
IMPROVING SOFTWARE MAINTENANCE
USING SOFTWARE METRICS

By

ANURADHA CHUG
Roll No. 2k11/Ph.D./Comp.Sc./02

Under the guidance of
Dr. Ruchika Malhotra

Associate Head and Assistant Professor,
Department of Software Engineering

Submitted in fulfillment of the requirements of the degree of
Doctor of Philosophy to the

DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)
SHAHBAD DAULATPUR, MAIN BAWANA ROAD, DELHI 110042

December, 2016

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

Date:

This is to certify that the work embodied in the thesis titled “Improving Software Mainte-

nance Using Software Metrics” has been completed by Anuradha Chug under the guid-

ance of Dr. Ruchika Malhotra towards fulfillment of the requirements for the degree of

Doctor of Philosophy of Delhi Technological University, Delhi. This work is based on orig-

inal research and has not been submitted in full or in part for any other diploma or degree of

any university.

Supervisor

DR. RUCHIKA MALHOTRA

Associate Head and Assistant Professor, Department of Software Engineering

Delhi Technological University, Delhi 110042

Copyright@December, 2016
Delhi Technological University, Shahbad Daulatpur,
Main Bawana Road, Delhi 110042
All rights reserved

Declaration

I, Anuradha Chug, Ph.D. student (Roll No: 2k11/Ph.D./Comp.Sc./02) hereby declare

that the thesis entitled “Improving Software Maintenance Using Software Metrics” which

is being submitted for the award of the degree of doctor of philosophy in Computer Engineer-

ing, is a record of bonafide research work carried out by me in the Department of Computer

Science & Engineering, Delhi Technological University.

I further declare that the work presented in the thesis had not been submitted to any

University or Institution for any degree or diploma.

Date :

Place : New Delhi

Anuradha Chug

Roll No.: 2k11/Ph.D./Comp.Sc./02

Department of Computer Science & Engineering,

Delhi Technological University,

New Delhi -110042

Acknowledgment

On the occasion of submitting my thesis for fulfillment of the requirement of the degree

‘Doctor of Philosophy’, I would take this opportunity to express my immeasurable apprecia-

tion and deepest gratitude for the help and support to the following persons, who in one way

or the other, have contributed in making this study possible.

It’s a matter of great fortune and privilege to work under the able guidance of my su-

pervisor Dr. Ruchika Malhotra, Associate Head and Assistant Professor, Department

of Software Engineering, Delhi Technological University. Without her sound advice, ex-

cellent supervision, valuable suggestions, wise counsel and technical guidance, I would not

have been able to complete the dissertation in this manner. I am deeply indebted to her for

shaping my path of research by constantly supporting me with her extensive knowledge,

insightful discussions and ever available help. She is one of the smartest people I’ve ever

known and she would remain my best role model as a scientist, researcher, mentor, and

teacher. I would remain obliged to her for being patient, precise and motivating me at all

the times. I am really thankful to her for the consistent support and encouragement she pro-

vided me throughout the period of this research, which has brought me where I stand today.

The positive vibes she transferred to me during this research work deserve admiration. I

feed proud to be associated with her and look forward to carrying this relationship to greater

heights.

With a profound sense of gratitude, I want to give special thanks to Prof. Yogesh Singh,

Vice Chancellor, Delhi Technological University and Director, Netaji Subhas Institute

of Technology. I cherish my old memories, when I used to attend the software engineering

classes delivered by him during my M.Tech. course. It was during these classes that my

love for this subject actually developed. Earlier I used to consider software engineering as

a theoretical subject, however, it was his excellent delivery of the concept using numericals

that changed my opinion and I felt inspired for the current study.

I would like to convey my sincere thanks to Prof. O.P. Verma, Head, Department of

Computer Science and Engineering, Delhi Technological University for his encourage-

ment, help and cooperation in accomplishing the current research.

I would like to thank all the faculty members of Department of Computer Science &

Engineering, Delhi Technological University for their valuable discussion and guidance dur-

ing the course of this study. I would like to thank my friends, fellow research scholars and

office staff for all their direct and indirect assistance in carrying out this task.

I would like to thank my husband Lt Col P K Chug who has always inspired me for hard

work and motivated me to focus on my research work. I am grateful to him for his much

needed emotional support and unconditional love during the course of research journey apart

from willing support always available at my disposal.

I would also like to thank my parents and parents-in-law for their blessings and sharing

my responsibilities as a home-maker during this research work. Lastly and by no means least,

I thank my children Ms. Sezal and Master Naman whose precious time I have invested in

carrying this research work because often, they had to endure my absence, but they seldom

complained.

Finally, I bow to the Almighty Waheguru who gave me the strength to carry out this

work with sincerity, honesty and dedication.

Anuradha Chug

Abstract
Changes in the newly developed software are inevitable due to multiple reasons such

as change in user requirements, advancement in technology and business competition pres-

sure. One of the biggest challenges faced by the software engineers today is to develop large

and complex software in stipulated time frame, under budgetary constraints, meeting the cus-

tomer’s demands and needs. Maintenance phase starts once the software product is delivered

to the customer and during this period software have to be constantly improved/modified on

the basis of the change in customer’s requirements or software environment. Software main-

tainability means the ease with which a software can be modified to correct faults, improve

the performance or adapt to a changed environment. Since the maintenance phase consumes

one third of the total cost of the software development life cycle, producing a software that

is easy to maintain may potentially save large costs and efforts.

Any endeavor towards increasing the maintainability of the system would eventually

be helpful in reducing the overall project cost. Many studies have previously established

the strong relationship between software design metrics and maintainability of the system.

This means that by constantly measuring the design metrics and applying regularly certain

methods, the overall maintainability of the system can be monitored and improved. It would

certainly have a positive impact on the development of software and implementing the best

practices for the software development community. In this study, solutions are proposed for

monitoring and analyzing large software system using a set of software design metrics during

the product development stage. Further, with the help of certain validated prediction models,

these metrics can be gainfully applied in the software engineering processes in general and

for optimizing software maintainability in particular.

It is very important to predict the efforts required to accommodate these changes during

maintenance phase at an early stage of software development. It will help the managers to

allocate resources more judiciously, thereby leading to the reduction of costs overruns. One

of the main approach in controlling maintenance cost is to monitor software design metrics

i

during the development phase itself. There are several object oriented metrics proposed in

the literature to capture the design properties such as coupling, cohesion, inheritance, and

polymorphism. It is a matter of interest for researchers to measure the software using design

metrics and predict its maintenance behavior on the basis of their values. The problem

of predicting the maintainability of software is widely acknowledged in the industry and

much has been written on how maintainability can be predicted by using various tools and

processes at the time of development with the help of software design metrics.

Several statistical and machine learning techniques have been proposed in the literature

for prediction problems across a range domains such as finance, medicine, engineering, ge-

ology and physics. Most of the prediction models in the literature are built using statistical

and machine learning techniques. There are very few studies which are using evolutionary

techniques for predicting software maintainability using object oriented metrics. Since evo-

lutionary techniques have different results, there is strong need to conduct more and more

data based empirical studies that are capable of being verified by observation or experiments.

Conducting such large empirical studies and comparing the performance of evolutionary

techniques with statistical and machine learning techniques is helpful for the creation of

well established theories.

Many metric suites are proposed in literature to measure the object oriented software.

The current research work was undertaken to examine these various object oriented metric

suites defined in literature and in this regard empirical investigations were conducted using

machine learning techniques and evolutionary techniques with an aim of constructing a gen-

eralized, reliable and repeatable model to predict precise software maintainability during an

early phase of software product development.

Further, large-scale bench-marking framework for the maintainability predictions of open

source software system was also developed during the course of the current study. Metric

based maintainability prediction model developed in this study would be helpful in software

development process without escalating budgetary considerations taking least possible time

ii

frame. The framework and reference architecture in which the software systems are being

currently developed world over are fast changing dramatically due to the emergence of data

warehouse and data mining tools. To appropriately address this challenge, a new metric suite

to redefine the relationship between design metrics and maintainability for data intensive

applications is also proposed.

In this research study, we are principally concerned with various methods and measures

used to improve the software maintainability by predicting maintenance effort with the help

of internal quality attributes. Certain methods are also available in literature which improve

the design of the code and in turn enhances maintainability such as Clean Code, Pair Pro-

gramming, Lean, Crystal, Kanban, scrum etc. Refactoring is one of the important activity

carried out in maintenance phase, in which the design of software is improved and com-

plexity is reduced without affecting its external behaviour. Many refactoring methods have

been suggested in the literature and each has a specific purpose and corresponding effect.

However, it is so far unclear how a particular refactoring method affects the software main-

tainability. One of the objectives of this study was also to observe the quantifiable effects of

few commonly applied refactoring methods on software maintainability. The design metrics

of the software were calculated and analyzed, both before as well as after the application of

refactoring method and comprehensive reports were prepared to observe the effects of se-

lected refactoring methods on design metrics which were subsequently mapped to the main-

tainability of the software system. It helps in identifying the opportunities of refactoring in

software comprising of a large number of lines of source code with an aim to ascertain its

potential to optimize software maintainability.

Agile methodology is comparatively new method of software development to address

the problem of unpredictability in business. It provides alternatives to the traditional project

management techniques and nowadays more and more products are developing in software

industry based on agile methodology to ensure quality, reliability and scalability of the de-

livered software products. Scrum is one of the most vital agile method whose impact on

iii

software maintainability has also been investigated in this study. We developed the same

product using scrum method as well as Iterative Enhancement Model and compared both of

them using carefully selected metrics from the maintenance point of view. It helps the project

managers to create a flexible product in which defects are identified during early stages of

software development life cycle thereby avoiding any cost overrun.

iv

Contents

List of Publications . xviii

List of Tables . xxv

List of Figures . xxix

Abbreviations . xxx

1 Introduction and Literature Survey 1

1.1 Introduction . 1

1.2 Software Quality . 2

1.3 Software Maintenance . 5

1.3.1 Types of Software Maintenance 7

1.3.1.1 Corrective Maintenance: 8

1.3.1.2 Adaptive Maintenance: 8

1.3.1.3 Perfective Maintenance: 9

1.3.1.4 Preventive Maintenance: 9

1.3.2 Software Maintainability . 9

1.3.3 Prediction Model for Software Maintainability 10

1.4 Software Metrics . 14

1.4.1 Characteristics of Software Metrics 15

1.5 Literature Survey . 16

1.5.1 Traditional Metrics . 17

1.5.2 Object Oriented Metrics . 17

v

1.5.3 Software Maintainability Prediction 21

1.5.4 Refactoring to Enhance Software Maintainability 30

1.5.5 Effect of Agile Methodology on Software Maintainability 31

1.6 Goal of the Thesis . 33

1.7 Organization of the Thesis . 38

2 Research Methodology 43

2.1 Introduction . 43

2.2 Research Process . 44

2.3 Define Research Problem . 44

2.4 Development of Hypothesis . 46

2.4.1 Hypothesis 1 . 46

2.4.2 Hypothesis 2 . 46

2.5 Define Variables . 46

2.5.1 Independent Variables . 47

2.5.2 Dependent Variable . 51

2.6 Empirical Data Collection . 52

2.6.1 Proprietary dataset . 53

2.6.1.1 User Interface Management System 53

2.6.1.2 Quality Evaluation System 53

2.6.1.3 File Letter Monitoring Software 54

2.6.1.4 EASY Software system 55

2.6.1.5 Student Management Software 55

2.6.1.6 Inventory Management Software 55

2.6.1.7 Angel Bill Printing Software 56

2.6.2 Open Source dataset . 56

2.6.2.1 Drumkit . 58

2.6.2.2 OpenCV . 59

vi

2.6.2.3 Abdera . 59

2.6.2.4 Ivy . 59

2.6.2.5 Log4j . 60

2.6.2.6 JEdit . 60

2.6.2.7 JUnit . 61

2.6.2.8 OrDrumBox . 61

2.6.2.9 HuDoKu . 62

2.6.2.10 JWebUnit . 62

2.6.2.11 Apache Rave . 63

2.6.2.12 Apache Poi . 63

2.7 Data Analysis and Pre-Processing . 63

2.7.1 Descriptive Statistics . 63

2.8 Feature Subset Selection . 64

2.8.1 Attribute Selection . 65

2.8.1.1 Univariate Linear Regression 66

2.8.1.2 Correlation Based Feature Subset Selection 66

2.8.2 Attribute Extraction . 67

2.8.2.1 Principal Component Analysis 67

2.8.2.2 Linear Discriminant Analysis 67

2.8.3 Discussion . 68

2.9 Criteria for the Selection of Prediction Modeling Techniques 68

2.10 Machine Learning Techniques . 70

2.10.1 Linear Regression . 71

2.10.2 Multivariate Analysis . 71

2.10.3 M5 Rules . 72

2.10.4 Bayesian Belief Networks . 72

2.10.5 Decision Tree . 72

vii

2.10.6 Support Vector Machine . 73

2.10.7 K Star . 74

2.10.8 Ensemble Learning . 74

2.10.8.1 Boosting . 74

2.10.8.2 Bagging . 75

2.10.8.3 Non Linear Boosting Projection 75

2.10.8.4 Discussion . 75

2.10.9 Artificial Neural Network . 76

2.10.9.1 Back Propagation Network 77

2.10.9.2 Kohonen Network . 77

2.10.9.3 Feed Forward Neural Network 78

2.10.9.4 General Regression Neural Networks 78

2.10.9.5 Probabilistic Neural Networks 78

2.10.9.6 Jordan Elman Recurrent Network 79

2.10.10 Genetic Algorithms . 79

2.10.11 GRNN with Genetic Adaptive Learning 80

2.10.12 Group Method of Data Handling 80

2.11 Prediction Accuracy Measures . 80

2.11.1 Magnitude of Relative Error . 81

2.11.1.1 Mean Magnitude of Relative Error 81

2.11.1.2 Maximum of Magnitude of Relative Error 82

2.11.1.3 Minimum of Magnitude of Relative Error 82

2.11.2 Mean Absolute Relative Error . 82

2.11.3 Root Mean Square Error . 83

2.11.4 Pred . 83

2.11.5 R-Square . 84

2.11.6 P-Values . 84

viii

2.11.7 Underestimate and Overestimate 84

2.11.7.1 Percentage of Underestimate 85

2.11.7.2 Percentage of Overestimate 85

2.12 Cross-Validation Methods . 85

2.12.1 Holdout Cross-Validation Method 86

2.12.2 N-Fold Cross-Validation Methods 86

2.12.3 Leave One Out Cross-Validation Method 87

2.12.4 Discussion . 87

2.13 Test for Significance . 88

2.13.1 Friedman Test . 88

2.13.2 Post-Hoc Analysis . 90

2.13.2.1 Wilcoxon Signed Rank Test 90

2.13.2.2 Nemenyi Test . 91

2.14 Discussion . 92

3 Systematic Literature Review 93

3.1 Introduction . 93

3.2 Background . 94

3.3 Motivation . 95

3.4 Review Methodology . 96

3.5 Planning for Review . 97

3.5.1 Selection of Search Databases . 97

3.5.2 Identification of Important Journals and Conferences 97

3.5.3 Formulation of Research Questions 99

3.5.4 Search of Keywords . 100

3.5.5 Retrieval of Studies . 100

3.6 Conducting Review . 100

3.6.1 Removal of Duplicate and Irrelevant Studies 101

ix

3.6.2 Data Extraction . 102

3.6.3 Distribution of Papers According to Source of Publication 106

3.6.4 Distribution of Papers According to the Year of Publication 106

3.7 Reporting of Review . 109

3.7.1 RQ1: Techniques used for Software Maintainability Prediction . . . 109

3.7.2 RQ2: Metric Suite used in Software Maintainability Prediction . . . 112

3.7.3 RQ3: Various Tools Used to Calculate Values of the Design Metrics? 114

3.7.4 RQ4: Kind of dataset Used for Empirical Validations 116

3.7.5 RQ5: Accuracy Measures to Judge the Performance of Prediction

Models . 117

3.7.6 RQ6: Performance Comparison of Statistical, Machine Learning and

Evolutionary Techniques . 118

3.7.7 RQ7: Effects of Refactoring on Software Maintainability 121

3.7.8 RQ8: Various Methods to Measure Maintainability 121

3.7.9 RQ9: Advantage of Software Maintainability Prediction 122

3.8 Current Trends and Future Opportunities 123

3.8.1 Addition of Dynamic Metrics Along With Static Metrics 123

3.8.2 Equal Importance to External and Internal Quality Attributes 124

3.8.3 New Metrics for Data Intensive Applications 124

3.8.4 Use of Hybrid Techniques with More Emphasis on Nature Inspired

Techniques . 125

3.8.5 Prediction Models for Aspect Oriented Systems 125

3.8.6 Use of the Agile Methods and their Effect on Maintainability 126

3.8.7 Effect of Modern Development Techniques such as Component

Based Development on Maintainability 126

3.8.8 Academia-Industry Partnership needs to be Expanded 126

x

3.8.9 More Studies with datasets from Open Source Code Available in

Abundance . 127

3.8.10 Judge Maintainability using Other Quality Measures 127

3.8.11 Investigate the Effects of Refactoring on Software Maintainability . 127

3.8.12 Effect of other Activities such As Risk Analysis, Effort Require-

ments on Software Maintainability 128

3.8.13 Empirical Studies to Identify the Optimum Point when Dropping the

Software is more Viable than Developing the New One 128

3.8.14 Solve the Mystery involved in Maintainability 129

3.9 Discussion . 129

4 Software Maintainability Prediction using Machine Learning Techniques 131

4.1 Introduction . 131

4.2 Research Background . 133

4.2.1 Independent and Dependent Variables 133

4.2.2 Hypotheses . 134

4.2.2.1 H1 Hypothesis . 134

4.2.2.2 H2 Hypothesis . 134

4.2.2.3 H3 Hypothesis . 134

4.2.3 Group Method of Data Handling 135

4.2.3.1 GMDH Learning Technique: 136

4.2.3.2 Advantages of Group Method of Data Handling 137

4.2.4 Parameters Setup for Prediction Techniques 137

4.2.4.1 Parameters for Group Method of Data Handling 138

4.2.4.2 Parameters for Probabilistic Neural Networks Technique 138

4.2.4.3 Parameters for Genetic Algorithm 141

4.2.5 Empirical Data Collection . 142

4.3 Results Analysis . 142

xi

4.3.1 Descriptive Analysis . 142

4.3.2 Evaluation of Results . 144

4.3.3 Comparison with Existing Studies from Literature 145

4.3.4 Validation of Hypotheses . 148

4.3.4.1 H1 Hypothesis . 148

4.3.4.2 H2 Hypothesis . 150

4.3.4.3 H3 Hypothesis . 151

4.4 Discussion . 152

5 A Metric Suite for Predicting Software Maintainability in Data Intensive Appli-

cations 155

5.1 Introduction . 155

5.2 Research Method . 157

5.2.1 Independent and Dependent Variables 157

5.2.2 Proposed Metrics . 158

5.2.3 Dependent Variable . 159

5.2.4 Hypotheses . 160

5.2.4.1 H1 Hypothesis . 160

5.2.4.2 H2 Hypothesis . 160

5.2.5 Parameters Setup for Prediction Techniques 160

5.2.5.1 Back Propagation Network 161

5.2.5.2 Kohonen Network . 161

5.2.5.3 Feed Forward Neural Network 162

5.2.5.4 General Regression Neural Networks 163

5.2.5.5 Group Method of Data Handling 163

5.2.6 Empirical Data Collection . 164

5.2.7 Prediction Accuracy Measures . 166

5.3 Results and Analysis . 166

xii

5.3.1 Univariate Linear Regression . 167

5.3.2 Multivariate Linear Regression . 167

5.3.3 Correlation Analysis . 168

5.3.4 Maintainability Prediction . 169

5.3.5 Validation of Hypotheses . 170

5.3.5.1 H1 Hypothesis . 172

5.3.5.2 H2 Hypothesis . 174

5.4 Discussion . 176

6 Benchmarking Framework for Maintainability Prediction of Open Source Soft-

ware using Object-Oriented Metrics 179

6.1 Introduction . 179

6.2 Research Background . 181

6.2.1 Hypotheses . 183

6.2.1.1 H1 Hypothesis . 183

6.2.1.2 H2 Hypothesis . 183

6.2.1.3 H3 Hypothesis . 183

6.2.2 Independent and Dependent Variables 184

6.2.3 Empirical Data Collection . 184

6.2.4 Descriptive Statistics . 185

6.2.5 Machine Learning Techniques . 187

6.3 Result Analysis . 187

6.3.1 Feature Sub Selection . 187

6.3.2 Summary of Results for Various Prediction Accuracy Measures . . 189

6.3.2.1 Mean Absolute Relative Error 190

6.3.2.2 Root Mean Square Error 191

6.3.2.3 Prediction Accuracy at 25% and 75% 194

6.3.3 Validation of Hypotheses . 195

xiii

6.3.3.1 H1 Hypothesis . 195

6.3.3.2 H2 Hypothesis . 197

6.3.3.3 H3 Hypothesis . 198

6.4 Discussion . 203

7 Application of Evolutionary Techniques for Software Maintainability Predic-

tion using Object-Oriented Metrics 207

7.1 Introduction . 207

7.2 Evolutionary Techniques . 209

7.2.1 Classification of Techniques . 211

7.3 Research Methodology . 214

7.3.1 Hypotheses . 214

7.3.1.1 H1 Hypothesis . 214

7.3.1.2 H2 Hypothesis . 214

7.3.1.3 H3 Hypothesis . 214

7.3.2 Independent and Dependent Variables 215

7.3.3 Empirical Data Collection . 215

7.3.4 Descriptive Statistics . 217

7.3.5 Parameter Setting for Evolutionary Techniques 219

7.3.6 Prediction Accuracy Measures . 220

7.4 Results and Discussion . 221

7.4.1 Feature Sub Selection . 221

7.4.2 Summary of Results for Various Prediction Accuracy Measures . . 221

7.4.3 Validation of Hypotheses . 222

7.4.3.1 H1 Hypothesis . 223

7.4.3.2 H2 Hypothesis . 224

7.4.3.3 H3 Hypothesis . 226

7.5 Discussion . 233

xiv

8 Empirical Study to Assess Refactoring Effects on Software Maintainability 235

8.1 Introduction . 235

8.2 Refactoring Process . 237

8.3 Research Methodology . 239

8.3.1 Relationship of Object-Oriented Metrics and Maintainability . . . 240

8.3.1.1 Relationship of WMC with Maintainability 240

8.3.1.2 Relationship of DIT with Maintainability 241

8.3.1.3 Relationship of NOC with Maintainability 241

8.3.1.4 Relationship of CBO with Maintainability 241

8.3.1.5 Relationship of RFC with Maintainability 241

8.3.1.6 Relationship of LCOM with Maintainability 242

8.3.2 Selection of Refactoring Methods 242

8.3.2.1 Consolidate Conditional Expression 243

8.3.2.2 Encapsulating Field . 243

8.3.2.3 Extract Class . 243

8.3.2.4 Extract Method . 243

8.3.2.5 Hide Method . 243

8.3.3 Research Hypotheses . 243

8.3.3.1 Consolidated Conditional Expression Hypothesis 244

8.3.3.2 Encapsulating Field Hypothesis 244

8.3.3.3 Extract Method Hypothesis 244

8.3.3.4 Extract Class Hypothesis 244

8.3.3.5 Hide Method Hypothesis 244

8.3.4 Empirical Data Collection . 245

8.3.5 Descriptive Statistics . 245

8.4 Results and Analysis . 249

8.4.1 Effects of Extract Method Refactoring 249

xv

8.4.2 Effects of Encapsulating Field Refactoring 250

8.4.3 Effects of Consolidate Conditional Expression Refactoring 250

8.4.4 Effects of Extract Class Refactoring 251

8.4.5 Effects of Hide Method Refactoring 252

8.4.6 Cumulative Effect of Refactoring Method on Object Oriented Metrics 253

8.5 Validation of Hypotheses . 255

8.5.1 Consolidated Conditional Expression Hypothesis 255

8.5.2 Encapsulating Field Hypothesis 256

8.5.3 Extract Method Hypothesis . 256

8.5.4 Extract Class Hypothesis . 257

8.5.5 Hide Method Hypothesis . 258

8.6 Discussion . 258

9 Comparative Analysis of Agile Methods and Iterative Enhancement Model in

Assessment of Software Maintenance 261

9.1 Introduction . 261

9.2 Comparison of Agile Development with Traditional Development 263

9.2.1 Major Characteristics of Agile Technology 263

9.2.2 Principles of Agile Technology 265

9.2.3 Advantages of Agile Methodology 266

9.2.4 Disadvantages of Agile Methodology 267

9.3 Types of Agile Methodologies . 268

9.4 Discussion . 270

9.5 Experimental Design . 271

9.5.1 Scrum versus Iterative Enhancement Method 271

9.5.1.1 Iterative Enhancement Method 271

9.5.1.2 Scrum Method . 272

9.5.1.3 The Framework of Scrum 273

xvi

9.5.2 Problem Statement . 273

9.5.3 Experiment Setup . 274

9.5.4 Development using Iterative Enhancement Method 274

9.5.5 Development using Scrum Method 275

9.5.5.1 Activities in Sprint 0 . 275

9.5.5.2 Activities in Sprint 1 . 276

9.5.5.3 Activities in Sprint 2 . 276

9.5.5.4 Activities in Sprint 3 . 276

9.6 Result Analysis . 277

9.6.1 Number of Defects Identified in the Product 277

9.6.2 Number of Change Requests Received 278

9.6.3 Features Rolled Out with Respect to Time 280

9.6.4 Time of Error Detection . 280

9.7 Discussion . 281

10 Conclusions 285

10.1 Introduction . 285

10.2 Major Findings . 286

10.3 Applications of the Work . 292

10.4 Future Work . 295

Bibliography 296

Supervisor’s Biography 325

Author’s Biography 327

xvii

List of Publications

Papers Accepted/Published in International/National Journals

1. Ruchika Malhotra and Anuradha Chug, Software Maintainability: Systematic Litera-

ture Review and Current Trends, International Journal of Software Engineering and

Knowledge Engineering, World Scientific Publishing, Index in Science Citation In-

dex (SCI) and Thomson Reuters, Impact Factor:0.368. (In Printing)

2. Anuradha Chug and Ruchika Malhotra, Bench-Marking Framework for Maintainabil-

ity Prediction of Open Source Software using Object-Oriented Metrics, International

Journal of Innovative Computing, Information and Control, 1(2): pp. 615-634, 2016.

