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Abstract 

A technology that has been used extensively for analyzing breast and ovarian cancer 
malignancies is microarray technology. The combined investigation for breast and ovarian 
cancers across multiple gene expression studies are not well reported. In preliminary phase of 
study, data analysis was performed by combining gene expression profiles of eight different 
published microarray studies based on breast and ovarian cancers. Breast and ovarian 
cancers’ genetic makeup are very similar and heritable mutations in the tumor suppressor 
genes BRCA1 and BRCA2 incline individuals to breast and ovarian cancers. Microarray data 
of both cancers was screened and downloaded from NCBI GEO. The raw data files were 
extracted and only low, high and normal grade tumor samples were included for the meta- 
analysis. After combining all the eight microarray data, normalization, and pre-processing, 
differential gene expression analysis (DEGs) were carried out. The statistical test that was 
used for identifying DEGs was one way ANOVA and this was followed by clustering the top 
DEGs. The clustering analysis explored the common genes and sample expression pattern 
including co-expressed gene sets across two types of cancers (breast and ovarian). This meta-
analysis unified eight results of previous gene expression studies in breast and ovarian 
cancers. This analysis was performed using two different softwares viz. Robina and 
Genespring. The combined microarray data analysis result revealed the connection between 
common expressed genes in breast and ovarian cancers. It was found that the common DEGs 
and subsequently the co-expressed genes have strong enrichment from cell proliferation, ER 
signaling, actin cytoskeleton and Mitogen Activated Protein Kinase (MAPK) pathways. The 
research was continued by further pathway analysis of DEGs and co-expressed genes which 
then explored the common molecular basis, signatures and potential important regulatory 
pathways in these two cancer developments. The common up-regulated genes deduced after 
performing all the steps were IRF5, IKZF2 and CCNL1 and the common down-regulated 
genes included ATF3, HMGA1 and NRIP3. The identified common altered genes in breast 
and ovarian expression data, which can serve as potential biomarkers, were validated using in 
silico method.  
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Chapter 1 

Introduction 

 
Breast cancer ranks second both in terms of being the most common diagnosed cancers after 
non-melanoma skin cancer and being the leading cause of cancer deaths after lung cancer in 
women (Perou et al., 2000). In women, ovarian cancer is the fifth most lethal cancer (Soegard 
et al., 2009). An obvious fact is both breast and ovarian cancers are heterogeneous diseases 
and the characteristics that define them includes biological subtypes of the tumor, age of 
outset, clinical course that it follows and it’s response to treatment. While studying the 
epidemiology of these two cancers, it was established that family history plays an important 
role in the onset of both these cancers. The pattern in which autosomal dominant cancer 
susceptibility is inherited can be noticed in the development of breast and ovarian cancers as 
in some families, several family members are diagnosed with breast and/or ovarian cancers. 
Further, women with family history of these cancers are more susceptible to developing 
breast and ovarian cancers. All these are clear indications that genetic factors contribute to 
the risk of developing breast and ovarian cancers. At present, BRCA1 and BRCA2 are the 
most widely used biomarker genes for the prognostication and early detection of breast and 
ovarian cancers. If disease causing mutations are found in the BRCA1 and BRCA2 genes then 
that person is more likely to develop breast and/or ovarian cancers. Several tumor growths 
may arise from the ovary but the most predominant ovarian malignancy is found in the 
epithelial cells of the ovary, which is further one of the most frequently diagnosed 
gynaecological malignant growth (Cho, WSC. 2007). Approximately, five to ten percent of 
ovarian cancers are caused when there is a family history of this cancer and the pattern in 
which it is inherited can be classified into three groups, viz. ovarian and breast cancers 
together or ovarian and colon cancers together and ovarian cancer alone (Hanahan et al., 
2000). 

Gene expression studies (microarray studies) were developed more than a decade ago and 
since then the studies to analyze the variations in mRNA transcripts in disordered tissues are 
usually microarray based (Cho, WSC. 2007). Substantial microarray data have already been 
deposited into several international repositories and it includes Array Express and Gene 
Expression Omnibus (GEO) (Srinivas et al., 2001).  

Meta-analysis of openly accessible microarray data has been made use of, to establish shared 
characteristics in same cancer subtypes, for instance, lung vs. lung, liver vs. liver, breast vs. 
breast (Jemal et al., 2011).  It is probable that the proteins that are translated from the mRNA 
transcripts are present in a differential manner in the disordered tissue, which might 
subsequently get secreted in the blood and then be detected. Wong et al. (2001) first 
integrated Oncomine cancer gene expression data and then several gene ontology annotations 
were used to filter the data viz., “extracellular”, “extracellular matrix” and “extracellular 
space”, which made them the first to predict serum protein biomarkers (Wong et al. 2001). 
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It was established from a multitude studies that a bunch of gene’s expression levels can be 
employed as a “molecular fingerprint” in order to classify diverse types of tumor (Esquela et 
al., 2006). Even within the same cancer type, the subtypes can be compared in order to find 
the common biomarkers. Meta-analyzing the microarray data of the same subtype of breast 
and ovarian cancers individually revealed common breast and ovarian cancer biomarkers. Till 
date no common biomarker meta-analysis study has been reported by combining breast and 
ovarian cancers gene expression data from publicly available data (NCBI GEO and Array 
Express). Integrating microarray data from multiple subtypes of breast and ovarian cancers in 
order to increase the sample size will be a promising approach for the identification of more 
robust common altered genes in breast and ovarian cancers. This method will further increase 
the data accuracy by assisting in pooling huge amount of raw data. It is possible that while a 
given gene may be not declared significantly to be differentially expressed by any one lab, 
the combination of results across labs in an integrative analysis can provide sufficient 
evidence to declare significant differential expression. 

 
In the current study, eight publicly available gene expression datasets (four for each cancer) 
from different laboratories, representing breast and ovarian cancers on the same Affymetrix 
microarray platform U133 array were combined. The purpose was to obtain more powerful 
statistical results than the single dataset and identify common altered genes and their 
expression pattern in epithelial breast and ovarian cancer tissues. Robina and Genespring 
were used separately in order to identify the common altered genes in breast and ovarian 
cancers. Around ten common altered genes were identified using both these softwares 
individually. Finally the results of both these softwares were integrated in order to find the 
common co-expressed genes which are of more statistical significance and these can be 
predicted as probable biomarkers more accurately. The selection of these two methods was 
based on the fact that both have same normalization, that is robust multiarray averaging 
(RMA), for quality checks and the main analysis.  
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Chapter 2 

Literature Review 

 
2.1 Cancer 

More than 11 million people are diagnosed with cancer every year. It is estimated that there 
will be 16 million new cases every year by 2020 (Cho, WSC. 2007). Cancer is a cluster of 
diseases involving alterations in the status and expression of multiple genes that confer a 
survival advantage and undiminished proliferative potential to somatic or germinal cells 
(Hanahan et al., 2000). Alterations primarily in three main classes of genes viz., (proto) 
oncogenes, tumour suppressor genes and DNA repair genes collectively contribute to the 
development of cancer genotype and phenotype that resists the natural and inherent death 
mechanism(s) embedded in cells (apoptosis and like processes), coupled with dysregulation 
of cell proliferation events. 

2.2  Proto-oncogenes 

Proto-oncogenes are genes that normally help cells grow. When a proto-oncogene mutates or 
there are too many copies of it, it becomes a "bad" gene that can become permanently turned 
on or activated when it is not supposed to be. When this happens, the cell grows out of 
control, which can lead to cancer. This bad gene is called an oncogene (Bahcall, O. 2013). 

3.3  Tumor suppressor genes 

Tumor suppressor genes are normal genes that slow down cell division, repair DNA 
mistakes, help in apoptosis or programmed cell death. When tumor suppressor genes don't 
work properly, cells can grow out of control, which can lead to cancer (Berger et al., 2011). 

3.4  DNA repair 

DNA in most cells is regularly damaged by endogenous and exogenous mutagens. 
Unrepaired damage can result in apoptosis or may lead to unregulated cell growth and cancer. 
If DNA damage is recognized by cell machinery, several responses may occur to prevent 
replication in the presence of genetic errors. At the cellular level, checkpoints can be 
activated to arrest the cell-cycle, transcription can be up-regulated to compensate for the 
damage, or the cell can apoptose (Vispe et al., 2000). Alternatively, the damage can be 
repaired at the DNA level enabling the cell to replicate as planned. Complex pathways 
involving numerous molecules have evolved to perform such repair. Because of the 
importance of maintaining genomic integrity in the general and specialized functions of cells 
as well as in the prevention of carcinogenesis, genes coding for DNA repair molecules have 
been proposed as candidate cancer-susceptibility genes (Cairns et al., 1982; Knudson et al., 
1989; Shields et al., 1991). 
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3.5  Biomarkers 

Technologies to recognize and understand the signatures of normal cells and how these 
become cancerous, promises to provide important insights into the aetiology of cancer that 
can be useful for early detection, diagnosis and treatment of cancers. Advancement in such 
technologies has instigated renewed interest in developing new biomarkers. Biomarkers of 
cancer could include a broad range of biochemical entities, such as nucleic acids, proteins, sugars, 
lipids, and small metabolites, cytogenetic and cytokinetic parameters as well as whole tumour cells 
found in the body fluid. Biomarkers are therefore invaluable tools for cancer detection, 
diagnosis, patient prognosis and treatment selection (Ludwig et al., 2005). These can also be 
used to localize the tumor and determine its stage, subtype, and response to therapy (Bayli et 
al., 2006). 

Genetics, genomics, proteomics, many non invasive imaging techniques etc., allow 
measurement of several biomarkers. Currently, there is a greater understanding of the disease 
pathways, the protein targets and the pharmacologic consequences of drug administration. 
Therefore, application of biomarkers in the clinical practice is likely to result in advanced 
knowledge leading to a better understanding of the disease process that will facilitate 
development of more effective and disease specific drugs with minimal undesired systemic 
toxicity (Egger et al., 2004). Establishment of biomarkers requires a comprehensive 
understanding of the molecular mechanisms and cellular processes underlying the initiation 
of cancer, especially focusing on how small changes in only a few regulatory genes or 
proteins can disrupt a variety of cellular functions. A major challenge in cancer diagnosis is 
to establish the exact relationship between cancer biomarkers and the clinical pathology, as 
well as, to be able to non-invasively detect tumors at an early stage. Similarly, identification 
of subtle changes in the genomics and proteomics status specific to malignant transformation 
will allow molecular targets to be used for developing therapeutics (Sawyers, CL. 2008). 

