STUDY OF SHEAR STRENGTH PARAMETERS OF YAMUNA SAND MIXED WITH POND ASH AND LIME

A Project Report

Submitted by

ANKIT SONI

In partial fulfillment of the requirements for

the award of Degree of

MASTER OF TECHNOLOGY

In

GEOTECHNICAL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY, DELHI (FORMERLY DELHI COLLEGE OF ENGINEERING) DELHI –110042

2016

STUDY OF SHEAR STRENGTH PARAMETERS OF YAMUNA SAND MIXED WITH POND ASH AND LIME

A Project Report

Submitted by

ANKIT SONI Roll No. 2K14/GTE/05

In partial fulfillment of the requirements for the award of Degree of

MASTER OF TECHNOLOGY

In

GEOTECHNICAL ENGINEERING

Under the guidance of **DR. RAJU SARKAR**

DEPARTMENT OF CIVIL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY, DELHI (FORMERLY DELHI COLLEGE OF ENGINEERING) DELHI –110042

2016

DELHI TECHNOLOGICAL UNIVERSITY (FORMERLY DELHI COLLEGE OF ENGINEERING) DELHI – 110042 INDIA, mail id – www.dtu.ac.in

Candidate's Declaration

I do hereby certify that the work presented in this report entitled "**Study Of Shear Strength Parameters Of Yamuna Sand Mixed With Pond Ash And Lime**" in partial fulfilment of curriculum of final semester of Master of Technology in Geotechnical Engineering, submitted in the department of civil engineering, DTU is an authentic record of my work under the supervision of Dr. Raju Sarkar, Professor in department of civil engineering.

I have not submitted this matter for the award of any other degree or diploma.

Ankit Soni 2K14/GTE/05

ACKNOWLEDGEMENT

The success of any job would be incomplete without mention of those who gave advice and encouragement. I am very thankful to the Department of Civil engineering, Delhi Technological University, Delhi for giving me opportunity to complete this project which is a part of the curriculum of the M.Tech programme in the DTU, Delhi.

I also take this opportunity to express my gratitude for my project guide **Dr. Raju Sarkar** who at each and every point supervised me and gave all his valuable contributions in the execution of this project.

I am also very thankful to all the faculty members of civil department along with the geotechnical engineering specialization and Angron Geotech Pvt. Ltd. - HEICO for their proper advice, guidance, support and encouragement.

At last I want to thank my parents who always gave me proper teaching to the value of the work and their support during the duration of my pleasant stay here at DTU, Delhi.

Ankit Soni

ABSTRACT

Keywords: Yamuna sand, pond ash, shear strength, shear strength parameters, direct shear test, standard proctor test.

This study is to investigate the possibility of using pond ash in varying percentage as fine aggregate substitute in Yamuna sand. In India, Thermal power plants are the main source for production of energy and mainly coal is used to achieve this energy. Combustion of coal leads to production of fly ash, bottom ash and Pond ash as a waste product. Pond ash for this study is collected from NTPC BADARPUR, Delhi. From the construction point of view, there are many problems associated with Yamuna sand. So it is important to stabilize Yamuna sand.

The shear strength of the soil is one of the important aspects to be considered in any geotechnical activity. Bearing capacity, Slope stability of earthen embankment and design of retaining wall, all are related with shear strength characteristics of soil.

Previously In many places Pond ash is used as a stabilizing material. Pond ash with lime shows increase in the stability of mix by forming cementious compound. There are several work carried out for the stability of Yamuna sand.

In this study, Geotechnical properties of Yamuna sand and Pond ash is find out. Pond ash in various proportions is blended with Yamuna sand and shear strength parameters of mix are find out. For this various UU triaxial tests, Direct shear tests are performed and MDD variation is studied. Various tests are performed for lime content determination. All the above analyses were carried on every mix to acquire an optimum mix. The outcomes are gathered in graphical form to observe the patterns in the different parameters.

TABLE OF CONTENTS

Certificateii
Acknowledgementiii
Abstractiv
Table of Contentsv
List of Tables
List of Figures
List of Notationsx
Chapter-1: Introduction
1.1 General
1.2 Scope of the study
Chapter-2: Literature Review
2.1 Study on Pond Ash.
2.2 Study on Yamuna sand and work carried out for stabilization.
2.3 Study on Pond ash and lime.
Chapter-3: Materials
3.1 Yamuna sand
3.2 Pond Ash
3.3 Lime
Chapter-4: Experimental Studies
4.1 XRD Test
4.2 SEM Test
4.3 Particle Size analysis

4.4 Specific Gravity determination.

4.5 Standard Proctor Test.

4.6 Direct Shear Test.

4.7 Triaxial Test.

Chapter 5: Results and Discussions

- 5.1 XRD Test.....
- 5.2 SEM Test.....
- 5.3 Particle Size analysis.....
- 5.4 Specific Gravity determination.
- 5.5 Standard Proctor Test.
- 5.6 Direct Shear Test.
- 5.7 Triaxial Test.

