade may be due to any of the reasons like additional 

features, technology changes or inherent faults. The failure rate decreases gradually, partly 

when the defects are identified and corrected.  (Pressman, 2001). 

 

1.3 Application of Reliability 

The reliability of a project can be measured for different purposes. The estimation and 

prediction are two frequently and interchangeably used terms, so the main difference is that; 

Reliability estimation tells about the current value, whereas the prediction attribute forecasts 

the value of the reliability at a future stage or point of time.  

Figure 1.1 Software Life Cycle Curve 
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In addition to the estimation and prediction, reliability measurements can be used for 

certification means to i.e. system acceptability. It helps management in optimal allocation of 

resources and the criteria when to stop the testing and so that the product can be delivered to 

the customer for the field use. It also provides a degree of confidence to the customer about 

the product going to use.  It is therefore concluded that the reliability estimations and 

predictions are of very helpful to control the software processes. 

 

1.4  Why Software Reliability measurement is difficult?  

The software reliability measurement is difficult due to the following reasons:  

a) The amount of improvement of reliability on fixing a single error depends on the 

utilisation of code where the error is located in the software.  

b) The measured reliability depends on the observer.  

c) Due to the fault removal process the reliability of a product keeps changing.  

 

The reliability estimation as well as prediction for the software system is quite a difficult task. 

Until now, we still do not have ideal and perfect methodology for measuring software 

reliability. Software reliability measurement is still a difficult task because of two reasons, 

first understanding of the nature of software is difficult task and second, the nature and 

structure of the software is diversified.  

 

Software reliability is a probabilistic measure and assessing reliability of during testing is one 

of the important aspects of reliable software development process. A large number of 

reliability models exits and are being used at present. A reliability growth model is a 

technique to assess the reliability quantitatively and plays an important role. For assessing 

software reliability quantitatively and development of highly reliable software product, 

software reliability models play an important role.  

 

It is important to elaborate that the software are produced by human beings, who is prone to 

commit mistakes, therefore the delivered products still have errors and are imperfect. Here 

imperfect means there is difference between the results expected by the software system to 

the results produced. These discrepancies are known as faults. The faults are attributed to the 

system due to ignorance or miss interpretation of user requirements, rules of the computing 
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environments, requirements not communicated properly between developer and the actual 

user. The incapability of software to perform the desired operation and provide the specified 

performance as required is known as failure (IEEE Standard 729, 1983). 

 

1.5 Reliability Metrics  

The requirements of reliability may be different for different software products. The 

requirements of a software product must be mentioned clearly in the SRS including for the 

reliability. To measure the reliability quantitatively, metrics are used. The basic metrics used 

for the reliability measurement are discussed below: 

a) Mean Time To Failure (MTTF) measures the average time between two successive 

failures, the failure data need to be recorded for large failures.  Mathematically, 

MTTF can be given as 

1

1 ( 1)

n
i i

i

t t
MTTF

n









        1-1 

 

b) Mean Time To Repair (MTTR) is the time being taken to fix an error. It takes the 

average of the time elapsed in diagnosis and fixing the errors which is responsible for 

failure.  

c) Mean Time Between Failures (MTBR) is the sum of MTTF and MTTR.  

 

Figure 1.2 A relation between MTBF, MTTD and MTTR 

 

MTTR MTTF MTTR 
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d) Rate of occurrence of failure (ROCOF) provides the frequency of failure noticed 

during the execution/ operation. 

e)   Probability of Failure on Demand (POFOD) tells when a particular system will fail at 

the time of requirement; PFFOD provides the likelihood of the system.  

f)   Availability is the probability that the system is available and produces the output 

when demanded, mathematically, 

System up time
Availability=

System up time + System down time

MTTF
                  

MTTF+MTTR


 
 

g) Maintainability is the ease with which the failed system can be repaired and brought 

to the original or specified conditions in a given period of time by following the 

specified procedures and resources.  

 

1.6  Software Reliability Models 

The probability is the chances of the system to fail to perform the intended task. Software is 

free from age and environmental impacts and hence should not wear out and continue to 

perform even after undesired output. More than 200 models have been developed since last 

four decades, but how to measure reliability quantatively is still a difficult and cumbersome 

task. There is no single model exists which suits every software products, in every situation. 

Many software models contain, assumptions, factors which affect the assumptions and 

mathematical function. 

 

1.6.1 Reliability Growth Models 

A Software Reliability Growth Model (SRGM) is an approach, which tells how reliability of 

a software system can be improved as errors are detected and corrected, mathematically. 

SRGMs help to predict and measure the reliability. Hence, SRGM guide to determine when 

to stop testing, on reaching a particular reliability level. Researchers have developed a many 

SRGMs in the past 35 years to measure reliability. The reliability measurement includes the 

number of remaining faults, failure rate, and reliability of the software. Selecting the best 

SRGM for the given software is a difficult task for researchers. Number of tools and 

techniques are available in the literature, which help to select the optimum SRGM. Due to the 

limited number of model selection criteria, the existing tools and techniques cannot be used 

with high confidence (Sharma, Garg, & Nagpal, 2010). 
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1.6.2 Steps of Reliability Growth Modelling 

In the software testing, programs are executed with the desired and undesired inputs and the 

outputs obtained from the execution is monitored for the correctness.. The incorrect output is 

counted as a failure. Faults which are responsible for the failure are identified and eliminated. 

The troubleshooting process during the software testing is called fault-removal process. 

During the testing, reliability of the software gets increased fault is removed. The process of 

reliability improvement while the testing is in progress is known as reliability growth (Xie, 

Software Reliability Modelling, 1991). It is therefore the reliability estimation or prediction is 

a sequential process and having the following steps. 

 

 

Figure 1.3 Software Reliability Measurement 

 

As shown in the figure 1. 3, software reliability measurement follows a series of activities. 

The software reliability measurement consists of four major steps: 

a) Technical specification or software requirement specification contains detail information 

about the purpose of the product, software system and the test cases are generated from 

the specification.  

b) The test cases are needed to be executed to the software system under test.  

c) Verify the output of the test cases and failure data is collected. Based on the requirements 

of reliability model, failure data is collected i.e the occurrences and time of each fault.  

 

The collected failure data is applied to the concerned reliability model, which produces the 

estimation of the reliability. 
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1.7 Parameter Estimation Techniques 

Parameter estimation is a technique to evaluate the value of the unknown variables by 

applying on specified model on the collected dataset. The parameter values are selected based 

on how perfectly it fits the observed data. There are two widely used techniques of parameter 

estimation (Myung, 2002). 

 

1.7.1 Least-squares estimation (LSE) 

This technique of parameter estimation is applied to various statistical concepts such as linear 

regression, sum of squares error, proportion variance, and root mean squared deviation. It 

doesn’t require distributional assumptions like MLE, for obtaining a descriptive measure for 

the purpose of summarizing observed data. 

 

1.7.2 Maximum likelihood estimation (MLE) 

It is a standard statistical technique used for parameter estimation. MLE have various 

attractive attributes, it have good convergence properties (nearly always) as the training 

samples grows. It is very simple than other existing methods like Bayesian techniques etc.  

 

1.8 Research Objective 

The proposed research has been carried out with following objectives: 

a) Literature review carried out, may help in future study and analysis for the researchers 

who want to keen to contribute to the software reliability. 

b) In order to classify and compare the existing software reliability models, the time between 

failures and failure counts, is further classified on the behalf of prefect and imperfect 

debugging. 

c) A new variant of existing Jelinski-Moranda reliability growth model, considers a new 

methodology for the imperfect debugging. 

d)  The time-domain approach also called failure count method provides better accuracy for 

the parameter estimation with the present tools, but extra efforts are required for 

collecting such failure data compare to the interval-domain approach. An intermediate 

way between the cost of data collection and the reliability accuracy must be found by the 

model developers. 
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1.9  Outlines 

SECOND CHAPTER reviews the literature of the classification of models and explains the 

requirement of classification and provided a brief about the categories of the reliability 

models to help the customer as well as testers to take the decision, which category, his/ her 

model falls. The comparison criteria are also mentioned in this chapter which defines which 

model is to be chosen in the selected category. 

  

THIRD CHAPTER explains the research work carried out in the field of software 

reliability. The existing models have been classifyed in the two widely used categories, i.e. 

failure rate models and failure counts which is based on failure history of the software and 

testing datasets/ results. Models are further classified based on the occurrences of failure with 

respect to the time and code. A lot of models have been proposed by reliability researchers 

with the perfect debugging and imperfect debugging, so these models have been classified in 

these two sub categories. 

 

FOURTH CHAPETER explains the proposed model which elaborates the assumptions 

followed in designing a new model for the prediction/ estimation of the reliability. The 

mathematical derivation and parameter estimation is also explained along with the brief on 

the tool used for model simulation. 

 

FIFTH CHAPTER will depict the results obtained from the model/ methodology proposed 

in previous chapter. The comparison with other models with the given datasets will tells 

about the usefulness and the effectiveness of the proposed model.. 