3.6  Breast cancer 

Worldwide, breast cancer accounts for 22.9% of all cancers (excluding non-melanoma skin 
cancers) in women. In 2008, breast cancer caused 458,503 deaths worldwide (13.7% of 
cancer deaths in women). Breast cancer is more than 100 times more common in women than 
in men, although men tend to have poorer outcomes due to delays in diagnosis (Srinivas et 
al., 2001). 

Breast cancer is a heterogeneous disease, comprising multiple entities associated with 
distinctive grading, histological and biological features, clinical presentations and behaviours 
and responses to therapy (Farley et al., 2008). Grading focuses on the appearance of the 
breast cancer cells compared to the appearance of normal breast cancer cells (Ikpatt et al., 
2005). Normal cells in breast become differentiated, taking specific shapes and forms that 
reflect their function as part of that organ. But, cancerous breast cells loose that 
differentiation. In cancerous condition, the cells that would normally line up in an orderly 
way to make up the milk ducts become disorganized. Further, cell division becomes 
uncontrolled and cell nuclei become less uniform. Pathologists describe cells as well 
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differentiated (low-grade), moderately differentiated (intermediate-grade), and poorly 
differentiated (high-grade) as the cells progressively lose the features seen in normal breast 
cells. Poorly differentiated cancerous cells have worst prognosis (Farley et al., 2008). 

Breast cancer being a heterogeneous disease comprises of various types of neo-plasms, which 
involves different profile changes in both mRNA and micro-RNA (miRNA) expression. 
Extensive studies on mRNA expression in breast tumor have yielded some very interesting 
findings, some of which have been validated and used in clinic. It’s a proven fact that BRCA1 
mRNA expression plays a major role as a marker of time to progression and overall survival 
in sporadic breast cancers treated with chemotherapy (Margeli et al., 2010). Recent miRNA 
research advances showed great potential for the development of novel biomarkers and 
therapeutic targets. It has been demonstrated that miRNA expression is frequently 
deregulated in breast cancer, which warrants further in-depth investigation to decipher their 
precise regulatory role in tumorigenesis. Several studies were directed towards the regulatory 
mechanism of miRNA, expression level of miRNA in tumorous state, and their potential use 
as breast cancer biomarkers for early disease diagnosis (Filipowicz et al., 2008). 

3.7  Ovarian cancer 

Most (more than 90%) ovarian cancers are classified as "epithelial" and are believed to arise 
from the surface epithelium of the ovary. Upon histological evaluation, most ovarian cancers 
are found to be epithelial in nature and are collectively referred to as ovarian epithelial 
cancers (OEC). The most common OEC subtypes include, in decreasing order of frequency, 
serous adenocarcinomas, followed by endometrioid, and smaller subsets of mucinous, clear 
cell, transitional, and undifferentiated carcinomas (Pradhan et al., 2010). 

However, some evidence suggests that the fallopian tube could also be the source of some 
ovarian cancers. Since the ovaries and tubes are closely related to each other, it is thought that 
these fallopian cancer cells can mimic ovarian cancer. Other types may arise from the egg 
cells (germ cell tumor) or supporting cells. Ovarian cancers are included in the 
category gynecologic cancer (Soegard et al., 2009) 

In the United States, invasive ovarian cancer is the 5th most deadly malignancy in females, 
accounting for an estimated 13,850 deaths in 2010 (Ahmad, S. 2011). The risk of dying from 
ovarian cancer depends on staging and varies greatly. Ovarian cancer patients diagnosed at 
the localized stage exhibit a 5 year survival rate of 94%. This rate is 73% when diagnosed at 
the regional stage following local dissemination and drops to 28% when a patient is 
diagnosed at the distant stage with metastasis to organs outside the pelvis. Overall, the 
combined 5 year survival rate for all ovarian cancer patients is an unmanageable 46% 
(Abbott, KL. 2010).  

Ninety percent of human cancers, however, are epithelial in origin and display marked 
aneuploidy, multiple gene amplifications and deletions, and genetic instability, making 
resulting downstream effects difficult to study with traditional methods. Recent technologies, 
like microarray technology corroborates beneficial for such analysis (Gray et al., 2000). 
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3.8  Microarray technology 

Gene expression studies in human cancer can identify genetic markers of malignant 
transformation. Traditionally, such studies were limited to examining a few genes at a time. 
However, different methods are now available for large-scale gene expression analysis. For 
example, microarray technology is used to find out the expression of large number of genes 
simultaneously (Ponder, BA. 2001). 

Microarray methods were initially developed to study differential gene expression using 
complex populations of RNA. Refinement of these methods now permits the analysis of copy 
number imbalances and gene amplification of DNA (Jain et. al., 2003). 

3.9  Affymetrix GeneChip array 

Affymetrix, Inc. is an American company that manufactures DNA microarrays; it is based in 
United States. Affymetrix makes quartz chips for analysis of DNA microarrays called 
GeneChip arrays. Affymetrix's GeneChip arrays assist researchers in quickly scanning for the 
presence of particular genes in a biological sample. Within this area, Affymetrix is focused 
on oligonucleotide microarrays. These microarrays are used to determine which genes exist 
in a sample by detecting specific pieces of mRNA. A single chip can be used only once to 
analyze thousands of genes in one assay (Quackenbush, J. 2001). 

The GeneChip Human Genome U133 Plus 2 array is a single array representing 14,500 well-
characterized human genes that can be used to explore human biology and disease processes. 
The salient features of Human Genome U133 Plus 2 array includes coverage of well-
substantiated genes in the transcribed human genome on a single array, analytical ability of 
the expression level of 18,400 transcripts and variants, including 14,500 well-characterized 
human genes, being comprised of more than 22,000 probe sets and 500,000 distinct 
oligonucleotide features (Tusher et. al., 2001). 

3.10  Data analysis 

There is an exponential growth in the numbers of microarray-based studies identifying new 
genes or molecular pathways involved in tumor classification, cancer progression, or patient 
outcome. We are now in “postgenomic era”, during which the diagnostic, prognostic, and 
treatment response biomarker genes identified by microarray screening are about to be cross-
examined to provide personalized management of patients (Rousseau et al., 2012). 

Gene expression studies pose many challenges for data organization, storage and analysis 
(Quackenbush, J. 2001). Present technology allows for the evaluation of nearly the entire 
genome from a single biologic sample. Databases are required for efficient storage and 
retrieval of this information, but most biomedical laboratories are not set up to handle this 
type of data (Ermolaeva et al., 1998). Furthermore, there are no standards for the design and 
implementation of expression databases. These limitations presently make it difficult to 
compare datasets generated in different laboratories. To date, the computational analysis of 
gene expression data has centered on two approaches. One is unsupervised learning or 
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clustering and the other one is supervised learning. Unsupervised learning involves the 
aggregation of a diverse collection of data into clusters based on different features in a data 
set. For example, one could divide a group of people into clusters based on any combination 
of eye color, waist size or height. Similarly, one can gather data about the various expressed 
genes in a collection of tumor samples and then cluster the samples as best as possible into 
groups based on the similarity of their aggregate expression profiles.  

One could cluster genes across all samples, to identify genes that share similar patterns of 
expression in varying biologic contexts. Such approaches have the advantage of being 
unbiased and allow for the identification of structure in a complex data set without making 
any a priori assumptions. However, because many different relationships are possible in a 
complex data set, the predominant structure uncovered by clustering may not necessarily 
reflect clinical or biologic distinctions of interest (Jain et al., 2003). 

The other approach, supervised learning, on the other hand incorporates the knowledge of 
class label information to make distinctions of interest. A training data set is used to select 
those features that best make a distinction. These features are then applied to an independent 
test data set to validate the ability of selected features to make that distinction. For example, 
one could select a subset of expressed genes that are best able to distinguish between two 
cancer types and build a computational model that uses these selected genes to sort an 
independent, unlabelled collection of those tumor types into the two groups of interest. 
However, supervised learning is dependent on accurate sample labels, which can be an issue 
given the limitations of histopathologic cancer diagnosis (Tusher et al., 2001). 

Sometimes, results from unsupervised and supervised learning on a single data set can 
overlap, but this does not have to be the case. An important issue with either analytic 
approach is that of statistical significance of observed correlations. A typical microarray 
experiment yields expression data for thousands of genes from a relatively small number of 
samples, and gene-class correlations, therefore, can be revealed by chance alone. This issue 
can be addressed by collecting more samples for each class studied, but this is often difficult 
with clinical cancer samples (Tusher et al., 2001; Jain et al., 2003). 

Another approach is to perform exploratory data analysis on an initial data set and apply 
findings to an independent test set. Findings confirmed in this fashion are less likely a result 
of chance. Permutation testing, which involves randomly permuting class labels and 
determining gene-class correlations, has also been used to determine statistical significance. 
Observed gene-class correlations that are stronger than those seen in permuted data are 
considered statistically significant (Ermolaeva et al., 1998). 

Clinicians will be able to use microarrays during early clinical trials to confirm the 
mechanisms of action of drugs and to assess drug sensitivity and toxicity. Coupled with more 
conventional biochemical analysis such as Immunohistochemistry (IHC) and Enzyme Linked 
Immunosorbent Assay (ELISA), microarrays will be used for diagnostic and prognostic 
purposes. Kim et al. (2011) published an example of such a potential “bench to bedside” 
translation (Kim et al., 2011). The osteopontin gene, which encodes a calcium binding 
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glycophosphoprotein, had been identified by cDNA microarray analysis as being up-
regulated in ovarian cancer. Kim et al. (2011) showed that screening of plasma samples from 
ovarian cancer patients revealed that osteopontin protein concentrations in plasma was 
significantly higher in a majority of samples with ovarian cancer compared with normal 
controls. This study demonstrated the potential value of cDNA microarray analysis in 
identifying biomarker genes in cancer and the feasibility of subsequently testing these genes 
at the protein level by conventional biochemical assays (Quackenbush, J. 2001). The 
technology is becoming increasingly user friendly, automated and cost effective too with the 
advent of freely available potent softwares like Robina (Gyorffy et al., 2009).  
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Chapter 3 
Methodology 

 
3.1 Tools used in the analysis 

3.1.1  NCBI GEO 

GEO is an international public repository that archives and freely distributes microarray, 
next-generation sequencing, and other forms of high-throughput functional genomics data 
submitted by the research community. The GEO DataSets database stores original submitter-
supplied records (Series, Samples and Platforms) as well as curated DataSets. The GEO 
DataSets database stores original submitter-supplied records (Series, Samples and Platforms) 
as well as curated DataSets. (Barrett et al., 2009) 

3.1.2 Robina tool 

Robina represents an easy to use graphical interface for microarray (Affymetrix GeneChip, 
other single channel (e.g. Agilent) and two colour) analysis functions from R/BioConductor. 
Here, we have used Robina for three main purposes viz. quality assessment of our data, 
normalization of our microarray data and detection of differentially expressed genes. (Anders 
et al., 2010) 

3.1.3 Genespring 

Agilent's Genespring provides powerful, accessible statistical tools for intuitive data analysis 
and visualization. Designed specifically for the needs of biologists, Genespring offers an 
interactive environment that promotes investigation and enables understanding of 
Transcriptomics, Metabolomics, Proteomics and NGS data within a biological context. 
Genespring allows us to quickly and reliably identify targets of interest that are both 
statistically and biologically meaningful (Buscaglia et. al., 2011). 