Index in SCOPUS, Compendex (Elsevier) and INSPEC (IET) Impact Factor:0.295.

3. Ruchika Malhotra and Anuradha Chug, Software Maintainability Prediction using Ma-

chine Learning Algorithms, Software Engineering: An International Journal, 2(2):pp.

19-36, 2012.

4. Ruchika Malhotra and Anuradha Chug, Application of Group Method of Data Han-

dling model for software maintainability prediction using object-oriented systems,

International Journal of System Assurance Engineering and Management, Springer,

5(2): pp. 165-173, 2014. Index in SCOPUS, Compendex (Elsevier) and DBLP,

OCLC, SCImage

xviii

Papers Accepted/Published in International Conferences

5. Ruchika Malhotra and Anuradha Chug, An Empirical Validation of Group Method

of Data Handling (GMDH) on Software Maintainability Prediction using Object-

Oriented Systems, International Conference on Quality, Reliability and Information

Technology, 27-29 Nov 2012, New Delhi, India.

6. Ruchika Malhotra and Anuradha Chug, Software Maintenance Prediction with the

help of Machine Learning Algorithms, National Conferences on Recent advances in

Software Engineering, 20-21 April 2012, New Delhi, India.

7. Ruchika Malhotra and Anuradha Chug, Application of Evolutionary Algorithms for

Software Maintainability Prediction using Object-Oriented Metrics, 8th International

Conference on Bio-Inspired Information and Communication Technologies, BIONET-

ICS, 1-3 December 2014, Boston, MA, USA.

8. Ruchika Malhotra and Anuradha Chug, An Empirical Study to Redefine the Relation-

ship between Software Design Metrics and Maintainability in High Data Intensive Ap-

plications, Proceedings of the World Congress on Engineering and Computer Science

23-25 October, 2013, San Francisco, USA.

9. Ruchika Malhotra and Anuradha Chug, Comparative Analysis of Agile Methodol-

ogy and Iterative Enhancement Model in Assessment of Software Maintenance, Com-

puting for sustainable Global Development,IndiaCom, Conference ID 37465, 15-16

March 2016, New Delhi, India.

10. Ruchika Malhotra and Anuradha Chug, An Empirical Study to Assess the Effects of

Refactoring on Software Maintainability, International Conference on Advances in

Computing, Communications and Informatics, ICACCI-2016, IEEE Conference ID

38419, 20-22 September 2016, Jaipur, India.(Accepted for publication)

xix

Papers Published as Book Chapter

11. Ruchika Malhotra and Anuradha Chug, Metric Suite for Predicting Software Main-

tainability in Data Intensive Applications, Book Chapter, pp. 161-175, Transactions

on Engineering Technologies, Springer, February, 2014.

Papers Communicated in International Conferences/ Journals

12. Ruchika Malhotra and Anuradha Chug, Estimating Software Maintenance Efforts us-

ing Evolutionary Approach, Journal, Informatica: Journal of Computing and Infor-

matics.

xx

List of Tables

1.1 Software Quality Attributes (Source: Book, Object Oriented Software Engi-

neering by Yogesh Singh and Ruchika Malhotra) 4

2.1 Characteristics of Proprietary Software . 54

2.2 Characteristics of Open Source Software 61

3.1 List of Important Journals in the Field of Software Maintenance 98

3.2 List of Research Questions . 99

3.3 Quality Assessment Measures . 103

3.4 List of Selected Studies in the Field of Software Maintenance 104

3.5 Types of Modeling/ Methods used to Judge Maintainability 110

3.6 Metric Suite Proposed in Empirical Studies 113

3.7 List of Important Tools to Measure Design Metrics 115

3.8 Kind of dataset Used for Empirical Validations 116

3.9 List of Commonly Used Prediction Accuracy Measures 118

4.1 Parameters Setup for Group Method of Data Handling 138

4.2 Weights Assigned to Each Independent Variable 139

4.3 Parameters Setup for Probabilistic Neural Networks 140

4.4 Parameters Setup for Genetic Algorithms on UIMS system 141

4.5 Parameters Setup for Genetic Algorithms on QUES system 141

4.6 Descriptive Statistics of UIMS dataset . 143

xxi

4.7 Descriptive Statistics of QUES dataset . 143

4.8 Prediction Accuracy Measures for Various Techniques on UIMS dataset . . 145

4.9 Prediction Accuracy Measures for Various Techniques on QUES dataset . . 145

4.10 Results of Various Prediction Accuracy Measures on UIMS dataset 146

4.11 Results of Various Prediction Accuracy Measures on QUES dataset 147

4.12 Results of Wilcoxon Test for MMRE Measure (paired with GMDH Model . 149

4.13 Wilcoxon Test for MMRE Measure (Paired with Genetic Algorithm Model) 150

4.14 Wilcoxon Test for MMRE Measure (Paired with PNN Model) 151

5.1 Metrics to Capture the Structural Complexity 158

5.2 Proposed New Metrics for Data Intensive Applications 158

5.3 Parameters Setup for Back Propagation Network 161

5.4 Parameters Setup for Kohonen Network 162

5.5 Parameters Setup for Feed Forward Neural Network 162

5.6 Parameters Setup for General Regression Neural Network 163

5.7 Parameters Setup for Group Method of Data Handling 163

5.8 Descriptive Statistics of FLM System . 164

5.9 Descriptive Statistics of EASY System . 164

5.10 Descriptive Statistics of SMS System . 165

5.11 Descriptive Statistics of IMS System . 165

5.12 Descriptive Statistics of ABP System . 166

5.13 Univariate Analysis between NODBC, SCCR and ‘Change’ 167

5.14 Multivariate Analysis between NODBC, SCCR and Dependent variable

‘Change’ . 168

5.15 Pearson Correlation Coefficient at 0.01 Level of Significance (Two-Tailed) . 169

5.16 Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric

Suite with Back Propagation Neural Network Machine Learning Technique 170

xxii

5.17 Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric

Suite with Kohonen Network Machine Learning Technique 171

5.18 Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric

Suite with Feed Forward Neural Network Machine Learning Technique . . 171

5.19 Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric

Suite with General Regression Neural Networks Machine Learning Technique 172

5.20 Prediction Accuracy Measures for Various Techniques on all datasets 175

5.21 Mean Rank assigned to Various Machine Learning techniques from Fried-

man Test Results w.r.t. MMRE Values . 176

6.1 Descriptive Statistics for Drumkit System 186

6.2 Descriptive Statistics for OpenCV System 187

6.3 Descriptive Statistics for Abdera System 188

6.4 Descriptive Statistics for Ivy System . 189

6.5 Descriptive Statistics for Log4J System 190

6.6 Descriptive Statistics for JEdit System . 191

6.7 Descriptive Statistics for JUnit System . 192

6.8 Metrics Obtained using Feature Subset Selection Technique 192

6.9 Mean Absolute Relative Error Values . 193

6.10 Root Mean Square Error Values . 193

6.11 Results of Prediction Techniques at 25% Accuracy 194

6.12 Results of Prediction Techniques at 75% Accuracy 194

6.13 Mean Ranking of Machine Learning Techniques by Friedman Test on Mean

Absolute Relative Error Value . 198

6.14 Mean Ranking of Machine Learning Techniques by Friedman Test on Root

Mean Square Error Values . 199

6.15 Computation of Pairwise Rank Difference Amongst all Machine Learning

Techniques in Terms of Mean Absolute Relative Error 200

xxiii

6.16 Computation of Pair Wise Rank Difference Amongst all Machine Learning

Techniques in Terms of Root Mean Square Error 202

7.1 Details of the Data Points for Open Source Software Systems 216

7.2 Descriptive Statistics for Apache POI 3.9 217

7.3 Descriptive Statistics for Apache Rave 0.21.1 217

7.4 Descriptive Statistics for OrDrumBox 0.6.5 218

7.5 Descriptive Statistics for HuDoKu 2.0 . 218

7.6 Descriptive Statistics for JWebUnit 1.2 . 218

7.7 Parameters Setup for Experiments . 220

7.8 Metrics Obtained using Feature Sub-Selection using Genetic Algorithm

Technique . 221

7.9 Results of Various Prediction Techniques on Apache Poi dataset 222

7.10 Results of Various Prediction Techniques on Apache Rave dataset 223

7.11 Results of Various Prediction Techniques on OrDrumBox dataset 224

7.12 Results of Various Prediction Techniques on HuDoKu dataset 225

7.13 Results of Various Prediction Techniques on JWebUnit dataset 226

7.14 Mean Ranking of Techniques by applying Friedman Test on MMRE Values 228

7.15 Mean Ranking of Techniques by Applying Friedman Test on MaxMRE Values228

7.16 Computation of Pair Wise Rank Difference among all Machine Learning

Techniques in terms of Mean Magnitude of Relative Error 230

7.17 Computation of pair wise rank difference among all Machine Learning tech-

niques in terms of MaxMRE . 232

8.1 Bad Smells and Respective Refactoring method 238

8.2 Descriptive Statistics of FLM System . 246

8.3 Descriptive Statistics of EASY System . 246

8.4 Descriptive Statistics of SMS System . 247

xxiv

8.5 Descriptive Statistics of IMS System . 247

8.6 Descriptive Statistics of ABP System . 248

8.7 Mean Effects of Extract Method Refactoring on OO Metrics 250

8.8 Mean Effects of Encapsulating Field Refactoring on OO Metrics 251

8.9 Mean Effects of Consolidate Conditional Expression Refactoring on OO

Metrics . 251

8.10 Mean Effects of Extract Class Refactoring on OO Metrics 252

8.11 Mean Effects of Hide Method Refactoring on OO Metrics 252

8.12 Z-Test Results for 5% Level of Significance Against the Change in the Values

of OO Metrics . 253

8.13 Cumulative Effects of all Refactoring Methods on OO Metrics 254

9.1 Number of Defects Identified in IEM and Scrum Method 278

9.2 Description of the Change Request Received 279

9.3 Features Rolled Out With Respect to Time in IEM Method 280

9.4 Features Rolled Out with Respect To Time in Scrum Method 281

9.5 Time of Defect Detection With IEM and Scrum Method 282

xxv

xxvi

List of Figures

1.1 Software Quality Attribute (Source: Book, Object Oriented Software Engi-

neering by Yogesh Singh and Ruchika Malhotra) 3

1.2 Reasons for the Changes in Software . 6

1.3 Approximate Cost Distribution of Entire Software Process Cycle Among its

Various Activities (Source: Omnext White Paper, 2014) 7

1.4 Types of Software Maintenance . 8

1.5 Relationship between the Cost and Time of Maintenance 10

1.6 Creation of Software Maintainability Prediction Model 11

1.7 Advantages of Predicting Software Maintenance 13

1.8 Ways of Improvements in Software Maintenance 36

2.1 Research Methodology . 45

2.2 Sources of Independent Variables . 47

2.3 Sources of Empirical Data . 52

2.4 Change Data Collection . 54

2.5 Process of Empirical Data Collection . 57

2.6 Classification of Features Subset Selection Methods 65

2.7 Factors Affecting Selection of Prediction Techniques 69

2.8 Architecture of Artificial Neural Network 77

3.1 Systematic Review Process . 96

xxvii

3.2 Distribution of Studies according to the Source of Publication 107

3.3 Year Wise Distribution of Studies . 108

3.4 Distribution of the use of Learning Techniques in Literature 111

3.5 Distribution of the use of Metric Suite in Literature 114

3.6 Distribution of the use of dataset in Literature 117

3.7 Distribution of the use of Accuracy Measures in Literature 119

4.1 Architecture of Group Method of Data Handling Technique 135

4.2 Comparison of Various Models with Reference to their MMRE values . . . 148

5.1 Comparison of Model 1 (M-1, Chidamber and Kemerer metric suite) and

Model 2 (M-2, Proposed metric suite) with Reference to their MMRE values 173

5.2 Comparison of Model 1 (M-1, Chidamber and Kemerer metric suite) and

Model 2 (M-2, Proposed metric suite) with Reference to Max MRE values . 173

5.3 Comparison of Model 1 (M-1, Chidamber and Kemerer metric suite) and

Model 2 (M-2, Proposed metric suite) at 25% prediction accuracy 174

5.4 Comparison of MMRE Prediction Accuracy Measure for Machine Learning

Various Techniques . 175

6.1 Mean Absolute Relative Error (MARE) Values of Machine Learning Tech-

nique on Corresponding datasets using 10-Fold Cross-Validation 196

6.2 Root Mean Square Error (RMSE) Values of Machine Learning Technique on

Corresponding datasets using 10-Fold Cross-Validation 197

7.1 Architecture of Evolutionary Techniques 209

7.2 Categories of Evolutionary Techniques . 211

7.3 Comparison of Various Models with Reference to their MMRE Values . . . 225

7.4 Comparison of Various Models with Reference to their Max MRE Values . 227

8.1 Steps Undertaken during the Refactoring Process 237

xxviii

8.2 Research Methodology . 240

8.3 Roadmap to Link Changes in OO Metric to Maintainability 248

8.4 Change in Metrics due to Refactoring . 255

9.1 Advantages of Agile Methodologies . 266

9.2 Disadvantages of Agile Methodologies . 267

9.3 Various Technologies Cover under Agile Method 268

9.4 Architecture of Iterative Enhance Model 272

9.5 Architecture of Scrum Model . 273

xxix

Abbreviations

ABPS Angel Bill Printing Software

ACC Average Cyclomatic Complexity

ACO Average Cyclomatic Complexity

AHF Attribute Hiding Factor

AID Access of Imported Data

AIF Attribute Inheritance Factor

AMLOC Average Method size in Lines Of Code

AMC Average Method Complexity

ANA Average Number of Ancestors

ANFIS Adaptive Neuro Fuzzy Inference System

ANN Artificial Neural Network

ANOVA Analysis Of Variance

API Application Programming Interface

APP Atom Publishing Protocol

ARE Absolute Relative Error

BPN Back Propagation Network

BBN Bayesian Belief Network

CA Cuckoo Algorithms

CAM Cohesion Among the Methods of a Class

CBO Coupling Between Object classes

CBM Coupling Between Methods

CC Cyclomatic Complexity

CCE Consolidate Conditional Expression

CD Critical Distance

CF Coupling Factor

xxx

CFS Correlation based Feature Subset-Selection

CFT Cross Functional Teams

CMC Class Method Complexity

CR Change Request

CTM Coupling Through Message passing

CIS Class Interface Size

CTA Coupling Through Abstract data type

DPD Dynamic Polymorphism in Descendants

DAC Data Abstraction Coupling

DAM Data Access Metric

DCC Direct Class Coupling

DCRS Defect Collection and Reporting System

DIT Depth of Inheritance Tree

DOQ Documentation Quality

DOD Definition of Done

DPA Dynamic Polymorphism in Ancestors

DT Decision Tree

DSC Design Size in Classes

EC Extract Class

EF Encapsulating Field

EM Extract Method

FFNN Feed Forward Neural Network

FIR Friedman’s Individual Rank

FLMS File Letter Monitoring Software

FP Function Point

FSS Feature Subset Selection

GA Genetic Algorithms

xxxi

GMDH Group Method of Data Handling

GRNN General Regression Neural Networks

GGAL GRNN with Genetic Adaptive Learning

HM Hide Method

HMM Hidden Markov Model

IC Inheritance Coupling

IDE Integrated Development Environment

IEM Iterative Enhancement Model

IMS Inventory Management Software

ISO International Organization for Standardization

IL Interaction Level

IS Interface Size

JERN Jordan Elman Recurrent Network

LCC Loose Class Cohesion

LCOM Lack of Cohesion in Methods

LCOM3 Lack of Cohesion Among Methods of a Class

LOC Lines of Code

LR Linear Regression

MARE Mean Absolute Relative Error

MARS Multiple Adaptive Regression Splines

MBLR Multivariate Binary Logistic Regression

MFA Method of Functional Abstraction

MHF Method Hiding Factor

MI Maintainability Index

MIF Method Inheritance Factor

MLR Multivariate Linear Regression

MMRE Mean Magnitude of Relative Error

xxxii

MOA Measure Of Aggression

MPC Message Passing Coupling

MPMT Mean Preventive Maintenance Time

MTTR Mean Time to Repair

MCMT Mean Corrective Maintenance Time

MaCMT Maximum Corrective Maintenance Time

MRE Magnitude of Relative Error

NAC Number of Ancestor Classes

NDC Number of Descendant Classes

NIHICP Non-Inheritance Information Flow-Based Coupling

IHICP Information Flow-Based Inheritance Coupling

NLM Number of Local Methods

NOC Number Of Children

NODBC Number of Data Base Connections

NOH Number of Hierarchies

NM Number of Methods

NOMA Number of Object/Memory Allocation

NOP Number of Polymorphic methods

NPM Number of Public Methods

NPV Number of Public Variables per class

NV Number of Variables per class

NMI Number of Methods Inherited by a subclass

NMO Number of Methods Overridden by a subclass

NMA Number of Methods Added by a subclass

NCR Number of times a class is Reused

NF Number of Friends of a class

OAC Operation Argument Complexity

xxxiii

OO Object Oriented

OVO Overloading in Stand-alone Classes

PCA Principal Component Analysis

PF Polymorphism Factor

PO Product Owner

PSO Particle Swarm Optimization

PM Number of Public Methods

PNN Probabilistic Neural Networks

QA Quality Assurance

QUES Quality Evaluation System

RFC Response For a Class

RMSE Root Mean Square Error

RQ Research Questions

RSC Readability of Source Code

SPA Static Polymorphism in Ancestors

SPD Static Polymorphism in Descendants

SCC Scrum Code Camp

SCCR Schema Complexity to Comment Ratio

SDLC Software Development Life Cycle

SIX Specialization IndeX

SLR Stepwise Logistic Regression

SMS Student Management Software

SOUL Smalltalk Open Unification Language

SRS Software Requirement Specification

SVM Support Vector Machine

TCC Tight Class Cohesion

UIMS User Interface Management System

xxxiv

UOS Understandability Of Software

WMC Weighted Methods per Class

XP eXtreme Programming

xxxv

Chapter 1

Introduction and Literature Survey

1.1 Introduction
Software quality is defined as the degree of excellence in terms of the purpose for which

it has been made. The major reason for developing the quality of the software upto a cer-

tain level is to make sure that the final delivered software is as per the requirements of the

customer and compliance of the well established standards given by few professional or-

ganizations such as ISO, IEEE etc. Maintaining high quality of the software saves a large

amount of time and money because it will have fewer defects as well as fewer requests for

any change in future.

Maintainability is one of the important attribute of software quality which determine how

easy it is to modify the software once it is delivered to the customer [63, 202]. Reducing the

cost and efforts required to maintain the software will lead to reduction in the overall cost of

the project because it consumes almost one third of the total cost of the software development

life cycle (SDLC). It is proved in many research studies that many quality attributes such as

maintainability, reliability, defects and fault proneness can be predicted during the early

stages of software development using source code metrics and past defect detection data

[34].

1

Chapter 1. Introduction and Literature Survey

In this chapter, we present an overview of software quality with a special focus on soft-

ware maintenance which is one of the most important software quality attribute. We present

the formal definition of software maintainability and discuss the problems associated with

software maintenance and other related core concepts. Various types of maintenance activi-

ties are also presented and in this regard, importance of software maintainability prediction

is being discussed. In the later part of the chapter, we have presented the literature review of

various software design metrics specially the Object Oriented (OO) metrics and prediction

models related to software maintainability since the main focus of our research is “software

maintainability prediction using OO metrics”.

In addition to the early estimation of maintenance efforts using software maintainability

prediction models as mentioned above, many other ways are also suggested in literature to

improve the design of the code and reduce the efforts required to carryout the maintenance

work. These techniques include Clean Code, Pair Programming, Consistent Design, Lean,

Crystal, Kanban, scrum, Refactoring, Agile Methodology, Exhaustive Testing, eXtreme Pro-

gramming (XP) etc. Out of these, two vital techniques refactoring and agile methodology

are being studied in greater details to understand their impact on software maintainability.

An overview of these techniques is also presented in this chapter. In the last section of this

chapter, we have presented the goals and organization of the thesis.

1.2 Software Quality

Modern civilization is heavily driven by software in all walks of life, be it an automobile,

communication device or household appliance. As the software is so widely used at each

and every place, maintaining the quality of the software is very important. A variety of

quality models have been proposed in the literature which describes software quality and

also proposed the procedures to ascertain the level of software quality by its measurement

[134]. An essential part of the software development process is to measure all aspects of

software quality throughout the SDLC phases and ensure its quality at desired level at all the

2

1.2. Software Quality

time.

According to ANSI Standard (ANSI/ASQC A3/1978)[95], the definition of the term

‘Quality’ is given as “Quality is the totality of features and characteristics of a product

or a service that bears on its ability to satisfy the given needs”.

Figure 1.1: Software Quality Attribute (Source: Book, Object Oriented Software Engineer-
ing by Yogesh Singh and Ruchika Malhotra)

As per the definition, software quality is defined as the degree to which software posses

a desired combination of various attributes such as Functionality, Testability, Adaptability,

Maintainability, Reliability, and Usability [202]. As shown in figure 1.1, first and the main

attribute is ‘functionality’ which focuses on the functions that are provided by the software

product. Second,‘testability’ which measures how easy is the process of creating the test

criterion for the given software. It also ensure that tester should be able to execute these

tests in order to determine if the criteria are met or not. Third, ‘adaptability’ which refers

to how well the software can adapt to changes in its environment or with its requirements.

3

Chapter 1. Introduction and Literature Survey

Fourth, ‘maintainability’ which defines the ability to identify and fix a fault within a software

component. Fifth, ‘reliability’ which means the capability of the software to maintain its

service provision under defined conditions for defined periods of time. Lastly, ‘usability’

which refers to the ease of use for a given function of the specific software. These main

characteristics are further broken down into sub-characteristics for their correct measurement

and management purpose as compiled in table 1.1.