 

SIXTH CHAPTER explains the conclusion and future scope of research and followed by 

references. 
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CHAPTER-II 

Literature Review on Software Reliability  

 

2.0  Introduction 

This chapter presents an overview on the requirement of software reliability classification and 

classification categories based on the testing strategy, assumptions, failure data, software 

structure etc. and reliability models published recently. This chapter also explains the 

parameter estimation techniques which are used in calculation of software reliability. 

 

2.1 Requirement of Classification 

Software reliability models are being used for a long time and till today various models have 

been proposed, discussed, modified and generalized by the reliability researchers whereas the 

some models have been criticized. The existing software reliability classification has been 

reviewed briefly. Need of classification scheme: 

a) Software reliability models classification is useful in comparison of different reliability 

models. 

b) Different sets of models make it easy to obtain new models which are more practical 

compare to the present models by identifying the hypothetical assumptions, which are 

far from reality, made for these existing models.  

c) Help managers/management to select a group of software reliability models based on 

their requirement. This classification empowers managers to reject more than 80% of 

software reliability models as per the requirement and choose the particular model out 

of 20% remaining model. 

 

2.2 Classification of Software Reliability Models  

The area of SRGM is not too old compare to the conventional engineering discipline and 

even to the hardware reliability. Enough research has already been carried out in the area of 

software reliability. Various researchers have already been proposed different models to 

measure the reliability, but there is no model exists which suits all the software systems. 

There are various methods exists to ensure the suitability of the model. To ease the model 

selection process, the available models have been studied by various researchers by 

classifying them in different categories. The few categories of existing models are given 

below:  
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2.2.1 An interesting classification proposed by the author (Musa & Okumoto, 1984) to 

divide the existing models into different sections depending on the number of failures that 

can observed is a finite time or not. The models which consider the finite number of faults in 

the assumptions are falls under finite failure category, whereas, number of faults are not fixed 

and are infinite are falls under the infinite failure category. There may exist a software system 

which have infinite number of faults, comes under infinite failure category.  

 

2.2.2 The author Goel and Botsani (1985) defined four main categories based on the failure 

history of the models. In this classification, nature of the failure also kept in to consideration. 

The author considers the four main categories, which includes failure rate, failure count, fault 

seeding and input domain based models. 

 

2.2.3 Ramamoorthy et al (Ramamoorthy & Bastani, 1986) has divided SRGMs into two 

categories based on the failure data. There are types of failure data, discussed in the next 

section, fault-counting and non-fault-counting. The fault-counting model category includes  

number of remaining faults and the fault occurrence rate. 

  

2.2.4 Musa and Okumoto et al, (Musa, Iannino, & Okumoto, 1987) have developed a 

classification scheme, which allows a relationship within the same group to be established for 

models and shows where model development has occurred. They have classified models in 

term of five different attributes, which includes type, Time domain, category, class and 

family. 

 

2.2.5 A new classification is used by the author Mellor (Mellor, 1987b), where existing 

models have been used as a family tree of black box models and structure models. The 

category of structure models is subdivided into inter-failure time and fault manifestation 

models. However, author defines that most of the statistic models are exponential order in 

nature, which is a kind of unification for various models. 

 

2.2.6 M Xie (Xie, 1991) has classified models in to various categories, some of them had 

already considered by other authors. The categories considered by the author are Markov, 
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Non-Homogeneous Poisson process, Bayesian, Statistical Data Analysis Methods, Input-

domain Based, Seeding and tagging models based on probabilistic assumptions. 

 

2.2.7 The Author (Wood, 1996) has grouped software reliability models based on the shape 

of the graph of the defect detection rate. The author has classified models into concave and S-

shaped Models. The thing to be noticed here is that the both models have the same 

asymptotic behaviour, i.e., it is important to note here that the rate of defect detection 

decreases gradually as the fault are removed. 

 

2.2.8 KS Trivedi (Trivedi, 2001) classifies existing software reliability models in to two 

categories. The first category is Data-domain models, which focuses on the fault contents of 

the software product. It is sub-divided into error seeding models and input domain based 

models. The Time-domain models is second category considered by the author., The failure 

history of the software and time required to detect the errors are kept in to consideration, in 

this category. These models are further sub-divided as Homogeneous Markov, Non-

homogeneous Markov, Semi-Markov and others. 

 

2.2.9 The author (Pham, System Software Reliability, 2006) has classified the software 

reliability models in to two main categories the deterministic and the probabilistic. The 

Probabilistic model emphasised on the failure occurrences and the fault removals probability, 

whereas the deterministic model consider the number of distinct operators and operands, 

errors, machine instructions in the program etc. 

  

2.2.10 Software development life cycle based classification has been carried out by the 

author (Sharma & Garg, 2011), where one category can expand to one or more phases of 

SDLC. The author has classified the models in each phase of SDLC. 

The early prediction models considers the characteristics from requirement phase to testing 

and these observed characteristics are extrapolated to which predict the software behaviour 

during operation. The SRGMS are similar to the early prediction, except that it does not 

considers the failure behaviour of software in all the phases instead it considers only testing  

phase, and extrapolates the behaviour during operation, which is subdivided in to failure rate 

models, and NHPP models. The other categories considered by Sharma at. el. includes Input 
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Domain, architecture, hybrid black box and white box Based Models. The interesting thing 

here is that the author has combined more than one phase in to the single category. 

 

2.2.11 The author (Razeef & Nazir, 2012) has considered four classes of reliability models 

which includes  design phase models, Unit Testing phase models, Integration testing phase 

models, and Acceptance testing & Operational Phase models. A reliability model can be 

applied on more than one phase of software development life cycle.  

 

It is concluded from the above literature that the existing models based on different 

assumptions, finite or infinite failures, the type of datasets used for estimation of reliability, 

models based on the SDLC phases, behavior of the failure, software structure, graph of 

failure rates etc. However, there is no standard classification which is accepted globally. 

Hence the following table provides the summary of the classifications proposed so far. 

 

Table 2.1 Classification of Software Reliability Models 

S.No Name of Author(s) Year  Classifications 

1. JD Musa,  

K Okumoto 

1984 1. Finite Failures 

2. Infinite Failures 

2. AL Goel and Botsani 1985 1. Failure Rate Models,  

2. Failure Count Models,  

3. Fault Seeding Models  

4. Input Domain Based Models 

3. CV Ramamoorthy, FB 

Bastani 

1986 1. Fault-Counting Models 

2. Non-Fault-Counting 

4. JD Musa,  

A Iannino, &  

K Okumoto 

1987 1. Time Domain,  

2. Category,  

3. Type,  

4. Class And  

5. Family 

5. P Mellor 1987 1. Black Box Model 

2. Structure Model 

a. Inter-Failure Time Model 

b. Fault Manifestation Models 

6. M Xie 1991 1. Markov Models,  

2. Non-Homogeneous Poisson Process Models, 

Bayesian Models,  

3. Statistical Data Analysis Methods,  

4. Input-Domain Based Models,  

5. Seeding And Tagging Models 

7. KS Trivedi 2001 1. Data-Domain Models 
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2. Time-Domain Models 

a. Homogeneous Markov,  

b. Non-Homogeneous Markov,  

c. Semi-Markov And  

d. Others 

8. H Pham 2006 1. Deterministic Models 

2. Probabilistic Models 

9. Alan Wood 1996 1. Concave And  

2. S-Shaped 

10. Kapil Sharma,  

RK Garg 

2010 1. Early Prediction Models 

2. Software Reliability Growth Models 

3. Input Domain Based Models 

4. Architecture Based Models 

5. Hybrid Black Box Models 

6. Hybrid White Box Models 

11. Razeef Mohammad and  

Mohsin Nazir 

2012 1. Design Phase Models,  

2. Unit Testing Phase Models,  

3. Integration Testing Phase Models,  

4. Acceptance Testing and Operational Phase Models 

 

2.3 Model Selection Criteria 

The goodness of the model can be measured based on its ability to predict the future 

behaviour of the software from the available failure data. The effectiveness of SRGMs can be 

ensured comparing the proposed model based on the following criteria: 

 

The common approach is to use all models and measure the reliability from each, and then 

choose the one which gives better results, but this approach is very expensive and time 

consuming, hence doesn’t suits the purpose. The criterion to choose the best model is is 

difficult to decide. It is still difficult to decide which model to be selected, like model with 

best or worst results, or the model which provides the result according to the management’s 

requirement to keep all happy or the couple of models give the same result.  The criteria’s 

used to compare the reliability models are being described as follows: 

 

2.3.1 The Bias 

It is the sum of the difference between the estimated curve and the actual data. 