3.1.4 Affymetrix 

NetAffx™ Analysis Center. The NetAffx™ Analysis Center enabled us to correlate the 
GeneChip array results with array design and annotation information (Quackenbush 2001). 

3.1.5 Comparative toxicogenomics database 

CTD promotes understanding about the effects of environmental chemicals on human health 
by integrating data from curated scientific literature to describe chemical interactions with 
genes and proteins, and associations between diseases and chemicals, and diseases and 
genes/proteins (Li et al., 2009). 
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3.1.6 DAVID database 

DAVID bioinformatics resources consist of an integrated biological knowledgebase and 
analytic tools aimed at systematically extracting biological meaning from large gene/protein 
lists. DAVID, is a high-throughput and integrated data-mining environment, to analyze gene 
lists derived from high-throughput genomic experiments. The procedure first requires 
uploading a gene list containing any number of common gene identifiers followed by analysis 
using one or more text and pathway-mining tools such as gene functional classification, 
functional annotation chart or clustering and functional annotation table. By following this 
protocol, investigators are able to gain an in-depth understanding of the biological themes in 
lists of genes that are enriched in genome-scale studies (Huang et. al., 2008). 

3.1.7 PANTHER database 

PANTHER (Protein Analysis Through Evolutionary Relationships) classification system was 
designed to classify proteins (and their genes) in order to facilitate high-throughput analysis. 
Proteins have been classified according to: Family and subfamily: families are groups of 
evolutionarily related proteins; subfamilies are related proteins that also have the same 
function; Molecular function: the function of the protein by itself or with directly interacting 
proteins at a biochemical level, e.g. a protein kinase; Biological process: the function of the 
protein in the context of a larger network of proteins that interact to accomplish a process at 
the level of the cell or organism, e.g. mitosis; Pathway: similar to biological process, but a 
pathway also explicitly specifies the relationships between the interacting molecules 
(Bateman et. al., 2002). 

3.1.8 GOBO web interface 

GOBO is a user-friendly online tool that allows rapid assessment of gene expression levels, 
identification of co-expressed genes and association with outcome for single genes, gene sets 
or gene signatures in an 1881-sample breast cancer data set. Moreover, GOBO offers the 
possibility of investigation of gene expression levels in breast cancer subgroups and breast 
cancer cell lines for gene sets, as well as creation of potential metagenes based on iterative 
correlation analysis to a prototype gene (Gyorffy et. al., 2009). The web interface of GOBO 
allows precompiled data sets to be queried by the three main applications of GOBO: Gene 
Set Analysis (GSA), Co-expressed Genes (CG), and Sample Prediction (SP). Currently, the 
precompiled data sets consist of gene expression data and annotation data for a pooled 1881-
sample breast tumor set and 51 previously reported breast cancer cell lines. The 881-sample 
breast tumor set comprises 11 public data sets analyzed using Affymetrix U133A arrays and 
processed. GSA is further divided into outcome analysis in breast tumors (GSA-Tumor) and 
expression patterns in breast cancer cell lines (GSA-Cell line). In both GSA applications the 
input is either a single gene or probe identifier, or a set of gene/probe identifiers (referred to 
as a gene set hereinafter). CG allows identification of coexpressed genes by provision of a 
single gene identifier in both the breast tumor data set and the panel of breast cancer cell 
lines. SP allows users to investigate the association of their classifiers (in certain predefined 
forms) with outcome in the 1881-sample breast cancer set (Karn et. al., 2010). 
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3.2 Gene expression data from NCBI GEO 

The raw gene expression data on Affymetrix platform for eight studies was screened and 
downloaded from the journal articles and Gene Expression Omnibus (GEO). These studies 
were selected on the basis of similar cancer grade, platform, array and large sample size. The 
measures in comparing and combining the two different cancer types expression data were 
similarity of experiment, sample source (epithelial cancer cells were considered), cancer 
grade or stages, number of sub groups in each experiment and total number of samples 
present in the group. 

3.3  Data pre-processing and normalization 

The entire original downloaded microarray data (CEL files) for all the experiments were pre-
processed using RMA (robust multi array averaging) algorithm. Firstly background 
adjustment was performed, followed by normalization of data and finally, a linear model was 
fitted to the corrected and normalized probe intensities. These were the three steps followed 
in RMA. The Robina and Genespring tools were used for data normalization, visualization 
and analysis. An experimental design was fed into Robina in order to compare the data and 
specify the direction of comparison (Figure 3.1).   

 

 

Figure 3.1: Experiment design fed in Robina 

Next, filtering of raw data was carried out by excluding the probes whose intensities were 
less than twenty percentile and probes whose coefficient of variation (CV) was less than fifty 
percent were selected for analysis. 

3.4 Identification of differentially expressed genes (DEGs) 

One way ANOVA analysis was performed for differential gene expression analysis by 
matching breast and ovarian cancer groups with normal samples. A threshold value of 0.05 
for P value and 1.5 for fold change were considered during differentially expressed genes 
analysis using Robina and Genespring tools. That is, unpaired t-test was used for this gene 
expression analysis. NetAffx analysis center of Affymetrix was used to correlate array 
information with annotation to identify ‘gene symbol’ and ‘gene title’ among others. In 
following step, the top DEGs (highly up-regulated and highly down-regulated) were screened 
on the basis of fold change and processed for the clustering and pathway analysis. Top twenty 
DEGs were considered for the following steps. 
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3.5 Identification of co-expressed and co-regulatory sets of genes 

In order to reveal the expression and co-regulation of genes, the screened top twenty genes 
from the DEGs analysis were processed for the cluster analysis. Unsupervised hierarchical 
clustering (HCL) was the preferred clustering method. Separate clustering was done for up-
regulated genes of breast and ovarian cancers and down-regulated genes of breast and ovarian 
cancers. Comparative Toxicogenomics Database (CTD) was used to generate a comparative 
data of the co-expressed genes of both these differently regulated cancer groups.  

3.6 Identification of common altered genes, pathways and functional 
annotations 

The Venn diagram analysis was performed for mining the co-expressed genes in both breast 
and ovarian cancer groups. Some unique gene expression signatures in breast and ovarian 
cancers were also identified from the Venn diagram analysis. The results from Robina and 
Genespring were assessed to identify the common co-expressed genes between breast and 
ovarian cancers. The common altered genes’ Affymetrix probe IDs were submitted to David 
database for both pathway analysis and functional classification analysis and Panther online 
analysis server for functional classification analysis. 

3.7 In silico validation of common altered genes in both breast and 
ovarian cancers 

The common altered gene symbols and IDs in both breast and ovarian cancers were mapped 
in GOBO online web server for in silico validation and prediction of screened biomarker 
genes. The common identified altered genes were given as input and the result included only 
those which were showing strong enrichment from breast cancer expression data. In silico 
validation of the altered genes was possible only for breast cancer as a validating web server 
like GOBO is still missing for ovarian tumor data set.  

The workflow shown in the next page was used in this study (Figure 3.2).  
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Figure 3.2: Workflow of study 
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Chapter 4 

Results 

 
4.1 Gene expression data from NCBI GEO 

Similarity of experiment, sample source (epithelial cancerous cells), experiment groups or 
stages, number of sub groups in each experiment and total number of samples present in the 
groups are the conditions that were checked while selecting and downloading raw data from 
NCBI GEO and finally four pairs of similar type experiment groups were identified (Table 
4.1). The normal samples for both these cancers were also downloaded along with the 
different experiments from the NCBI GEO.  

Table 4.1: Overview of datasets retrieved and used in analysis  

NCBI GEO ID Array type No of 
Samples 

Authors  Source  Data Type 

GSE52262 HG-U133_Pl us_2 27 Liu S et al., 
2013 

Epithelial 
cells 

Breast 
Cancer  

GSE52327 HG-U133_Pl us_2 16 Conley et al., 
2012 

Tissue Breast 
Cancer 

GSE31192 HG-U133_Pl us_2 33 Harvell DM, 
Kim J, O'Brien 
J, Tan AC et 
al., 2013 

Epithelial 
Cells 

Breast 
Cancer 

GSE27018 HG-U133_Plus_2 17 Luciani MG, 
Seok J, Sayeed 
A, Champion 
S et al., 2011 

Epithelial 
Cells 

Breast 
Cancer 

GSE29220 HG-U133_Plus_2 22 Lee Y, Kim 
J, Zhou 
H, Wong DT,  
2011 

Tissue Ovarian 
Cancer 

GSE18680 HG-U133_Pl us_2 12 Kulbe H Tissue Ovarian 
Cancer 

GSE15578 HG-U133_Pl us_2 17 Pejovic T,2009 Epithelial 
cells 

Ovarian 
cancer  

GSE14001  HG-U133_Pl us_2 23 Tung CS, Mok 
SC, et al 

Surface 
Epithelia 

Ovarian 
cancer 
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4.2 Robina 

4.2.1 Data preprocessing and normalization 

Box plots of the unnormalized expression values on each chip give a global overview of the 

signal intensity distributions. Preferably, comparable distribution of all the chips is desired 
even before performing normalization. Plotting smoothed histograms of the (log2) signal 
intensity of all perfect match (PM) probes is another way of visualizing the distribution of 
signal intensities (Figure 4.1, 4.2). In order to set the median standard error of each probeset 
to one, NUSE plots standardize the probe level models for each probeset across all chips. It 
visualizes the standard error distribution of each individual chip. Chips with consistently 
increased standard errors are bound to be of low quality and the experiment proceeds keeping 
those aside.  