Table 1.1: Software Quality Attributes (Source: Book, Object Oriented Software Engineer-
ing by Yogesh Singh and Ruchika Malhotra)

Functionality Completeness The extent to which the software is complete.
Correctness The extent to which the software is correct.
Efficiency The extent to which the resources are required.
Traceability The extent to which the requirement are traceable.
Security Measure whether software is able to prevent unauthorized

access.
Usability Learnability The extent to which the software is easy to learn.

Operability Measure how software is easy to operate.
User-
Friendliness

Interface between the software and user should be easy to
understand.

Installability Software should be easy to install.
Satisfaction The extent to which the software is able to prevent unautho-

rized access.
Testability Verifiability The extent to which the software meets standards, proce-

dures, and processes
Validable The extent to which the software is able to meet already set

criterion.
Reliability Robustness The extent to which the software can perform under adverse

circumstances.
Recoverability The ability and speed of the software to recover from crash

down situation.
Maintainability Agility The extent to which the software can accommodate change.

Modifiable The extent to which the software is easy to implement and
modify.

Readability Measure the understandability of the source code and asso-
ciated documents.

Flexibility The extent with which the software can be easily modified.
Adaptability Portability The extent to which the software can be transferable.

Interoperability The extent to which the software is compatible.

The conceptual framework of the quality attributes was provided by McCall [157], Bo-

4

1.3. Software Maintenance

hem [28] and International Organization for Standardization(ISO) [95]. First time it was

introduced by McCall [157], to bridge the gap between users and developers. In this model,

the software quality was divided into two levels i.e. quality factors and quality criteria [157].

There were three main representations for identifying the software quality. First is the ‘prod-

uct revision’ that influence the ability to change the software product. Second is ‘product

transitions’ that influence the ability to adapt the software to new environments. Third is

‘product operations’ that influence the extent to which the software fulfills its specification

[157].

One of the main constraints of McCall quality model [157] was that it does not take into

account for the performance characteristics of computer hardware. Hence, Boehm [28] in-

troduced another quality model consisting of three levels of quality attributes i.e. primary

uses, intermediate constructs and primitive constructs. Boehm Model [28] qualitatively de-

fined software quality on the basis of a given set of attributes and metrics. The quality model

proposed by Boehm [28] loosely retained the factor-measurable property arrangement and

the prime characteristic of quality is what they define as “general utility”. Hence, the first

and foremost assertion is that the software system must be useful in order to be considered

as a quality system. Mainly it concentrate on three issues: how well can I use it, how easy

is it to maintain it and can I still use it if I change my environment [28]. Although both

the models appear very similar due to the hierarchical structure maintained in both of them,

however the McCall’s model [157] mainly focuses on the precise measurement of the high-

level characteristics “As-is utility”, whereas wider range of characteristics are measured with

special focus on maintainability in the case of Boehm’s quality model [28].

1.3 Software Maintenance

Change is the inevitable characteristic of software systems which occur to eradicate de-

ficiencies if any, to correct existing faults, to make the software compatible, to increase user

satisfaction, to simplify the long code complexity, or to make the software adaptable with

5

Chapter 1. Introduction and Literature Survey

new hardware. As shown in figure 1.2, software needs to change after its release due to

various reasons.

Figure 1.2: Reasons for the Changes in Software

Among the many essential characteristics of software quality as discussed in section 1.1

such as understandability, analyzability, readability, portability etc. changeability is one of

the most important characteristics. According to Belady & Lehman [19], any developed

software should be able to accommodate the changes which may occur due to evolving

requirements, changing platforms or any other environmental pressure. According to IEEE

glossary [63], the definitions of software maintenance is given as “Software maintenance

is the process of modifying a software system or component after delivery to correct faults,

improve performances or other attributes, or adapt to a changed environment”.

The life of the software cycle consists of various activities which are broadly classified as

requirement, design, implementation, testing and maintenance. Maintenance activity starts

once the final product is delivered to the customer and it is considered as the most expensive

6

1.3. Software Maintenance

part of the software development process [39]. The cost of software maintenance is rising

dramatically as presented in figure 1.3.

Figure 1.3: Approximate Cost Distribution of Entire Software Process Cycle Among its
Various Activities (Source: Omnext White Paper, 2014)

It has been estimated in the white paper presented by Omnext in the year 2014 by Burki &

Harald [39] that nowadays software maintenance accounts for more than 90% of the total cost

of software, whereas it was around 50% a couple of decades ago. Systems tend to become

increasingly complex and it has become extremely hard to maintain over time. Rebuilding a

system is usually not an option because the system that needs to be replaced is large, the test

coverage unknown and the original and modified requirements are not well documented.

Since the final cost of the product is decided based on the investments made during the

maintenance phase, therefore any efforts to reduce time and cost during this phase would

certainly reduce the overall cost of the product. In this backdrop, researchers are actively

engaged to increase the ease of carrying out the maintenance work so that the total cost of

the software product can be drastically reduced.

1.3.1 Types of Software Maintenance

Throughout the life of the software, type of maintenance activity may vary depending

upon its nature. It may be just a routine maintenance tasks because some bug discovered by

7

Chapter 1. Introduction and Literature Survey

some user or it may be a large event in itself based on maintenance size or nature. Four types

of maintenance activities based on their characteristics are shown in figure 1.4 and explained

as under:

1.3.1.1 Corrective Maintenance:

Maintenance activities performed to correct faults in hardware or software. This type

of maintenance tasks includes modifications and updations done in order to correct or fix

problems, which are either discovered by user or concluded by user error reports.

1.3.1.2 Adaptive Maintenance:

Maintenance activities performed to make a computer program usable in a changed en-

vironment. This maintenance task includes modifications and updations which are applied

to keep the software product up-to date and tuned to the ever changing world of technology

and business environment.

Figure 1.4: Types of Software Maintenance

8

1.3. Software Maintenance

1.3.1.3 Perfective Maintenance:

Maintenance activities performed to improve the quality of the software and make it

perfect. This type of maintenance task includes modifications and updates done in order to

keep the software usable over long period of time. It includes new features, refactoring, new

user requirements for refining the software and improve its reliability and performance.

1.3.1.4 Preventive Maintenance:

Maintenance activities that are concern with the prevention of defined issues in the soft-

ware maintenance phase of a given software. This maintenance task includes modifications

and updations to prevent future problems of the software. It aims to attend problems, which

are not significant at this moment but may cause serious issues in future.

Further, it is important that while measuring software maintenance, utmost care should be

taken to ensure that measurement processes are independent of the language and technology.

These methods should be straight forward to avoid any chance of ambiguity. Calculation of

these methods should be easy, repeatable and also understandable.

1.3.2 Software Maintainability

Software maintainability is defined as the degree to which the software can be changed

in terms of Lines Of Code (LOC). For the software engineers, ability to cope up with these

changes in the environment has been a challenging task and any software will undergo early

demise if it does not have the capability to change. Software maintenance and evolution is a

continuous process in the development of the software. If we can predict the changeability

from the very beginning of the product life cycle with the help of some prediction model, it

will reduce the maintenance cost due to better planning and hence improve the overall soft-

ware quality. The key software maintenance issues are both managerial as well as technical.

From a management view, it involves alignment with customer priorities, staffing and cost

estimation while from a technical point of view, it involves an understanding of the code,

impact analysis and testing.

9

Chapter 1. Introduction and Literature Survey

Software maintainability is the collection of partly uncorrelated factors which should be

monitored through its components rather than one single measurement [3]. Software Main-

tainability is a very important constituent of the Software Quality. As per the standards

defined in ISO 9126 quality model [95], maintainability consists of four attributes viz Ana-

lyzability, Changeability, Stability and Testability. Software maintainability prediction is a

process in which the maintenance behaviors of the software is predicted in the early phases

of SDLC so that timely measures can be taken to improve the overall maintainability of the

software product.

Figure 1.5: Relationship between the Cost and Time of Maintenance

As shown in figure 1.5, the amount of resource, efforts and time spent for correcting

an error during maintenance is much more than doing it during the early stages of product

development life cycle [171]. Hence, it is always a matter of interest for the researchers to

construct prediction model for software maintainability.

1.3.3 Prediction Model for Software Maintainability
Software maintainability prediction involves the prediction of software maintainability

in the early phases of SDLC. It helps in identifying those week areas of the software which

10

1.3. Software Maintenance

can be improved to ensure overall quality of the software product. This can be carried out

by constructing empirical models which can predict the external quality attributes as a func-

tion of various measurable internal quality attributes. External quality attributes are referred

as target attributes (dependent variable) and the internal attributes are known as predictor

attributes (independent variable).

Once the prediction models are constructed, it allows the user to measure the internal

quality attributes using design metrics (discussed in next section 1.4) and estimate the re-

quired maintenance efforts in the early phase of the software development. As shown in

figure 1.6, construction of prediction model consists of three phases i.e. training, testing and

predicting the dependent variable.

Figure 1.6: Creation of Software Maintainability Prediction Model

The first phase, i.e. the training or the learning phase uses the training data (for which

the values of the target attribute are known) for building a model. Different classification

techniques are applied on a part of the training data to build the prediction model [135]. The

technique for making prediction model construction starts by dividing the data into two parts

training and testing usually in 70:30 ratios. The training data is used during model devel-

11

Chapter 1. Introduction and Literature Survey

opment in which the model is trained by identifying the relationship between independent

variables and dependent variable. These relationships are further captured in the model in the

form of various classification rules which can actually be used during prediction process. In

the next phase which is called as testing phase, these learned classification rules are applied

on remaining 30% of the data to obtain the predicted value of the dependent variable [135].

This predicted value is further compared with the actual value of the dependent variable

to determine the predictive capability of the model. If the error of the model is in the ac-

ceptable range then this model enters into the third phase i.e. prediction phase where it can

be used on new data in which independent variables are known and dependent variable is

unknown. Once the generalized model is ready after testing and validations, it can further

be used for industry applications. On the basis of the classification rules learned in the first

phase, the value of the dependent variable can be predicted using independent variables. The

prediction model development process consists of the following steps in brief:

1. History dataset is divided into two parts i.e. training and testing

2. From the available independent attributes, only relevant independent attributes are se-

lected using correlation analysis discussed in chapter 2.

3. Model is developed using statistical and machine learning techniques

4. Model is validated using various techniques such as holdout cross-validation method,

n-fold cross-validation method and Leave one out cross-validation method (Discussed

in section 2.12).

5. With the help of various statistical tests, hypothesis testing is performed.

6. Results are interpreted and accuracy of the model is determined.

7. If the errors is in acceptable range, model is used for the industry applications.

Various empirical studies have been conducted in past on this aspect and there has

emerged a strong link between software design metrics and its maintainability. It has also

12

1.3. Software Maintenance

been found that these software metrics can be used as predictors of maintenance effort. Fig-

ure 1.7 display benefits of predicting software maintainability to various stakeholders.

Figure 1.7: Advantages of Predicting Software Maintenance

Further, the advantages of maintainability prediction are summarized as follows:

• It helps project managers in comparing the productivity and costs among different

projects.

• It provides managers with information so that the available resources can be planned

more effectively.

• It helps managers in taking a vital decision regarding staff allocation.

• It guides about the efficiency of the maintenance process.

• It helps in keeping future maintenance efforts under control.

13

Chapter 1. Introduction and Literature Survey

• It enables the developers to identify the determinants of software quality so that they

can improve design and coding.

• It helps practitioners to improve the quality of software systems and thus optimize

maintenance costs.

Software maintainability prediction helps to analyze and thus take corrective actions to

improve the life of the software. By better understanding of software maintainability predic-

tion, we can work on to reduce system repair times, thereby reducing downtime and increas-

ing our system availability. Efficient software maintainability prediction models allow us to

define our repair tasks and freely reuse this information throughout in an effort to improve

our design.

1.4 Software Metrics
Software metrics are used for monitoring and improving various processes and products

in software engineering. The rationale arises from the notion given by DeMarco [148] that

“you cannot control what you cannot measure”. While developing any software project,

it is very important that we measure the quality, cost and effectiveness of the project and

the processes, otherwise we would not be able to successfully complete the product within

allocated budget in the specified time limits. Controlling the software projects and improving

the quality of the software can be done by means of software metrics.

The formal definition of the software metric given by Goodman [79] as “The continuous

application of measurement based techniques to the software development process and its

products to supply meaningful and timely management information, together with the use of

those techniques to improve that process and its products.”

The above definition explains the importance of software metrics and insists that they

should be collected right from the initial phases of software development to measure the

cost, size, and effort of the project and they can be used to ascertain and monitor the progress

of the software throughout the SDLC. Achieving the software quality is a key task for any

14

1.4. Software Metrics

software industry which is hard to achieve because the complexity of the software tends to

be high. The main aim of a software metric is to understand and analyze the quality of a

given software product at each and every phase by its measurement. The main advantages of

software metrics are summarized as under:

• Project status can be easily tracked.

• Helps in the detection of the defect in early phases of the software development.

• Overall cost reduces due to early removal of defects.

• Effective and informed decision can be taken by project managers.

• Project management as well as process management can be improved.

• Statistics can be presented in an organized manner to the management.

• Testers can compare the values of software metrics with respective thresh hold values

established by researchers.

• Reduces the risk for managers.

• Back-tracking of the changes in order to remove bugs becomes very easy.

• Historical data can be collected which further helps the testing process to be more

effective

• Change control can be easily accomplished without confusion.

1.4.1 Characteristics of Software Metrics

Measuring the structural design properties of a software system such as coupling, cohe-

sion or inheritance and deploying them for early quality assessment for a given software is

suggested by many researchers. There are several metrics proposed in the literature to cap-

ture the quality of design and code and choosing the right metrics is equally important. Seven

15

Chapter 1. Introduction and Literature Survey

criteria were suggested by Abreu and Carapuca [2] while selecting the best design metrics

such as size-independence, down-salable, easily computatable, language independent, early

obtainable and dimensionless. A metric is only relevant if it is easily understood, calculated,

valid, and economical. Following are the important characteristics of software metrics [135]:

• Quantitative: The metrics should be expressible in values.

• Understandable: The way of computing the metric must be easy to understand.

• Validatable: The metric should capture the same attribute that it is designed for.

• Economical: It should be economical to measure a metric.

• Repeatable: The values should be same if measured repeatedly, that is, can be consis-

tently repeated.

• Language independent: The metrics should not depend on any language.

• Applicability: The metric should be applicable in the early phases of software devel-

opment.

• Comparable: The metric should correlate with another metric capturing the same fea-

ture or concept.

1.5 Literature Survey
This section is divided into five parts wherein the first section provides the summary of

traditional software metrics. Next section provides the details about a current state where

OO metrics are used to predict the respective maintainability of the software. In the next

section, we describe the literature work regarding software maintainability prediction for

OO software. In the next section, refactoring techniques and their effects on software main-

tainability are presented. In the last section, review of the use of agile methodology for

improving software maintenance is presented.

16

1.5. Literature Survey

1.5.1 Traditional Metrics

Research in the field of software metrics was carried out on the basis that we can improve

quality and productivity of the software only by measuring its characteristics. LOC was

the very first and simplest metric proposed in literature. McCabe [156] proposed another

metric to quantify the complexity of the code for procedural languages known as Cyclomatic

Complexity (CC) and it became quite popular among researchers. Many other metrics were

also proposed from the year 1970 to the year 1990 such as Halstead Software Science Metrics

[83], information flow metrics by Henry and Kafura [90], and Maintainability Index (MI)

by Oman and Hagemeister [168]. MI was defined as a compositely variable consisting of

Halstead Volume (HV), Number of unique operators and operands in source code, CC of

the code, LOC per module in the source code and COMMENT(COM) and it becomes very

popular during that period. Sneed and Meray [204] presented number of features which were

reportedly associated with software maintainability such as impact rate, efforts, error rate

and subjective evaluation. In the year 1990, Rombach [186] described through controlled

experiment that the software systems written in OO language are more maintainable than the

software systems written in a conventional language. A survey conducted by Daly [55] et

al. in the year 1996 showed the same results. Hence, number of metrics that measure OO

characteristics such as coupling, cohesion, inheritance and abstraction were proposed. We

briefly describe these metrics in the next section.

1.5.2 Object Oriented Metrics

Many metric suites have been proposed to measure OO software including Chidamber

and Kemerer [43] metric suite, Li and Henry [127] metric suite, Wei Li [126] metric suite,

Chen and Lum [42] metric suite, Lee et al. [123] metric suite, Abreu and Carapuca [2] metric

suite, Lorenz and Kidd [132] metric suite, Tang et al. [216] metric suite, Bansiya and Davis

[15] metric suite and Henderson-Sellers [89] metric suite.

The first and very popular OO metric suite was proposed by Chidamber and Kemerer

17

Chapter 1. Introduction and Literature Survey

in year 1991 [43] famously known as C&K metric suite. It consists of six design metrics

to measure various characteristics of OO paradigm such as inheritance, coupling, cohesion,

abstraction etc. These six metrics are Coupling Between Object classes (CBO), Response

For a Class (RFC), Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT),

Number Of Children (NOC), and Lack of Cohesion in Methods (LCOM).

Li and Henry [127] performed the empirical investigation of the metric suite proposed by

Chidamber and Kemerer and pointed out that this metric suite does not take into account the

structural complexity of the software. Hence, they added five metrics to the Chidamber and

Kemerer metric suite namely Message Passing Coupling (MPC), Data Abstraction Coupling

(DAC), Number of Methods (NOM), SIZE1 and SIZE2.

In 1998, Li [126] proposed a new metric suite to measure various features of OO

paradigm and further performed their empirical validation. These are Number of Ances-

tor Classes (NAC), Number of Local Methods (NLM), Class Method Complexity (CMC),

Number of Descendant Classes (NDC), Coupling Through Abstract data type (CTA) and

Coupling Through Message passing (CTM). All metrics except NDC had been already em-

pirically validated in a previous study conducted by Li and Henry [127] in predicting main-

tenance effort.

Abreu and Carapuca [2] proposed another metric suite famously known as MOOD metric

suite. Original MOOD metric suite consists of six metrics Method Hiding Factor (MHF), At-

tribute Hiding Factor (AHF), Method Inheritance Factor (MIF), Attribute Inheritance Factor

(AIF), Polymorphism Factor (PF) and Coupling Factor (CF).

Bansiya and Davis [15] made few enhancements into the MOOD metrics suite proposed

by [2] and subsequently proposed QMOOD metric suite. It contains eleven metrics i.e.

Design Size in Classes (DSC), Number of Hierarchies (NOH), Average Number of Ancestors

(ANA), Data Access Metric (DAM), Direct Class Coupling (DCC), Class Interface Size

(CIS), Measure of Aggregation (MOA), Cohesion Among Methods of class (CAM), Measure

of Functional Abstraction (MFA), Number of Polymorphic methods (NOP) and Number Of

18

1.5. Literature Survey

Methods (NOM).

Lorenz and Kidd [132] proposed metric suite consisting of eleven metrics to quantify

software quality evaluation. The proposed metrics were categorized according to three

groups i.e. class size metrics, class inheritance metrics and class internals metrics. Lorenz

and Kidd’s metrics were defined to measure the static characteristics of software design, such

as the usage of inheritance, the amount of responsibilities in a class etc. The ten metrics were

Number of Public Methods (PM), Number of Methods (NM), Number of Public Variables

per class (NPV), Number of Variables per class (NV), Number of Methods Inherited by a

subclass (NMI), Number of Methods Overridden by a subclass (NMO), Number of Meth-

ods Added by a subclass (NMA), Average Method Size, Number of times a class is Reused

(NCR) and Number of Friends of a class (NF).

Bieman and Kang [25] introduced two new metrics to measure the cohesion between

the class: Tight Class Cohesion (TCC) and Loose Class Cohesion (LCC). While calculating

TCC and LCC, only those methods were considered which were visible. The impact of TCC

and LCC on software quality was also established that higher the values of TCC and LCC,

the classes would be more cohesive classes which lead to better software quality. They also

consider the methods pairs using instance variables in common. Two methods are directly

related if they both use either directly or indirectly a common instance variable. TCC is

defined as the percentage of methods pairs, which are directly related. LCC is defined as the

percentage of methods pairs, which are either directly or indirectly related .

Li and Henry [127] redefine LCOM in the year 1993 and named it as LCOM3. It is

defined as the number of disjoint sets of methods. Each set contains only methods that share

at least one attribute. The lack-of-cohesion in methods, LCOM3, is defined as the number

of connected components in the graph. The model used in the LCOM3 metric is extended in

by adding an edge between a pair of methods if one of them invokes the other.

Hitz and Montazeri [92] define a measure LCOM4 to measure the cohesion in terms of

the connectivity between classes. This connectivity based metric is similar to LCOM3 metric

19

Chapter 1. Introduction and Literature Survey

proposed by Li [128] and applied when the graph has at least one connected component.

In this case, some additional edges are added by taking into account the number of edges

between connected component for method invocations.

Lee et al. [123] identified the difference between inheritance and non-inheritance based

coupling and emphasized that since information flow-based coupling is based on method

invocations, it takes polymorphism into account. Overall coupling was calculated as the sum

of Non Inheritance information flow-based coupling (NIHICP) and Information flow-based

inheritance coupling (IHICP).

In 1999, Tang et al. [216] presented a new set of metrics consisting of four metrics, In-

heritance Coupling (IC), Coupling Between Methods (CBM), Average Method Complexity

(AMC) and Number of Object/Memory Allocation (NOMA). The IC provides the number

of parent classes to which a given class is coupled. The CBM provides the total number of

new/redefined methods to which all the inherited methods are coupled. NOMA measures

the total number of statements that allocate new objects or memories in a class. The AMC

provides the average method size for each class. Pure virtual methods and inherited methods

are not counted.

In 1996 to measure the cohesion between classes, Henderson-sellers [89] redefined the

LOCM3 variable proposed by Li et al. [128] and proposed another metric LCOM5 which

considers the number of methods referencing each attribute. This metric was based on the

number of referenced instance variables. A class is considered as more cohesive when a

large number of its instance variables are referenced by a method. In 1997, Number of cou-

pling metrics for OO software has been proposed by Briand et al. [35] and three dimensions

of coupling were identified, Interaction, Inheritance and Component coupling. These met-

rics takes into account the different OO design mechanisms provided by the C++ language:

friendship, classes, specialization and aggregation.

In 1999, Benlarbi and Melo [20] defined a suite of five polymorphism metrics to measure

run time polymorphism as well as compile time polymorphism as Overloading in stand-alone

20

1.5. Literature Survey

classes (OVO), Static Polymorphism in Ancestors (SPA), Static Polymorphism in Descen-

dants (SPD), Dynamic Polymorphism in Ancestors (DPA) and Dynamic Polymorphism in

Descendants (DPD).

Critical analysis of such metric suite were also conducted by many researchers such as

Grady [80], Hitz [92] and Mayer and Hall [155]. They also carried out empirical investi-

gations to verify and validate the proposed metric suite in terms of their effect on software

maintainability. In one of the another study conducted by Tang et al. [216], Chidamber

and Kemerer metric suite was analyzed using three C++ based industrial applications and

found none of the metrics to be significant except RFC and WMC. Several OO metrics are

captured using the design properties such as cohesion, coupling, polymorphism, abstraction

and inheritance to predict important quality attributes such as fault-proneness, defect predic-

tion, testing efforts, maintenance effort and productivity. Empirical analysis of OO metrics

is performed and evidence are collected in order to establish strong relationship between OO

metric and software quality by Malhotra [134].

1.5.3 Software Maintainability Prediction
Belady and Lehman [19] first introduced this word in the year 1969 stating that mainte-

nance phase consists of all those activities which are performed once the development is over

and product is handed over to the customer. It was a common perception that maintenance

means fixing the errors, however, they demonstrated that maintenance is evolutionary devel-

opment and software system gets complex over a period of time. Apart from fixing the errors

during the maintenance phase, some activities are also needed to reduce the complexity of

the code such as restructuring of the code, removal of duplicate code etc.