1

ˆ( ( ) )
k

i i

i

m t m

Bias
k








       2-1 
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2.3.2  The Mean Square Error (MSE)  

The mean square error (MSE) measures the deviation between the predicted values with the 

actual observations, and is defined as 

2

1

ˆ( ( ))
k

i i

i

m m t

MSE
k p









       2-2 

 

2.3.3 The Mean Absolute Error (MAE)  

The mean absolute error (MAE) is similar to MSE, but the way of measuring the deviation is 

by the use of absolute values. It is defined as 

1

ˆ ( )
k

i i

i

m m t

MAE
k p









        2-3 

 

2.3.4  The Mean Error of Prediction (MEOP)  

The mean error of prediction (MEOP) sums the absolute value of the deviation between the 

actual data and the estimated curve, and is defined as  

1

ˆ ( )

1

k

i i

i

m t m

MEOP
k p






 


       2-4 

 

2.3.5 The Accuracy of Estimation (AE)  

The accuracy of estimation (AE) can reflect the difference between the estimated numbers of 

all errors with the actual number of all detected errors. It is defined as 

a

a

M a
AE

M


          2-5 

where, Ma and ‘a’ are the actual, and estimated cumulative number of detected errors after 

the test, respectively. 

 

2.3.6 The Noise 

The noise is defined as 

1

1 1

( ) ( )
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k
i i

i i

t t
Noise
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2.3.7  The Predictive-Ratio Risk (PRR) 

The predictive-ratio risk (PRR) which measures the distance of model estimates from the 

actual data against the model estimate, is defined as 

1

ˆ ( )

ˆ ( )

k
i i

i i

m t m
PRR

m t


         2-7 

 

2.3.8 The variance 

The variance which is the standard deviation of the prediction bias, is defined as 

2

1

1
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1

k
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i

Variance m m t Bias
k 
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
      2-8 

 

2.3.9 The Root Mean Square Prediction Error (RMSPE) 

The Root Mean Square Prediction Error (RMSPE) is a measure of the closeness with which 

the model predicts the observation. It is defined as 

2 2RMSPE Variance Bias        2-9 

 

2.3.10 RSQ 

The Rsq can measure how successful the fit is in explaining the variation of the data. It is 

defined as 

2
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2.3.11 The Sum of Squared Errors (SSE)  

The sum of squared errors (SSE) is defined as 

2

1

ˆ( ( ))
k

i i

i

SSE m m t


         2-11 

 

2.3.12 The Theil Statistic (TS)  

The Theil statistic (TS) is the average deviation percentage over all periods with regard to the 

actual values. The closer Theil’s Statistic is to zero, the better the prediction capability of the 

model. It is defined as 
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2.3.13 Distance Based Approach 

The development of the DBA method begins with defining the optimal state of the overall 

objective, and specifies the ideally good values of attributes involved in the process. The 

OPTIMAL is simply the SRGM that has all the best values of attributes. The objective 

function for finding such a solution can be formulated as 

 { ( ), }

  

Minimise Alt x OPTIMAL

Subject to x X




  

 

2.4 Failure Datasets 

The failure data is collected based on time and interval of the failure. The time of fault is 

considered in the first called time-domain approach whereas the second approach emphasised 

on failures in the given time-interval. These data is analysed by practitioners for predicting 

reliability in the applications. Some models works with both types of datasets. The failure 

datasets are considered by the reliability practitioner and researchers to predict the reliability 

and analyse the failure behaviour, which gives the feedback on the software system for which 

the failure data was collected. 

  

2.4.1 Time Domain Dataset 

The time-domain approach emphasis and considers the times at which failure has been 

noticed and records it. 

Table 2.2 Time-domain Dataset 

Failure Records Time Between 

Failure (Min.) 

Actual Failure Time 

(Cumulative) (Min.) 

1 25 25 

2 30 55 

3 15 70 

4 15 95 

5 17 112 

6 7 119 

7 26 143 

8 44 187 
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2.4.2 Interval-Domain Dataset 

The interval-domain approach counts the number of failures noticed in a continuous time 

interval like test session, minutes, hour, weeks, and days. The approach provides the more 

than one failure in the given time interval. 

 

Table 2.3 Interval-domain Dataset 

Time (Hours) Observed Number of Failures 

1 2 

2 4 

3 1 

4 1 

 

The author (Pham, 2006) has emphasised that the time-domain approach provides more 

accurate parameter estimation results compare to the interval-domain data, but the data 

recording involves extra efforts. Therefore the researchers should balance the cost of data 

collection with the accuracy of reliability required. Availability of real-time dataset with 

accuracy is a difficult task and Most of the companies/ institutes and organisations afraid of 

sharing actual datasets of their software due various reasons. 
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CHAPTER-III 

Software Reliability Growth Models 

 

3.0 Introduction 

Assurance on reliability of the software is highly desirable for the satisfaction of the user, but 

without knowing the initial error it is very difficult to predict the quality of the software. 

Enough research has been done in the past few years to ensure the level of reliability of the 

software and various tools and techniques have already been developed and established to 

estimate and predict the errors, failure rate, MTTF and the reliability of the software. The 

SRGMs also provides the feedback of the residual number of defects exists in the software 

and the reliability increases on gradually when the detected errors are corrected. 

 

Most of the models have the number of parameters as the initial parameter.  For the finite 

number of faults focus is mainly given to the remaining number of faults. Efforts have been 

made to estimate the reliability at the early phase of the software development but this getting 

the analytical method foe such purpose is very much difficult for the moderate size software, 

because the numbers of faults are not the measure of software reliability that we can measure. 

For estimating the current failure intensity, a number of models have been already developed 

but in general it is not an easy task.  Failure intensity also plays a vital role for the prediction 

of faults apart from the number of faults. 

 

Most of the models have considered the debug capability of the software in their assumption 

during the proposal of the model, which gives a fair idea to classify the existing models in to 

two categories, perfect debugging and imperfect debugging. 

a) Perfect Debugging: 

In perfect debugging, it is assumed that the fault is removed perfectly i.e. no residual of fault 

left back, as and when it is detected/ noticed and new fault are not allowed to introduce, as 

the effect of fault removal process, is known as perfect debugging. 

b) Imperfect Debugging Models: 

The assumptions of Jelinski-Moranda model which says that the faults are removed 

immediately as and when it is detected without introducing new errors seems to be 

impractical. When detected errors are removed, there may be the chances to introduce new 

errors. The probability of finding errors is high initially, but gets reduced subsequently on the 
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removal of the errors, hence we can say, it is proportional to the number of remaining errors 

in the system. There are two possibilities of introduction of new errors while removing: 

i. It may be possible that the error is not removed perfectly and the probability is that the 

some percentage of the error still remains. Suppose p is the probability of the removal 

of the fault then, 1-p is the probability of the fault remains in the program. 

ii. The other possibility is that the error removal process might have introduced some new 

errors. These errors are independent of the above fault removal process. It may get 

introduced in both the cases, where fault is removed perfectly and fault is not removed 

perfectly as well. 

 

3.1 A New Classification of Reliability Models 

The software reliability growth models divided in to two main categories based on dataset 

being used by the model i.e. the time- between failure models and fault count models. These 

models are further classified as perfect debugging and imperfect debugging models, based on 

assumption of fault removal process. 

 

 

Figure 3.1 Classification Categories of SRGMs 

 

 

Reliability 
Growth 
Models 

Failure Rate 
Models 

Perfect 
Debugging 

Jelinski 
Moranda 
Model 

Schick-
Wolverton 

Imperfect 
Debugging 

GO Imperfect 
Debugging 

Mahapatra 
Model 

Failure Count 
Models 

NHPP Models 

Perfect 
Debugging 

NHPP 
Exponential 

NHPP S-
Shaped 

Imperfect 
Debugging 

NHPP 
Imperfect 

Debugging 

NHPP Imp. 
Debug S- 
Shaped 

Exponential 
Imp. Deb. 



A New Variant of Jelinski-Moranda Model for SRGM 2015 
 

Delhi Technological University Page 20 

I. Failure Rate Models Or Time between Failure Models 

In failure rate models, the time between two consecutive failures say, (i-1)
th

  and the i
th

 

failures follows a distribution.  The distribution parameters depend on the number of faults 

remaining in the program during the interval and obtained from the values of times between 

failures in the given intervals and this is done by using parameter estimation techniques like 

MLE, LSE etc.  