The logarithmic expressions of each probeset on every chip are compared to the median 
expression of the probes in order to compute the Relative Logarithmic Expression (RLE). 
The median RLE value should be zero if it is to be assumed that majority of genes, under a 
particular given treatment are not differentially expressed.When there is a deviation from the 
zero mark or when it is noticed that the box plot of RLE is having an increased spread for 
individual arrays then it is concluded that those arrays are of low quality. Low quality chips 
with strong outlier behaviour are indicated by red ellipses (Figure 4.3, 4.4).  

Next is the RNA degradation plot, where the probes are ordered from 5’ to 3’ direction. In 
general, it is found that RNA degradation is more dynamic at the 5’ end so, correspondingly, 
probes closer to this end have low signal intensities. If the slopes of individual chips are 
deviating from the median by more than 10% then Robina issues a warning (Figure 4.5). 

Thus, the identified two chips of low quality showing strong outlier behaviour were removed 
from study and we continued with the other chips (Table 4.2).  

 

Table 4.2: Removed chips after quality check 

 
 

 

EXPERIMENT/PATIENT CONTROL/HEALTHY 

 GSM722641 GSM722652 
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Figure 4.1: Boxplots from Robina 
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Figure 4.2: Smoothed histograms of the signal intensities of all perfect match probes 
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Figure 4.3: Normalized un-scaled standard error plots 

 

 

Figure 4.4: Relative Logarithmic Expression 
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Figure 4.5: RNA degradation plot 

 

4.2.2 Identification of differentially expressed genes (DEGs) 

Annotation information was retrieved using NetAffx analysis centre of Affymetrix and top 
ten up-regulated and down-regulated genes for following four different sets were analyzed 
and categorized- 

Breast Cancer mapped with Breast Normal (BC_BN)  
Breast Cancer mapped with Ovarian Cancer  
Breast Cancer mapped with Ovarian Normal  
Ovarian Cancer mapped with Ovarian Normal (OC_ON)  

For further analysis we needed only mapped data of ‘Breast Cancer vs. Breast Normal’ and 
‘Ovarian Cancer vs. Ovarian Normal’, so the table of only these two comparisons were 
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considered. The 20 DEGs represented by these probes are enlisted in tables (Table 4.3, 4.4, 
4.5, 4.6). 

 

Table 4.3: Up-regulated breast cancer genes compared to breast normal genes from 
Robina 
 
logFC P.Value ID Gene Symbol Gene Title Representative Public Id
5.560972 0.000122 201291_s_at TOP2A topoisomerase (DNA) II alpha 170kDaAU159942
4.968754 0.000268 1557094_at LOC100996760 uncharacterized LOC100996760BC029890
4.880495 0.00022 218542_at CEP55 centrosomal protein 55kDaNM_018131
4.746589 2.38E-05 212022_s_at MKI67 marker of proliferation Ki-67BF001806
4.709012 2.15E-05 203418_at CCNA2 cyclin A2 NM_001237
4.463984 1.25E-05 202095_s_at BIRC5 baculoviral IAP repeat containing 5NM_001168

4.35521 3.20E-07 1555826_at BIRC5 /// EPR-1baculoviral IAP repeat containing 5 /// Homo sapiens full length insert cDNA clone ZC30F12.BQ021146
4.200034 4.47E-05 218355_at KIF4A kinesin family member 4ANM_012310
3.936971 5.49E-05 215509_s_at BUB1 BUB1 mitotic checkpoint serine/threonine kinaseAL137654
3.855997 6.06E-05 231534_at
3.783167 3.90E-05 229490_s_at
3.679598 0.000249 216228_s_at WDHD1 WD repeat and HMG-box DNA binding protein 1AK001538
3.588418 5.70E-05 205469_s_at IRF5 interferon regulatory factor 5AI028035
3.555828 0.000269 1552682_a_at
3.509179 0.000107 209709_s_at

3.2345 0.000267 231929_at IKZF2 IKAROS family zinc finger 2 (Helios)AI458439
3.186033 0.000104 229492_at
3.175463 0.000155 1555827_at CCNL1 cyclin L1 AY034790

3.14236 0.000142 222380_s_at PDCD6 programmed cell death 6AI907083
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Table 4.4: Down-regulated breast cancer genes compared to breast normal genes from 
Robina 

 

-3.74191 0.000233 221992_at NPIPB15 nuclear pore complex interacting protein family, member B15AI925734
-3.88275 7.93E-05 209242_at
-4.03309 3.79E-05 211819_s_at
-4.05855 8.74E-05 207113_s_at
-4.08195 9.21E-05 210457_x_at HMGA1 high mobility group AT-hook 1AF176039
-4.15545 0.000282 230233_at
-4.28245 8.21E-05 204213_at
-4.32458 0.000131 222900_at NRIP3 nuclear receptor interacting protein 3AJ400877

-4.4753 0.000109 227742_at
-4.50724 3.41E-06 205030_at FABP7 fatty acid binding protein 7, brainNM_001446
-4.70227 0.000114 220133_at ODAM odontogenic, ameloblast asssociatedNM_017855
-4.73123 2.09E-07 211302_s_at PDE4B phosphodiesterase 4B, cAMP-specificL20966
-4.73385 1.74E-05 202672_s_at ATF3 activating transcription factor 3NM_001674
-4.81775 0.000104 206509_at PIP prolactin-induced proteinNM_002652
-4.91922 0.000103 210413_x_at SERPINB3 /// SERPINB4serpin peptidase inhibitor, clade B (ovalbumin), member 3 /// serpin peptidase inhibitor, clade B (ovalbumin), member 4U19557
-5.01027 5.22E-05 209842_at SOX10 SRY (sex determining region Y)-box 10AI367319
-5.24087 2.82E-05 203708_at PDE4B phosphodiesterase 4B, cAMP-specificNM_002600
-5.52384 2.63E-05 203665_at HMOX1 heme oxygenase (decycling) 1NM_002133

-5.6322 7.97E-05 205916_at S100A7 S100 calcium binding protein A7NM_002963
-5.74102 2.58E-05 228245_s_at LOC100509445 /// LOC728715 /// OVOS /// OVOS2uncharacterized LOC100509445 /// ovostatin homolog 2-like /// ovostatin /// ovostatin 2AW594320
-6.13025 8.86E-05 206378_at SCGB2A2 secretoglobin, family 2A, member 2NM_002411
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Table 4.5: Up-regulated ovarian cancer genes compared to ovarian normal genes from 
Robina 

 

 

 

  

logFC P.Value ID Gene Symbol Gene Title Representative Public ID
2.38585 0.001201 207542_s_at AQP1 aquaporin 1 (Colton blood group)NM_000385

2.206819 0.00736 210619_s_at HYAL1 hyaluronoglucosaminidase 1AF173154
2.158729 0.005803 1569555_at GDA guanine deaminaseBC012859
2.082519 0.00404 229797_at MCOLN3 mucolipin 3 AI636080
2.056253 0.000553 224179_s_at MIOX myo-inositol oxygenaseAF230095
2.041843 0.008646 227394_at NCAM1 neural cell adhesion molecule 1W94001
1.970595 0.002712 220332_at CLDN16 claudin 16 NM_006580

1.91088 0.012877 234723_x_at --- --- AK024881
1.864484 0.002707 236717_at FAM179A family with sequence similarity 179, member AAI632621
1.815494 0.012086 232046_at KIAA1217 KIAA1217 AU148164
1.806412 0.001814 209755_at NMNAT2 nicotinamide nucleotide adenylyltransferase 2AF288395
1.664403 0.005341 1556029_s_at NMNAT2 nicotinamide nucleotide adenylyltransferase 2H90656
1.648862 0.00963 231929_at IKZF2 IKAROS family zinc finger 2 (Helios)AI458439
1.601447 0.007862 1552395_at
1.598335 0.010261 1555827_at CCNL1 cyclin L1 AY034790
1.552637 0.008786 204729_s_at
1.546504 0.005654 239907_at
1.530273 0.009699 205469_s_at IRF5 interferon regulatory factor 5NM_002200
1.520127 0.011722 1557669_at
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Table 4.6: Down-regulated ovarian cancer genes compared to ovarian normal genes 
from Robina 

 

 

  

 

  

-2.0919 0.0115 213899_at
-2.12668 0.001304 220327_at
-2.14827 0.00761 214954_at

-2.2234 0.001429 213362_at PTPRD protein tyrosine phosphatase, receptor type, DN73931
-2.22758 0.002741 205517_at GATA4 GATA binding protein 4AV700724
-2.23604 0.005772 202920_at ANK2 ankyrin 2, neuronalBF726212
-2.33957 0.00053 222900_at NRIP3 nuclear receptor interacting protein 3AJ400877
-2.41506 0.00437 33767_at HHLA1 HERV-H LTR-associating 1AU148706
-2.41583 0.008085 210457_x_at HMGA1 high mobility group AT-hook 1AF176039
-2.46114 0.004228 214841_at CNIH3 cornichon family AMPA receptor auxiliary protein 3AF070524
-2.51472 0.007544 242277_at
-2.56126 0.008528 234304_s_at IPO11 /// IPO11-LRRC70importin 11 /// IPO11-LRRC70 readthroughAL162083
-2.74044 0.009836 211340_s_at MCAM /// MIR6756melanoma cell adhesion molecule /// microRNA 6756M28882
-2.91192 0.001597 209087_x_at MCAM melanoma cell adhesion moleculeAF089868
-2.95982 4.18E-05 202672_s_at ATF3 activating transcription factor 3NM_001674
-3.07096 2.07E-05 229160_at MUM1L1 melanoma associated antigen (mutated) 1-like 1AI967987
-3.28701 0.003959 205347_s_at TMSB15A /// TMSB15Bthymosin beta 15a /// thymosin beta 15BNM_021992
-3.93675 0.001985 227705_at TCEAL7 transcription elongation factor A (SII)-like 7BF591534
-4.15203 0.007862 218469_at GREM1 gremlin 1, DAN family BMP antagonistNM_013372
-4.31605 0.012297 218468_s_at GREM1 gremlin 1, DAN family BMP antagonistAF154054
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4.2.3  Identification of co-expressed and co-regulatory sets of genes 

Comparative Toxicogenomics Database generated a Venn diagram of the co-expressed genes 
among the different experimental designs specifically between Breast_Cancer vs. 
Breast_Normal and Ovarian_Cancer vs. Ovarian_Normal (Figure 4.6). 
 