Between the period from 1969 to 1990, researchers like Yau and Collofello [232] and

Yau et al. [233] concentrated more on good programming rather than designing to make

the software more maintainable. Swanson [215] also pointed that maintainability of the

software system is important as it consume the largest part of the total project cost. If the

maintainability of the software system is not good, it cannot accommodate changes quickly

21

Chapter 1. Introduction and Literature Survey

which means business opportunities would be lost forever. Problems in maintenance process

were also identified by Martin and McClure [150] and Nosek and Palvia [167]. A survey

was conducted by Lientz and Swanson [129] in which they exposed that very high fraction

of total project cost is expanded on software maintenance. They also categorized the types of

maintenance into four different activities as Adaptive, Perfective, Corrective and Preventive

maintenance as discussed previously in section 1.3.1.

A model was proposed by Banker et al. [14] for a maintenance project in which the

software written in COBOL was studied. They found that apart from Function Point (FP)

and LOC, the maintenance also depends upon many factors such as skills of the programmer,

expertise and experience of the programmer, the use of a structured design methodology,

the availability of a fast turnaround programming environment, density of the non-benign

GOTO statements, Method used by the programmers and the response of the programming

environment.

The metric suite proposed by Chidamber and Kemerer [43] and Li [126] became quite

popular and evaluated analytically in several studies by many researchers including Aggar-

wal et al. [6], Briand et al.[34], Bandi et al. [13], Dagpinar and Jahnke [53], Elish and Elish

[62], Kaur et al. [106], Koten and Gray [118], Malhotra and Chug [137], Tang et al. [216],

Thwin and Quah [219], and Zhou and Leung [237]. In all of these empirical studies, it is

observed and empirically validated that the OO metrics can be used to measure the structural

quality of a code in general and maintainability in particular.

Li and Henry [127] attempted as early as in the year 1993 to validate Linear Regres-

sion (LR) model using two proprietary datasets for evaluating the relationship between Chi-

damber and Kemerer metric suite and maintainability, theoretically as per the framework

proposed by Kitchenham et al. [111]. Their results indicated that approximately a total of

90% total variance in maintenance effort is accounted by Chidamber and Kemerer metrics.

In their study, the datasets of two proprietary software systems User Interface Management

System (UIMS) and Quality Evaluation System (QUES) was used.

22

1.5. Literature Survey

Stavrinoudis et al. [210] explored the relationship between metrics and maintainabil-

ity by conducting a large-scale survey in five major projects. Questionnaire was generated

consisting of every factor pertaining to maintainability with an aim to measure the external

attributes. Programmers also evaluated each module based on various attributes such as con-

sistency, simplicity, conciseness, expandability, correctability etc. Internal measurements

were also collected using automatic tools based on software measurement and metrics envi-

ronment. They found high correlation between the software metrics score and the opinion

from the programmers with regard to maintainability.

In 2002, Aggarwal et al. [5] proposed multiple parameters for software complexity mea-

surement consisting of three factors i.e. Readability of Source Code (RSC), Documentation

Quality (DOQ) and Understandability of Software (UOS). Fuzzy based model was created

to measure these three factors and they were found to be highly correlated to software main-

tainability by the authors.

Fioravanti and Nesi [68] presented a framework for metric analysis and identified that

which metric would be better ranked for its impact on the prediction of adaptive maintenance

of OO systems. They observed that as the traditional metrics neglect the information about

class specialization in OO paradigm, hence not fit for use. In order to find the complexity

of a given class, they defined a new Metric Class Complexity (MCC) as the sum of External

Class Description (ECD) and Internal Class Implementation (ICI). ECD is the complexity

of the class due to class definition including method interface definition whereas ICI is the

complexity of the class due to method implementation.

Bandi et al. [13] conducted an empirical study to validate three complexity metrics

namely Operation Argument Complexity (OAC), Interface Size (IS) and Interaction Level

(IL) and verified that these three metrics can be used successfully to assess respective main-

tenance time.

Software maintenance for sure plays a determinant role in finding the total project cost

of any software. As per the definition of IEEE Standard 828-1998 [63], we can measure

23

Chapter 1. Introduction and Literature Survey

maintainability of the software during operational phase only, however, because of the fact

that precaution is better than cure, it’s more desirable to determine the maintainability during

the development phase itself. In this regard, as suggested by Jorgensen [101] and Lucia et al.

[133], most important method to crack this issue is by developing prediction models which

can be deployed during the early phases of the software project development using OO met-

rics. Jorgensen [101] also suggested that prediction of software maintenance reduces the

future maintenance efforts because developers can improve the design or coding by identify-

ing the determinants of software maintainability. It also provides warning signs to managers

well in advance with information for making effective planning and taking corrective ac-

tions using their valuable resources more judiciously. Lucia et al. [133] specifically worked

on corrective maintenance where the data was collected from five maintenance projects car-

ried by industry. A prediction model was constructed using Multivariate Linear Regression

(MLR) technique to estimate the costs of a project by taking into account various task asso-

ciated with corrective maintenance work only.

In two research studies Jin & Liu [100] and Misra [162], datasets developed from the

students’ software were used to validate the prediction models. In the first study by Jin and

Liu [100] prediction model was validated using the datasets collected from the software sys-

tems developed by graduate students. Their results show that when Support Vector Machine

(SVM) is combined with clustering for the purpose of maintenance effort predictions, the

correlation between Chidamber and Kemerer metric suite and maintainability was found to

be as high as 0.769 which is statistically quite significant. In the study conducted by Misra

[162] the datasets were collected from pools of 50 C++ programmes and deployed them in

LR techniques. Intuitive analysis based model using more than twenty design and code mea-

sures was also used. He concluded that two most important measures should always be kept

in mind while coding. Firstly, any functions (modules) should not be more than two screens

long. Secondly, spaghetti code which looks exactly like spaghetti with the presence of goto

like unstructured statement should be as avoided as much possible. He also found out that

24

1.5. Literature Survey

it’s the Average Method size in Lines Of Code (AMLOC) metric which works as significant

predictor of the subsequent maintainability of any given software. Strong negative influence

of Method Hiding Factor (MHF) on maintainability was also reported in his study which

means as the level of abstraction increases in a class, consequently, its maintainability de-

creases. Interestingly this observation was found to be just contrary to the intuitive analysis

performed by the author. It was hypothesized that increasing method hiding in a class will

result in less maintenance effort in the future, i.e. improve its maintainability. However, this

may not be the case when the level of abstraction is too high such that important aspects of

the design are lost. As a consequence, maintenance effort will be expensive in the system

evolution phase.

Dagpinar and Jhanke [53] suggested that instead of design level metrics of structure

languages, OO metrics should be used for precise capturing while making any prediction

model. Further, they also recorded the significant impact of direct coupling metric and size

metric on software maintainability instead of other metrics such as cohesion, inheritance and

indirect coupling.

Xia and Srikanth [227] suggested a change impact dependency measure for predicting

the maintainability of source code. They suggested that dependency is an essential aspect to

consider for designing the architecture of complex systems and it directly affects the main-

tainability and many another quality attribute of software. They further added that the notion

of dependency is vague and subject to different interpretations. For some it’s static while for

others it is considered as dynamic.

Aggarwal et al. [4] proposed a fuzzy model to measure the software maintainability.

They stated that apart from other metrics proposed earlier, maintainability also depends on

two other factors unnoticed i.e. average number of live variable and average life span of a

variable. They proposed a model that considers the effect of these two factors along with two

traditional variables i.e. Comments Ratio and Average Cyclomatic complexity (ACC). One

of another empirical study conducted by Aggarwal et al. [6] suggested that Artificial Neural

25

Chapter 1. Introduction and Literature Survey

Network (ANN) is a very useful technique for maintainability predictions. Metric suite

proposed by Li and Henry [127] is used in their study and it was found that 72% accuracy

can be achieved while using ANN. The study also suggested that since the performance of

ANN is mainly dependent on the data on which it is trained, it is the matter of availability of

the suitable dataset on which accuracy of the prediction model depends.

Zhou and Leung [237], employed comparatively new modeling technique named Multi-

ple Adaptive Regression Splines (MARS) to build software maintainability prediction model.

They compared their results with artificial network models, regression tree models, and sup-

port vector models. They found that the proposed MARS model could achieve the value of

R-square as 0.837 with QUES dataset and 0.656 with UIMS dataset which is quite competi-

tive.

Koten and Gray [118] further validated Bayesian Belief Network (BBN) (also known as

Bayes Net, Causal Probabilistic Network, Bayesian Network or Belief Network) using 10-

cross-validation on the UIMS and QUES dataset given by Li and Henry [127] and found it

to be significantly better model in terms of determining prediction accuracy. They observed

that for the UIMS dataset, the BBN model outperformed the regression tree model as well

as multiple linear regression model. For the QUES dataset, even though BBN was not as

good as it was for the UIMS dataset, but still worked out be reasonably accurate against

other regression models. They concluded that performance of BBN mainly depends upon

the characteristics of datasets.

Prasanth et al. [176] stated that maintainability could be improved through risk analysis

and introduced a risk-based approach to find and fix the most important problems as quickly

as possible. In their study, risk was characterized by combination of two factors, the severity

of a potential failure event and the probability of its occurrence.

Elish and Elish [62] corroborated relatively new technique, TreeNets for software main-

tainability predictions. They compared their results with other prevalent models and found

them to be very cost effective with more prediction accuracy on UIMS and QUES datasets.

26

1.5. Literature Survey

The results were analyzed using various prediction accuracy measures such as Magnitude of

Relative Error (MRE), Mean Magnitude of Relative Error (MMRE), Mean Absolute Relative

Error (MARE) and Prediction accuracy with less than 25% error known as Pred(0.25).

Kaur et al. [106] conducted another study and analyzed the prediction capability of the

Adaptive Neuro Fuzzy Inference System (ANFIS) technique on UIMS and QUES dataset us-

ing Holdout validation and the outcome showed better performance as compared to previous

studies for making an efficient maintenance effort prediction model.

Again one of the important empirical studies was conducted by Ping [172] for the purpose

of software maintainability prediction using Hidden Markov Model (HMM). Health index

of the product is adjudged by assigning the weight on the process of maintenance behavior

invested over time and further related to software quality metrics using prediction model.

Every time probability of corrective maintenance time is compared with the threshold value

to determine the point when the software model is considered as obsolete.

A model based on multiple classifiers combination was proposed by Ye et al. [234]

which has three parts: attribute selection, model training and model interpretation. In this

model, genetic algorithm (GA) for attribute selection was used followed by Decision Tree

(DT) algorithm for rule extraction during the training process. More than 300 classes of open

source C++ software system were downloaded and used for the validation process.

Statistical comparison of various modeling techniques for software maintainability was

performed by Kaur and Kaur [105] using different regression and machine learning tech-

niques. Commonly used datasets UIMS and QUES proposed by Li and Henry [127] and

used by many researchers [53, 62, 106, 118, 137, 237] was also used in their study. Fried-

man test was also used to rank all prediction modeling techniques on the basis of prevalent

accuracy measures such as MMRE, RMSE, Pred(0.25) and Pred(0.30).

Apart from traditional metrics, maintainability prediction was performed using new pre-

dictor metrics by Kaur et al. [107]. Four open source software namely Lucene, JHotdraw,

JEdit, and JTreeview were used for conducting the empirical study. Five important machine

27

Chapter 1. Introduction and Literature Survey

learning techniques, multi layer perceptron, naive bayes, logistic regression, bayes network

and random forest classifiers were used to identify the software modules that are difficult to

maintain.

The researchers are always constrained against non-availability of genuine datasets to

conduct their validation studies and test newer prediction models of determining maintain-

ability. However, the datasets of two proprietary software systems UIMS and QUES made

public by Li and Henry [127] opened the doors for additional research studies to validate the

maintainability prediction models and therefore majority of researchers used this datasets in

their experiments. The datasets used in proprietary software also have a certain constraint

on the generalizability of the results because each system has been developed in different

language with different environment settings. The functioning of various machine learning

techniques also differs significantly because they produce contrasting results on different

software datasets. Apart from this, the generalization also cannot be done as different pre-

diction accuracy measures are used in different studies, which leads to the contrary results.

To overcome this problem Myrtveit et al. [165] suggested that more reliable research pro-

cedures must be developed before believing on the outcome of any one software prediction

model.

In open source software, practitioners across the globe are allowed to change, expand

and redistribute the newly created version without any requirement of the license [196]. Well

known successful stories of the open source software systems include Linux operating sys-

tem and Apache web server as reported by Samoladas et al. [192]. Changes in such software

are made continuously by a large number of software developers in order to improve their

functioning and usefulness. Estimating the maintainability of open source software systems

is very challenging task due to the lack of technical support and the absence of documen-

tation. Studies on observing the maintainability of open source software systems are very

limited. Only one study by Zhou and Xu [238] is found on open source software systems

and that too with the application of statistical predictive modeling. Even though Ramil et

28

1.5. Literature Survey

al. [180] has compiled many empirical studies which were conducted on open source soft-

ware systems, however, all those studies stress on intuitively judging the software evolution

based on the characteristics instead of creating a prediction model based on mathematical

functions.

The evolutionary techniques came in to existence in the early 1960s when four scien-

tists namely G.E.P. Box, G.J. Friedman, W.W. Bledsoe and H.J. Bremermann, developed

biological evolution-inspired techniques for function’s optimization and machine learning

independently [7, 125]. Over the next two decade, evolutionary techniques were refined and

by mid-1980s their usage was successfully proved in broad range of subjects’ right from

bin-packing, graph coloring to more technical such as pattern recognition, classification and

optimization. The evolutionary technique leads to the evolution of populations consisting of

potential solutions which are optimized and better suited to their environment [159].

Excellent bio-inspired techniques such as Ant Colony Optimization (ACO), Bees Algo-

rithms, Cuckoo Algorithms (CA), and Particle Swarm Optimization (PSO) etc [7, 11, 125,

159] are proposed in literature. Some of them are used effectively in many areas of software

engineering like the prediction of development effort [12], prediction of maintenance effort

[16], prediction of preventive maintenance [213], and identifying effective software metrics

[222], however, their use in software maintainability prediction is found to be extremely

limited.

Evolutionary technique was used by Basgalupp et al. [17] for predicting software main-

tenance efforts. In this study, numerous shortcomings of multivariate linear regression tech-

nique were highlighted and empirically it was proved that the results of evolutionary induced

decision trees are better then greedily induced decision tree. Two problems were also high-

lighted in the study, first, if experiments were carried out on small or medium-sized systems,

relationships cannot be validated for industrial environment. The second, that if large and

complex systems cannot be analyzed, we will not be able to calculate their metrics values.

Conclusion is drawn that without solving these difficulties, the set of metrics cannot be ap-

29

Chapter 1. Introduction and Literature Survey

plied for software maintainability predictions.

1.5.4 Refactoring to Enhance Software Maintainability
The term refactoring was introduced by Opdyke [170] as the process of restructuring

software code in the context of the OO paradigm. Mens and Tourwe [158] had compiled a

number of empirical studies in which the effects of selected refactoring methods on various

software quality attributes were investigated. Bravo [32] had developed an automated tool

in Smalltalk Open Unification Language (SOUL) which provides an interface and helps

the developer in identifying bad smells present in the code and subsequently selecting and

applying respective refactoring methods. Stroggylos and Spinellis [212] have studied four

open source software and analyzed the effect of refactoring on various software metrics.

They concluded that although it is expected from refactoring process to improve quality

but when it is measured through the OO metrics in real life systems, the results are not as

expected.

‘Refactoring’ word is originated from ‘factor theory’ of mathematics i.e. when any ex-

pression is converted into its equivalent factor, it becomes clearer. Refactoring is a kind of

reorganization of the code in such a way that beginning and end products must be func-

tionally identical. Code becomes simpler, cleaner and elegant which further enhances the

quality of the software. Bois et al. [29] proposed the impact of refactoring on the quality of

the software code and set few guidelines to be considered while refactoring the system. Bois

and Mens [30] observed the effect of refactoring process on cohesion and coupling while

adhering to those guidelines.

Fowler [69] specified 72 different refactoring methods in his book ranging from simple

changes such as Extract Local Variable to more complex one such as Extract Class. Kataoka

et al. [104] studied effects of refactoring on coupling metrics in detail with an example

program.

Moser et al. [163] strongly recommended refactoring as it improves reusability. They

validated their statement through an empirical study using XP development environment.

30

1.5. Literature Survey

Geppert et al. [77] empirically investigated the effects of refactoring on changeability using

three factors comprising of efforts, defect rate and scope for change. Wilking et al. [226]

also conducted an empirical study to evaluate the effects of refactoring process on modifi-

ability and maintainability. Although few studies have not directly evaluated the effects of

each refactoring method separately on internal quality attributes or external software quality

attributes, nonetheless their cumulative effects are being discussed. Xing and Stroulia [228]

have discussed most frequent types of refactoring and high-level design requirements which

are mandatory for refactoring process using well known Integrated Development Environ-

ment (IDE) platform Eclipse. During the maintenance phase, the code is modified many

times and in this process the code quality deteriorates [69].

Refactoring is a process during which, its internal structure is improved, complexity is

reduced and external behaviour remains the same [170] for any given software. Various

advantages of refactoring include enhancement of new features and improvements in under-

standability, readability and maintainability by enforcing fine-grained encapsulation into the

code.

1.5.5 Effect of Agile Methodology on Software Maintainability
Royce [187] presented a research study highlighting the problems associated with se-

quential developments wherein, the varying characteristics between software and automo-

bile assembly line were compared and he asserted that the software should not be treated

like typical automobile assembly line production. Over a period of time, many models such

as Iterative Enhancement Model (IEM), incremental model, spiral model, prototype model

etc were thus evolved by various researchers. Though introduced in the later part, however,

agile methods instantly gained tremendous success in the commercial industry from the late

nineties onward in software development process[103, 214].

The word “Agile” has its origins from the Latin word “agilis” meaning a swift movement.

When applied to the software development domain, it represents a development approach

which focuses on the addition of new features in the software in a planned and sequential

31

Chapter 1. Introduction and Literature Survey

manner that is delivered in small demonstrable segments and not altogether in the end. Ag-

ile development is based on seven core values i.e. empower the team, eliminate waste, see

the system as a whole, deliver as fast as possible, build integrity in the team, decide as late

as possible, amplify learning and create the inherently cohesive system. The requirements

and their respective solutions gradually develop through a systematic alliance between cross-

functional teams that can ably organize themselves without external help. It also encourages

planning which can accommodate changes, a development that evolves with time, early de-

livery and uninterrupted enhancement. Further, it persuades quick and flexible response to

change.

Many agile based research studies have been extensively conducted in academia and in-

dustry on medium and large-scale software projects using critical success factors [44]. The

agile manifesto was written by renowned software engineers across the globe [70]. Various

methodologies covered under the agile manifesto were XP by Beck [18], Crystal by Cock-

burn [47], design patterns by Cunningham [52], refactoring by Fowler [69], clean code by

Martin [152], and scrum by Schwaber and Sutherland [199]. The main statement was written

in agile manifesto to represent the gist of it is as follows:

”Individuals and interactions over processes and tools, working software over compre-

hensive documentation, customer collaboration over contract negotiation, responding to

change over following a plan”.

Cohn and Ford [48] have discussed the positive changes observed by an organization

when the agile methods were introduced. Boehm [28] elaborated the ways the agile needs

to be implemented. Soundararajan et al. [206] asserted that as customer needs are quickly

evolving, the vendor must introduce flexible methods of software development. Knippers

[113] investigated the effects of the agile methods on software maintainability and concluded

that the agile reduces defects as well as program complexity and supports long-term main-

tainability.

Rising and Janoff [185] specifically introduced scrum method of the agile methodology

32

1.6. Goal of the Thesis

into an organization wherein teams were further divided into small teams to observe the

enhancement in software quality. When and how the scrum should be introduced by any or-

ganization was illustrated by famous scrum trainer Michael James [97]. Svensson and Host

[214] proposed the use of agile process based XP in an evolutionary and maintenance soft-

ware development environment. Importance of Definition of Done (DOD) in a scrum sprint

was illustrated by Davis [56] which empirically proved that DOD brings all the members of

a team on a common page and understanding which ensures that when a team moves a task

from the in-progress section to the done section, all the highlighted points should have been

taken care of thoroughly. Pries-Heje et al. [178] proposed new methodology called as Scrum

Code Camp (SCC) and emphasized that cost should not be a criteria for choosing an agile

team over the other; instead team work spirit, technical and functional experience, and the

attitude of approaching a problem are more important factors which make a difference.

Very few studies were found which were aimed to observe the effects of the agile method-

ology on maintainability [75, 112, 113]. One such study was conducted by Knippers [113]

who investigated the effects of agile methods on software maintainability and concluded that

agile reduces defects as well as program complexity and supports long-term maintainability.

Further, there is no empirical study which quantitatively compares the product developed

using the agile methodology as compared to traditional IEM development model.

1.6 Goal of the Thesis

Jones [40] has given a comparison that in the year 1950, out of 1100 people deployed in

software industry only 100 (roughly 10%) were engaged in maintenance but by the year 2025

out of 5,500,000 people potentially deployed in software industry approximately 4,250,000

people would be engaged in maintenance task (roughly around 77%). This really gives the

researchers an inspiration to think as to how we can make the software more maintainable

so that we can reduce the personnel engaged in it to the extent possible. There is a large

shortage of software personnel due to the burst of mass update maintenance work required.

33

Chapter 1. Introduction and Literature Survey

It is a bitter fact that in software engineering industry, the majority of the time and effort is

consumed in software maintenance actions rather than on development. Somehow, if we can

predict the maintenance effort of developed software on the basis of the characteristics of the

product, we would be better able to manage the product and make its optimum use.

With reference to the problem cited above, this thesis focuses on exploring various tech-

niques, models and methods for improving software maintainability. In other words, we

have constructed various maintainability prediction models by establishing a relationship

between OO metrics and maintainability in this research study. Besides this, we have also

explored the application of various methodologies such as agile and refactoring on software

maintenance for identifying their utility in enhancing the software maintainability. For the

purpose of empirical validation, we have used a number of software systems obtained from

proprietary systems as well as open source software repositories.

The immediate goal of this research is to measure the structural attributes of the OO soft-

ware using many important concepts such as coupling, cohesion, encapsulation, abstraction,

inheritance and polymorphism and relate it to the external quality attributes software main-

tainability. The main motivation behind this goal is to be able to assess quality of software

in the early phases of the SDLC and use them for predicting maintainability which would

greatly facilitates proper resource planning well in advance. The objective of this thesis is

also to analyze at various aspects of software maintenance, hence, this thesis identifies var-

ious procedures that are traditionally meant to improve the software maintainability such as

agile methodology, refactoring, program comprehensions, re-engineering, reverse engineer-

ing and impact analysis.

We conducted extensive empirical studies to understand the effects of two methods i.e.

agile methodology and refactoring on software maintainability. One of the main properties

of the software in a real-world environment is that it continuously evolve during the main-

tenance phase when new requirements are added. The code becomes more complex due to

this small and unplanned repairs. Hence, the quality of the software deteriorate as it drifts

34

1.6. Goal of the Thesis

away from its original design. Even the use of good software development model also can-

not solve this problem because their increased capacity is basically used to implement new

requirements within the same time frame.

In order to cope up with this kind of spiral of complexity, there is an urgent need for

refactoring which reduces the software complexity by incrementally improving the internal

software quality. In this thesis, the central hypothesis is developed after detailed deliberation

as it is extremely vital to formulate a correct hypothesis in an endeavor to ensure correct

outcome. The central hypothesis of this thesis is specified as follows:

“The classes of given software, which needs more maintenance efforts can be identified

as a function of internal quality attributes using an efficient prediction model, thereby

assist project managers in better planning of resources to enhance efficiency and reduces

the maintenance cost. The effects of various prediction techniques to augment software

maintainability can be investigated, thereby suggesting project managers to utilize them in

an optimum manner in order to increase the overall performance and efficiency.”