 

A. Perfect Debugging Models 

1) Jelinski-Moranda Model 

2) Schick-Wolverton Model 

3) Modified Schick-Wolverton Model 

4) Lipow Modified Jelinski –Moranda Model 

5) Joe and Reid Model 

6) Decreasing Failure Intensity Model 

7) ShanthiKumar General Markov Model 

8) Variable Fault Exposure Coefficient Model 

9) Jelinski-Moranda Geometric Model 

10) Moranda Geometric Poisson Model 

11) Littlewood-Verrall Baysian Model 

12) A Quantum Modification to the JM Model   

13) Variable Fault Exposure Coefficient Model 

 

B. Imperfect Debugging Models 

1) Goel-Okumoto Imperfect Debugging Model 

2) Mahapatra’s Modified Jelinski-Moranda Model 

 

II. Failure Count Models 

It is clear from the name of the category itself; this class of models considers the number of 

faults occurred in the given time-interval.  We can estimate the parameters from the observed 

values of failure counts or it can also be estimated from failure times The failure count 

models are further classified in categories based on the assumption of debugging capabilityof 

the model. 
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A. Perfect Debugging: 

1. NHPP Exponential Models 

1) Goel-Okumoto Model 

2) Simple Generalised Goel-Okumoto Model 

3) Musa Exponential Growth Model 

4) Musa Logarithmic Poisson Execution Time Model 

5) Hyper Exponential Growth Model 

6) Yamada-Osaki Exponential Growth Model 

7) Yamada Exponential Model 

8) Yamada Rayleigh Model 

 

2. NHPP S-Shaped Models 

1) Inflection S-shaped Model  

2) Delayed S-shaped Model  

3) Connective NHPP Model  

 

B. Imperfect Debugging Models 

1. NHPP Imperfect Debugging Models 

1) Yamada Imperfect Debugging Model 

 

2. NHPP Imperfect Debugging S-shaped models 

1) Pham-Nordman-Zhang Model 

2) Pham Nodrman Generalised NHPP Model 

 

3. Exponential Imperfect Debugging Model 

 1) Pham-Exponential Imperfect Debugging Model 

 

3.2 Failure Rate Models OR Time between Failure Models 

The failure rate models, also called time between failure models, have been divided in to two 

categories, perfect and imperfect debugging. 

 

The Perfect Debugging Models 

The failure rate models are explained below in details: 
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3.2.1 Jelinski-Moranda Model 

The Jelinski–Moranda model (Jelinski & Moranda, 1972), which is cited many times, for 

describing the failure behaviour of a software system, is one of the widely used and oldest 

models. The model considers the process of discovery and the removal of faults in computer 

software and was introduced in 1972.  

The assumptions in this model include the following: 

a) The program contains “N” initial faults which is an unknown but fixed constant. 

b) Each fault in the program is independent and equally likely to cause a failure during  

a test and has same impact of failure. 

c) Time intervals between occurrences of failure are independent of each other. 

d) Whenever a failure occurs, a corresponding fault is removed with certainty and no  

new faults are inserted during the removal of the detected fault. 

e) The software failure rate during a failure interval is constant and is proportional to  

the number of faults remaining in the program. 

 

The program failure rate at the i
th

 failure interval is given by 

i(t )= [N-(i-1)], Where i = 1,2,......N       3-1 

Where, N = the number of initial faults in the program,  = a proportional constant, the 

contribution any one fault makes to the overall program, it = the time between the (i-1)
th

 and 

the i
th

 failures. 

i(t ) =  [N-(i-1)],      Where i = 1,2,......N   

The Probability Density function is given as 

ti

i i

0

ti

i

0

- ( )d

i i

-  [N-(i-1)]d

(t )= (t )e

    [N-(i-1)]e

x x

x

f













  

i [N-(i-1)]t-( ) [N-(i-1)]e   if t         3-2  

The Cumulative Density function is given as  

it

i

0

f(t )= ( )i if x dx   

- [N-(i-1)]

0

[N-(i-1)] e
i

i

t

x

idx
   

i[N-(i-1)]t
f( ) 1it e 

          3-3 
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Then the reliability is given by 

 
i iR(t )=1-f(t )  

i[N-(i-1)]t

iR(t )=e          3-4 

Now we have to estimate the value of N and assume that the value of ϕ is known.  

Let t1, t2, ........., tn is a failure data set 

i=1

L(N) = ( )
n

if t  

   
[ (i-1)]

i=1

[ (i-1)] i

n
N t

N e
  

   

[ (i-1)]

i=1

( ) [ (i-1)] i

n
N tnL N N e

  
   

On taking Natural Log on both side 

[ (i-1)]

i=1

n n

i=1 i=1

ln(L(N))=ln[ [ (i-1)] ]

=n ln  + ln[ (i-1)] [ (i-1)]

i
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i
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N N t
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Taking first derivates on w.r.t N 

n
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In case, where the value of N and ϕ both are unknown.  

n
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( , ) [ (i-1)]
in N t
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 
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On taking the natural Log on both sides 
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Taking first partial derivative w.r.t. N and ϕ, first w.r.t. N 
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Now taking derivative w.r.t. ϕ 
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From equation (4-5) and (4-6) 
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3.2.1.2 Schick-Wolverton Model 

The Schick-Wolverton (Schick & Wolverton, 1978) model is a modification of the basic 

Jelinski-Moranda model. The assumptions are similar to the Jelinski-Moranda model except 

that, the failure rate at the i
th

 time interval raises with time ti. The failure rate between the (i-

1)
th

 and the i
th

 failure can be articulated as,  
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(ti)= [N-(i-1)]ti, Where i = 1,2,......N      3-8 

Where,   and N are the same as in the Jelinski-Moranda model and it  is the test time since 

the (i-1)
th

 failure. The PDF can be given as 

2[N-(i-1)] ti
-

2
i i (t )= [N-(i-1)] t ef



        3-9 

The CDF can be given as  

2[N-(i-1)] ti
-

2
i  F(t )=1-e



        3-10 

And the Reliability can be defined as 

2[N-(i-1)] ti
-

2
iR(t )=e



        3-11 

 

3.2.1.3 Modified Schick-Wolverton Model 

This model has emerges by modifying the Schick-Wolverton model (Sukert, 1977), who 

considered more than one failure at each time interval. The failure rate function is expressed 

as  

(ti) = [N-n ]ti, Where i = 1,2,......N
i-1

      3-12 

where n(i-1) is the cumulative number of failures at the (i-1)
th

 failure interval. The software 

reliability function can be given as 

2ti
i-1 2

[N-n ]
R(t ) e

1
 = 



       3-13 

 

3.2.1.4 Lipow Modified Jelinski–Moranda Model 

The author has changed the Jelinski-Moranda and assumes that the errors may not be 

corrected immediately when discovered. This modification was made for real time 

development project.  

( ) 1/{ [ ( )]}it k N EC p          3-14 

 

and the reliability is given by 

{ [ ( )]}( ) k N EC p

iR t e          3-15 

 

Where, N is number of inherent errors, k is constant of proportionality and EC(p) is the 

corrected errors till the p
th

 testing period. 
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3.2.1.5 Joe and Reid Model 

The author (H. Joe, 1985) has suggested an alternative way for the Jelinski-Moranda and 

Littlewood software reliability models. The author has considered failure times instead of 

inter-failure times.  

 

3.2.1.6 Decreasing Failure Intensity (DFI) Model 

The general Markov model, proposed by Xie and Bergman (Xie & Bergman, 1988) have 

considered the fault detection probability which depends on the fault size. The authors 

considered that faults are of different size, it practical, it is not true. The author has assumed 

that the earlier faults are having a high detection probability.  

 

The failure intensity λ (i) is a function of the number of remaining faults, that is  

0 0(i) = [N -(i-1)] ,       for i=1,2,.....,N       3-16 

Where, λ(i) is defined as the rate of the occurrence of the next failure after the removal of the 

(i-l)
th

 fault. λ(i) should decrease fast at the beginning and the decrease becomes slower for 

each i.  

 

3.2.1.7 Shanthikumar General Markov Model 

The Jelinski-Moranda model can be generalized by using a general time-dependent transition 

probability function (ShanthiKumar, 1981). Denoted by N(t) the number of faults that are 

detected and removed during time [0,t). Suppose that there are No initial software faults and 

the model assumes that, after n faults are removed, the failure intensity of the software is 

given by 

(n,t) = ( )(N -n)0t          3-17 

Where, ϕ(t) is a proportionality factor. Note that this model reduces to the Jelinski-Moranda 

model, if ϕ(t) is a constant independent of t. 

 

3.2.1.8  Variable Fault Exposure Coefficient Model 

An interesting model with variable FEC which has the same advantages as the DFI model 

discussed above is presented by the author (Bittanti, 1988b). It assumes that a large number 

of trivial faults are detected earlier and the last faults are hard to detect which implies that the 

decrease of the failure intensity becomes less. It contradicts the Jelinski-Moranda’s 

assumption that all faults are equally exposed in testing by a more realistic one. 
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The variable FEC model assumes that λj is the number of remaining faults multiplied by k(j), 

a function of j, that is 

0( )( )j k j N j           3-18 

 

 3.2.1.9 Jelinski-Moranda Geometric Model 

The Jelinski-Moranda Geometric model (Moranda 1979) assumes that the program failure 

rate function is initially a constant D and decreases geometrically at failure times. The 

program failure rate and reliability function of time-between-failures at the i
th

 failure interval 

can be expressed, respectively, as 

1( ) it Dki           3-19 

Where, D is initial program failure rate and k is parameter of geometric function (0 < k < 1) 

If we allow multiple error removal in a time interval, then the failure rate function becomes 

( ) ni it Dki          3-20 

Where, ni-1 is the cumulative number of errors found up to the (i-1)
th

 time interval. 