 
Figure 4.6: Co-expressed genes of Breast cancer and Ovarian cancer from Robina 
studuy using CTD                 
 

 
4.3  Genespring 

4.3.1 Data pre-processing and normalization 

The intensity value of each sample was normalized and the distribution of such normalized 
values was represented in box-whisker plot. The experiment was carried forward with those 
normalized set of values (Figure 4.7). 
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Figure 4.7: Normalized data using Genespring 

 

The grouping structure of the experiment is defined by the experimental parameters. The 
parameters inserted were: Breast_Cancer; Breast_Normal; Ovarian_Cancer and 
Ovarian_Normal (Figure 4.8). 

 

Figure 4.8: Parameters used in Genespring 

 

Sample quality was assessed by examining the values in PCA plot (Figure 4.9). All the 
samples complied with the quality assessment steps so none was removed from the 
experiment as two of the samples showing outlier behaviour in Robina were not included in 
Genespring at all. 
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Figure 4.9: Quality control on samples in Genespring 

 

In order to filter the probe sets, entities were filtered based on their signal intensity values 
(Figure 4.10). Probe sets which had values between 20.0 and 100 percentile were kept and the 
rest were filtered. 
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Figure 4.10: Filter probesets in Genespring 

 

4.3.2 Identification of differentially expressed genes (DEGs) 

Entities were filtered based on their corrected p-values calculated from statistical analysis 
(Figure 4.11).  Statistical significant p-value cut off 0.05 was taken in this step.  

 

 

Figure 4.11: Significance analysis in Genespring 
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A fold change threshold of two was considered in at least one condition pair to select entities 
for the next step (Figure 4.12). 

 

 

Figure 4.12: Fold change in Genespring 

 

Gene ontology was chosen next in order to unravel the characteristics of genes in three 
different categories. First, the biological process of genes was studies. Molecular function 
and cellular component of the genes were revealed too. The saved entity lists contained 
entities corresponding to the p- value cut-off of 0.05 (Figure 4.13). 

 

 

Figure 4.13: GO analysis in Genespring 
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4.3.3 Identification of co-expressed and co-regulatory sets of genes 

Two different experiments were performed, in one breast normal was taken as control and the 
rest of the groups (viz., breast cancer, ovarian cancer and ovarian normal) were compared 
with it and in another experiment ovarian normal was taken as control. The up-regulated and 
down-regulated genes were grouped based on the Fold change values. Next, Venn diagrams 
were drawn, one for up-regulated ‘Breast_Cancer mapped with Breast_Normal’ and up-
regulated ‘Ovarian_Cancer mapped with Ovarian_Normal’ (Figure 4.14, 4.15). The co-
expressed genes were obtained in tabular format (Table 4.7). Venn diagram was also drawn 
for down-regulated ‘Breast_Cancer mapped with Breast_Normal’ and down-regulated 
‘Ovarian_Cancer mapped with Ovarian_Normal’ (Figure 4.16, 4.17). Co-expressed genes 
were tabulated (Table 4.8). Fold change cut off in case of Genespring was 1.0. 

    

Figure 4.14: Venn diagram parameters for up-regulated genes in Genespring 
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Figure 4.15: Venn diagram output for up-regulated genes in Genespring 

 

Table 4.7: Co-expressed up-regulated genes between breast cancer and ovarian Cancer 
from Genespring 

 

Probe Set ID Log FC ([Breast_Cancer] vs [Breast_Normal]) ( UP - FC ([Breast_Cancer] vs [Breast_Normal]) )Log FC ([Ovarian_Cancer] vs [Ovarian_Normal]) ( UP - FC ([Ovarian_Cancer] vs [Ovarian_Normal]) (Translated from Common_Altered_Genes2) )Gene Symbol Entrez GeneGene Ontology Biological Process
205469_s_at 1.0073632 1.2465585 IRF5 3663 0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // inferred from electronic annotation///0019221 // cytokine-mediated signaling pathway // traceable author statement///0032494 // response to peptidoglycan // inferred from direct assay///0032495 // response to muramyl dipeptide // inferred from direct assay///0032727 // positive regulation of interferon-alpha production // inferred by curator///0032728 // positive regulation of interferon-beta production // inferred by curator///0032735 // positive regulation of interleukin-12 production // inferred by curator///0043065 // positive regulation of apoptotic process // inferred from mutant phenotype///0045087 // innate immune response // inferred from electronic annotation///0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay///0051607 // defense response to virus // inferred from electronic annotation///0060333 // inter
209173_at 1.5897613 1.3001348 AGR2 10551 0070254 // mucus secretion // inferred from sequence or structural similarity
209446_s_at 1.532597 1.2938672
60815_at 1.7942345 1.1246194 POLR2J4 84820
231211_s_at 2.0449913 1.0823724 YIF1B 90522
231929_at 1.087458 1.0462956 IKZF2 22807 0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // inferred from electronic annotation///0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from electronic annotation
1555827_at 1.1349396 1.2977515 CCNL1 57018 0000079 // regulation of cyclin-dependent protein serine/threonine kinase activity // inferred from electronic annotation///0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // inferred from electronic annotation///0006396 // RNA processing // inferred from electronic annotation
1558154_at 1.5593636 1.2733743
1555827_at 1.1349396 1.2977515 CCNL1 57018 0000079 // regulation of cyclin-dependent protein serine/threonine kinase activity // inferred from electronic annotation///0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // inferred from electronic annotation///0006396 // RNA processing // inferred from electronic annotation
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Figure 4.16: Venn diagram parameters for down-regulated genes in Genespring 

 

        

Figure 4.17: Venn diagram output for down-regulated genes in Genespring 
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Table 4.8: Co-expressed down-regulated genes between breast cancer and ovarian 
cancer from Genespring 

  

Probe Set IDLog FC ([Breast_Cancer] vs [Breast_Normal]) ( DOWN - FC ([Breast_Cancer] vs [Breast_Normal]) )Log FC ([Ovarian_Cancer] vs [Ovarian_Normal]) ( DOWN - FC ([Ovarian_Cancer] vs [Ovarian_Normal]) (Translated from Common_Altered_Genes2) )Gene SymbolEntrez Gene Gene Ontology Biological Process
200906_s_at-1.14393 -1.38062 PALLD 23022 0007010 // cytoskeleton organization // non-traceable author statement
202672_s_at-1.55899 -1.84247 ATF3 467 0006094 // gluconeogenesis // inferred from electronic annotation///0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // inferred from electronic annotation///0006950 // response to stress // inferred from electronic annotation///0006987 // activation of signaling protein activity involved in unfolded protein response // traceable author statement///0008284 // positive regulation of cell proliferation // inferred from electronic annotation///0030968 // endoplasmic reticulum unfolded protein response // traceable author statement///0035914 // skeletal muscle cell differentiation // inferred from electronic annotation///0044267 // cellular protein metabolic process // traceable author statement///0045892 // negative regulation of transcription, DNA-dependent // inferred from electronic annotation
204400_at -3.49492 -1.9062 EFS 10278 0007155 // cell adhesion // inferred from electronic annotation///0035556 // intracellular signal transduction // traceable author statement
204560_at -1.17778 -2.0133 FKBP5 2289 0000413 // protein peptidyl-prolyl isomerization // not recorded///0000413 // protein peptidyl-prolyl isomerization // inferred from direct assay///0006457 // protein folding // traceable author statement///0018208 // peptidyl-proline modification // not recorded///0061077 // chaperone-mediated protein folding // inferred from direct assay
205379_at -2.69232 -1.68385 CBR3 874 0008152 // metabolic process // inferred from electronic annotation///0042376 // phylloquinone catabolic process // inferred from electronic annotation///0055114 // oxidation-reduction process // inferred from electronic annotation
209230_s_at-1.74556 -1.23956 NUPR1 26471 0002526 // acute inflammatory response // inferred from electronic annotation///0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // inferred from electronic annotation///0006461 // protein complex assembly // inferred from electronic annotation///0006473 // protein acetylation // inferred from electronic annotation///0006915 // apoptotic process // non-traceable author statement///0006917 // induction of apoptosis // non-traceable author statement///0008584 // male gonad development // inferred from electronic annotation///0009636 // response to toxic substance // inferred from electronic annotation///0016049 // cell growth // inferred from direct assay///0031401 // positive regulation of protein modification process // inferred from electronic annotation///0035914 // skeletal muscle cell differentiation // inferred from electronic annotation///0042771 // intrinsic apoptotic signaling pathway in response to DNA damage by p53
209615_s_at-1.39969 -1.34978 PAK1 5058 0000165 // MAPK cascade // inferred from direct assay///0001666 // response to hypoxia // inferred from electronic annotation///0006461 // protein complex assembly // inferred from electronic annotation///0006468 // protein phosphorylation // inferred from direct assay///0006887 // exocytosis // inferred from electronic annotation///0006915 // apoptotic process // inferred from electronic annotation///0007411 // axon guidance // traceable author statement///0007528 // neuromuscular junction development // inferred from electronic annotation///0008152 // metabolic process // inferred from electronic annotation///0008154 // actin polymerization or depolymerization // inferred from electronic annotation///0010033 // response to organic substance // inferred from electronic annotation///0016310 // phosphorylation // inferred from electronic annotation///0016358 // dendrite development // inferred from electronic annotation///0031295 // T cell costimulation // traceable author statement///0031532 // actin cytoskel
210180_s_at-1.35846 -1.50405 TRA2B 6434 0000302 // response to reactive oxygen species // inferred from electronic annotation///0000375 // RNA splicing, via transesterification reactions // traceable author statement///0000381 // regulation of alternative mRNA splicing, via spliceosome // inferred from direct assay///0000398 // mRNA splicing, via spliceosome // inferred from direct assay///0006397 // mRNA processing // inferred from electronic annotation///0008380 // RNA splicing // inferred from electronic annotation///0048026 // positive regulation of mRNA splicing, via spliceosome // inferred from direct assay
210457_x_at-1.07408 -1.25531 HMGA1 3159 0006268 // DNA unwinding involved in replication // non-traceable author statement///0006284 // base-excision repair // inferred from direct assay///0006337 // nucleosome disassembly // traceable author statement///0006351 // transcription, DNA-dependent // inferred from electronic annotation///0006355 // regulation of transcription, DNA-dependent // traceable author statement///0006461 // protein complex assembly // traceable author statement///0008285 // negative regulation of cell proliferation // inferred from mutant phenotype///0009615 // response to virus // inferred from expression pattern///0016032 // viral reproduction // traceable author statement///0019048 // virus-host interaction // inferred from electronic annotation///0022415 // viral reproductive process // traceable author statement///0031936 // negative regulation of chromatin silencing // traceable author statement///0035986 // senescence-associated heterochromatin focus assembly // inferred from direct assay///0045892 // negative regulatio
210458_s_at-1.22354 -1.3808 TANK 10010 0007165 // signal transduction // traceable author statement///0007249 // I-kappaB kinase/NF-kappaB cascade // inferred from electronic annotation///0045087 // innate immune response // traceable author statement
219557_s_at-1.01636 -1.92921 NRIP3 56675 0006508 // proteolysis // inferred from electronic annotation
222161_at -2.11741 -1.17873 NAALAD2 10003 0006508 // proteolysis // non-traceable author statement///0008152 // metabolic process // inferred from electronic annotation///0042135 // neurotransmitter catabolic process // inferred from electronic annotation
222528_s_at-1.72506 -1.30228 SLC25A37 51312 0006810 // transport // inferred from electronic annotation///0006811 // ion transport // inferred from electronic annotation///0034755 // iron ion transmembrane transport // inferred from electronic annotation///0044281 // small molecule metabolic process // traceable author statement///0048250 // mitochondrial iron ion transport // inferred from electronic annotation///0055072 // iron ion homeostasis // inferred from electronic annotation
222900_at -1.31917 -1.49579 NRIP3 56675 0006508 // proteolysis // inferred from electronic annotation
227554_at -1.34788 -2.40222 MAGI2-AS3 100505881
228527_s_at-1.92205 -1.23765 SLC25A37 51312 0044281 // small molecule metabolic process // traceable author statement///0048250 // mitochondrial iron ion transport // inferred from electronic annotation///0055072 // iron ion homeostasis // inferred from electronic annotation
230790_x_at-1.37745 -1.04585
231274_s_at-1.45256 -1.28668
231411_at -1.2446 -1.40736 LHFP 10186
235267_at -1.42096 -1.38113 MAGI2-AS3 100505881
236600_at -1.25716 -1.05529 SPG20 23111 0000910 // cytokinesis // inferred from electronic annotation///0008219 // cell death // inferred from electronic annotation///0009838 // abscission // inferred from mutant phenotype///0030514 // negative regulation of BMP signaling pathway // inferred from electronic annotation///0034389 // lipid particle organization // inferred from electronic annotation///0048698 // negative regulation of collateral sprouting in absence of injury // inferred from electronic annotation///0050905 // neuromuscular process // inferred from electronic annotation///0051301 // cell division // inferred from mutant phenotype///0051881 // regulation of mitochondrial membrane potential // inferred from mutant phenotype///0060612 // adipose tissue development // inferred from electronic annotation 