Thus, the aim of this research has been three folds as shown in figure 1.8. First, is to de-

velop an efficient prediction model to predict software maintainability for different kind of

datasets such as proprietary, open source, data intensive applications etc. Second, is to iden-

tify OO metrics which are more effective for the prevalent data intensive applications. Third,

the goal of this research has been to study the effect of various techniques such as the agile

methodology, refactoring etc. on software maintainability. Generally, we analyze the predic-

tive capability of machine learning and evolutionary techniques for predicting maintenance

efforts. Hence, the summary of the goals of the work is divided into following parts:

1. Perform an extensive review of existing literature to identify the association between

OO metrics and maintainability with following objectives:

• Study the use of prediction models for maintainability in the early phases of

development.

35

Chapter 1. Introduction and Literature Survey

Figure 1.8: Ways of Improvements in Software Maintenance

• Identify maintenance process efficiency to keep the maintenance cost under con-

trol.

• Comparing the performance of various maintainability prediction models in

terms of accuracy.

• Identify the advantages and disadvantages of various prediction models over each

other.

• Identify the software metrics which can be used in prediction model making pro-

cess.

• Identifications of the existing gaps for future prospect of research in the field of

software maintainability.

2. Develop new models for prediction of software maintainability using machine learning

techniques and evolutionary techniques with following objectives:

36

1.6. Goal of the Thesis

• Empirically validate the relationship between design metrics and subsequent

maintainability.

• To ascertain empirically if evolutionary techniques can be applied for software

maintainability predictions.

• Identify whether evolutionary techniques perform better or worse than statistical

and machine learning methods.

• To propose the use of a relatively new hybrid technique Group Method of Data

Handling (GMDH) and compare its prediction accuracy with other machine

learning models.

3. Study most commonly used design metrics and determine the most suitable metric

suite for data intensive applications with following objectives:

• Study the most commonly used OO metrics.

• Identify the suitability of OO metrics for data intensive applications.

• Develop new metrics based on data base connections and schema complexity to

capture the design characteristics of databases intensive applications.

• Empirically validate the effectiveness of following two new metrics.

4. Investigating the maintainability prediction of the open source software using

machine-learning techniques with following objectives:

• To study the impact of OO metrics on maintainability in the context of open

source software systems?

• The comparative performances of machine learning techniques for maintainabil-

ity prediction using open source software systems?

• To determine which pairs of machine learning techniques are performing statis-

tically better from each other techniques in terms of maintainability prediction

with the help of post-hoc analysis.

37

Chapter 1. Introduction and Literature Survey

5. Investigating the effects of refactoring on software maintainability with the following

objectives:

• To identify the bad smell present into the source code and identify suitable refac-

toring method.

• Apply respective refactoring method to remove the particular bad smell present

into the source code.

• Assess the change in the values of OO metrics due to the application of specific

refactoring method.

• Finally, map the change in the values of OO metrics to maintainability using

prevalent software quality models.

6. Understanding the impact of the agile methodology with following objectives:

• To study one non-agile method, IEM and one agile method, scrum for product

development.

• Compare and analyze the performance of scrum with traditional IEM for product

development.

• Validate the results on industrial applications.

1.7 Organization of the Thesis
The objective of the thesis is to build an efficient software maintainability prediction

model, explore the utility of design metrics for emerging applications and analyze the effec-

tiveness of various methods and techniques for the improvement in software maintainability.

This section presents the organization of the thesis. Chapter 2 discusses the framework of

research methodology adopted in carrying out this work. A literature review of existing stud-

ies and the prevailing research gaps are identified in Chapter 3 lead us towards the scope

of this research. Next, Chapter 4 presents the use of machine learning techniques for soft-

ware maintainability prediction. Chapter 5 identifies the reasons why the currently used OO

38

1.7. Organization of the Thesis

metric suite is not suitable for highly data intensive applications and to suggest new metrics

for the same. In this regard, few commercial applications are used for the validation of new

metric suite. In Chapter 6 a bench-marking framework for maintainability prediction of

open source datasets is presented. Application of evolutionary techniques for constructing

the maintainability prediction model is presented in Chapter 7. There are certain meth-

ods which are applied to enhance the maintainability of the software. Refactoring is also

one of the technique which is the part of maintenance phase. In this technique, the design

of software is improved and complexity is reduced without affecting its external behaviour.

In order to understand the effects of these methods, Chapter 8 presents various refactor-

ing methods and subsequently analyzes its effects on software maintainability. Chapter 9

presents the agile methodology and its effects on software maintainability by comparing the

methodology with the traditional existing methodology. Finally, conclusions obtained from

the thesis are described in Chapter 10. Next subsections present the brief description about

each chapter.

Chapter 2: Research methodology followed in the current study is explained in detail

in this chapter. In the beginning, the research problem is defined and the goals are fixed.

Further independent and dependent variables used in this study are specified. Various OO

metrics are described which are used in order to capture various attributes of OO paradigm

such as cohesion, coupling, abstraction, polymorphism and inheritance. For the purpose

of empirical validation, datasets used in the current study are also explained in the later

part of the chapter. The ten cross-validation techniques used in this study for validating the

prediction models have also been explained. Various prediction accuracy measures selected

to evaluate the outcome of prediction models are also discussed. A range of statistical tests

followed by post-hoc analysis used in this research in order to confirm the reliability of

empirical experiments are summarized in this chapter. Various techniques such as agile and

refactoring used for the improvement in software design are also discussed in brief at the end

of this chapter.

39

Chapter 1. Introduction and Literature Survey

Chapter 3: Systematic review of the existing studies related to software maintainability

since January 1991 to October 2015 has been conducted and reported in this chapter. Many

Research Questions (RQ) were formed in order to address various issues related to software

maintainability. All the available studies are being compiled in structured form and analyzed

through numerous perspectives such as the use of design metrics, prediction model, tools,

data sources, prediction accuracy etc. Review results are analyzed, compiled and research

gaps are identified providing further directions.

Next, Chapter 4: In an attempt to quantitatively address the issue of software maintain-

ability, main purpose of this chapter is to propose few machine learning techniques with an

objective to predict software maintainability and its evaluation. The prediction model is con-

structed using machine learning techniques, GMDH, GA and Probabilistic Neural Network

(PNN) with Gaussian activation function. The results were compared with prevalent predic-

tion models using various prediction accuracy measures such as MRE, MARE, MMRE and

Pred(0.25).

Chapter 5: In this chapter, new metric suite for highly data intensive applications is pre-

sented. Certain metrics are developed where main focus is to measure the amount of database

handling. Importance for understanding software as well as database is highlighted. In this

chapter, we propose a new metric suite and redefined the relationship between design met-

rics with maintainability. The proposed metric suite is evaluated, analyzed and empirically

validated using five proprietary software systems.

Chapter 6: A bench-marking framework for maintainability prediction of open source

datasets is presented in this chapter. In this chapter, we have analyzed the effectiveness of

machine learning techniques for the maintainability prediction using open source software.

Large-scale empirical comparisons of thirteen classifiers over seven public domain datasets

were conducted followed by extensive statistical tests to establish the confidence on the per-

formance of one machine learning technique over another.

Chapter 7: The application of evolutionary techniques for constructing the maintain-

40

1.7. Organization of the Thesis

ability prediction model is presented in this chapter. The significance of the evolutionary

techniques has substantially increased in recent time due to their capability of maximiz-

ing the quality function. An empirical study for exploring the application of evolutionary

techniques for software maintainability predictions is discussed. The performance of evolu-

tionary techniques with traditional ones have been compared extensively in this chapter.

Chapter 8: The objective of this chapter is to examine the effects of refactoring process

on maintainability. In this regard, few important refactoring methods are classified on the

basis of their effects on software maintainability using the OO metrics. Five real-time sys-

tems were taken and their OO metrics were calculated and analyzed before the application

of refactoring as well as after the application of refactoring. In this chapter, opportunities of

refactoring in large code is identified and fine line is drawn to maintaining a perfect balance

between re-engineering and over engineering.

Chapter 9: This chapter provides an insight into another approach agile methodology.

In this chapter, the impact of the agile framework using scrum on the deliverable to the

customer is compared to the IEM. The same software product is developed using scrum

methods as well as IEM model and various metrics were used to compare both the products

quantitatively as well as qualitatively from the maintenance point of view such as Number

of defects identified, Time and stage of SDLC when the defect was identified, Number of

change requests received, and features rolled using both methods.

Chapter 10: Finally, in this chapter, application of this research work is presented. In

the end, we present conclusions along with directions for future research to be carried out in

this field.

41

Chapter 1. Introduction and Literature Survey

42

Chapter 2

Research Methodology

2.1 Introduction
Research methodology is the process to systematically investigate and solve the under-

taken problem. In order to validate the relationship that exists between software design met-

rics and maintainability in our research, the first step is to formulate the research method-

ology so that empirical studies can be conducted accordingly. In this chapter, various as-

pects of research methodology are presented like theoretical foundation of the procedures,

well-defined inputs to the empirical studies, prediction modeling, accuracy measures, cross-

validation techniques and various statistical tests to establish the confidence into the received

outcome.

The chapter is organized as follows: Section 2.2 presents the research process followed

in this work to carry out various empirical studies. Section 2.3 defines the research problem.

Development of hypothesis is presented in section 2.4. Independent and dependent variables

are defined in Section 2.5. The process of empirical data collection and various sources

for data collection are presented in Section 2.6. Section 2.7 describes the pre-processing

and data analysis process. Features subset selection techniques are presented in section 2.8.

Criteria for the selection of prediction modeling techniques is presented in section 2.9. Var-

43

Chapter 2. Research Methodology

ious learning techniques used for creating prediction model are discussed in Section 2.10.

Section 2.11 briefly explain various prediction accuracy measures used in this research for

performance evaluation of the created prediction models and Section 2.12 describes cross-

validation methods used to get the unbiased results. Section 2.13 provides various statistical

tests which are used to check the significance of the outcome in this research and finally

discussion is provided in section 2.14.

2.2 Research Process
This section presents the process adopted in this research to carry out various empirical

studies. The summarized process is shown in figure 2.1 which begin with identifying the

underline research problem and formulation of the central hypothesis. Independent and de-

pendent variables are selected and the sources of data collection are finalized. The collected

data goes through the rigorous process of cleaning, filtering and noise removal before it can

be used for making prediction model. Redundant features are subsequently removed using

feature subset collection methods so that the reduced size of the data enhances speed and

accuracy of the prediction model. Proper machine learning techniques are chosen based on

certain characteristics and the prediction model is developed. Appropriate performance mea-

sures are selected which can be applied in the research in order to evaluate the effectiveness

of the results. Models developed using various machine learning techniques are subjected to

statistical analysis followed by Post-hoc evaluation to verify the significance of the outcome.

Finally as in the case of any empirical study, conclusions are drawn from obtained evidences.

2.3 Define Research Problem
The very first step is to define the research problem as it helps in determining the exact

research methods and procedures to be used. This section presents the research problem

in the form of questions pertaining to research in the context of software maintainability.

Following RQs are addressed in this study:

44

2.3. Define Research Problem

Figure 2.1: Research Methodology

• What is the current state of research on software maintainability prediction for improv-

ing quality of software?

• What is the qualitative performance of different machine learning techniques in pre-

diction modeling with reference to software maintainability.

• Which metric suite is more suitable for database intensive applications?

• What is the performance of model prediction using open source and widely used soft-

ware?

• What is the effective way of validating the prediction models once they are trained?

• Can we explore the impact of the agile methodology on software maintainability.

• Investigate if the effects of well known refactoring methods are positive or negative on

software maintainability ?

45

Chapter 2. Research Methodology

2.4 Development of Hypothesis
After literature survey, research should carefully state the hypothesis to be tested in the

study. Hypothesis is tested on the sample data. On the basis of the result from the sample, a

decision concerning the validity of the hypothesis (accept or reject) is made. In this thesis,

two hypothesis will be tested. First is concerned with the prediction technique used in cre-

ating prediction models and second is concerned with the methods/treatments provided into

the code to improve software maintainability.

2.4.1 Hypothesis 1

For each prediction technique M (such as GMDH, GGRN, GGAL etc), the following

hypothesis will be tested related to data analysis methods:

• Null Hypothesis: Prediction technique M does not outperform the other techniques in

predicting maintainability.

• Alternate Hypothesis: Prediction technique M outperform the compared technique in

predicting software maintainability.

2.4.2 Hypothesis 2

For each method T (such as Refactoring, Scrum etc), the following hypothesis will be

tested related to the improvement in design to ease the software maintenance process:

• Null Hypothesis: Method T does not improve the software maintainability.

• Alternate Hypothesis: Method T improve the software maintainability.

2.5 Define Variables
In order to measure the OO software system, guidelines provided by Chidamber and

Kemerer [43] and Li and Henry [127] are used in this study. The OO metrics capturing

the features pertaining to cohesion, coupling, abstraction, inheritance and size are taken into

46

2.5. Define Variables

account in this study. In the next two subsections, we define the independent variables and

dependent variables selected in this study.

2.5.1 Independent Variables

As we wanted to measure OO features, size as well as complexity of the system, various

metrics were carefully selected from the metric suites proposed by various researchers Chi-

damber and Kemerer [43] metric suite, Li and Henry [127]metric suite, Bansiya and Davis

[15] metric suite, Henderson-Sellers [89] metric suite, Martin [151] metric suite, and Tang

et al. [216] metric suite.

Figure 2.2: Sources of Independent Variables

All the independent variables selected in the current research study and their sources are

depicted in figure 2.2. One traditional metric LOC is also selected to keep the evolution of

software in history perspective. Definitions of all the metrics are summarized as follows:

The Chidamber and Kemerer [43] metrics suite is given below:

1. Coupling Between Objects: CBO represents the number of classes to which the given

class is coupled. Any two given classes are coupled if the methods declared in one

47

Chapter 2. Research Methodology

class uses either the methods or instance variables which are defined in another class.

During the counting both types of relationship ‘uses’ and ‘used-by’ relationships are

taken into account, however only once. Other types of references for example use of

constants, calls to API declares, handling of events, user-defined types or the instan-

tiation of the object are simply ignored. High CBO is undesirable as the excessive

coupling between object classes is detrimental to modular design and prevents any

reuse.

2. Response For a Class: RFC counts the number of local methods plus the number of

non local methods called by local methods. As shown in equation (2.1), it’s the sum

of M and R where M is the number of methods in the class and R is the number of

remote methods directly called by methods of the class.

RFC =M +R (2.1)

3. Lack of Cohesion of Methods: LCOM counts the number of disjoint sets of local

methods where each method in a disjoint set shares at least one instance variable with

at least one member of the same set. Consider a class C1 with n methods M1, M2. . .

., Mn. Let Ij is the set of all instance variables used by method Mi. There are n such

sets {I1},.{In}. Let P= {(Ii, Ij) | Ii ∩ Ij = 0} and let Q= {(Ii, Ij) | Ii ∩ Ij 6= 0}.

Then the value of LCOM is |P| - |Q| if the value of |P| is greater than |Q|, otherwise it

is considered as 0.

4. Number of Children: NOC counts a number of immediate sub classes of a class in a

hierarchy.

5. Depth of Inheritance: DIT counts the depth of a class within the inheritance hierar-

chy. It is the maximum number of steps from the class node to the root of the tree and

is measured by the number of ancestor classes.

48

2.5. Define Variables

6. Weighted Methods per Class: WMC represents the sum of McCabes’s cyclomatic

complexities of all local methods in a class. As shown in equation (2.2), let a class

K1 with method M1... Mn, that are defined in the class. Then the WMC of the class is

defined as the sum of all the WMC of each method.

WMC =

(
n∑
i=1

Ci

)
(2.2)

The Li and Henry [127] metric suite is given below:

7. Message Passing Coupling: MPC is computed as the The number of messages sent

out from a class.

8. Data Abstraction Coupling: As the name implies, DAC counts the number of in-

stances of another class declared within a class.

9. Number of Methods: NOM counts the number of the number of methods in a class.

10. SIZE1: As the name implies, it counts the number of lines of code excluding com-

ments.

11. SIZE2: It counts the total count of the number of data attributes and the number of

local methods in a class.

The Bansiya and Davis [15] metric suite is given below:

12. Number of Public Methods: NPM is computed by counting the number of public

methods in a given class

13. Data Access Metric: DAM is calculated as the ratio of private + protected attributes

of the said class to the total number of attributes defined in that class.

14. Measure Of Aggression: MOA counts the percentage of user defined data declared

in the said class.

49

Chapter 2. Research Methodology

15. Method of Functional Abstraction: MFA is counted as the ratio between the inher-

ited methods and the total number of methods in the said class.

16. Cohesion Among the Methods of a Class: CAMC is calculated based on the signa-

tures of the methods. This metric computes the similarity among various method of

the said class.

The Henderson-sellers [89] metric suite is given below:

17. Lack of Cohesion Among Methods of a Class: LCOM5 metric is proposed by

Henderson-sellers [89] to remove some of the disadvantages of LCOM and LCOM3.

It was observed that if there are some variables in the class which are not accessed

by any of it’s methods, for example when the variables are accessed outside the class,

LCOM consider it in the formula which is a major design flaw. In order to remove

this discrepancy, the class variables should be encapsulated with accessor methods or

properties as shown in equation (2.3). Further, it was also stated that its value should

vary between 0 and 2 wherein value greater then 2 is considered as alarming.

LCOM3 =

(
1
N

∑n
i=1 µ(Di)−m

)
1−m

(2.3)

Where m represents the number of methods, N represents the number of instance vari-

ables (attributes) and µ represents the number of methods which access each datum.

Martin [150] metric suite is given below:

18. Afferent Couplings: As the name implies, AC counts the incoming coupling by

counting the number of classes in other packages that depend on classes within the

package. So basically it is counted as the number of classes calling the said class.

19. Efferent Couplings: EC is counted as the number of other classes called by said class.

The Tang et al. [216] metric suite is given below:

50

2.5. Define Variables

20. Average Method Complexity: AMC is computed as the average of McCabe Cyclo-

matic Complexity of all method.

21. Inheritance Coupling: As the name implies, IC counts the outgoing coupling by

counting the number of parent classes to which a given class is coupled.

22. Lines Of Code: LOC counts the The number of lines in the source code excluding

comments.

2.5.2 Dependent Variable

The dependent variable is CHANGE and it refers to the number of lines of code of a

given class that were changed during the maintenance period. A single deletion or addition

of a line in the source code of a class was counted as one change, however, any modification

in one line of code was counted as two changes as it represented a deletion followed by an

addition. Thus, the metric CHANGE, measures the maintainability attribute of the classes in

these software systems. It is a continuous and non-negative integer.

One of the many difficult aspects of software maintenance phase is the estimation of

maintenance effort needed to correct or enhance a software system. Organizations need

to investigate which factors influence their maintenance or development process most so

that they can do proper planning. Measuring and monitoring of maintenance efforts can be

achieved by focusing on the measurements of coding related activities. Hence, in order to

measure the maintenance efforts, we closely observe the maintenance history of the software

and count the number of lines in which any kind of change is performed. As the change in

any line of code may occur due to correction, prevention, perfection or adaptation activity,

this thesis predict all kind of software maintainability using various machine learning and

evolutionary techniques.

51

Chapter 2. Research Methodology

2.6 Empirical Data Collection
Data collection is a very important aspect to carrying out any empirical study in the

field of software engineering. Inaccurate data collection not only put negative impact on the

results, but such types of studies ultimately lead to inaccurate output.

Figure 2.3: Sources of Empirical Data

The researchers in the field of software engineering are always constrained against non-

availability of genuine datasets to conduct their validation studies and test newer predic-

tion models. In one of the studies conducted Li and Henry [127], datasets of two propri-

etary software systems namely UIMS and QUES were made public. Many researchers used

this datasets in order to validate their respective prediction technique such as Dagpinar and

Jahnke [53], Elish and Elish [62], Kaur et al. [106], Koten and Gray [118] and Zhou and

52

2.6. Empirical Data Collection

Leung [237].

In this study, as shown in figure 2.3, data is collected from two sources, proprietary as

well as open source to validate the maintainability prediction models. For the proprietary

software datasets, apart from the UIMS and QUES dataset [127], five medium and large

systems are used. Their details are given in the following subsection.

2.6.1 Proprietary dataset

In this category, we began our research by taking the proprietary dataset available in

literature. We identified and decided to use one of the famous dataset given by Li and Henry

[127] and also used by many researchers [53, 62, 106, 118, 137, 237]. In the next phase,

dataset were collected from five proprietary software systems which are real life applications

and maintained from the last three years. All software systems were large sized software and

developed and maintained by professional in Microsoft Visual Studio .NET software using

C# Language. The details of seven proprietary software systems used in the current research

such as versions, release date, size, number of classes etc are summarized in the table 2.1.

The process of collecting the data is explored in figure 2.4. However, brief description of

their functioning is mentioned in following subsection.

2.6.1.1 User Interface Management System

UIMS is developed by Software Productivity Software Inc for creating an interface for

user. Implemented in Classical Ada, the UIMS dataset contains class-level metrics data

collected from 39 classes of a UIMS and metric values of each class was made public by Li

and Henry [127].

2.6.1.2 Quality Evaluation System

QUES is also developed by Software Productivity Software Inc for evaluation of the

quality. Implemented in Classical Ada, the QUES dataset contains class-level metrics data

collected from 71 classes of a QUES system and metric values of each class was made public

by Li and Henry [127].

53

Chapter 2. Research Methodology

Figure 2.4: Change Data Collection

Table 2.1: Characteristics of Proprietary Software

S.
No.

Name of the Proprietary
Software

Version Release Date Number of
Classes

Percentage
Change

1 User Interface System
(UIMS)

1.0 to 2.0 01 Apr 2013 101 classes 20.34

2 Quality Evaluation System
(QUES)

1.0 to 2.0 18 Jun 2012 143 classes 16.29

3 File Letter Monitoring
(FLM) software

1.2 to 1.3 08 Feb 2013 686 classes 61.88

4 EASY software system 2.0 to 2.3 12 July 2012 614 classes 74.76
5 Student Management Sys-

tem (SMS) software
1.2 to 2.3 21 Feb 2011 351 classes 34.50

6 Inventory Management
System(IMS) software

1.0 to 2.2 11 Feb 2012 417 classes 24.96

7 Angel Bill Printing (ABP)
software

4.1 to 4.11 15 Nov 2011 251 classes 14.644

2.6.1.3 File Letter Monitoring Software

File Letter Monitoring Software (FLM) System is a customize software to track the

movement of files between different department of an organization. It is a web application

54

2.6. Empirical Data Collection

which monitors the file/letter movement in an office or organization. Files can be dispatched

within office or other branch offices. The software maintains a log file to trace history of files

movement. It also keeps a scanned copy of the letters which are kept in the database along

with many other attributes such as dispatch number, dispatch date etc.

2.6.1.4 EASY Software system

EASY Classes Online Services is a web portal for an Educational Institute in Bawana,

Delhi wherein study material is provided online for students in two ways. Firstly, users can

freely register on the website as ‘Beginner’ and get a link to download free study material.

In second way, users can register themselves as ‘Premium users’ after paying some fixed

amount to the EASY Classes Ltd. They can also access online video tutorials, objective

test paper, and subjective test paper regarding some specific topic. After solving the test

paper, he can submit them, whose reports are generated to judge their performance in tests.

Comparative performance of the students is also made available through visual charts for

each topic.

2.6.1.5 Student Management Software

Student Management System (SMS) is a windows based application which maintains

the record of students and teacher for private educational institute. In this software, there are

two mode of receiving fee payment from the student i.e. installment and onetime payment.

Salary is issued to the teachers as per their basic salary and other emoluments such as dear-

ness allowance, house rent allowance, transport allowance etc by the administrator. Various

reports can be generated such as teacher wise salary payments, student wise fee payments,

institute’s balance sheet, running expenditures etc. and the print outs of these reports can

also be taken as and when required.

2.6.1.6 Inventory Management Software

Inventory Management (IMS) software is a windows based application which maintains

inventory of a company at different branch offices in geographically apart cities. It provides

55

Chapter 2. Research Methodology

many services such as serial number tracking, bar code printing, tracking of expiration date

for perishable items etc. It also provide procurement service which retrieves item costs for

purchase orders and create vouchers for purchased goods. In addition to the solution for item

identification within the Inventory Management system, general accounting features are also

added such as payments, taxes, cash receipt processing revenue etc. Inventory management

software uses a web-based interface to search, retrieve and display inventory data to the stock

manager client.