 

3.2.1.10 Moranda Geometric Poisson Model 

The Moranda geometric Poisson model (Moranda 1975) assumes fixed times T, 2T, of equal 

length intervals, and that the number of failures occurring at interval i, Ni, follows a Poisson 

distribution with intensity rate Dk
i-1

.  

The probability of getting m failures at the i
th

 interval is 

1

( 1)
Pr{ }

!

iDk

i

e Dki m
N m

m

 
        3-21 

The reliability and other performance measures can be easily derived in the same manner as 

in the Jelinski-Moranda model. 

 

3.2.1.11 Littlewood-Verrall Baysian Model 

It uses different approach to the development of a model (Littlewood & Verral, 1979) for 

times between failures. This model allows for negative reliability growth to reflect the fact 

that when a repair is carried out, it may introduce additional errors. It also models the fact 

that as errors are repaired, the average improvement in reliability per repair decreases. It 

treat’s an error’s contribution to reliability improvement to be an independent random 
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variable having Gamma distribution. This distribution models the fact that error corrections 

with large contributions to reliability growth are removed first. This represents diminishing 

return as test continues.  

 

 It is considered that the software reliability should not be specified in terms of number of 

errors in the program, instead the time between failures are considered and are assumed to 

follow an exponential distribution. The parameter of this distribution, i.e. failure rate is 

treated as a random variable following gamma distribution, 

( / ) i ik t

i i if t k k e


         3-22 

 

4.2.1.12 Negative-binomial Poisson Model 

Assume that the intensity λ is a random variable with the gamma density function having 

parameters k and m, that is,  

1 1( )
( )

m m kf k e
m

   


       3-23 

 

3.2.1.13 Littlewood’s Stochastic Reliability-Growth Model 

An assumption (Littlewood, 1981) that the failure rate of a program is a constant multiple of 

the (unknown) number of faults remaining. This implies that all faults contribute the same 

amount to the failure rate of the program. The assumption is challenged and an alternative 

proposed. The suggested model results in earlier fault-fixes having a greater effect than later 

ones (the faults which make the greatest contribution to the overall failure rate tend to show 

themselves earlier, and so are fixed earlier), and the DFR property between fault fixes 

(assurance about programs increases during periods of failure-free operation, as well as at 

fault fixes).  

 

3.2.1.14  A Bayesian modification to the Jelinski-Moranda SRGM 

The author (Littlewood & Sofer, 1987) uses Bayesian method for estimating the parameters 

instead of MLE and shows that it is sometimes an improvement on Jelinski-Moranda. 

However, both versions have a tendency to give optimistic answers, probably owing to a key, 

but implausible, underlying assumption common to both models. The authors conclude that 

the generally poor performance of the models is such that they should only be used with great 

caution. 
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3.2.1.15 A Quantum Modification to the Jelinski-Moranda Model 

A modified Jelinski-Moranda model (Ho, Chan, & Chung, 1991) is proposed, which assumes 

that different types of faults may have different effects (measured by the size of failure-

quantum) on the failure rate of the software. Therefore, fault removals make the failure rate 

decrease differently for different faults. The size of the failure-quantum of a fault can be 

determined by the structure of the software. For example, if a fault is located in a very 

frequently executed module, then its removal should make the failure rate of the software 

decrease faster (a larger size of failure-quantum). The failure intensity function is given by 

1

1

( )
i

i j

j

Q w 




        3-24 

Where, Q = an unknown constant representing the initial number of failure-quantum units 

inherent in a software, Ψ = the failure rate corresponding to a single failure-quantum unit, and 

Wi = the number of failure-quantum units of the i
th

 fault. 

 

3.2.1.16 Optimal Software Release Based on Markovian SRM 

The optimal software release problems (Rinsaka & Dohi, 2004) based on Jelinski-Moranda 

SRM has been explained, and revisited the optimal software release policies by taking 

account of a waste of software testing time. Authors have formulated the total expected 

software costs with two different release policies, and compare them in terms of the cost 

minimization. It can be concluded that the existing optimal software release policy 

underestimates and overestimates the real optimal software release time and its associated 

cost function, respectively.  

Then the total expected software cost V1(T) is formulated as 

1 1 2 3( ) [1 ]T TV T c a e c ae c T            3-25 

 

3.2.2 Imperfect Debugging Models 

These models consider that the fault removing process is not perfect. The Jelinski-Moranda 

model was developed assuming the debugging process to be perfect which implies that there 

is one-to-one correspondence between the number of failures observed and faults removed. 

But in reality, it is possible that the fault which is supposed to have been removed may cause 

a new failure. 
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3.2.2.1 Goel-Okumoto Imperfect Debugging Model 

Goel and Okumoto (Goel & Okumoto, 1979b) extend the Jelinski-Moranda model by 

assuming that a fault is removed with probability p whenever a failure occurs. The failure rate 

function of the J-M model with imperfect debugging at the i
th

 failure interval becomes 

(ti) = [N-p(i-1)],      Where i = 1,2,......N       3-26 

Where ϕ and N are similar to Jelinski-Moranda Model and p is the probability of correction 

of error. 

 

3.2.2.3      Modified Jelinski-Moranda Model with Imperfect Debugging 

The assumptions of modified Jelinski-Moranda Model (G. S. Mahapatra, 2012) are similar to 

the Jelinski-Moranda model except that it does not consider the perfect debugging process in 

fault removal activity. The modified J- M model assumes that the debugging process is truly 

imperfect. It assumes that whenever a failure occurs, the detected fault is removed with 

probability p, the detected fault is not perfectly removed with probability q, and the new fault 

is generated with probability r. So it is obvious that p + q + r = 1 and q ≥ r. The software 

failure rate function between the (i-1)
th

 and i
th

 failure for our modified Jelinski-Moranda 

model with imperfect debugging is given by 

( ) [ ( 1) ( 1)] [ ( 1)( )it N p i r i N i p r               3-27 

Where, ϕ, N and ti have the same meaning as defined in the Jelinski-Moranda model.  

The reliability function at the failure interval is given by 

[ ( 1)( )
( ) 1 ( ) iN i p r t

i iR t F t e
   

         3-28 

Note that if p=1 and r=0, then the failure behavior of the modified model becomes the same 

as the Jelinski-Moranda model. Thus, the Jelinski-Moranda model may be regarded as a 

special case of this modified model.  

 

3.2.3 Summary of Evolution of Failure Rate Growth Models 

It is learnt from the above literature review that the Jelinski – Moranda Model introduced in 

1972 was the first one in the field of reliability growth models history and all other models 

have been emerged from Jelinski-Moranda Models. 

  



A New Variant of Jelinski-Moranda Model for SRGM 2015 
 

Delhi Technological University Page 31 

 

Figure 3.2 Evolutions of Failure Rate Growth Models 

 

The time between failure models or failure rate models uses the dataset of the time-domain 

approach, which involves recording the individual times at which failure occurred, as 

illustrated in Table 2.2. A summary of existing failure rate software reliability models is 

given below in table 3.1. 

 

Table 3.1 Summary of failure rate software reliability models 

SN Model Name Author(s) 

Name 

Year Failure Rate Function Assumptions 

1. The Jelinski-

Moranda (J-M) 

model 

Z. Jelinski, 

P. B. 

Moranda 

1972 i(t )= [N-(i-1)]   1. The No. of initial 

software faults is an 

unknown, but a fixed 

constant. 

2. A detected fault is 

removed immediately and no 

new fault is introduced. 

3. Times between 

failures are independent 

exponentially distributed 

random quantities. 

4. All remaining s/w 

Jelinski & 
Moranda 
Model 

Schick-
Wolverton 

Model Modified 
Schick-

Wolerton 

Goel-
Okumoto 
Imperfect 

Debugging 

Lipow 
Modified JM 

Model 

Littlewood-
Verrall 
Baysian 
Model 

Decreasing 
Intensity 
Model 

Shantikumar 
General 
Markov 
Model 

Variable 
Fault 

Exposure 
Model 

JM 
Geometric 

Model 

Quantum 
Modification 
by H-Chan-

Chun 

Mahapatra 
Imperfect 

Debugging 
Model 
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faults contribute the same 

amount to the s/w failure 

intensity. 

5. The s/w failure rate 

during a failure interval is 

constant and proportional to 

the no. of faults remaining in 

the program. 

2. Schick-Wolverton 

Model 

GJ Schick, 

RW 

Wolverton 

1978 i i(t )= [N-(i-1)]t   1. It is similar to the J-

M model. 

2. It assumes that the 

failure rate at the i
th

 time 

interval increases with time 

it  since the last debugging 

3. Modified Schick-

Wolverton Model 

AN Sukert 1977 i i-1 i(t ) = [N-n ]t   1. It is a modification 

to the Schick-Wolverton 

Model. 