 

4.4 Identification of common altered genes, functional annotation and 
pathways 

After finding the co-expressed and co-regulatory sets of genes using Robina and Genespring, 
both the results were compared to find the common altered genes in both the analysis (Table 
4.9). 

In the process, David database and Panther Database were employed to find the functional 
classification of the genes individually for both up-regulated and down-regulated genes. The 
‘binding’ functional group was studied to identify the common-altered genes (Figure 4.18, 
4.19, 4.20, 4.21). 

Pathway enrichment analysis was studied using David database. For the 5 up-regulated gene 
probes of potential breast and ovarian cancer biomarkers that were deduced using 
Genespring, one KEGG pathway was found in enrichment analysis:“Toll-like receptor 
ovarian cancer biomarkers, that were deduced using Genespring, another KEGG pathway 
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was found in enrichment analysis: “Mitogen-activated protein kinase pathway” (Table 4.10). 
The number of genes involved in each was 3 (Table 4.11). 
 

 

Figure 4.18: Functional classification of up-regulated genes viewed in pie-chart in 
Panther to identify common altered genes 

 

 

 

   

Figure 4.19: Panther up-regulated gene list of “binding” functional annotation 
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Figure 4.20: Functional classification of down-regulated genes viewed in pie-chart in 
Panther to identify common altered genes 

 

 

 

 

Figure 4.21: Panther down-regulated gene list of “binding” functional annotation 
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Table 4.9 Pathway analysis of the up-regulated genes between breast cancer and 
ovarian cancer using David 

 

  
# Gene                        Species          Kappa 
 
1 hypothetical LOC494760  Xenopus laevis    1.0 
2 interferon regulatory factor 5 Danio rerio    0.9411729182173478 
3 interferon regulatory factor 5 Gallus gallus    0.9142803715820024 
4 Interferon regulatory factor 5 Salmo salar    0.9090856062340688 
5 interferon regulatory factor 5 Bos taurus    0.849989412715865 
6 interferon regulatory factor 5 Mus musculus    0.8292560016214627 
7 interferon regulatory factor 5 Homo sapiens    0.8095098415165741 
8 interferon regulatory factor 5 Xenopus silurana   0.7142726196392726 
9 cyclin L1                Danio rerio    0.2631081267438044 
10 IKAROS family zinc finger 2 Mus musculus    0.2534496151415429 
11 IKAROS family zinc finger 2 Homo sapiens    0.2534496151415429 
12 cyclin L1                Homo sapiens    0.21733017091838225 
13 cyclin L1                Rattus norvegicus   0.21270362152867422 
14 cyclin L1                Mus musculus    0.20826983575362146 
15 IKAROS family zinc finger 2   Rattus norvegicus  0.18598578159603424 
16 IKAROS family zinc finger 2 Gallus gallus    0.15377515336074796 
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Table 4.10: Pathway analysis of the down-regulated genes between breast cancer and 
ovarian cancer using David 

 

 

 

 

 

 

 

  

 

 

A complete comparison of the fold-change values of the co-expressed genes using both the 
tools has been presented in a tabular format. (1.12) 

  

 

 

 

Table 4.11: Pathway analysis comparison of the DEGs 

  

 

A complete comparison of the fold-change values of the co-expressed genes using both the 
tools has been presented in a tabular format (Table 4.12). 
 

Regulation Category Terms  Genes Count Percentage 

UP-Regulated KEGG_Pathway Toll-like 
Receptor 
Pathway 

IRF5, 
CCNL1,  
IKZF2 

3 18.5 

Down- 
Regulated 

KEGG_Pathway MAPK Pathway NRIP3, 
HMGA1, 
ATF3 

3 10 

# Gene                        Species             Kappa 
 
1 p21 protein (Cdc42/Rac) 
        -activated kinase 1         Homo sapiens      1.0 
2 p21 protein (Cdc42/Rac) 
        -activated kinase 1         Rattus norvegicus   0.5302384392329444 
3      nuclear Receptor  

       Interacting protein 3       Homo sapiens     0.44225350432604216 

4 p21 protein (Cdc42/Rac) 
        -activated kinase 1         Bos taurus      0.39978509381613203 
5   activating transcription  

       factor 3                    Homo sapiens      0.38399026838766287 

6 p21/Cdc42/Rac1-activated 
        kinase 1                 Danio rerio      0.38399026838766287 
7      activating transcription  
        factor 3                       Xenopus laevis      0.38399026838766287 
8      high  

       Mobility group AT-hook 1    Homo sapiens      0.38399026838766287 
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Table 4.12 Comparison of Fold-Change Values of the co-expressed genes using both the 
tools 

 

 

 

4.5 Online validation of common altered genes in both breast and 
ovarian cancers 

GOBO online tool was used to study the association with outcome for gene sets in a sample 
breast cancer datasets (Figure 4.22). The six probes, deduced from the above experiments, 

ID Gene 
Symbol 

Gene 
Title 

Log Fc Value in Robina Regulation in 
Robina 

Log Fc Value in 
Genespring 

Regulation in 
Genespring 

BC_BN OC_ON BC_BN OC_ON 

1555827_
at CCNL1 cyclin L1 

1.75463 
 

1.598335 
 

UP UP 1.13
4939
6 
 

1.29775
15 
 

UP UP 

231929_a
t IKZF2 

IKAROS 
family 
zinc 
finger 2 
(Helios) 

3.2345 
 
 

1.64882 
 

UP UP 1.08
7458 
 

1.04629
56 
 
 

UP UP 

205469_s
_at IRF5 

interfer
on 
regulato
ry factor 
5 

3.588418 
 

1.530273 
 

UP UP 1.00
7363
2 
 

1.24655
85 
 

UP UP 

202672_s
_at ATF3 

activatin
g 
transcri
ption 
factor 3 

-4.73385 
 

-2.95982 
 

DOWN DOWN -
1.55
899 
 

-
1.84247 
 

DOWN DOWN 

222900_a
t NRIP3 

nuclear 
receptor 
interacti
ng 
protein 
3 

-4.32458 
 

-2.33957 
 

DOWN DOWN -
1.31
917 
 

-
1.49579 
 

DOWN DOWN 

210457_x
_at HMGA1 

high 
mobility 
group 
AT-hook 
1 

-4.08195 
 

-2.41583 
 

DOWN DOWN -
1.07
408 
 

-
1.25531 
 

DOWN DOWN 
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matched with the breast cancer datasets present in GOBO server. 

 

Figure 4.22: In silico validation result from GOBO web server for breast cancer altered 
genes 
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Chapter 5 
Conclusion 

 
The experiment started with 167 samples of breast and ovarian cancer malignancies and after 
consequent literature survey, eighteen high grade samples of breast and ovarian cancers, 
normal breast and ovarian samples were put for a thorough study in Robina and Genespring.  

Stringent quality checks were applied, removing probes whose intensities were less than 
twenty percentile and accepting probes whose coefficient of variation (CV) was less than 
fifty percent. 

The DEGs analysis was carried out using Robina and Genespring by applying strict threshold 
values of 0.05 for P value and 1.5 for fold change. The highly expressed DEGs list showed a 
definite pattern of gene expression wherein the roles of few genes were pre-established in 
breast and ovarian cancers, few novel genes not reported in the pertaining literature, were 
found to be present and few common altered genes in breast and ovarian malignancies were 
reported. The top DEGs list contained TOP2A, CCNA2, BIRC5, BUB1, and KIF4A, which 
were already known to play roles in breast cancer malignancy. Further, the list contained 
FAM179A, CBX5, HHLA1, and GATA4, which were known to be involved with ovarian 
cancer. 