2.6.1.7 Angel Bill Printing Software

Angel Bill Printing (ABP) software is a windows based compatible application for main-

taining bills with backup and restores facility. It is software in which after adding informa-

tion, it can maintain fully editable items list by client itself with generation of a common

bill format. Invoices are delivered to the client after calculating, formatting, printing and

e-mailing of bills. ABP software is very easy to operate and generate easy-to-read invoice

templates which include facilities such as ability to show the amount in words, round off the

total amount etc. Comprehensive reports and payment history are also available with every

invoice in order to run the business efficiently.

2.6.2 Open Source dataset

Open source software are developed by different users located at geographically different

places around the globe. It has altogether different approach and methodology for develop-

ment. There are many advantages related with open source software such as they are freely

available and does not involve copyright issues. Anyone can easily customized them as per

their own specifications and use without paying any license fee.

In the second category, two open source repositories http://www.github.com and

http://www.sourceforge.net are explored for collecting the empirical data from open source

software. Two important characteristics were kept in mind for identifying the ideal open

source system. Firstly, it should follow OO paradigm and secondly, it should have a high

56

2.6. Empirical Data Collection

number of downloads in recent times (last 12 months) as it is a clear indication that there are

active users contributing constantly.

Process of Empirical Data Collection

In order to collect the data for conducting the empirical studies, the procedure as shown

in figure 2.5 is adopted in the current research. Initially the source code of initial version as

well as modified version for the same software were collected. Git repository mining tool

‘Defect Collection and Reporting System’ (DCRS) developed in the Java language at Delhi

Technological University by Malhotra et al. [147] was used for the purpose of empirical data

collection. It processes the repositories and read the change descriptions such as time stamp

of committing the incurred change, unique change identifier, type of change (defective, per-

fective or corrective), change descriptions etc. It pre-processes current version and previous

version of the same software and extract only those classes which are common in both the

versions.

Figure 2.5: Process of Empirical Data Collection

57

Chapter 2. Research Methodology

Changes in the common classes were calculated in terms of the LOC. Any line added or

deleted in the new version with respect to the old version is counted as one change whereas

any lines of code modified in a new version with respect to the old version is counted as two

changes. DCRS compares both the versions of the software and prepare the list of changes

by counting the lines of code where changes took place and generate the reports containing

detailed information for each class. It also calculates values of each of the OO metrics

for each and every class and provides insight such as cloning of Git Repositories and Self

Logging’s. Similarly, processing the classes in older version generates the class wise values

of each OO metric. Finally, data points for each class are generated where values of OO

metric are considered as independent variables and the value of ‘change’ is considered as a

dependent variable.

For example, if Abdera 1.1.2 (older version) and Abdera 1.1.3 (newer version) are being

analyzed in DCRS, processing the change logs generates the number of changes performed

from older version to newer version per class. There are 686 classes in this software; so the

values of OO metrics for each class were collected for the older version i.e. Abdera 1.1.2.

Finally, data points are combined for each class where OO metric values are considered as

the independent variable and the value of change considered as a dependent variable.

Description of Open Source Datasets

Twelve open source datasets were identified and their source codes were collected in

this study. All the details of these software systems such as versions, release date, size, the

number of classes etc are summarized in table 2.2.

2.6.2.1 Drumkit

Drumkit is a Java Mobile based game on JAVA-JME platform (https://github.com/nokia-

developer/drumkit-jme). It creates a virtual drum kit and allows the user to play drum by just

tapping on the screen. It also gives facility to record the beats for future use and compatible

with series 40 devices. Acoustic kit and pad kit views are available in latest updated version

which gives multi touch support for series 40 full touch devices. Graphics drawing and audio

58

2.6. Empirical Data Collection

playback are some of its important features which had made this software very popular. The

application is open source which means anybody can download and make changes without

license. One problem is yet open for the open source community developers that its graphics

have yet not been optimized for Symbian devices.

2.6.2.2 OpenCV

OpenCV (Open Source Computer Vision) is a set of programmed modules in java

with primary focus is to provide real time vision to electronic devices. Initially it was

developed in Intel’s research center for real-time ray tracing, but now its available at

(http://sourceforge.net/projects/opencvlibrary) and free for use under the open-source BSD

license. Library of the OpenCV is cross-platform for basic vision infrastructure. In the

year 2000, very first version of OpenCV was released and since then it has undergone many

changes such as C++ interface, safe patterns, better implementations etc. In the year 2012,

support for OpenCV was taken over by a non-profit foundation OpenCV.org and now every

six months, its update versions are released.

2.6.2.3 Abdera

Abdera is an open source atom parser generator used in client scripts as well as server

scripts to build high quality designed documents on internet. Atom stands for web related

standards and atom syndication format is an XML language used for web feeds. Adbera

is developed on the standard of Atom Publishing Protocol (APP) which is a simple HTTP

based protocol for web resources creation. Although its code was initially developed by

IBM in the year 1998, later on it is donated to the Apache Software Foundation in the year

2006. Nowadays its code is available free for use under the open-source BSD license at

https://git.apache.org/abdera for the open source developers community.

2.6.2.4 Ivy

Integrated with Apache Ant, Ivy is a set of open source libraries and programs that allow

applications to broadcast information through text messages, with a subscription mechanism

59

Chapter 2. Research Methodology

based on regular expressions. Its very simple to use and provides powerful OO Java de-

pendency management. It is considered as most popular Java build management system

based on Apache design principles. It generates two primary report types i.e. HTML reports

and graph reports to help in understanding immediate dependencies, transitive dependencies

and conflicts of the projects. It is also free for use under the open-source BSD license and

available at https://git.apache.org/ivy.

2.6.2.5 Log4j

It quite common practice to insert log statement while debugging any software because

debuggers are not always available or applicable. It is even more significant in the case of

multi threaded and distributed applications. However, it has a drawback that it can slow

down the running of an application. Log4J is a software specially designed to address these

concerns of the debugging process. It is reliable, fast, extensible and simple to understand

and use. With arbitrary granularity, it allows the developer to control which log statements

are output and when. It has three main components i.e. loggers, appenders and layouts

which work together to enable developers to log messages according to message type and

level, and to control at run time reports. It is fully configurable at run time using external

configuration files. It is also free for use under the open-source BSD license and available at

https://git.apache.org/Log4j

2.6.2.6 JEdit

JEdit is a highly customizable text editor written in Java and runs on any operating sys-

tem. Originally developed by Slava Pestov, it is donated to open source community in the

year 2006. It can be extended with macros written in scripting languages. Apart from simple

facilities such as code folding, text folding, text wrapping etc., it also supports advance fa-

cilities such as spell checker, auto-complete, etc. using more than 150 patches available free

online at https://jedit.svn.sourceforge.net/svnroot/jedit

60

2.6. Empirical Data Collection

Table 2.2: Characteristics of Open Source Software

S.No. Software Version Release Date Number of
Classes

Percentage
change

1. Drumkit 1-0.5.0 to 1-0.6.0 25 Apr 2014 101 classes 20.34
2. OpenCV 2.4.10 to 3.0 12 Sept 2014 143 Classes 16.29
3. Abdera 1.1.2 to 1.1.3 08 Jan 2014 686 Classes 61.88
4. Ivy 2.2.0 to 2.3.0 21 June 2013 614 Classes 74.76
5. Log4j 1.2.16 to 1.2.17 31 Mar 2010 351 classes 34.50
6. JEdit 5.1 to 5.2 28 July 2013 417 classes 24.96
7. JUnit 4.10 to 4.11 29 Sept 2011 251 classes 14.644
8. HuDoKu 2.0 to 2.2 01 Aug 2012 45 classes 11.63
9. JWebUnit 1.2 to 3.0 08 Oct 2012 230 classes 24.37
10. OrDrumBox 0.6.5 to 0.9.8 07 Jan 2012 218 classes 24.96
11. Apache Poi 3.9 to 3.10 01 Feb 2014 940 classes 16.44
12. Apache Rave 0.21.1 to 0.22 09 July 2013 672 classes 33.29

2.6.2.7 JUnit

JUnit is an open source framework for writing and executing unit tests and defining test

suite. As JUint is compatible with almost all IDEs and it also has inbuilt test drivers, use only

need to write the test case. It is one of the most popular unit testing tools used to run and

tests the scripts based on the defined annotations. It also allows testing the specific module

and prove quick results very efficiently. The test scripts can be written in short span of time

due to its simplicity. It also provides the facility of test case prioritization on the basis of

user’s requirements. It is also free for use under the open-source BSD license and available

at http://sourceforge.net/projects/junit/.

2.6.2.8 OrDrumBox

OrDrumBox is a open source software which has audio sequencer function written in

java to facilitates creation of online songs. There are many features provided for creating

song online such as audio mixer, piano roll, rendering, automatic matching for sound and

track, composing of song automatically, allows soft synthesizers etc. Midi files and wav

files can be imported and exported through this software which makes it more compatible

with existing music files. Powerful graphic user interface allows the writing of pattern on

61

Chapter 2. Research Methodology

blank working space right from scratch, add several new tracks, addition of a new note for

creating the main beat and auto generation of the patterns. As many sounds as required

can be created by changing the tempo and volume before playing the song. The sequencer

allows assembling the patterns in a song and configure the program to repeat each pattern

several times. It is also free for use under the open-source softonic license and available at

http://www.freewarefiles.com/OrDrumBox program 105766.html

2.6.2.9 HuDoKu

HoDoKu is open source software based on java framework to generate, solve, train and

analyze the sudoku game in multiple languages. It allows five difficulty levels which either

can be solved by the user or he can ask the software to demonstrate solving procedure. Many

humans style of solving techniques such as fish, wings, coloring, chains, LCs, uniqueness

and subsets are supported in this software. It a great tool for users those who wants to

learn the solving procedure of sudoku. It is such a powerful tool that allows the user to

automatically set a point and solve the sudoku till that point only. It also has the facility

of analysis where the user can view all available solution options at a particular point and

select one. New version allows to create a save point so that if some guess work is there,

user can revert to the save point in case the guess proves to be wrong in later on stage. It is

also free for use under the open-source software licensed under the GPLv3 and available at

http://sourceforge.net/projects/hudoku/.

2.6.2.10 JWebUnit

JWebUnit is an open source software developed in Java framework to facilitate the web

application testing. It evolved from JUnit open source software in which various refactoring

treatments are provided followed by the code modification using several test engines to make

it more suitable for creating acceptance test cases for a given web applications. Application

Programming Interface (API) are also provided to navigate the site under testing. Finally, set

of assertions are asked to verify the correctness of application. It is also free for use under

62

2.7. Data Analysis and Pre-Processing

the open-source BSD license and available at http://sourceforge.net/projects/jwebunit/.

2.6.2.11 Apache Rave

Apache Rave is the web based data integration application software. It’s a light weight

java platform to host the widgets to manage open social gadgets. It combines the data,

presentations or functionality from two or more sources to create new services, for example

Flicker. It’s actually not a portal but a mash up which is customizable and support various

platforms. Apache Rave is available at https://rave.apache.org/.

2.6.2.12 Apache Poi

Apache Poi stands for ‘Poor Obfuscation Implementation’. As the name suggests when-

ever the communication is confusing or harder to interpret, this free and open source java

library is used for reading and writing Microsoft document formats. Written in java lan-

guage, it can be used for creating Microsoft Office file formats such as Excel, PowerPoint,

MS Word etc. It provides excellent support for Microsoft Excel and able to handle all for-

mats. Apache Poi available online at http://poi.apache.org/Visio.

2.7 Data Analysis and Pre-Processing

2.7.1 Descriptive Statistics

Descriptive statistics are used as a tool for analyzing the research data in order to identify

whether the data is skewed or normalized. Numerical facts are presented in tables as well

as in graph form for the purpose of description and decision making. If the data is simply

presented in raw form, it is really difficult to visualize what the data is conveying and the task

becomes much more difficult especially when the data is large. Graphical presentations of

descriptive statistics are very helpful to effectively communicate a message which is easily

understood by almost everyone. Data is reduced to a state where it can be easily used for

further analysis.

63

Chapter 2. Research Methodology

Five main descriptive statistics measures used in this research are maximum, minimum,

mean, median, and standard deviation with respect to each metric. Their values are further

used for the interpretation, for example if the mean value of the attribute used for measuring

the coupling is less than three, then we interpret that low coupling is imparted in the software.

These five measures are also used to compare the characteristics and skewness of different

datasets used in our empirical studies. For example if software A has mean value of NOC less

than the mean NOC value of software B, we interpret it that inheritance is comparatively not

much used in systems A. Similarly if the maximum value of the LCOM is greater in software

A than in software B, then its interpreted as cohesion is high in software A.

2.8 Feature Subset Selection
One of the main problems while making prediction model is to identify a representative

set of features from which the classification model can be constructed for prediction task.

In order to address the problem of feature sub selection, many techniques are suggested in

literature with underlying goal to identify those features out of all given attributes which are

highly correlated with the dependent variable, yet uncorrelated with each other [135]. The

advantages of FSS are:

• Results are more accurate, compact and quick.

• Since the dataset is reduced, measurement cost is also reduced as less data needs to be

collected.

• Understandability of the model increases.

• Time used to train the model decreases because of fewer data.

• Due to the simplification of models, it becomes much easier to interpret by researchers.

• Enhanced generalization could be achieved because data contains more of quality and

less of quantity.

64

2.8. Feature Subset Selection

• It reduces the problem of over-fitting in to the data during the training process.

• Reduction of the variance due to presence of only core data.

Hence by reducing the dimensions of the data in the first stage, machine learning tech-

niques are able to operate faster and more effectively.

Figure 2.6: Classification of Features Subset Selection Methods

FSS can be achieved in two ways as shown in figure 2.6, first method is known as “at-

tribute selection” which eliminate those independent variables that have little or no informa-

tion in them. Second method is known as “attribute extraction” in which several attributes

are combined into new set of attributes. Both the methods are further subdivided into sub-

categories.

2.8.1 Attribute Selection
In one of the study conducted by Kohavi and John [115], feature selection further catego-

rized into two types i.e. Wrappers and Filters. While evaluating the most valued subset from

a given set of attributes, filter method does not require the classification algorithms whereas

65

Chapter 2. Research Methodology

wrappers method needs them. The wrapper feature subset evaluation conducts a search for a

good subset using the learning algorithm itself as part of the evaluation function.

2.8.1.1 Univariate Linear Regression

The univariate analysis is the process in which individual effect of each independent

variable on dependent variable is identified. The choice of methods in the univariate analysis

depends on the type of dependent variables being used. Since in our research study the

dependent variable is continuous, univariate analysis using linear regression is performed to

find the individual effect of each of the OO metric described in section 2.5.1 on dependent

variable change.

Performing the univariate analysis using linear regression helped us in two ways in this

research study. Firstly, it reduces the dimensions of the data because the OO metrics which

are not related to dependent variable change can be screen out based on the characteristics

of dataset. Secondly, as in our study we have proposed new metrics, so univariate analysis

helped us to identify the individual effects of newly proposed metrics on dependent variable

change based on the characteristics of the dataset. Four values are received in the output

of univariate analysis i.e. estimated coefficient, standard error, the t-ratio and p-value. The

value of Sig (p-value) represents amount of significance of the each of the independent met-

rics on change. If in the outcome p-value is received as 0.000, that means both independent

and dependent variables are significantly correlated.

2.8.1.2 Correlation Based Feature Subset Selection

Filter methods are faster than wrapper method, however, some times it may fail because

the selected attributes are not tuned for particular prediction mode. Correlation based Feature

Subset-Selection (CFS) is widely used filter method. CFS calculates the worth of a subset of

attributes on the basis of individual predictive capability of every feature and the degree of

redundancy among them [82]. While using this algorithm, subsets of features that are highly

correlated with the class but have low inter-correlation are chosen. The technique is based

66

2.8. Feature Subset Selection

on a heuristic algorithm to evaluate a subset of attributes by balancing them after identifying

the redundancy present in them.

2.8.2 Attribute Extraction

No attributes is removed in this method, instead a new attribute is produces by assigning

weights to the original attributes as per their impact and combining them. Two types of

attribute extraction methods are used, supervised in which output variable is known and

unsupervised in which output variables are not known. Principal Component Analysis (PCA)

is most widely used unsupervised attribute extraction technique explained as under.

2.8.2.1 Principal Component Analysis

In PCA technique, principal components are created which are linearly uncorrelated vari-

ables. These variables are created from the set of independent variables which have a little

correlation among themselves. First of all in this technique covariance matrix of the original

variables is calculated then it is followed by the calculation of Eigen vectors. The principal

components have the important property that final information content is represented using

few best features so that remainder attributes can be discarded.

2.8.2.2 Linear Discriminant Analysis

The objective of Linear Discriminant Analysis (LDA) is to perform dimensionality re-

duction while preserving as much of the class discriminatory information as possible [99].

LDA is an instance based ranking technique. This technique estimates the quality of at-

tributes according to the way they differentiate between instances of different classes that

are very close to each other. For example, it picks up randomly any instance and search for

the nearest neighbor from the same class and call it hit and nearest neighbor from the differ-

ent class and call it ‘miss’. Depending upon the values of each attribute, the relevance score

is updated and the process is repeated for a specific number of times. Finally, if two or more

attributes having high relevance among them, then only one is selected.

67

Chapter 2. Research Methodology

2.8.3 Discussion

PCA is a widely used method for attribute sub-selection when used with neural networks

whereas univariate analysis is used for pre-selecting the important metrics as per their sig-

nificance [82]. CFS is found to be fastest technique when it is used with machine learning

techniques [135]. In this research study, relatively new technique, GA are used for FSS.

As suggested by Yang and Honavar [231], it identifies and screen out noisy, irrelevant and

redundant features, and identifies relevant features that does not strongly depend on other

features. On natural domains, GA typically eliminated half of the features and permits its

scaling to larger datasets.

2.9 Criteria for the Selection of Prediction Modeling Tech-

niques

While analyzing the quality of the software, various design metrics must be used to-

gether to measure all of its aspects because single metric alone cannot reveal its various

characteristics [135]. In the field of software engineering, researchers have already wit-

nessed the application of machine learning models for predicting external qualities such as

software development cost, testing efforts, maintenance efforts, correction cost, software de-

fects, software reliability etc. using internal quality attributes such as coupling, cohesion,

inheritance, polymorphism, abstraction etc. Many machine learning techniques have been

explored such as decision tree, ANN, BBN, SVM, genetic programming etc. in the empiri-

cal studies conducted by various researchers throughout the globe [135]. In the next sections

all the prediction modeling techniques are described in brief. Apart from understandability,

scalability and simplicity, the most desirable factor is the accuracy of prediction model. The

cost, effort and time needed to train any machine learning model must always be as less

as possible. While the results of the comprehensible prediction model should be easily in-

terpretable, it should manage the tradeoff between variance and biasness and should try to

68

2.9. Criteria for the Selection of Prediction Modeling Techniques

minimize both of them.

There are several models and metrics proposed in the literature to predict the maintain-

ability of the software systems. These methods vary from simple statistical models such

as regression analysis to complex machine learning technique such as neural networks etc.

The most important aspect while creating any prediction model is the selection of particular

technique to be used for training. After discussing the desirable basic characteristics of ev-

ery prediction model, next obvious question is picking up of a particular machine learning

technique, which depends on many factors such as data type, the availability of time, type

of dependent variable, the number of independent variables, the size of the dataset etc. Fig-

ure 2.7 summarizes various factors that must be taken into consideration for selecting the

particular machine learning techniques.

Figure 2.7: Factors Affecting Selection of Prediction Techniques

Logistic Regression should be used if the dependent variable is binary and the training

dataset is large because it is a scalable prediction model. Naive Bayes is found to be a good

choice when the dependent variable is multi-category whereas training dataset is finite. Both

69

Chapter 2. Research Methodology

Naive Byes and Logistic regression gives a probabilistic interpretation to the output. If the

relationship between independent and dependent variables is linear, a decision tree is the

best choice because they are less prone to outliers, easy to understand and non-parametric

in nature. The only disadvantage with decision tree is that sometimes it over-fit the data;

however, this type of problem does not occur with ensemble learners and random forest

method. All the three techniques i.e. decision tree, random tree and ensemble learners

are scalable and easy to learn. The kernel of SVM gives a theoretical guarantee that the

model would not over-fit the data. Hence, if accuracy is the top most priority, memory

intensive SVM should be selected. The only disadvantage with SVM is that they are not

scalable. Neural Networks does not perform statistical training, hence, they are good for

the complex non-linear relationship between independent and dependent variables. Much

complex computational burden and proneness to over-fitting are the disadvantages of neural

networks.

It is also observed that if the numbers of independent variables are more than six, and

the relationship between independent variable with dependent variable is complex and non-

linear, then GMDH technique should be selected. It is so because GMDH technique breaks

the network into sub-network and after every training iteration, it sorts all the sub-network on

the basis of an error in decreasing order and removes those sub-network units which have a

large error with respect to the accuracy measure. In our research, since the dataset was large

(mostly all datasets have more than 600 classes), relationship is very complex as well as non-

linear and the number of independent variables are more than six (Twenty one independent

variables considered in this research as discussed in section 2.5.1), we have successfully

explored the applications of GMDH technique.

2.10 Machine Learning Techniques

In this section, we explain the various machine learning techniques used for making the

prediction models as well as to ascertain the relationship of design metrics with maintain-

70

2.10. Machine Learning Techniques

ability.

2.10.1 Linear Regression

The linear regression model is so old that it exists even in the pre-computer age of statis-

tics. They are still significant in this computer era as they are the foundation of most of the ad-

vanced methods. If the training dataset is small, it is found that they even out-performed other

non-linear models used for predictive analysis. Linear regression uses statistical method to

estimate the response by assuming that the regression function is linear with the given inputs

X1 + X2 + X3....... Xn. In one of the research study conducted by Hoffmann and Shafer [93],

it was found that linear regression model has low signal-to-noise ratio because first it deter-

mines the percent of variance occurring in the dependent variable due to each independent

variable separately and then, later on, uses this knowledge to predict the dependent variable.

2.10.2 Multivariate Analysis

In multivariate analysis method, weighted linear combination of each of the independent

variables is identified in such a way that they should be able to predict the dependent variable

with minimum possible error. It can be performed using many techniques depending on the

type of dependent variable; for example linear regression is used when the dependent vari-

able is continuous and logistic regression is used when the dependent variable is categorical.

MLR is the most commonly used technique for fitting a linear equation on observed data.

Further in multivariate linear regression, there are three methods used for identifying and

picking the subset of important metrics from the set of independent variables i.e. forward se-

lection, backward selection and stepwise selection. In this study, stepwise selection method

is used as it guarantees to provide optimum and most significant subset of independent vari-

ables. Multivariate analysis assign the weight to each of the independent variable in such a

way that the final predicted value should be as much close to the actual value as possible.

71

Chapter 2. Research Methodology

2.10.3 M5 Rules
M5 Rules technique is capable of predicting linear model which nearly maps each exam-

ple to a different value. This technique uses rules to explain the data, hence, instead of single

output value in the node, it has a collection of rules in the each node. M5 Rules technique

is considered as one of the most flexible technique because it is able to map the examples

covered by one rule on many different outcome values which is not the case without classi-

fiers having a single target value. In one of the research study by Kohavi and Sommerfield

[116], accurate and compact rule sets are generated using separate-and-conquer paradigm.

They concluded that M5 Rules based classifiers always have a much lower number of rules

and conditions than other techniques such as linear regression because of its capability to

balance the trade-off between generality versus consistency of the attribute.

2.10.4 Bayesian Belief Networks
BBN have gained popularity only in the last decade in number of applications such as

bioinformatics, text mining, natural language processing, signal processing, speech recogni-

tion, error-control codes etc [118]. It belongs to the family of probabilistic graphical models

and often used to represent knowledge about an uncertain domain. BBN are both mathe-

matically rigorous and intuitively understandable. They are represented using a graphical

structure known as directed acyclic graph. Mathematically the network is defined by a pair

B = (G,E), where G consists of nodes X1, X2, X3......Xn in the graph to represent random

variables and E represents the edges between the nodes to depict the direct dependencies

between these variables [118].