Chapter-6 Analysis of results

- 6.1 percentage of lime content determination
- 6.2 compaction behavior of the mix
- 6.3 direct shear behavior of the mix
- 6.4 triaxial behavior of the mix
- 6.5 deviator stress vs axial strain variation for various mix

Chapter-7 Conclusions

References

LIST OF FIGURES

Figure3.1: Yamuna Sand	9
Figure 4.2 SEM Machine	13
Figure 4.3: Hydrometer Analysis	14
Figure:4.4 Hydrometer Method	15
Figure 4.5: Standard Proctor Test	18
Figure 4.6 Automatic Compaction Machine	19
Figure 4.7: Direct Shear Test	20
Figure 4.8 Triaxial Testing machine	23
Figure 5.1 SEM test on Yamuna sand at 10µm	24
Figure 5.2 SEM test on Yamuna sand at 5µm	24.
Figure 5.3 SEM test on Pond ash at 5 µm	
Figure 5.4 SEM test on Pond ash at 20µm	25
Figure 5.5 SEM test on Lime at 5µm	
Figure 5.6 SEM test on Lime at 5µm	
Figure: 5.7 XRD analysis of Yamuna sand	27
Figure 5.8: XRD analysis for Pond ash	
Figure 5.9: particle size analysis for Yamuna sand	29
Figure 5.10: particle size analysis for Pond ash	30
Figure 5.11: Compaction curve for Yamuna sand	31
Figure 5.12: Compaction curve for virgin Pond Ash	32
Figure 5.13: Compaction curve for 97% Sand + 3 % lime	32
Figure 5.14: Compaction curve for 95% Sand + 5 % lime	
Figure 5.15: Compaction curve for 92% Sand + 8 % lime	
Figure 5.16: Compaction curve for 90% Sand + 10 % lime	
Figure 5.17: Compaction curve showing variation in MDD when lime is mixed	d with pond
ash	34
Figure 5.18: Compaction curve for 97% PA + 3 % lime	35
Figure 5.18: Compaction curve for 97% PA + 3 % lime	36

Figure:5.19 Compaction curve for 97% PA + 3 % lime
Figure 5.20: Compaction curve for 92% PA + 8 % lime
Figure 5.21: Compaction curve for 92% PA + 8 % lime
Figure 5.22: Compaction curve showing variation of MDD when lime is mixed with Pond
ash
Figure 5.23: Compaction curve for 5% mix (87% YS+ 5% PA + 8 % lime)
Figure 5.24: Compaction curve for 10% mix (82% YS+ 10% PA + 8 % lime)39
Figure 5.25: Compaction curve for 15% mix (77% YS+ 15% PA + 8 % lime)40
Figure 5.26: Compaction curve for 20% mix (72% YS+ 20% PA + 8 % lime)41
Figure 5.27: Direct Shear Test for Yamuna Sand42
Figure 5.28: Direct Shear Test for Pond ash
Figure 5.29: Direct Shear Test for (97% YS + 3% LIME)
Figure 5.30: Direct Shear Test for (95% YS + 5% LIME)
Figure 5.31: Direct Shear Test for (92% YS + 8% LIME)
Figure 5.32: Direct Shear Test for (90% YS + 10% LIME)
Figure 5.33: Direct Shear Test for (97% PA + 3% LIME)
Figure 5.34: Direct Shear Test for (95% PA + 5% LIME)46
Figure 5.35: Direct Shear Test for (92% PA + 8% LIME)46
Figure 5.36: Direct Shear Test for (90% PA + 10% LIME)
Figure 5.37: Direct shear Test reults when lime content is increased with Pond
ash47
Figure 5.38: Direct Shear Test for 5% Pond ash mix (87% YS + 5% PA+ 8% LIME)48
Figure 5.39: Direct Shear Test for 10% Pond ash mix (83% YS + 10% PA+ 8% LIME)49
Figure 5.39: Direct Shear Test for 15% Pond ash mix (77% YS +1 5% PA+ 8% LIME)49
Figure 5.44: Deviatric Stress (kg/sq.cm) vs Axial Strain(%)
Figure 5.45 Shear Stress (kg/cm ²) vs Normal Stress (kg/cm ²)51
Figure 5.46: Mohr-Coulomb Plot [c=0.09 Phi=37.1deg]51
Figure 5.47: Deviatric Stress(kg/sq.cm) vs Axial Strain(%)
Figure 5.48: Mean stress vs Shear stress
Figure 5.49: Shear Stress (kg/cm ²) vs Norma lStress (kg/cm ²)53
Figure 5.50: Deviatric Stress(kg/sq.cm) vs Axial Strain(%)
Figure 5.51 :Mean stress vs Shear stress [a=0.47kg/sq.cm,alpha=33.1deg]

Figure 5.52: Shear Stress(kg/Sq.cm) vs Normal Stress(kg/Sq.cm)	57
Figure 5.53: Deviatric Stress(kg/sq.cm) vs Axial Strain(%)	57
Figure 5.54: Mean stress vs Shear stress [a=0.16kg/sq.cm ,alpha=32.3deg]	58
Figure 5.55: ShearStress(kg/Sq.cm) vs NormalStress(kg/Sq.cm)	58
Figure 6.1: MDD variation of Pond ash with lime content	59
Figure 6.2: MDD variation of Yamuna sand with lime content	59
Figure 6.3: MDD variation of Pond ash with Yamuna sand when lime content is fixed.	60
Figure 6.4: Direct shear resuts showing variation at different Pond ash content while lim	ıe
is keeping fixed	61
Figure 6.5 Failure of Triaxial sample showing bulging	62
Figure 6.6: Deviatric Stress v/s Axial strain variation when Pond ash is added on diffe	rent
Proportions	63

LIST OF TABLES

9
10
28
30
35
38
content
40
44
47
content
50

LIST OF NOTATIONS

The Following notations are used in this project:

- OMC Optimum moisture content
- MDD Maximum dry density
- CBR California bearing ratio
- C_c Coefficient of curvature
- C_u Coefficient of uniformity
- D_{60} Particle size corresponding to 60% finer
- D₃₀ Particle size corresponding to 30% finer
- D_{10} Particle size corresponding to 10% finer
- G_s Specific gravity
- ASTM American Society for Testing and Materials
- FA Fly ash
- KSD Kota stone dust
- SEM Scanning electron microscope