IKZF2, NRIP3, which were never reported to be associated with breast cancer were found in 
the list of common altered genes. IKZF2, CCNL1, NRIP3 of the list were never reported to be 
associated with ovarian cancer previously. These can be potential biomarkers for breast and 
ovarian cancers respectively, which can only be confirmed after further stringent 
benchmarking.  

The genes that were found to be up-regulated in both breast and ovarian cancers included 
IKZF2, CCNL1 and IRF3, and the down-regulated ones included NRIP3, HMGA1 and ATF3. 
These are the six common altered genes in breast and ovarian cancers that were identified by 
meta-analysis of the raw data of both these cancers. 

Nonetheless identifying biomarkers among these requires serious benchmarking and wet lab 
studies.   
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Chapter 6 
Discussion and Future Perspective 

 
The CEL files across eight different laboratories were associated and the same normalization 
method was applied in order to pre-process the data. The reason for assembling data from 
different laboratories was to increase the number of overall samples for consideration.  

Data accuracy increased with this approach of integrative analysis and one of the benefits 
included more easy detection of any significant differential expression. It was very likely that 
a particular gene may not have been showing noteworthy differential expression in a 
particular laboratory’s data but the same gene could have been showing differential 
expression in another laboratory. The present work supports this standpoint.   

Among the common altered genes between breast and ovarian cancers, studies already 
showed the expression pattern of CCNL1, IRF5, HMGA1 and ATF3 to be linked to breast 
cancer and IRF5, HMGA1 and ATF3 to be associated with ovarian cancer. The gene, which 
was commonly up-regulated in both breast and ovarian cancers and was reported separately 
to be associated with both of these cancers, was IRF5. Equivalently, in this study, the 
combined data revealed the up-regulation of IRF5 in both the cancers. In the same way, 
commonly down-regulated genes included HMGA1 and ATF3 and were individually 
reported. Correspondingly, in this study, the combination of the data showed the down-
regulation of these two genes in both of these cancers. 

Further, a couple of reported common altered genes in breast and ovarian cancers, IKZF2 and 
NRIP3, were never reported previously to have any sort of link with either breast cancer or 
ovarian cancer. The present study confirmed the role of these novel genes as potential 
biomarkers in both these cancers. 

Literature survey showed a fine balance between Cyclin L1 (CCNL1) and tissue inhibitor of 
matrix metalloproteinase-1 (TIMP1) contributing to the development of breast cancer cells. In 
vitro experiments showed a stimulatory effect of TIMP1 and CCNL1 on growth of MDA-
MB-231 cells, a particular breast-cancer cell line. Co-expression or co-repression of these 
two genes did not affect cell growth. But then again, over-expression of CCNL1 and TIMP1 
individually induced overexpression of each other. These data demonstrated a fine balance 
between CCNL1 and TIMP1, which might contribute to breast cancer development. (Peng et 
al., 2011). So it is very likely that up-regulation of CCNL1 has a profound role in breast 
cancer development. 

IRF5 has established role in regulation of cell motility, invasive action and in maintenance of 
equilibrium inside cell. Pimenta et al. (2015) hypothesized that IRF5 may not be transcription 
driven as its expression is predominantly found in mammary epithelial cells of human 
(Pimenta et al., 2015). 

Pegoraro et al. (2013), reported that the HMGA1 protein has a role in breast cancer cells but 
the exact mechanism of action was not explained (Pegoraro et al., 2013). 
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ATF3 gene is shown to be induced by many signals which include some of those involved in 
cancerous cells and further, it codes a member transcription factor linked to mammalian 
action (Norman EB 2013). There are evidences suggesting that ATF3 is involved in apoptosis 
of cells thus, ceasing any tumor formation. Particularly, it is an established fact that tumor 
suppression is not possible in colorectal cancer on removal of ATF3 gene (Huang et al., 
2008). Further, the metastasis of ovarian cancer cells increased and cell death was possible in 
ovarian cancer cells due to ATF3 up-regulation (Huang et al., 2008). 

In the process, David database and Panther database were used to find the functional 
classification of the genes individually for up-regulated and down-regulated genes. It was 
noted that all the common altered genes between breast and ovarian cancer that were deduced 
by comparing the result of Robina and Genespring viz., IKZF2, CCNL1, IRF5, NRIP3, 
HMGA1 and ATF3 belonged to the same protein class, namely “binding class”.      

The pathway analysis of the 5 probes of up-regulated genes, which were deduced from 
Genespring, in David found one significant pathway: “toll-like receptor signalling pathway”. 
A significant number of studies have reported the function of TLRs in invasive action and 
metastasis of cancerous growths. Further, TLRs put up a resistance to apoptosis, whose 
mechanism is not completely defined. However, few studies suggested the involvement of 
TLRs in tumorogenesis. Pro-inflammatory factors are produced on TLR signalling activation 
which causes “immune evasion” through “cytotoxic lymphocyte attack” (Huang et al., 2008). 

So, the association of the up-regulated differentially expressed genes of breast and ovarian 
cancers with TLR signalling pathway further supports the up-regulatory activity of these 
genes. 

The pathway analysis of the 15 probes of down-regulated genes, which were deduced from 
Genespring, in David found one significant pathway: “Mitogen-activated protein kinase 
pathway”. MAPKs have dual activity in cancerous cells and it is difficult to reach at a 
consensus about the role of MAPKs in tumor cells. But the strength of activation of this 
pathway decides whether it is harmful for the cells or not. Nonetheless, the pathway is very 
much involved with operational activity of tumor cells (Dhillon et al., 2007).  

The common identified altered genes, viz., IKZF2, CCNL1, IRF5, NRIP3, HMGA1, and 
ATF3, were given as input in GOBO and the output included all six, which showed strong 
enrichment from breast cancer expression data. This was an in silico validation step. Further 
benchmarking and wet-lab validation will confirm the function of these genes as biomarkers. 

The application of microarray technology to breast and ovarian cancers has provided a 
molecular basis for grade of tumors. DEGs identified pathways have provided new realm to 
the potential treatment of these cancers. This knowledge will help in precise diagnosis and 
judicious treatment for breast and ovarian cancers. 

The accessibility of publicly available microarray databases has made the whole process of 
microarray data analysis cost effective and has expunged the practical limitations associated 
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with the undersized biological samples. The best part is increase in the diversity of data due 
to consideration of samples from a range of research groups (Farley et al., 2008). 

Instead of combining data from different platforms belonging to the same research group, 
combining data on same microarray platform from a variety of research groups decrease the 
chance of any technical glitch (Dennis et al., 2003). In this work, the datasets from 
Affymetrix platform for breast and ovarian cancers were chosen for meta-analysis and 
integrative analysis by combining both cancer data sets including normal, high and low grade 
ovarian cancer profiles. Further, the use of different softwares for the microarray data 
analysis increased the degree of data accuracy and the genes were predicted more securely. 
Integrative microarray analysis is a competent way of finding biomarker genes and in future, 
such data integration studies implicates great potential for cancer treatment. 

Comprehensively, usage of integrative analysis for both breast and ovarian cancers evaluated 
the global gene expression data. The combined analysis also describes those genes which 
shares common expression pattern in breast and ovarian cancers including different subtypes 
of cancer group. The identified common altered genes in both breast and ovarian cancer can 
be taken as potential and prognostic biomarker genes for the early detection of cancer after 
further standardization and subsequent wet-lab validation.  
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Appendices 

#1   TOP 100 DEGs when Breast Cancer data is compared to Breast Normal

 

logFC P.Value ID Gene Symbol Gene Title Representative Public Id
5.560972 0.000122 201291_s_at TOP2A topoisomerase (DNA) II alpha 170kDaAU159942
4.968754 0.000268 1557094_at LOC100996760 uncharacterized LOC100996760BC029890
4.880495 0.00022 218542_at CEP55 centrosomal protein 55kDaNM_018131
4.746589 2.38E-05 212022_s_at MKI67 marker of proliferation Ki-67BF001806
4.709012 2.15E-05 203418_at CCNA2 cyclin A2 NM_001237
4.463984 1.25E-05 202095_s_at BIRC5 baculoviral IAP repeat containing 5NM_001168

4.35521 3.20E-07 1555826_at BIRC5 /// EPR-1baculoviral IAP repeat containing 5 /// Homo sapiens full length insert cDNA clone ZC30F12.BQ021146
4.200034 4.47E-05 218355_at KIF4A kinesin family member 4ANM_012310
3.936971 5.49E-05 215509_s_at BUB1 BUB1 mitotic checkpoint serine/threonine kinaseAL137654
3.855997 6.06E-05 231534_at
3.783167 3.90E-05 229490_s_at
3.679598 0.000249 216228_s_at WDHD1 WD repeat and HMG-box DNA binding protein 1AK001538
3.588418 5.70E-05 205469_s_at IRF5 interferon regulatory factor 5AI028035
3.555828 0.000269 1552682_a_at
3.509179 0.000107 209709_s_at

3.2345 0.000267 231929_at IKZF2 IKAROS family zinc finger 2 (Helios)AI458439
3.186033 0.000104 229492_at
3.175463 0.000155 1555827_at CCNL1 cyclin L1 AY034790

3.14236 0.000142 222380_s_at PDCD6 programmed cell death 6AI907083
3.102367 0.000116 1555310_a_at
3.047999 0.000105 232238_at
3.025457 0.00027 213873_at
3.009803 0.00026 219691_at
2.963853 3.07E-05 1557029_at
2.905201 0.000154 219461_at
2.688539 0.000151 236267_at
2.684126 2.26E-05 215507_x_at --- --- AL049985
2.677544 1.00E-04 227316_at --- --- AF116715
2.645413 1.43E-05 206558_at
2.595265 6.35E-05 225079_at

2.59231 7.06E-06 205046_at CENPE centromere protein E, 312kDaNM_001813
2.547156 0.000205 235846_at

2.52455 8.03E-05 232740_at MCM3AP-AS1 MCM3AP antisense RNA 1BC002458
2.492939 7.97E-05 1559174_at
2.470123 0.000181 1557129_a_at FAM111B family with sequence similarity 111, member BAA960844
2.415391 0.000143 220885_s_at

2.39817 3.83E-05 1552680_a_at CASC5 cancer susceptibility candidate 5NM_020380
2.29475 4.15E-05 241713_s_at