2.10.5 Decision Tree
Decision Trees classifier is one of the most popular technique used in various disciplines

such as pattern recognition, data mining, machine learning etc. Various splitting criteria and

pruning techniques are proposed and validated by many researchers [116]. A decision tree

is created based on the concept of entropy and information gain. During the construction as

72

2.10. Machine Learning Techniques

per the pre-specified splitting criterion, the most qualified independent variable is selected

at the node which consists of nodes that form a rooted tree, originate from a root which

has no incoming edges. It is a classifier expressed as a recursive partition of the instance

space. Other than the root node, each node has exactly one incoming edge. All those nodes,

which have exactly one outgoing edge is called internal nodes and those which does not

have out going edges are called external nodes. Each internal node behaves as a splitting

node and splits the instance space into two or more sub-space depending upon the value

of that attribute. Each leaf node represents one class with the most appropriate target value.

Instances are classified by navigating them from the root of the tree down to a leaf, according

to the outcome of the tests along the path. Each node is labeled with the attribute it tests, and

its branches are labeled with its corresponding values.

2.10.6 Support Vector Machine
Originally developed for solving the binary classification problems, SVM are explicitly

based on a theoretical model of learning which was later extended to solve the regression

problems. In this method, a hyper-plane is created to separate the data into the nonlinear

region and finally with the help of kernel function data points are mapped into different

dimensional space. This technique was first introduced in 1992, but very soon it became

very popular among researchers because of its success in handwritten digit recognition. It

allows the user to separately implement and design their components because of its modular

design and provide theoretical guarantees about its best performance.

SVM is a quadratic optimization problem subject to linear constraints with the unique

minimum. In one of the research study conducted by Cortes and Vapnik [51], difficult task

to detect and exploit complex patterns in datasets are explored using SVM technique. In

the category of the supervised learning techniques, they are found to be the best in terms

of accuracy and efficiency. SVM maximizes the margin around the separating hyper-plane

which do not get affected by local minima, hence, its solutions are unique especially when

they are global. Support vectors are actually nothing but the data points that lie closest to

73

Chapter 2. Research Methodology

the decision surface which works as decision function to be fully specified by a subset of

training samples.

2.10.7 K Star
K Star is an instance based learner which uses entropy as a distance measure to improve

the accuracy in every iteration. It provides a consistent approach for handling the indepen-

dent attributes which are either having real values, or the symbolic values. Proposed by

Lee and Song [122], it uses similarity function from the training set to classify the test set.

Attributes having missing values are filled very carefully in order to attain the maximum

accuracy. They are treated as if they were drawn at random from all instances in the dataset.

Missing values are taken as the mean of the probability of transforming to each of the at-

tribute values which are not missing in the dataset. Finally, by taking the average of the

column entropy curves, the missing value is determined.

2.10.8 Ensemble Learning
Over the years, ensemble learning algorithms have become extremely popular because,

even though it generates multiple base models using traditional machine learning techniques,

but finally it combines them into single ensemble model by taking their aggregate. Since

most ensemble algorithms operate in batch mode, and repeatedly read and process the entire

training set again and again, they are always considered better than single classifier. In this

technique, first, a set of classifiers are constructed and in the very next step, final classifica-

tion is performed by taking a weighted vote of their predictions. Originally only Bayesian

averaging method was developed under this category, but later on, bagging, boosting meth-

ods were also developed and became very popular because of their good empirical results

and theoretical foundations [33]. They are described as follows:

2.10.8.1 Boosting

Boosting is considered as a general method for improving the accuracy of any given

learning algorithm by Freund et al. [71]. It does not suffer from over fitting. There are

74

2.10. Machine Learning Techniques

basically two types of boosting techniques, Logitboost and Adaboost. Logitboost is one of

the popular releases of boosting which uses regression method as the base learner and it

performs additive logistic regression. Adaboost combines a number of weak hypotheses to

get better classification performance. For this, equal weights are assigned to all the training

examples and then the weights of the incorrectly classified examples are increased on each

round so that a weak learner is forced to focus on the hard examples in the training set [71].

2.10.8.2 Bagging

Developed by Leo Breiman [33] to increase the accuracy of regression models, bagging

reduces the variance and helps to avoid the problems associated with over-fitting. The idea is

to build various similar training sets and train a new function for each of them. In this study,

meta learning based bagging method is used to predict the number of changes which might

occur in a class based on OO metrics. The bagging method under the category of ensemble

learners are well established and recognized as the best method for obtaining highly accurate

classifications.

2.10.8.3 Non Linear Boosting Projection

Schapire and Singer [182] identified two scenarios where there are chances that boost-

ing may fail, first when there is insufficient training data relative to the complexity of the

base classifiers and second when the training errors of the base classifiers become too large

too quickly. Poposed by Garcia et al. [74], in Non Linear Boosting Projection (NLBP) ap-

proach, instead of random space, constructive non linear projections are created using neural

networks and further combined with the philosophy of boosting to handle noise present in

the data.

2.10.8.4 Discussion

Ensemble learning is the process of combining multiple classifiers to solve a computa-

tional problem. When the data available is too large for a single classifier to be trained, we

can partition the data into subsets and allow different classifiers to be trained on each subset

75

Chapter 2. Research Methodology

and combine the results using some specified rules. On the other hand, when the data is too

small, we can use bootstrapping mechanism, wherein we draw the data with replacement

and apply a classifier to each sample. Among number of classifiers available, it is difficult to

make a choice of the appropriate classifier for our problem. Combining multiple classifiers

helps to reduce the chances of making a poor or wrong selection. It may or may not improve

the performance over a single classifier, but it certainly reduces the risk of poor selection,

hence, in this research, we have used NLBP ensemble learners.

2.10.9 Artificial Neural Network

Inspired from the natural functioning of the brain, ANN is the electronic models which

are developed to provide machine solutions in non technical manner. They are originally

developed to mimic basic biological neural systems particularly the neurons present in the

human brain. Although computer capable of doing rote things very speedily such as solving

the large complex mathematical equations, however doing the easy job such as recognizing

even simple patterns are very troublesome for computers as shown in figure 2.8.

ANN deals with the process of storing information as patterns and utilizing those patterns

for solving problems based on past learning. ANN does not involve traditional programming

practices, instead, it involves the creation of massively parallel networks and the training of

those networks to solve specific problems. This field also utilizes words very different from

traditional computing like behave, react, self-organize, learn, forget and generalize.

Advantages of ANN: One of the important advantages of ANN is that it can learn by

observing the datasets using approximation method. These types of random function approx-

imation methods are very cost effective. ANN saves both time and money by considering

data samples rather than entire datasets to arrive at solutions. They are simple mathematical

models which enhance the existing data analysis technologies. Many different versions of

ANN model have been used in this research study as mentioned below.

76

2.10. Machine Learning Techniques

Figure 2.8: Architecture of Artificial Neural Network

2.10.9.1 Back Propagation Network

Although Back Propagation Network (BPN) is originally invented by Hu [94] in 1964,

however it came into use only in 1994 by Rumelhart et al. [188] when it was used as su-

pervised learning technique. Training data in BPN consists of a pair of the vector (input

vector and target vector). During the training process, an input vector is presented to the

network for the learning process. Output vector is generated from these learning vectors and

compared with the actual target value. If there is any difference in the values, the weights of

the network are readjusted to reduce this error and the process is repeated until the desired

output is produced.

2.10.9.2 Kohonen Network

Proposed by Kohonen [117], Kohonen Network is best known as self organizing net-

works as they learn to create maps of the input space in a self-organizing way. Although,

Kohonen Network is invented to provide a way of representing multidimensional data in

77

Chapter 2. Research Methodology

much lower dimensional spaces, a network is created that learn the information such that

any topological relationships within the training set are maintained without supervision.

2.10.9.3 Feed Forward Neural Network

In Feed Forward Neural Network (FFNN) [38], information moves in only one direction

i.e. forward from input nodes to output nodes through hidden nodes and there are no loops

in the network. The number of hidden neuron selected as 10 for the sample data collected

from these five real life applications.

2.10.9.4 General Regression Neural Networks

Proposed by Specht and Shapiro [207], GRNN is a very powerful network as it needs

only a fraction of the training samples during the learning process and finishes the learning

process in a single pass. Due to the highly parallel structure, it performs well even in the

case of noisy and sparse data and the over fitting problem does not arise as neither do they

set the training parameters during the commencement of learning process, nor they define

the momentum. Once network finished the training process, the only smoothing factor is

applied to determine how tightly the network matches its prediction.

2.10.9.5 Probabilistic Neural Networks

PNN is a special type of FFNN created by Specht [208] which is based on BBN and

Kernel Fisher discriminate analysis. In PNN, the operations are organized into a multi-

layered feed forward network with four layers namely Input layer, Hidden layer, Pattern

layer/Summation layer and an Output layer. The first layer is input layer where one neuron

is present for each independent variable. The next layer is the hidden layer which contains

one neuron for each set of training data. It not only stores the values of the each predictor

variables but also stores each neuron along with its target value. Next is the Pattern layer,

one pattern neuron is present for each category of the output variable. The last layer is out-

put layer wherein weighted votes for each target category is compared and selected. Unlike

BPN, which require feedback of errors and subsequent adjustment of weights and many pre-

78

2.10. Machine Learning Techniques

sentations of training patterns, training a PNN network is very fast because it requires that

each pattern is presented to the network only once during training. During the training ses-

sion, we can see the number of learning events completed during training which is also called

as ‘epoch’. Training can be done in real time since training is almost instantaneous. When

data is sparse, training is superior to other network types. The success of PNN networks is

dependent upon the smoothing factor. The adaptive PNN network is very powerful as during

the building of neural networks, it uses genetic techniques.

2.10.9.6 Jordan Elman Recurrent Network

Jordan Elman Recurrent Network (JERN) is special kind of recurrent network in which

hidden layers are fed directly into the input layers [122]. Even though JERN are slower but

this type of recurrent network has the ability to learn the sequences. JERN network combine

the past values of the context unit with the present input to obtain the present net output. In

JERN, context unit acts as low pass filter and creates an output by giving average value to

some of its most recent past outputs. Output of the network is obtained by summing the past

values multiplied by the scalar parameter. The input to the context unit is copied from the

network layer, but the outputs of the context unit are incorporated in the net through their

adaptive weights. JERN is a very powerful learning as the hidden layer is fed back into the

input layer, so features detected in all previous patterns are fed into the network with each

new pattern.

2.10.10 Genetic Algorithms

GA is an adaptive system motivated by biological system proposed in Charles Darwin’s

evolution theory. It is a high level simulation. The GA starts with a set of solutions (rep-

resented by chromosomes) called population. Genetic technique is a search heuristic and it

mimics the process of natural evolution. This heuristic is routinely used to generate useful

solutions to optimization and search problems. Best solutions from one population are then

taken and used to form a new population which will be better than the old one. While choos-

79

Chapter 2. Research Methodology

ing the solutions, their fitness function is evaluated. Those solutions which are more close to

fitness function have more probability to be selected. We say that the more suitable solutions

have more chances ‘to survive’. This process is repeated until some condition is satisfied

such as achievement of the best solution. Hence the population is improved over generations

to accomplish the best solution.

2.10.11 GRNN with Genetic Adaptive Learning

GRNN with Genetic Adaptive Learning (GGAL) is a hybrid technique in which the

GRNN technique mentioned in previous section is modified by introducing the genetic adap-

tive learning during the training session. As suggested by Specht et al. [207], by simulating

the biological evolution, this genetic inspired neural network method has the ability to search

large and complex spaces to determine near optimal solutions in time and space efficient

manner.

2.10.12 Group Method of Data Handling

Russian Scientists Ivakhnenko and Koppa [96] introduced this technique in the year 1970

for constructing an extremely high order regression type model termed as GMDH. This tech-

nique builds a multinomial of a degree in hundreds, whereas standard multiple regression

bogs down due to computation and non-linear dependence. GMDH can predict the outcome

even with smaller training sets. The computational burden is reduced with GMDH model

because it automatically filters out input properties that provide little information about lo-

cation and shape of hyper surface.

2.11 Prediction Accuracy Measures
When building prediction models, the primary goal should be to make a prediction model

as much accurate as possible. The model should be able to accurately predict the desired

target value for new data. An important question that needs to be asked of any prediction

model is ‘How accurate is its predictions’. The difference between the actual and predicted

80

2.11. Prediction Accuracy Measures

value is often measured in terms of error. There are many prediction accuracy measures

suggested in literature which find out the effectiveness of any prediction model.

Based on the two values namely actual value and predicted values, researchers have

stated various methods to evaluate the quality of predictions [50, 65, 110]. As presented

in equations (2.4) to equation (2.5) in the next section various measures to adjudge the pre-

diction accuracy are presented. We can develop a relationship between how well a model

predicts on new data (its true prediction error and the thing we really care about) and how

well it predicts on the training data (which is what many models in fact measure).

In our research study, we evaluated and compared the OO software maintainability pre-

diction models quantitatively with other proposed models. The measures used in the current

study are discussed in succeeding sections.

2.11.1 Magnitude of Relative Error

It is a normalized measure of the discrepancy between actual values and predicted values

as proposed by Kitchenham et al. [110]. It is measured as shown in equation (2.4) below:

MRE =
Actual Value − Predicted Value

Actual Value
(2.4)

MRE value is calculated for each class and further many prediction accuracy measures

are derived from this measure. Maximum of MRE for all data points is used as MaxMRE,

minimum MRE of all data points is used as MinMRE and Mean of MRE is used as MMRE

in this research study. Their definition is provided as follows:

2.11.1.1 Mean Magnitude of Relative Error

MMRE measures the average relative discrepancy. It is equivalent to the average error

relative to the actual effort in the prediction. In our study we have expressed MMRE as

actual values even though in some of the studies it is expressed in percentage form (%). As

81

Chapter 2. Research Methodology

shown in equation (2.5), MMRE is calculated as the mean of MRE.

MMRE =
1

N

N∑
i=1

MRE (2.5)

MMRE has been regarded as a versatile assessment criterion and has a number of advan-

tages such as it can be used to make comparisons across datasets and all kinds of prediction

model types and it is independent of measuring unit and scale independently.

2.11.1.2 Maximum of Magnitude of Relative Error

MaxMRE measures the data point which achieve maximum difference between actual

values and predicted value. As shown in equation (2.6), it is calculated by taking maximum

of all MRE values.

MaxMRE =Maximum(MRE1,MRE2.........MREn) (2.6)

2.11.1.3 Minimum of Magnitude of Relative Error

MinMRE measures the data point which achieve minimum difference between the actual

values and predicted value of the dependent variable. As shown in equation (2.7), it is

calculated by taking minimum of all MRE values.

MinMRE =Minimum(MRE1,MRE2.........MREn) (2.7)

2.11.2 Mean Absolute Relative Error

Mean Absolute Relative Error (MARE) is a normalized measure to detect the discrepancy

between actual and predicted value of dependent variable (maintenance effort in this case).

As shown in equation (2.8), first the difference between the actual and predicted value is

calculated and the result is divided by the actual value. Then, the absolute value of each

data point is summed and is divided by the total number of data points. MARE is defined as

follows:

82

2.11. Prediction Accuracy Measures

MARE =
1

N

(
N∑
i=1

| Actual Value − Predicted Value |
(Actual Value)

)
(2.8)

Ever since it is proposed by the Kitchenham et al. [110], it has become the de facto

standard to measure the accuracy of software maintainability prediction.

2.11.3 Root Mean Square Error

Another measure used to compare the machine learning techniques is the Root Mean

Square Error (RMSE) defined as the square root of the variance of the residual value. As

shown in equation (2.9), the difference between the predicted values with actual values for

each class is squared, then averaged and finally the square root of this average value is taken.

The RMSE measure is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(Actual Value − Predicted Value)2 (2.9)

This method gives comparatively high weightage to large errors as the differences are

squared before they are averaged and it is chosen when large errors are most undesirable.

Lower values of RMSE indicate better fitness of the model used for predictions.

2.11.4 Pred

Proposed by Fentom and Bieman [65], it measures the proportion of the predicted values

which have MRE values less than or equal to specified value. As shown in equation (2.10),

it is calculated in percentage form.

Pred(q) =
K

N
(2.10)

Where q is the specified value, K is a number of cases whose MRE is less than or equal to

q, N is the total number of cases in the datasets. In the current study we have used most

commonly values such as pred(0.25) and pred(0.30) in the field of software maintainability

83

Chapter 2. Research Methodology

prediction so that we can compare our results.

2.11.5 R-Square

It is a measure of the quality of fit because it measures how well the variation in the output

is explained by the targets. It is formally defined as the ‘fraction by which the variance of the

errors is less than the variance of the dependent variable’. It is called as R-squared because

in a simple regression model it is calculated by just squaring the correlation between the

dependent and independent variables which is calculated as shown in equation (2.11) and

usually denoted by ‘r’.

r =
n(
∑
xy)− (

∑
x)(
∑
y)√

[n
∑
x2 − (

∑
x)2)] [(n

∑
y2 − (

∑
y)2)]

(2.11)

It is found in the research studies that if this number is equal to 1, then there is a perfect

correlation between targets and outputs [65]. It is calculated by square of the correlation

coefficient and 100% R-square means perfect predictability.

2.11.6 P-Values

In statistics, the p-value is used to measure how extreme are the observations, hence, it’s

a function of the observed sample results. The p-values are used for testing the hypothesis

of no correlation. Each p-value is the probability of getting a correlation as large as the

observed value by random chance, when the true correlation is zero. If p is small, say less

than 0.05, then the correlation i.e. R is significant.

2.11.7 Underestimate and Overestimate

Sometimes even if the prediction model is producing good results for MMRE value,

it might happen due to the phenomenon that there are many variations between the actual

value and predicted value in opposite direction and during the averaging process they nullify

each other. Hence, this accuracy measure tries to find out whether there is any kind of

84

2.12. Cross-Validation Methods

biasness present in the model by identifying the number of underestimates and overestimate

in percentage form.

2.11.7.1 Percentage of Underestimate

Sometimes the predicted value is less than actual value and sometimes the predicted value

is greater than the actual value. Hence, in this accuracy measure, we count how many times

the predicted value is less than actual value when total data points are provided to us. The

number of underestimate values are calculated in percentage form using equation (2.12).

Underestimate =
X

N
∗ 100 (2.12)

Where X is a number of observations in which the predicted value is less than the actual

value while N is the total number of observations.

2.11.7.2 Percentage of Overestimate

In order to calculate the overestimate observations, the number of observations where

the predicted value is higher than the actual value is counted and finally it is calculated in

percentage form using equation (2.13) as follows:

Overestimate =
Y

N
∗ 100 (2.13)

Where Y is a number of observations in which the predicted value is greater than the

actual value while N is the total number of observations. This accuracy measure also helps

in comparing the performance of multiple classifiers by presenting the visualization chart

for underestimate and underestimate and provide us the much-needed information about the

biasness if it at all present in the model.

2.12 Cross-Validation Methods
In order to obtain unbiased and generalized results from any empirical study, it is es-

sential that validation of the prediction model should be carried out on different datasets

85

Chapter 2. Research Methodology

other than the one used for training. Three very commonly used methods for the valida-

tion are holdout cross-validation method, n-fold cross-validation method and leave one out

cross-validation method. Although, in this study n-cross-validation technique is used with

setting the value of n as 10, however we have discussed all three methods in the following

sub sections:

2.12.1 Holdout Cross-Validation Method

Functioning of holdout validation method is very simple as in this technique, the dataset

is divided into three portion m:n:p. During the prediction process, the m portion is used

for training purpose, the n portion is used for the testing purpose and finally, the p portion

is used for validation purpose. In normal practice approximately 67% of the data is used

for training purpose and remaining 33% is used for testing and validation. If the data size is

comparatively small, the cost of setting aside a significant portion of the dataset for validation

is too high. Hence, this technique is adopted only if the dataset is comparative large in size.

2.12.2 N-Fold Cross-Validation Methods

In the N-Fold cross-validation proposed by Stone [211], it works by splitting the dataset

into sets of n folds. Cross-validation is very similar to the holdout method but the main

difference is that in this method, each data point is used both to train the models and to

test a model, but never at the same time. In this method, the data is divided into n folds

where each time n-1 parts are used for training purpose and one part is used for validation

purpose. This procedure is repeated n times and the results from each fold are combined

to produce the model validation results. A useful feature of n-fold cross-validation is that

it gives the estimates of the variability of the true error. One of the important questions of

cross-validation is what should be the value of n. If the value of n is too small, we get more

bias error estimates, however, the variance is less. However, if the value of n is very high,

the error estimate is unbiased but on the other side, the variance could be higher. Hence,

there is a trade-off between biasedness and variance which has to be taken into consideration

86

2.12. Cross-Validation Methods

while selecting the value of n. Another important factor while deciding the value of n is the

computational time which is directly proportional to the number of folds. For each fold, we

have to train a new model, so it takes more time. Generally, as a normal practice, in any

empirical studies either 5-fold or 10-fold cross-validation is used.

2.12.3 Leave One Out Cross-Validation Method

Leave one out cross-validation method is an extreme case of n-fold cross-validation

where the value of n is one less than the total number of data points. For example, for

each dataset we just keep one fold i.e. one data point for validation and remaining n-1 data

points are used for training. The process is repeated n times and in every ith iteration, the ith

data point is used for validation. If the size of the dataset is very limited, this technique is

adopted.

2.12.4 Discussion

If the size of the data is limited, n-fold cross-validation is preferred to the holdout method.

Since in this study, the size of the dataset is greater than 80 data points, hence leave-one-out

method has not been used. Hence, in this study, n-fold cross-validation method is used

and the value of n is set to 10. That means in our research for each of the dataset, for an

example of 100 data points; we can create 10-folds each containing 10 data points. During

the prediction model building, the process is repeated 10 times irrespective of the training

method used. Each time nine groups are combined resulting in 90 data points and used to

train the model and 10th group of 10 points that was not used to construct the model is used

to estimate the actual prediction error. In the case of 10-fold cross-validation, the final result

of the error estimate is actually average of each iteration. Hence, we obtain a more robust

prediction model which provides us true prediction error.

87

Chapter 2. Research Methodology

2.13 Test for Significance
Statistical tests are generally performed for comparing the prediction performance of

one model with other model and identify whether one technique has really outperformed the

other technique or it’s just coincidental. Various statistical significance tests are suggested

in literature and broadly divided into two categories i.e. parametric and non-parametric.

Parametric tests make assumption that the data is normally distributed. Some examples of

the parametric test are paired t-test and Analysis Of Variance (ANOVA) test. Non-parametric

tests are also called as distributed free tests because they do not make any kind of assumption

regarding the distribution of data. Some examples of the non-parametric test are Friedman

Test, Wilcoxon Test, Nemenyi Test etc.

In this research, in order to analyze the statistical significance of the outcomes provided

by various models, Friedman test followed by post-hoc analysis using Nemenyi test and

Wilcoxon test are performed. We have not used paired T-Test and ANOVA test to check

the significance because we were neither guaranteed that the accuracy differences are nor-

mally distributed, nor we were sure about the presence of variance in the residual error. We

have followed the guidance provided by Demvsar [59] that non-parametric tests are very

effective way to check the significance of the results if the dataset does not follow a normal

distribution. These tests are further explained in a subsequent sections.

2.13.1 Friedman Test

The Friedman’s test [72] is a kind of non-parametric distribution-free statistical test,

which is used to find if there exists significant difference among the performance of machine

learning techniques and rank them accordingly. As suggested by Demvsar [59], when

the performance of multiple classifiers needs to be compared on multiple datasets, it is

one of the best techniques. This test evaluate the performance of each classifier on given

multiple dataset using prediction accuracy measure such as MRE, MMRE and RMSE and

further allocate mean rank to all classifiers accordingly. The technique whose performance

88

2.13. Test for Significance

is adjudged as best on multiple datasets, is assigned at the lowest rank. If there are n

techniques, Friedman test considers n-1 degree of freedom using the chi-square table. The

following hypothesis is formed before conducting the Friedman test on results.

