Major project report

PERFORMANCE EVALUATION AND ANALYSIS OF ACTUAL SOLAR

POWERED 100kW TRIPLE EFFECT VAPOUR ABSORPTION AIR

CONDITIONING PLANT

Submitted on partial fulfilment for award of

Master of Technology

In

Thermal Engineering

Ву

IMRAN KHAN

(2k13/THE/12)

Under the supervision of

DR. J. P. KESARI

Associate Professor Department of Mechanical Engineering Delhi Technological University

ER. S K SINGH

Director and Scientist 'F' National Institute of Solar Energy Ministry of New and Renewable Energy

Department of Mechanical Engineering Delhi Technological University Bawana Road, Rohini. Delhi

Certificate

This is to certify that the major project report entitled **"Performance evaluation and analysis of actual Solar powered 100kW triple effect vapor absorption Air Conditioning plant"** submitted by Imran Khan (Roll No. 2K13/THE/12) for the partial fulfillment for the award of the Degree of Masters of Technology in Thermal Engineering of Delhi Technological University. It is an authentic record of student's own work carried out by him under our guidance and supervision.

This is also certified that this dissertation has not been submitted to any other Institute/University for the award of any degree or diploma.

Dr. J P Kesari Associate Professor, Mechanical Engineering Department Delhi Technological University **Er. S K Singh** Director and Scientist 'F' National Institute of Solar Energy MNRE, Government of India

Declaration

To the best of my knowledge I do hereby declare that this thesis is my own work. It has not been submitted in any form of another degree or diploma to any other university or other institution of education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Place: Delhi, India

Date: 25th July, 2015

Name: Imran Khan

Signature:

Acknowledgement

I express my deepest appreciation to Dr J P Kesari, Associate Professor DTU and principal advisor for this dissertation. Prof. Kesari not only provided essential guidance through my graduate study, but also shared me with his vision for solar energy industry development. His passion, enthusiasm, inspiration and wisdom will always encourage and lead me for my future career.

Let me express my sincere gratitude to Er S K Singh ,Director and Scientist 'F', my advisor at National Institute of Solar Energy, Ministry of New and Renewable Energy, Government of India, who provided the technical guidance to the success of this thesis. Er S K Singh dedicated himself in helping me form the hypotheses, establish the methodology and solve the technical issues. His rigorous research methods of thinking and effective ways of communication have substantially improved the research outputs.

The same profound appreciations extend to my professors and colleagues at Department of Mechanical Engineering, Delhi Technological University, who worked closely with me and established the foundation work.

My special thanks go to Mrs Anju Singh, Senior research scientist at NISE, for providing the valuable suggestions and technical help. Her thoughts and knowledge in vapour absorption chiller operation inspired me a lot.

A big thank is due for my good friend Yadvinder Singh, Research Scholar, Simon Fraser University, Canada for providing valuable inputs and suggestions throughout my research.

It is my pleasure to thank my colleagues from National Institute of Solar Energy for exciting group discussions on solar energy and constant motivation in cruncher time. Special mention to Mr Promod, technical assistant, Solar Air Conditioning Laboratory for providing everything I needed during this work. Finally, the deepest love and appreciation goes to my parents, Abbas Khan and Gulshan, for their encouragements, care and patience and my lovely wife, shahnaz, who gave me unconditional support and took the responsibility of caring our cute little son, Ayaan, who fills us with joy every day. I would also like to thank my sisters, Musarrat who is my source of inspiration, Nazma and her husband Zahid who kept motivating me throughout the work and also helped me out in arranging references. Dedicated to my father Mr Abbas khan Beloved teacher of physics Who invested his whole life in educating his three children