2. It allow more than 

one failure at each time 

interval 

4. Goel-Okumoto 

Imperfect 

Debugging Model 

AL Goel, K 

Okumoto 

1979 i(t ) = [N-p(i-1)]   1. It extend the J-M 

model   

2. a fault is removed 

with probability p whenever 

a failure occurs 

5. Lipow Modified 

Jelinski -Moranda 

Model 

Lipow  ( ) 1/{ [ ( )]}it k N EC p    1. Errors are not 

corrected immediately 

6. Littlewood-Verrall 

Baysian Model 

B 

Littlewood, 

JL Verrall 

1979 
( / ) i ik t

i i if t k k e


  
1. This model allows 

for negative reliability 

growth to reflect the fact that 

when a repair is carried out, it 

may introduce additional 

errors.  

2. Reliability should 

not be specified in terms of 

number of errors in the 

program, instead the times 

between failures are 

considered. 

3. It is assumed to 

follow an exponential 

distribution. 

7. Shanthikumar 

General Markov 

Model 

JG 

Shanthikum

ar 

1981 
0(n,t) = ( )(N -n)t   1. A Generalization of JM 

Model 

8. Decreasing Failure 

Intensity (DFI) 

Model  

M Xie,  

B Bergman 

1988 
0(i) = [N -(i-1)]   1. fault-detection probability 

depends on the size of fault 

2. earlier failures are caused by 

faults having a high detection 
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probability 

9. A Variable Fault 

Exposure 

Coefficient Model  

S Bittanti 1988 
0( )( )j k j N j    1. It assumes that a large 

number of trivial faults are 

detected earlier and the last 

faults are hard to detect  

2. It contradicts the JM’s 

assumption. 

10. Jelinski-Moranda 

Geometric Model 

Z. Jelinski, 

P. B. 

Moranda 

1979 1( ) i

it Dk   1. the program failure rate 

function is initially a constant 

D and decreases 

geometrically at failure times 

11. Moranda Geometric 

Poisson Model 

P. B. 

Moranda 

1975 
1

1( )
Pr{ }

!

iDk

i
i

e Dk m
N m

m



   1. It assumes fixed times T, 2T, 

of equal length intervals, and 

that  

2. The number of failures 

occurring at interval i, Ni, 

follows a Poisson distribution 

with intensity rate Dk
i-1

. 

12. Negative-binomial 

Poisson Model 

  
11

( )
( )

m m kf k e
m

   


 

1. Assume that the intensity λ is 

a random variable with the 

gamma density function 

13. Quantum 

Modification to the 

JM Model 

Tsu-Fens 

Ho, Wah-

Chun Chan, 

and Chyan-

Goei Chung 

1991 1

1

( )
i

i j

j

Q w 




   
1. It assumes that different 

types of faults may have 

different effects 

14. Optimal Software 

Release Based on 

Markovian 

Software Reliability 

Model 

K. Rinsaka, 

T. Dohi 

2004 
1 1 2 3( ) [1 ]T TV T c a e c ae c T     

 

1. It considers optimal software 

release policies by taking 

account of a waste of 

software testing time.  

15. Modified JM Model 

with Imperfect 

Debugging 

Phenomenon  

GS 

Mahapatra 

2012 ( ) [ ( 1) ( 1)]

[ ( 1)( )

it N p i r i

N i p r

 



    

   

 

1. It assumes that whenever a 

failure occurs, the detected 

fault is removed with 

probability p, 

2. the detected fault is not 

perfectly removed with 

probability q, and  

3. the new fault is generated 

with probability r 
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3.3 Failure Count Models 

As it has been explained in earlier sections, models which fall in this category counts number 

of faults or failures in specified time intervals instead of times between failures. The failure 

counts follow a time-dependent discrete or continuous failure rate which is known as 

stochastic process.  

 

Non-homogeneous Poisson Process Models 

A stochastic NHPP is a Poisson process with failure rate parameter λ(t) is a function of time t. 

NHPP model is required to calculate an appropriate mean value function to denote the 

projected number of failures practiced up to a certain time. Probabilities of a given number of 

failures for the NHPP model are calculated by a generalization formula: Where, N (t) is the 

number of events by time t, m (t) is the mean for failure data, k = 0,1,2,3,... (Pham, System 

Software Reliability, 2006).  

 

The Non-Homogeneous Poisson Process (NHPP) group of models provides an analytical 

framework for describing the software failure phenomenon during testing. The main issue in 

the NHPP model is to estimate the mean value function of the cumulative number of failures 

experienced up to a certain point in time. 

 

The NHPP models are further classified based on assumption of perfect debugging and 

imperfect debugging. Goel-Okumoto Model is considered as the basic NHPP Model, which is 

further generalized and assumptions are analyzed to be more realistic in the present software 

development and testing environment. 

 

3.3.1 NHPP Perfect Debugging Model 

These models considers that the fault removal process is perfect and instant i.e. fault is 

removed perfectly 100% and not new faults are introduced as a side effect of the removed 

fault. 

 

3.3.1.1  Goel-Okumoto Model 

Goel & Okumoto (Goel & Okumoto, 1979) has described the time dependent finite 

exponential class of model, which is one of the first NHPP model proposed. This model is 

based on Poisson distribution assumes that faults are independent and have the same chance 
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of being detected and each time a failure occurs, the error which caused it is immediately 

removed, and no new errors are introduced in the software. 

 

The mean value function solution of the differential equation is given by 

( ) (1 ),  Where 0, 0btm t a e a b          3-29 

Where, a & b are parameters to be determined using collected failure data. The intensity 

function λ(t) defined as the derivative of m(t) is then 

( )
( ) btdm t
t abe

dt
           3-30 

 

3.3.1.2 Generalization of Goel-Okumoto Model 

It has been observed that the software failure intensity increases slightly at the beginning and 

then it begins to decrease. The only difference between the Goel's generalized NHPP model 

(Goel, 1985) and the GO-model is that the mean value function of the generalized NHPP 

model is given by 

( ) [1 ]
cbtm t a e          3-31 

Where, ‘a’ is the expected number of faults in the software, ‘b’ is a kind of scale parameter 

which reflects the intensity of testing and ‘c’ is another parameter which can be interpreted as 

the test quality. The failure intensity function of this model is 

1( )
( )

cc btdm t
t abct e

dt
           3-32 

This generalized model is a three-parameter model and with an appropriate value of the third 

parameter, it can give better goodness-of-fit than the original model. 

 

3.3.1.3 Musa Execution Time Model 

Musa and Okumoto  (Musa, 1987) Model is a binomial type model. This model is referred to 

as the exponential model and presented a theory of software reliability analysis based on the 

execution time instead of calendar time. The execution time is a better measure of time. 

Mathematically, 

0( ) [ ( )]fK N             3-33 

Where f and K are parameters related to the testing phase and No and µ( t) the number of 

initial faults in the software and the number of faults corrected after t amount of testing 

measured in execution time, respectively. 



A New Variant of Jelinski-Moranda Model for SRGM 2015 
 

Delhi Technological University Page 36 

 

3.3.1.4 Musa Logarithmic Poisson Execution Time Model 

The author has proposed a logarithmic time model (Musa & Okumoto, 1984) for reliability 

measurement considering the possibility of infinite number of faults. The failure intensity 

decreases exponentially as a function of the number of removed faults.  

 

3.3.1.5 Hyper Exponential Growth Model 

The author (Ohba, 1984), assume that a program has a number of clusters of modules with 

different initial number of errors and a different failure rate.  

 

The mean value function of the hyper exponential class NHPP model is 

1

( ) [1 ]i

n
b t

i

i

m t a e




          3-36 

Where, n = number of clusters of modules, ai = number of initial faults in cluster i, bi = 

failure rate of each fault in cluster i. The failure intensity function is given by 

1

( ) i

n
b t

i i

i

t a b e 



         3-37 

 

3.3.1.6 Yamada-Osaki Exponential Growth Model 

The author, Yamada – Osaki (Yamada & Osaki, 1985), proposed that SRGMs are classified 

in terms of software reliability growth index of the error detection rate per error. Yamada et 

al. discussed existing SRGMs including Exponential SRGM, Modified exponential SRGM, 

delayed s-shaped, Inflection s-shaped, logistic, Gompertz growth curve models.The expected 

number of faults detected for the entire software can be obtained as 

1

( ) [1 ]i

k
b t

i

i

m t a p e




         3-38 

 

 

NHPP S-Shaped Models 

In the NHPP S-shaped model, the growth curve is an S-shaped curve which means that the 

curve crosses the exponential curve from below and the crossing occurs once and only once. 

It assumes that the error detection rate differs among faults and fault is removed immediately 

when it is detected without introducing new errors. 
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3.3.1.7 Delayed S-shaped Model 

The Authers (Yamada, Ohba, & Osaki, 1983) have proposed an s-shaped  stochastic model 

for a software error detection process, where  the  growth curve of the number of detected 

software errors or the mean value function  for the observed data is  S-shaped. And the error 

detection model is NHPP. 

3.3.1.8 Connective NHPP Model  

Nakagawa (Nakagawa, 1994) proposed a model, called the connective NHPP model, where 

the basic shape of the growth curve is exponential and that an S-curve forms due to the test. 