2.200942 0.000181 229538_s_at IQGAP3 IQ motif containing GTPase activating protein 3AW271106
2.110325 6.60E-05 239265_at
2.058794 0.000206 214474_at
-1.57241 0.00011 230579_at
-1.72197 0.00023 230937_at
-1.89782 0.000159 215156_at
-1.94501 3.51E-05 205013_s_at
-1.95036 0.000218 233469_at

-2.0089 0.000175 240383_at
-2.02358 0.000129 220373_at
-2.03682 7.43E-05 237718_at
-2.04511 0.000181 1558711_at
-2.09833 0.000183 226824_at
-2.11512 0.000275 244544_at
-2.11714 0.000275 229438_at
-2.15834 0.000202 1562657_a_at
-2.18983 0.000163 242904_x_at RP11-489E7.4 --- AI351653

-2.295 0.000181 235557_at
-2.40619 0.00016 242773_at
-2.42052 0.00027 219480_at
-2.52107 4.32E-05 228557_at
-2.53195 0.000218 233520_s_at
-2.64968 0.00014 1564027_a_at
-2.68074 9.51E-05 1558586_at
-2.72096 5.11E-06 231013_at
-2.75201 3.94E-05 239845_at
-2.83349 4.49E-05 235272_at
-2.87925 1.98E-05 230477_at

-2.8997 0.00014 234052_at
-3.01717 6.72E-05 228888_at
-3.05685 1.21E-05 230068_s_at
-3.11845 3.88E-05 220528_at
-3.19141 8.54E-05 211105_s_at
-3.24741 5.91E-06 205040_at
-3.35109 9.80E-05 230318_at
-3.37232 0.000259 1553785_at
-3.44992 9.55E-05 206628_at
-3.48877 4.18E-06 209843_s_at
-3.58641 7.36E-05 242913_at
-3.69515 0.000216 209720_s_at
-3.71826 0.000121 222513_s_at
-3.74191 0.000233 221992_at NPIPB15 nuclear pore complex interacting protein family, member B15AI925734
-3.88275 7.93E-05 209242_at
-4.03309 3.79E-05 211819_s_at
-4.05855 8.74E-05 207113_s_at
-4.08195 9.21E-05 210457_x_at HMGA1 high mobility group AT-hook 1AF176039
-4.15545 0.000282 230233_at
-4.28245 8.21E-05 204213_at
-4.32458 0.000131 222900_at NRIP3 nuclear receptor interacting protein 3AJ400877

-4.4753 0.000109 227742_at
-4.50724 3.41E-06 205030_at FABP7 fatty acid binding protein 7, brainNM_001446
-4.70227 0.000114 220133_at ODAM odontogenic, ameloblast asssociatedNM_017855
-4.73123 2.09E-07 211302_s_at PDE4B phosphodiesterase 4B, cAMP-specificL20966
-4.73385 1.74E-05 202672_s_at ATF3 activating transcription factor 3NM_001674
-4.81775 0.000104 206509_at PIP prolactin-induced proteinNM_002652
-4.91922 0.000103 210413_x_at SERPINB3 /// SERPINB4serpin peptidase inhibitor, clade B (ovalbumin), member 3 /// serpin peptidase inhibitor, clade B (ovalbumin), member 4U19557
-5.01027 5.22E-05 209842_at SOX10 SRY (sex determining region Y)-box 10AI367319
-5.24087 2.82E-05 203708_at PDE4B phosphodiesterase 4B, cAMP-specificNM_002600
-5.52384 2.63E-05 203665_at HMOX1 heme oxygenase (decycling) 1NM_002133

-5.6322 7.97E-05 205916_at S100A7 S100 calcium binding protein A7NM_002963
-5.74102 2.58E-05 228245_s_at LOC100509445 /// LOC728715 /// OVOS /// OVOS2uncharacterized LOC100509445 /// ovostatin homolog 2-like /// ovostatin /// ovostatin 2AW594320
-6.13025 8.86E-05 206378_at SCGB2A2 secretoglobin, family 2A, member 2NM_002411
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#2   TOP 100 DEGs when Ovarian Cancer data is compared to Ovarian Normal 

 

logFC P.Value ID Gene Symbol Gene Title Representative Public ID
2.38585 0.001201 207542_s_at AQP1 aquaporin 1 (Colton blood group)NM_000385

2.206819 0.00736 210619_s_at HYAL1 hyaluronoglucosaminidase 1AF173154
2.158729 0.005803 1569555_at GDA guanine deaminaseBC012859
2.082519 0.00404 229797_at MCOLN3 mucolipin 3 AI636080
2.056253 0.000553 224179_s_at MIOX myo-inositol oxygenaseAF230095
2.041843 0.008646 227394_at NCAM1 neural cell adhesion molecule 1W94001
1.970595 0.002712 220332_at CLDN16 claudin 16 NM_006580
1.91088 0.012877 234723_x_at --- --- AK024881

1.864484 0.002707 236717_at FAM179A family with sequence similarity 179, member AAI632621
1.815494 0.012086 232046_at KIAA1217 KIAA1217 AU148164
1.806412 0.001814 209755_at NMNAT2 nicotinamide nucleotide adenylyltransferase 2AF288395
1.664403 0.005341 1556029_s_at NMNAT2 nicotinamide nucleotide adenylyltransferase 2H90656
1.648862 0.00963 231929_at IKZF2 IKAROS family zinc finger 2 (Helios)AI458439
1.601447 0.007862 1552395_at
1.598335 0.010261 1555827_at CCNL1 cyclin L1 AY034790
1.552637 0.008786 204729_s_at
1.546504 0.005654 239907_at
1.530273 0.009699 205469_s_at IRF5 interferon regulatory factor 5NM_002200
1.520127 0.011722 1557669_at
1.500774 0.005174 1552719_at
1.499399 0.006829 214421_x_at
1.48463 0.001563 1553264_a_at

1.477921 0.0105 215515_at
1.429067 0.007577 222380_s_at PDCD6 programmed cell death 6AI907083
1.426704 0.005815 240555_at
1.396656 0.00368 208213_s_at
1.362415 0.004724 207352_s_at
1.340936 0.00765 233333_x_at
1.322993 0.00533 1561910_at
1.298273 0.005787 216025_x_at
1.263328 0.01065 233953_at GUCA1C guanylate cyclase activator 1CAF110003
1.239832 0.005185 205163_at
1.223125 0.007721 229645_at
1.200062 0.004683 216661_x_at
1.180744 0.011497 238222_at GKN2 gastrokine 2 AI821357
1.155955 0.010044 1558855_at
1.147164 0.005664 221374_at
1.12787 0.01042 237253_at IGSF11-AS1 IGSF11 antisense RNA 1AA789243
1.11778 0.009229 1552568_at

1.083468 0.0118 211328_x_at
1.072177 0.009118 226402_at
1.06603 0.010565 214485_at

1.060391 0.006872 236987_at
-1.02105 0.010882 240849_at
-1.16459 0.008534 229749_at
-1.24356 0.011445 224169_at
-1.25998 0.012054 238818_at
-1.36327 0.004911 204412_s_at
-1.38334 0.011245 243110_x_at
-1.38863 0.012519 221992_at NPIPB15 nuclear pore complex interacting protein family, member B15AI925734
-1.40839 0.006424 238865_at
-1.46476 0.007626 241360_at
-1.48146 0.012855 214913_at
-1.49064 0.008012 209883_at
-1.5225 0.003427 239410_at

-1.53174 0.00987 227554_at MAGI2-AS3 MAGI2 antisense RNA 3AU145805
-1.56107 0.012682 218297_at
-1.57804 0.000505 227971_at
-1.59439 0.001262 239376_at
-1.61027 0.005127 237034_at
-1.63933 0.002146 226085_at CBX5 chromobox homolog 5AA181060
-1.65745 0.01018 238418_at
-1.69449 0.011726 228333_at
-1.70573 0.002443 217525_at
-1.70952 0.008428 219949_at
-1.72077 0.010086 227444_at ARMCX4 armadillo repeat containing, X-linked 4AW519141
-1.7275 0.006174 230121_at

-1.73039 0.012636 204940_at
-1.7389 0.005495 220171_x_at

-1.79774 0.001455 224508_at
-1.81293 0.004123 208368_s_at
-1.93575 0.007032 213788_s_at
-1.95782 0.006338 209789_at
-1.96305 0.009752 209679_s_at
-1.9776 0.011992 219557_s_at

-2.02574 0.011779 221107_at
-2.03351 0.001195 219315_s_at
-2.04489 0.000445 231938_at
-2.05531 0.006992 238443_at
-2.05986 0.007344 209840_s_at
-2.0919 0.0115 213899_at

-2.12668 0.001304 220327_at
-2.14827 0.00761 214954_at
-2.2234 0.001429 213362_at PTPRD protein tyrosine phosphatase, receptor type, DN73931

-2.22758 0.002741 205517_at GATA4 GATA binding protein 4AV700724
-2.23604 0.005772 202920_at ANK2 ankyrin 2, neuronalBF726212
-2.33957 0.00053 222900_at NRIP3 nuclear receptor interacting protein 3AJ400877
-2.41506 0.00437 33767_at HHLA1 HERV-H LTR-associating 1AU148706
-2.41583 0.008085 210457_x_at HMGA1 high mobility group AT-hook 1AF176039
-2.46114 0.004228 214841_at CNIH3 cornichon family AMPA receptor auxiliary protein 3AF070524
-2.51472 0.007544 242277_at
-2.56126 0.008528 234304_s_at IPO11 /// IPO11-LRRC70importin 11 /// IPO11-LRRC70 readthroughAL162083
-2.74044 0.009836 211340_s_at MCAM /// MIR6756melanoma cell adhesion molecule /// microRNA 6756M28882
-2.91192 0.001597 209087_x_at MCAM melanoma cell adhesion moleculeAF089868
-2.95982 4.18E-05 202672_s_at ATF3 activating transcription factor 3NM_001674
-3.07096 2.07E-05 229160_at MUM1L1 melanoma associated antigen (mutated) 1-like 1AI967987
-3.28701 0.003959 205347_s_at TMSB15A /// TMSB15Bthymosin beta 15a /// thymosin beta 15BNM_021992
-3.93675 0.001985 227705_at TCEAL7 transcription elongation factor A (SII)-like 7BF591534
-4.15203 0.007862 218469_at GREM1 gremlin 1, DAN family BMP antagonistNM_013372
-4.31605 0.012297 218468_s_at GREM1 gremlin 1, DAN family BMP antagonistAF154054
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