This is for you papa

Abstract

Performance evaluation of an Air-Conditioning plant which is running for the last four and half year is presented in this thesis. This plant is actually a demonstration project installed by Thermax and Ministry of New and Renewable Energy at National Institute of Solar Energy for research purpose. Triple effect vapor absorption chiller is utilized to produce cooling and the input heat is provided by solar energy with the help of parabolic trough collector .Apart from understanding its complex design and working, energy and exergy analysis is done on vapor absorption chiller. Also optical and thermal analysis is carried out on parabolic trough collector. Both are being done separately. Mathematical modelling of vapor absorption chiller and parabolic trough collector is done for formulating the required relations for evaluation. Mass, concentration, energy and exergy balance equations of chiller are clearly presented. For parabolic trough collector, a general equation for obtaining efficiency is also proposed. The results of analysis of chiller shows that the two heat exchangers, (HX I) and (HX II) are the biggest source of exergy destruction, destroying 16.40 % and 8.60 % of exergy respectively. Deviating from the previous published results in literature, absorber is not the component where maximum exergy is destroyed. The components that need to be optimized are the three generators. The COP is also calculated from energy balance and it comes out to be 1.27. Exergetic efficiency of chiller obtained is 9.2 %. Optical study of parabolic trough collector reveals that the optical efficiency is 58 % but the incidence losses are not considered. Results from thermal analysis are presented in tabular form and various graphs have been drawn to discuss the results obtained and research findings. Future scope for further study on this plant or other is also discussed.

Contents

Certificate
Training certificate
Declaration
Acknowledgement
Abstract
List of figures
List of tables
List of abbreviations and symbols

Chapter 1: Introduction		1
1.1 Research Methodology2		
1.2 Motivatior	and Idea behind the following research	2
1.3 Refrigerati	on and Air conditioning technologies	3
1.3.1	History	3
1.3.2	Types of Refrigeration and Air Conditioning system	.4
1.3.3	Overview of Absorption Chiller Technology	4
1.3.4	Types of vapour absorption chillers	5
1.4 Solar Energ	ξγ	.10
1.4.1	History of solar energy	10
1.4.2	Sun as a source of energy	11
1.4.3	Solar radiation	13
1.4.4	Understanding solar radiation terms	14
1.4.5	Methods of harnessing solar energy	.16
1.4.6	Concentrating solar thermal Collectors	18
1.5 Parabolic t	rough collectors	.19
Chapter 2: Literature R	eview	22
2.1 On energy	and exergy analysis of vapour absorption chillers	22
2.2 On parabol	ic trough collectors	26
2.3 Research g	ap identified	28

Chapter 3: Experimental Set up/Demonstration plant at NISE	.29
3.1 Description of Vapour Absorption Plant installed at NISE	.29
3.2 Experimental set up	.30
3.2.1 Solar field	.30
3.2.2 Solar tracking control panel	.35
3.2.3 Vapor absorption machine	.36
3.2.4 Machine operation	.45
3.2.5 Cooling tower	.48
3.3 Water treatment of chilled and hot / cooling water	51
3.4 Specification about the Refrigerant and Absorber	52
3.5 Thermal Storage Tanks	.53
3.6 Solar Thermal Air conditioning Control Room/Laboratory	.54
Chapter 4: Energy and Exergy analysis of Triple effect chiller	56
4.1 Energy, entropy and Exergy	56
4.2 Calculation procedure for enthalpy and entropy of LiBr water solution	.57
4.2 Analysis	.59
Chapter 5: Mathematic Modelling of PTC field	.74
Chapter 6: Results	.84
6.1 Results of energy/exergy analysis of vapor absorption chiller	.84
6.1.1 Conclusion	90
6.2 Results of PTC analysis	.91
6.2.1 Conclusion	.96
Future scope	.97
References	•••

List of Figures

Figure No	Title
Figure 1.1	(a) Vapor compression chiller (b)Absorption(thermally driven) chiller5
Figure 1.2	Schematic diagram of a single stage absorption chiller (LiBr-H ₂ O)6
Figure 1.3	Double effect absorption cycle8
Figure 1.4	Triple effect absorption cycle9
Figure 1.5	Actual photo of triple effect chiller10
Figure 1.6	Sun Structure12
Figure 1.7	Solar radiation spectrums14
Figure 1.8	Solar Constant15
Figure 1.9	Flat plate collectors at NISE17
Figure 1.10	Evacuated tube collectors at NISE17
Figure 1.11	PTC at NISE18
Figure 1.12	LFR
Figure 1.13	Dish Concentrator at NISE19
Figure 1.14	Geometrical parabolic trough parameters20
Figure 1.15	parabolic trough collectors20
Figure 1.16	Parabolic trough field with storage system in Rankine power 21
Figure 3.1	Concentrator Parabolic Trough31
Figure 3.2	A generic view of solar field established in N.I.S.E
Figure 3.3	Absorber
Figure 3.4	Showing the schematic arrangement of the flow of the heat transfer fluid via
	parabolic trough with temperature sensors and flow meters