In the connective NHPP model, a group of modules called “main route modules” are tested 

first, followed by the rest of the modules. Even if the failure intensity of the faults in the main 

route module and the other modules are similar, the growth curve becomes an S-curve since 

the search for their detection starts at different points in time. 

 

3.3.2 Imperfect Debugging Models 

NHPP Imperfect Debugging Models 

Software reliability models with imperfect debugging processes and a constant error 

detection rate b(t)=b, compare to the perfect debugging models with a(t) =a, studied by 

Yamada (Yamada 1984). The NHPP imperfect debugging model is based on the basic 

assumptions that say, it is possible to introduce new errors, when detected errors are 

removed, and the probability of finding an error in a program is proportional to the number of 

remaining errors in the program. 

 

3.3.2.1 Yamada Imperfect Debugging Model 

Yamada assume that the new errors may be introduced during fault removal process and the 

probability of finding an error in a program is proportional to the number of remaining errors 

in the program. 

 

NHPP Imperfect Debugging S-shaped models 

3.3.2.2 A Generalized Imperfect-debugging Fault-detection Model 

The generalized NHPP imperfect-debugging fault-detection rate model was formulated by 

Pham et al. (Pham & Normann, 1997b). The author considers that the error detection rate 

varies among different faults and the fault is immediately removed on detection and new 

faults can be introduced. 
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3.3.2.3  Pham-Nordmann-Zhang Model  

Pham et al in (Pham, Nordmann, & Zhang, 1999b) assumes that the function of fault 

introduction rate is a linear time-dependent, whereas the fault detection rate is non-decreasing 

time-dependent with an inflection S-shaped model. 

The mean value function is given by 

( ) [1 ] 1
1

bt

bt

a
m t e t

e




 





  
     

   
     3-45 

 

Exponential Imperfect Debugging Model 

3.3.2.4  Pham Exponential Imperfect Debugging Model 

Pham (Pham, 2000a) assumes that the fault introduction rate is an exponential function of 

testing time, whereas detection rate function is non-decreasing with an inflection S-shaped 

model. 

The mean value function is given by 

( ) 1
( )

b

bt

b e
m t

b e c





 
  

  
       3-46 

A lot of research is in progress in the field of failure count especially in Non-Homogeneous 

Poisson Process models. The new models are being developed and implemented on various 

datasets to estimate and predict the reliability of the given system.  
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CHAPTER-VI 

Proposed Reliability Growth Model 

 

4.0 Fault Dependent Imperfect Debugging Model 

The Jelinski–Moranda model (Jelinski & Moranda, 1972), which is cited many times, for 

describing the failure behaviour of a software system, is one of the widely used and oldest 

models also known as black-box models. The model considers the process of discovery and 

the removal of faults in computer software and was introduced in 1972. It is important to 

emphasise that the Jelinski-Moranda model considers only positive things, hence the model 

always provides over optimistic results of reliability prediction. It has been enumerated in the 

literature that the main reason for the shortcoming of this model is its assumption i.e. the 

failure rate is constant, fault is removed perfectly, faults are independent from each other and 

each fault has the same impact of the failure etc. 

 

The Jelinski-Moranda model was developed with the consideration that the debugging 

process is perfect which implies that faults are removed immediately as and when it is 

detected. It may be possible that the fault which is supposed to have been removed may not 

be removed perfectly. In the proposed modified Jelinski-Moranda model, we consider that 

whenever a failure occurs, the cause of the failure identified and the detected fault is removed 

immediately but not perfectly without delay. However, the correction of one fault may have 

the impact over the other faults too, as the faults are dependent on each other. In addition to 

this, the failure removal process provides the better understanding to the programmer and he 

may correct other remaining errors in part or full, in addition to the current error. 

 

Software troubleshooting is the process of scanning, identifying, diagnosing and resolving 

faults, errors and bugs in software. It is a systematic process that aims to filter out and resolve 

problems, and restore the software to normal operation. The code of the program is checked 

thoroughly, which gives a better understanding to the programmer. As the programmers 

understanding about the logic and semantic of the program increases, he can identify other 

problems, also (if exists). In addition to this, faults are dependent on each other, which mean 

the effect of correction of one error may correct other error too.  
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The proposed model has over comes the drawbacks of Jelinski-Moranda Model, single fault 

is attended/ corrected at a time and the faults are removed perfectly, of basic Jelinski–

Moranda Model, which is not true in practical. Hence, the newly proposed model considers 

the multiple failure correction at a time with imperfect debugging.  

 

4.1 Assumptions 

The devised model assumes that: 

 The program contains “N” initial faults which is an unknown but a fixed constant. 

 Faults in the program are dependent and do not have same impact of failure. 

 Whenever a failure occurs, a corresponding fault is removed immediately with 

 probability p, without adding new error(s). 

 The rectification of one fault can affect the other faults too i.e. other faults or the part of 

the fault may also get rectified with some probability. 

 The software failure rate during a failure interval is constant and is proportional to the 

 number of faults remaining in the program. 

 The failure rate at the i
th

 time interval decreases with time ti since the last debugging. 

 

The total faults exists in the program is constant and the program contains N initial faults, but 

the value of the constant, N is unknown in the advance.  It is assumed here that the faults are 

dependent on each other, which means the correction of one fault may improve the other fault 

in full or in part. The failure removal process is not perfect that means there are the chances 

that the part of the fault is still left back, in other words fault is removed with the probability 

p where 0≤p≤1. Each fault is assumed to have different impact over the failure, thus the 

failure rate vary from fault to fault but for a single failure is assumed to be a constant.  

 

It is learnt from the literature (Goel & Okumoto, 1979b) and (G. S. Mahapatra, 2012) that 

whenever a failure occurs, the cause of the failure is identified and removed immediately 

with probability p and the p has been kept constant. Keeping p constant seems to be 

impractical, as each fault will have the different impact and faults are dependent, which 

means correction of one fault will have the impact on other, but it will not be same always. It 

is therefore, the mean of the probabilities of all the remaining faults are taken in to 

consideration, in order to measure the probability of i
th

 fault, being removed at the time ti. The 

probability of fault could not be removed is q=1-p. It is assumed that the new errors are not 



A New Variant of Jelinski-Moranda Model for SRGM 2015 
 

Delhi Technological University Page 41 

introduced during the troubleshooting process. The failure rate between the (i-1)
th

 and i
th

 

failure for our modified Jelinski-Moranda model with fault dependent imperfect debugging is 

given by  

n

j

j=i
i

p

(t ) =  [N-( )(i-1)],      Where i = 1,2,......N
n i

 



    4-1 

Where, ϕ is the a constant of proportionality, N is the number of faults available initially in 

the software, p is the probability of fault removal process and ti is the time-interval of (i-1)
th

 

and i
th

 failure.  

 

 

4.2 Derivation 

The failure rate function is given by 

n

j

j=i
i

p

(t ) =  [N-( )(i-1)],      Where i = 1,2,......N
n i

 



 

The Probability Density function is given as 

ti

i i

0

- ( )d

i i(t )= (t )e
x x

f





 

n
t pi j

j=i
i

0

n
p -  [N- (i-1)]dj

j=i
 [N- (i-1)]e

x
n i

n i













 

n
pj

j=i
- i

n
p

j  [N- (i-1)]t
j=i

( )  [N- (i-1)]e    n i
if t

n i











     4-2 

The Cumulative Density Function is expressed as 

it

i

0

F(t )= ( )i if x dx  

n

j

j=i

pn
p

j -  [N- (i-1)]
j=i

0

 [N- (i-1)]e
i

i

t
x

n i
idx

n i











  

n

j

j=i
i

p

 [N- (i-1)]t

F( ) 1 n i
it e






         4-3 

Then the reliability is given by 
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n

j

j=i
i

i i

p

 [N- (i-1)]t

i

R(t )=1-F(t )

R(t )= n ie




         4-4 

 

4.3 Parameter Estimation  

The parameters are estimated by sung the MLE method for the value of N and ϕ in the 

modified Jelinski-Moranda model.  

Suppose t1, t2 ,t3 ........., tn is given failure dataset as in the Jelinski-Moranda model. The 

likelihood function of N and ϕ is given by 

i=1

n
pn j

p j=iˆ ˆj [N- (i-1)]
j=i

i=1

L(N, ) = ( )

ˆ ˆ[N- (i-1)]
i

n

i

n t
n i

n i

f t

e



















 

n

jn
j=i

i=1

p
n

ˆ ˆp [ (i-1)]j
j=i

i=1

ˆ ˆ( , ) [ (i-1)]
in N t

n in

n i
L N N e



 
  








   

On taking the natural Logarithm on both sides 

n

jn
j=i

i=1

p
n

ˆ ˆp [ (i-1)]j
j=i

i=1

n n
p pn nj j

j=i j=i

i=1 i=1

ˆ ˆln(L(N, ))=ln[ [ (i-1)] ]

ˆ ˆˆ ˆ=n ln  + ln[ (i-1)] [ (i-1)]
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n in
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in i n i

N e

N N t



 

 
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



 

 
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


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
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By taking the first partial derivative with respect to N and ϕ respectively, 

n

n
p1 i=1j

j=i

ln (L(N, )) ˆ10 [ ]

ˆ[ (i-1)]

n

i

i

n i
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Now taking derivative w.r.t. ϕ 
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From equation (5-5) and (5-6) 
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The value of the N̂ can be estimated from the following equation, which is independent of ̂ . 
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The above equation can be further generalized as 
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By putting the value of N̂  in to equation (5-6), we can get the value of ̂ . 
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The software reliability function can be obtained as follows 

i+1 [N-(p*n)]t

i+1 n+1 i+1R(t )=1-F (t )=e        4-8 

The estimated mean time to failure for the (n+1)
th

 fault is 

n

j

j=i

1 1ˆMTTF= =
ˆ ˆ[N- p n]


 

       4-9 

      

4.4 Tools 

The failure data of the software is analyzed with the help of MATLAB. The MATrix 

LABoratory is based on vectors and matrices. MATLAB is widely used tool for mathematical 

simulation and modeling. The details can be found online from http://www.mathworks.com. 
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CHAPTER-V 

Results and Discussion 

 

5.1 Failure Dataset 

The proposed model, a new variant of Jelinski-Moranda Model, is applied to the Real-time 

Control System’s failure data. The failure dataset contains total 136 entries of time-between 

failures (in sec.) given in Table 5.1 taken from (Pham, System Software Reliability, 2006), 

Page 157. The dataset is a time between failures, which provides the better estimation/ 

prediction of the failure rate and reliability compare to the failure count dataset. 

Table 5.1 Real-Time Control System Data 

Fault TBF Cum.TBF Fault TBF Cum.TBF Fault TBF Cum.TBF 

1 3 3 46 193 7837 91 724 30085 

2 30 33 47 6 7843 92 2323 32408 

3 113 146 48 79 7922 93 2930 35338 

4 81 227 49 816 8738 94 1461 36799 

5 115 342 50 1351 10089 95 843 37642 

6 9 351 51 148 10237 96 12 37654 

7 2 353 52 21 10258 97 261 37915 

8 91 444 53 233 10491 98 1800 39715 

9 112 556 54 134 10625 99 865 40580 

10 15 571 55 357 10982 100 1435 42015 

11 138 709 56 193 11175 101 30 42045 

12 50 759 57 236 11411 102 143 42188 

13 77 836 58 31 11442 103 108 42296 

14 24 860 59 369 11811 104 0 42296 

15 108 968 60 748 12559 105 3110 45406 

16 88 1056 61 0 12559 106 1247 46653 

17 670 1726 62 232 12791 107 943 47596 

18 120 1846 63 330 13121 108 700 48296 

19 26 1872 64 365 13486 109 875 49171 

20 114 1986 65 1222 14708 110 245 49416 

21 325 2311 66 543 15251 111 729 50145 

22 55 2366 67 10 15261 112 1897 52042 

23 242 2608 68 16 15277 113 447 52489 

24 68 2676 69 529 15806 114 386 52875 

25 422 3098 70 379 16185 115 446 53321 

26 180 3278 71 44 16229 116 122 53443 

27 10 3288 72 129 16358 117 990 54433 

28 1146 4434 73 810 17168 118 948 55381 

29 600 5034 74 290 17458 119 1082 56463 
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30 15 5049 75 300 17758 120 22 56485 

31 36 5085 76 529 18287 121 75 56560 

32 4 5089 77 281 18568 122 482 57042 

33 0 5089 78 160 18728 123 5509 62551 

34 8 5097 79 828 19556 124 100 62651 

35 227 5324 80 1011 20567 125 10 62661 

36 65 5389 81 445 21012 126 1071 63732 

37 176 5565 82 296 21308 127 371 64103 

38 58 5623 83 1755 23063 128 790 64893 

39 457 6080 84 1064 24127 129 6150 71043 

40 300 6380 85 1783 25910 130 3321 74364 

41 97 6477 86 860 26770 131 1045 75409 

42 263 6740 87 983 27753 132 648 76057 

43 452 7192 88 707 28460 133 5485 81542 

44 255 7447 89 33 28493 134 1160 82702 

45 197 7644 90 868 29361 135 1864 84566 

 136 4116 88682 

 

5.2 Results 

The proposed model has been applied to the above time between failures dataset and 

measured the failure rate, probability density failure, mean time to failure and reliability. The 

values of the N and ϕ, used for further calculation, are calculated using Maximum Likelihood 

Estimation. 

 

First part of the figure 5.1 depicts the failure rate with respect to the faults. It is clear from the 

figure that the failure rate is initially high but slide down with the enhance in the failures. It 

become constant over a period of time and tends to zero at the end. Second part displays the 

probability density function of the faults. Initially PDF is higher when the software contains 

maximum faults but decreases as the faults are removed and tends to zero with no faults in 

the software. However, the third figure explains the reliability of the dataset. 
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Figure 5.1 Failure Number Vs Failure Rate, PDF and Reliability 

 

 

 

Figure 5.2 Failure Number Vs Mean Time to Failure 

 

The above figure 5.2 depicts the mean time between failures, which is inversely proportional 

to the failure rate. The MTTF increases with increase in the faults. 

 

5.3 Comparison 

The proposed model has been compared with the existing Jelinski-Moranda model and the 

Goel-Okumoto Imperfect Debugging Model. The Jelinski-Moranda Model, which is very 

much optimistic model, provides the better results than the proposed model. However, Goel - 
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Okumoto Imperfect Debugging provides intermediary results, which takes probability as a 

fixed value which is near to one. The proposed model considered the mean of the probability 

generated as a random number between 0 and 1. 

 

Figure 5.3 Failure Number Vs Failure Rate of Jelinski-Moranda Model, GO Imp Debugg 

Model and Proposed Model 

 

 

Figure 5.4 Cumulative Time Vs Failure Rate 

 

It is seen from the above figure 5.3, which shows the failure rate with respect to failure 

number, whereas figure 5.4 shows the failure rate with respect to the cumulative time of 

failure. The comparison has been carried-out with Jelinski-Moranda Model and Goel-

Okumoto Imperfect Debugging model and observed that the results are poor as we 

considered the impact of the fault being corrected to the other faults. 
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Figure 5.5 Failure Number Vs Reliability of JM Model, GO Imp Debugg Model and 

Proposed Model 

 

It is observed from the figure that the proposed model is poor reliability graph compare to the 

other two models, but the assumptions considered are practical and near to the real world 

situations , instead of highly optimistic as given in Jelinski-Moranda Model. The results of 

Jelinski-Moranda Model, which considers the fault to be removed perfectly, have better 

reliability results. Whereas, Goel-Okumoto model has considered that the fault is removed 

with the probability p, which is near to 1 and depicts the results close to Jelinski-Moranda 

model, but the results are almost similar to Jelinski-Moranda model with constant difference. 

However, this is not true in the case of proposed model. The value of the p is generated 

randomly between 1 and 0 for the N faults and then the mean of the randomly generated 

probabilities is taken. It is learn from the results or iterations that the mean value of p is 

around 0.5, which gets changed for each iteration. Hence the results are not same or at the 

constant difference. 

 

The proposed model will work as the Goel-Okumoto Model, if the value of the p is 

considered constant and as Jelinski-Moranda Model, if the p is 1 i.e. error is removed 

perfectly. It is therefore concluded that the Jelinski-Moranda Model and Goel-Okumoto 

Model are the special case of the proposed model. 
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CHAPTER-VI 

Conclusion and Future Scope 

 

6.0 Conclusion 

The results of the proposed model have been analyzed in detail and compared with the 

existing Jelinski-Moranda Model, which is an extremely optimistic model. Following three of 

the existing unrealistic assumptions have been changed to new assumptions in the proposed 

model. 

 The fault removal process is not perfect, which means the fault is removed with the 

probability p, where 0 ≤ p ≤ 1.  

 Faults are dependent on each other, i.e. the correction of one fault may correct other 

faults too. 

 In the software, each fault contributes differently on the failure, which means the fault 

of repeatedly executed code improves more reliability compare to the rarely executed codes. 

 

It is observed from the results that the proposed model doesn’t have better results and 

measures less value of the reliability compare to Jelinski-Moranda Model, because the 

proposed model considers the actual conditions of software development and testing 

environment. It is concluded from the above discussion that the proposed model is more 

realistic than the Jelinski-Moranda Model. 

 

6.1 Future Scope 

The proposed model can be further extended by considering new fault introduction as a side 

effect of fault removal process. The probability of fault removal can be better estimated by 

considering the internal structure of the software and its modules, instead of considering a 

randomly generated number. Further it can be extended by changing the assumption that the 

faults are removed immediately, which is impractical in real time environment. 
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