Figure 3.5	Pyranometer installed on the tracking control panel	35
Figure 3.6	Single -axis tracking gear mechanism.	36
Figure 3.7	flow diagram of triple effect absorption system	40
Figure 3.8	high temperature generator	41
Figure 3.9	100KW vapor absorption plant in operation at NISE	43
Figure 3.10	PLC installed at NISE	44
Figure 3.11	vacuum pump	47
Figure 3.12	the vacuum pump(actual photo)	47
Figure 3.13	Cooling Tower	49
Figure 3.14	Cooling tower with temperature sensor.	51
Figure 3.15	Reverse osmosis used for water treatment for the chiller	52
Figure 3.16	Pumps used for pumping the water to cooling tower	52
Figure 3.17	(a) and (b) showing the storage tank and pressure expansion tank	for storage
	of the thermal energy so that cooling can be produced when sola	r radiations
	are fluctuating	54
Figure 3.18	Solar air conditioning control room.	55
Figure 4.1	Interactions between the domains of energy, entropy and	57
Figure 4.2	Enthalpy of lithium bromide-water solutions	58
Figure 4.3	Entropy of lithium bromide-water solutions	58
Figure 4.4	Flow diagram of triple effect vapor absorption system	63
Figure 5.1	One dimentional steady heat transfer model	76
Figure 5.2	Thermal resistance model	77
Figure 6.1	Enthalpy and Entropy at every state	85
Figure 6.2	Sustainable model based on energy analysis	86
Figure 6.3	Exergy destruction in cycle	
Figure 6.4	Exergy destroyed by individual components	89
Figure 6.5	percentage exergy destruction by individual components	

Figure 6.6	Flow exergy V/s temperature(inlet)90
Figure 6.7	Shows some relationship between thermal efficiency and relative humidity
	of surrounding air during the day95
Figure 6.8	Shows the variation of thermal efficiency with DNI95
Figure 6.9	Presents the variation of all temperatures encountered during analysis with time96

List of Tables

Table No	Title	
Table 4.1	Given data available from SCADA	61
Table 6.1	Properties at various states of system	84
Table 6.2	Energy flow and COP	85
Table 6.3	Exergy destruction by each component of triple effect chiller	86
Table 6.4	The data available from the SRRA centre	91
Table 6.5	Results of PTC analysis	.93

List of Abbreviations

MoEF	Ministry of Environment & Forests
СОР	Coefficient of performance
CFC	Chloroflouro carbons
DCC	Double condenser coupled
РТС	Parabolic trough collectors
NISE	National institute of solar energy
MNRE	Ministry of New and renewable Energy
SRRA	Solar radiation resource assessment
LFR	Linear Fresnel reflectors
CSP	Concentrated solar power
HTF	Heat transfer fluid
EES	Engineering equation solver
TRANSYS	Transient simulation
PLC	Programmable logic Controller
HTG	High temperature generator
MTG	Medium temperature generator
LTG	Low temperature generator
НΧ	Heat exchanger
VAM	Vapor absorption machine
CPU	Central processing unit
PR I,II,III	Pressure relieve valve 1,2,3
EV I,II,III	Expansion valve 1,2,3
DNI	Direct normal irradiance
IAM	Incident angle modifier

Symbols

ṁ	=	mass flow rate in kg/sec
ψ	=	flow exergy in kJ/kg
θ	=	incidence angle in degree
η_{exergy}		= exergetic efficiency
$\eta_{ ext{thermal}}$	l	= thermal efficiency
ŵ	=	rate of work done
h	=	specific enthalpy in kJ/kg
S	=	specific entropy in kJ/kg-k
\mathbf{Q}_{eva}	=	heat energy transferred by evaporator
Qg	=	heat energy supplied by HTG
x	=	concentration of LiBr in solution by weight
к(ө)	=	Incident angle modifier factor
η_o	=	Optical efficiency
$\eta_{o,peak}$	=	peak optical efficiency
T _m	=	mean temperature
A_{c}	=	aperture area in m ²
T_{eva}	=	temperature of evaporator
T_g	=	temperature of HTG
To	=	ambient temperature
h _o	=	enthalpy at environment condition
So	=	entropy at environment condition
cosθ	=	cosine loss factor