Null Hypothesis (H0): There is no significant difference among the performance of

participant machine learning techniques.

Alternate Hypothesis (H1): There exists significant difference among the performance

of participant machine learning techniques.

The Friedman statistic is calculated based on the formula given in equation (2.14) as

follows:

X2
r =

(
12

Nk (k + 1)

k∑
i=1

R2

)
− 3N (k + 1) (2.14)

Where Ri is the rank allocated to the ith technique by the Friedman test, N is the num-

ber of datasets, k is number of machine learning techniques considered for ranking. The

value of 7calculated is calculated from the given equation (2.14) and compared with 7 tabulated

using chi-square distribution table. If the value of Friedman Measure i.e. 7 calculated lies in

the critical region, Null hypothesis is rejected and alternate hypothesis is accepted and it is

concluded that there exists a significant difference between the performance of participant

machine learning technique. Otherwise Null hypothesis is accepted and alternate hypothesis

is rejected and concluded that there does not exist significant difference between the per-

formances of participant machine learning technique. Further, if Friedman test found that

there exists significant difference between accuracy achieved from various prediction tech-

niques, follow-up tests such as Nemenyi test and Wicoxon tests needs to be conducted in

order to evaluate and compare each pair of prediction technique. Both Nemenyi test as well

as Wicoxon tests are also distribution free tests and used for post-hoc analysis. Individu-

ally every technique is ranked using Friedman’s Individual Rank (FIR) as shown in equation

89

Chapter 2. Research Methodology

(2.15) as:

Friedman′s Individual Rank (FIR) =
C

N
(2.15)

Where C is the cumulative rank and N is a number of datasets. FIR for each technique

is calculated and the technique which scores lowest value of FIR is considered as the best

performer and the technique achieving the highest rank is termed as worst performer.

2.13.2 Post-Hoc Analysis

There are two statistical tests used for conducting post hoc analysis viz Wilcoxon Signed

- Rank Test and Nemenyi Test. If the results based on the mean rank achieved using FIR for

both the performance measure MMRE or RMSE is found to be significant, it is advisable to

check whether the difference in mean rank is statistically significant or not by means of post

hoc analysis using Nemenyi Test.

2.13.2.1 Wilcoxon Signed Rank Test

Wilcoxon Signed rank test is used to find whether there exists statistically significant

performance difference among each pairs of learning technique. Like the paired t-test for

correlated samples, this test is also applied to two-sample designs which involve repeated

measures. As proposed by Bland and Altman [27], if there is paired value of MRE say Xa

and Xb, this test will first find the absolute difference between Xa and Xb for each pair and

omit those cases when Xa and Xb are equal. Next, it assigns a positive and negative rank to

each pair i.e. ‘+’ sign when Xa is greater than Xb and ‘-’ sign when Xa is less than Xb. As

shown in equation 2.16 and 2.17, it calculates the value of W for the Wilcoxon test, which is

equal to the sum of the signed ranks.

W =

∣∣∣∣∣
N∑
i=1

(sign(X1 - X2).R)

∣∣∣∣∣ (2.16)

Z =
W − 0.5√
n(n+1)(2n+1)

6

(2.17)

90

2.13. Test for Significance

αnew =
αold

NumberofComparisons
(2.18)

Although, Friedman test is used to find if there exists significant differences between the

performances of techniques, however, Wilcoxon Test is used to find the individual differ-

ences between given pair on same dataset if at all it exists. Hence, if the number of datasets

are less than five, Friedman test is unable to do post hoc analysis and we stick to Wilcoxon

test. There is only one disadvantage with Wilcoxon test that sometimes it generate Type I er-

ror, however in order to overcome this type of problem, Bonferroni adjustment is used [135].

As shown in equation (2.18), it suggests that value of significance level i.e. α should be

revised and divided by k where k is the number of times Wilcoxon signed test is conducted

[27]. For example, if the significant level is 0.05 and it is repeated on six datasets, the new

adjusted value of α becomes (0.05/6)= 0.008 after Benferroni adjustment.

2.13.2.2 Nemenyi Test

Post hoc analysis using Nemenyi test is conducted in case significant results are yielded

by the Friedman test in other words if the null hypothesis of the corresponding test is rejected

in Friedman test. When the sample size is equal and the data is not normalized, Nemenyi Test

is a very powerful tool for post hoc analysis [124]. It is used to compare the performance of

various classifiers for finding the existence of statistically significant difference among them.

First of all Critical Distance (CD) is calculated using equation (2.19) which depends upon

the number of techniques, number of datasets and the level of significance as shown under:

Critical Distance (CD) = qα

√
k (k + 1)

6N
(2.19)

Where k means the number of technique and n is the number of the data sample. The

value of qα is based on Studentized range statistics for a given level of significance as defined

by Demvsar [59]. While comparing the performance of two machine learning techniques

during post hoc analysis, the difference between their respective FIR values is calculated. If

this difference is greater than or equal to the value of CD, it is concluded that the performance

91

Chapter 2. Research Methodology

of two machine learning techniques is statistically significant at the selected significance

level α. If the difference is less than the value of CD, it is concluded that the difference

between their performances is not statistically significant.

2.14 Discussion
There are many important facet of any software such as its source code, documenta-

tion, archived communications, maintenance efforts, change management and defect track-

ing. This information is vital for researchers as they can mine these data repository and

extract knowledge for improving overall software quality. Model can be created based on

the available data for the purpose of predicting many aspects of software such as change,

defect prediction, fault proneness, maintainability etc. While creating a prediction model

researchers, practitioners and academicians need to understand empirical concepts and tech-

niques [135]. In this chapter we have presented the steps to be followed for conducting an

empirical study and creating a prediction model for software maintainability. We have also

presented various statistical tests to be conducted to verify the significance of the results and

finally interpretation of the results.

92

Chapter 3

Systematic Literature Review

3.1 Introduction
If the maintainability can be measured in early phases of the software development, it

helps in better planning and optimum resource utilization. Measurement of design proper-

ties such as coupling, cohesion etc. in early phases of development, often leads us to derive

corresponding maintainability with the help of prediction models. In this chapter, we per-

formed a systematic review of the existing studies related to software maintainability from

January 1991 to Oct 2015 based on the guidelines provided by Kitchenham et al. [111]

for conducting a systematic review in the field of software engineering. In total, 96 primary

studies were identified out of which 47 studies were from journals, 36 from conference pro-

ceedings and 13 studies from other sources. All studies were compiled in structured form

and analyzed through numerous perspectives such as the use of design metrics, prediction

model, tools, data sources, prediction accuracy etc.

The chapter is organized as follows: The systematic review begins with Section 3.2 dis-

cussing the background of the subject of research i.e. Software Maintainability. Section

3.3 describes the motivation of undertaking this review. Section 3.4 discusses the review

methodology; Section 3.5 presents detailed planning which includes identifications of key-

93

Chapter 3. Systematic Literature Review

words, raising the RQ and retrieval of studies. Section 3.6 presents various activities per-

formed while conducting this review which includes the synthesis of information, a list of

qualified studies, inclusion and exclusion criterion and assigning the identifier to each of the

shortlisted studies. Reporting of reviews and answer of each of the RQ are presented in Sec-

tion 3.7. Section 3.8 discusses current trends and loopholes as it sets the goals and directions

for future, and finally section 3.9 presents the discussion.

The results of this chapter have been reported in [145].

3.2 Background
In the current systematic review, all research papers, review articles, white papers, re-

ports, and conferences proceedings known to authors since 1990 to date have been collected,

scrutinized, compiled and analyzed. The objective of the systematic literature review is to

organize empirical evidence in comprehensive form on the following aspects:

• Various factors that affect maintainability.

• Different means and methods to improve maintainability.

• The use of prediction models for maintainability in the early phases of development.

• Comparing the performance of various maintainability prediction models in terms of

the accuracy.

• Identify the advantages and disadvantages of various prediction models over each

other.

• Identify the software metrics which can be used in prediction model making process.

• Identification of the existing gaps for future prospect of research in the field of software

maintainability.

94

3.3. Motivation

In order to achieve the above mentioned aims, nine digital libraries were extensively

searched and 96 primary studies were identified for inclusion in the study based on crite-

ria discussed in later part of this chapter. After preliminary investigations in the previous

literature, RQ were raised and detailed comprehensive reports were generated.

3.3 Motivation
While undertaking the current review on software maintainability, the two obvious ques-

tions arise as under:

• Why is it the right topic for a review? and

• Is there any recent review carried in this area?

Recently a survey conducted by Jones [40] has reported that during the 1950s only 10%

of the total professionals deployed in software industry were engaged in maintenance work

and by the year 2025, this figure would rise to 77%. Further, it claims that acute shortage

of software personnel is also due to the burst of maintenance work. Hence, practitioners are

trying hard to make maintainable software so that the overall project cost can be controlled

and the product can be managed optimally. As part of the better planning, often developers

predict maintainability of the software on the basis of its designed characteristics. This

motivates us to compile all the studies in the said field in order to identify how much has

been achieved as well as the potential areas of research based on existing gaps. Many reviews

have been conducted in the past to compile the studies related to software maintainability by

Ghosh at al. [78], Koh et al. [114], Riaz et al. [183], Saraiva [194] and Saraiva et al. [195],

but the current review is different from all of them in three aspects. Firstly, the current review

is carried out as per the guidelines provided by Kitchenham et al. [111] for conducting a

systematic review in the field of Software Engineering. Secondly, in this review, empirical

studies on software maintainability prediction are shortlisted and analyzed both qualitatively

as well as quantitatively in tabulated form for easy understanding. A thorough analysis

95

Chapter 3. Systematic Literature Review

was conducted to cover various aspects of software maintainability predictions such as the

prediction techniques, software design metrics, datasets, tools, and prediction accuracy of the

models etc. Thirdly and most importantly, none of the previous reviews [78, 114, 183, 194,

195] are as comprehensive as the current one in which more than 96 studies published from

the year 1991 to October 2015 are reviewed. The main guidelines provided by Kitchenham

et al. [111] are covered in succeeding sections of this chapter.

3.4 Review Methodology
This section explains the procedure of conducting the systematic review adopted in this

study as per the guidelines given by Kitchenham et al. [111]. As depicted in figure 3.1, the

review methodology adopted in this study is divided into three stages: planning, conducting

and reporting.

Figure 3.1: Systematic Review Process

During the planning stage, search databases were identified and after the preliminary

96

3.5. Planning for Review

investigations, RQs were formulated. Policies regarding inclusion and exclusion of the stud-

ies were prepared and all the relevant papers were extracted. During the second stage, all

duplicate and irrelevant studies were removed and shortlisted papers were organized. The

synthesis was also carried during this stage on the basis of the information provided in each

of the shortlisted study. In the last stage, answers to all RQs were reported and current

trends in each of the sub-field were identified. An endeavor was also been made to highlight

the constraints present in each of the paper which would lead us to the future directions of

research.

3.5 Planning for Review

3.5.1 Selection of Search Databases

We began our search with the university website resource and EBSCO discovery services

provided by the university information resource centre of Guru Gobind Singh Indra Prastha

University (GGSIP). The search process was accomplished in two stages. Firstly search

string such as “Software Maintainability” was used to get thousands of results. In this pro-

cess Google scholar, Scopus, Science Direct, Springer, ACM Digital Library, IEEE Xplore,

Wiley, Web of Science and Compendex were identified. In the second stage, publications

in the important journals and conferences were identified. We restricted our search from the

period from Jan 1991 to Oct 2015 only.

3.5.2 Identification of Important Journals and Conferences

Before picking up good journals or conferences, their quality was determined through

several perspectives to make the contents trustworthy. The basis for short listing of impor-

tant journals and conferences in the said field in this review includes a number of citations,

circulation of journals, status of reviewers, impact factor and above all the quality of the ed-

itorial board. Journals shortlisted for review in the field of software maintenance along with

their details are summarized in Table 3.1.

97

Chapter 3. Systematic Literature Review

Table 3.1: List of Important Journals in the Field of Software Maintenance

S.No. Name of the Journal Publisher Impact
Factor

1 ACM Transactions on Software Engineering
and Methodology

ACM, New York 3.958

2 IEEE Transactions on Software Engineering IEEE Inc 3.569
3 Computer Science - Research and Develop-

ment
Springer 2.128

4 International Journal of Computer Science
and Engineering Research and Development

PRJ Publication 1.9022

5 Empirical Software Engineering Springer 1.854
6 Automated Software Engineering Springer 1.4
7 Asian Journal of Information Technology Medwell Publishing 1.2679
8 Journal of Systems and Software Elsevier 1.117
9 Software Quality Journal Springer 0.974
10 Journal of Software Maintenance and Evolu-

tion Research and Practice
John Wiley & Sons
Ltd

0.844

11 International Journal of Software Engineer-
ing and Its Applications

SERSC 0.7621

12 International Journal of Software Engineer-
ing and Knowledge Engineering

World Scientific 0.447

13 International Journal of Software Engineer-
ing Software Eng.

Competence Center 0.219

14 ACM SIGSOFT Software Engineering
Notes

ACM NA

Major conferences of international repute that address issues in the field of software

maintenance were also identified such as International Conference on Software Engineer-

ing (ICSE), International Conference on Software Maintenance (ICSM), Computer Software

and Application Conference (COMPSAC), International Symposium on Empirical Software

Engineering and Measurements (ESEM), International Conference on Program Comprehen-

sion (ICPC), Object-Oriented Programming, Systems, Languages & Applications (OOP-

SLA), European Conference on Object-Oriented Programming (ECOOP), World Conference

on Reverse Engineering (WCRE) and European Conference on Software Maintenance and

Reengineering (ECSMR). The research studies included in the proceedings of these confer-

ences were also taken into consideration.

98

3.5. Planning for Review

3.5.3 Formulation of Research Questions

Practitioners are consistently haunted by the fact that maintenance consumes the lion’s

share of the total project cost. After the research of almost four decades, we are in a position

that we can predict the maintenance behavior of the software using mathematical prediction

models in the early phases of SDLC on the basis of its design metrics. After the first round

of investigations, next step was to raise certain RQ to identify the trends and scope of future

research. Careful selection of RQ is very important as it helps us throughout our study

from getting lost or being deviated off-track while navigating through vast information and

identifying the related information from the shortlisted papers. Table 3.2 summarizes the list

of important RQs set in the current review.

Table 3.2: List of Research Questions

S.No. Research Questions (RQ) Aim
RQ 1 Which techniques have been used for the

Software maintainability predictions?
To identify prevalent statistical, machine
learning or evolutionary techniques.

RQ 2 Which metrics is found useful and most
cited?

To identify most influential metrics
among various proposed metric suite.

RQ 3 What are the various tools prevalent in the
industry for metrics collection?

How to calculate values of design metrics
to measure various design characteristics
of any given software.

RQ 4 What kinds of datasets are being used for
the software maintainability prediction?

To be able to identify prevalent datasets
and the need of new datasets.

RQ 5 What kinds of prediction accuracy mea-
sures are used?

To be able to identify the prevalent pre-
diction accuracy measures used to judge
the performances of prediction models.

RQ 6 Whether the performance of machine
learning or evolutionary techniques is bet-
ter than the Statistical techniques?

To be able to compare the performance of
the statistical, machine learning, and ET.

RQ 7 Is there any effect of refactoring on the
software maintainability?

To be able to identify various refactor-
ing methods that could improve the code
quality.

RQ 8 How can we measure the maintainability? Although subjective in nature, its answer
would help us in identifying methods to
measure maintainability.

RQ 9 What are the advantages of the software
maintainability prediction?

Identify the advantages of software main-
tainability prediction at early phases of
SDLC.

99

Chapter 3. Systematic Literature Review

3.5.4 Search of Keywords

While conducting this systematic review, our intention was to compile all the papers on

the subject under study and present a holistic view towards the end. Final search string for-

mulated as under:

(Software Maintainability AND Software Maintenance) OR (Prediction OR Probabil-

ity) AND (Classification OR Regression OR Machine Learning OR Artificial Neural

Network OR Tree Net OR Multiple Regression OR Decision Tree OR Support Vector

Machine OR Evolutionary Technique OR Ensemble Lerner) OR (Software Mainte-

nance AND Refactoring) OR (Accessing Software Maintenance) OR (Software Metrics

AND Software Maintenance)

The papers which include keywords such as Software Maintenance, Software Maintain-

ability, Software Design Metrics and Maintainability Index were identified during the initial

search. After going through the contents, we went into further details and in the next phase

other keywords such as Changeability, Modifiability, Refactoring and Prediction Modeling

were also used to refine our search process. Since our aim was to narrow down on the ‘Soft-

ware Maintainability Prediction, articles working on Change Proneness, Fault Proneness,

Error Prone and Defect Prediction were deliberately avoided.

3.5.5 Retrieval of Studies

All important studies were retrieved through respective digital libraries. During this pro-

cess, reference section of each selected study was further explored to find relevant research

publications/ reports which were further retrieved and organized for review.

3.6 Conducting Review
During the conduct of the systematic review, all papers were studied thoroughly and

adjudged against the RQs as compiled in Table 3.2. Constraints and limitations present in

each of the shortlisted study were also identified and compiled which gives directions for

100

3.6. Conducting Review

future research. Detail synthesis of information took place during this stage only. We set

certain criteria based on RQs and continue accessing each paper based on ibid criteria.

3.6.1 Removal of Duplicate and Irrelevant Studies
All the shortlisted studies were arranged in chronological order so that the duplicate

studies could be immediately identified and removed. Further contents of the articles were

thoroughly scanned and irrelevant studies were removed as discussed among the authors of

this study. Inclusion and exclusion criteria were drawn directly from the RQs raised in Table

3.2. The review criterion was set on the basis to find some reasonable relevant contents in

the context of software maintainability. Only those papers were shortlisted which predict

software maintainability by proposing some models, measure maintainability using design

metrics, discuss some empirical investigations or perform some activity which had a direct

or indirect impact on maintainability such as refactoring, documentation etc along with their

consequences on maintainability. Any paper diverting towards change proneness or error

proneness was simply dropped. Criterion was kept neither too narrow which may result to

an over exclusion threat nor too broad as it may include poor or irrelevant studies.

Inclusion criteria:

• Empirical studies using the machine learning techniques.

• Empirical studies comparing the performance of machine learning techniques and sta-

tistical techniques.

• Empirical studies proposing some hybrid techniques by combining machine learning

techniques with some non machine learning techniques.

Exclusion criteria:

• Studies on software maintainability without empirical analysis of results.

• Empirical studies in which dependent variable other than ‘Change’ was used.

101

Chapter 3. Systematic Literature Review

• Studies using the machine learning techniques in any other context.

• Review studies.

• Replicated extended paper of the conference into the journal by same author, however,

utmost care was taken to identify if the results are different, in which case both the

studies were considered for the review.

Initially, 179 studies in total were retrieved using various search engines on the basis

of the keywords identified for the search in section. By applying the above-mentioned

inclusion-exclusion criteria, 108 studies were shortlisted. In the next phase, we filtered out

the irrelevant studies from the huge pool of available information by checking against the

quality assessment criteria as presented in Table 3.3 to weigh the relevance of each study

If the paper is qualified as per the quality criteria, it is given one mark, 0.5 marks for

partly qualified and 0 for not qualified. The final score was calculated for each of the studies

after adding the score obtained from each of the quality assessment measures. Hence, a

study could have a maximum score of 12 and a minimum score of 0. All those studies which

scored less than 5 were again dropped from the review process. Many brainstorming sessions

were conducted and twelve studies [1, 21, 23, 31, 41, 90, 108, 154, 160, 190, 197, 201] were

further dropped and finally 96 primary studies were only shortlisted for review on software

maintainability.

3.6.2 Data Extraction

“Place for everything and everything would be in place” was taken as a guiding principle

to organize all shortlisted articles for easy and quick access and retrieval before setting up

the stage for conducting such an extensive review. We prepared database containing various

attributes such as author’s name, article name, date of publication, the source of publications

(journal/ conference/ position paper/symposium/ white paper), keywords, article’s abstract

and remarks. A separate column was also maintained using ‘hyperlink’ for creating a link

102

3.6. Conducting Review

Table 3.3: Quality Assessment Measures

S.No. Quality Criteria (Q) Score
Yes Partly No

Q1 Whether the aims of the research study was clearly
stated?

Q2 Whether the independent variables were clearly
defined?

Q3 Whether the data collection procedures were
clearly defined?

Q4 Whether any tool was used to collect the variables?
If yes, is it explained?

Q5 Whether the use of prediction techniques was
clearly defined and justified?

Q6 Whether threats to validity in the empirical study
were clearly specified?

Q7 Whether the adopted research methodology is re-
peatable?

Q8 Whether the study is referring to a specific type of
maintenance or it is picking maintainability as a
whole problem?

Q9 Whether comparison between performances of
various techniques was conducted?

Q10 Whether the proper and relevant literature survey
was conducted?

Q11 Does the study have consistent and adequate cita-
tion over the years?

Q12 Whether prediction accuracy measures were
clearly defined and used to measure the outcome
in the study?

to the corresponding files stored in a separate folder for easy access. No file was stored

without creating a record in the database. We found this model to be very comfortable.

A detailed synthesis of information present in each of the study was performed to find the

answers of all RQ’s. Table 3.4 presents lists of shortlisted articles with respective author

and reference number. It also assigns an identifier to each of the shortlisted studies which are

further referred in rest of this chapter. We examined all the shortlisted studies from numerous

perspectives and tried to identify the relationship between these studies. If the collection of

studies states similar or comparable viewpoints, it helped us in providing the evidence before

103

Chapter 3. Systematic Literature Review

reaching any generalized conclusions.

Table 3.4: List of Selected Studies in the Field of Software Maintenance

StudyNo Author(s) Ref StudyNo Author Ref

S1 Aggarwal et al. [5] S49 Lucia et al. [133]

S2 Aggarwal et al. [4] S50 Malhotra & Chug [137]

S3 Aggarwal et al. [6] S51 Malhotra & Chug [141]

S4 Arisholm & Sjoberg [8] S52 Malhotra & Chug [140]

S5 Baker et al. [14] S53 Malhotra & Chug [139]

S6 Balogh et al. [12] S54 Malhotra et al. [146]

S7 Bandi et al. [13] S55 Misra [162]

S8 Banker et al. [14] S56 Mishra & Sharma [161]

S9 Baqais et al. [16] S57 Muthanna et al. [164]

S10 Basgalupp et al. [17] S58 Niessink & Vliet [166]

S11 Briand et al. [34] S59 Oman & Hagemeister [168]

S12 Bhattacharya & Neamtiu [24] S60 Oman & Hagemeister [169]

S13 Broy et al. [37] S61 Ping [172]

S14 Chen & Lum [42] S62 Pizka & Deisenbock [173]

S15 Coleman et al. [49] S63 Polo et al. [174]

S16 Dagpinar & Jhanke [53] S64 Poole & Huisman [175]

S17 Dahiya et al. [54] S65 Prasanth et al. [176]

S18 Daly et al. [55] S66 Prechelt et al. [177]

S19 Deissenboeck et al. [57] S67 Rajaraman & Lyu [179]

S20 Deligiannis et al. [58] S68 Dubey et al. [61]

S21 Elish & Elish [62] S69 Ranmil et al. [180]

S22 Ferneley [67] S70 Ramil & Smith [181]

Continued on next page

104

3.6. Conducting Review

Table 3.4 – continued from previous page

Study No. Author(s) Ref Study No. Author(s) Ref

S23 Fioravanti & Nesi [68] S71 Riaz et al. [183]

S24 Burki & Harald [39] S72 Riaz et al. [184]

S25 Genero et al. [76] S73 Schneberger [197]

S26 Grady [80] S74 Schneidewind [198]

S27 Garcia et al. [74] S75 Sheldon et al. [200]

S28 Hanenberg et al. [84] S76 Shibata et al. [119]

S29 Harrison et al. [85] S77 Stark et al. [209]

S30 Hatton [86] S78 Sneed [203]

S31 Hayes & Zhao [87] S79 Sneed and Meray [204]

S32 Hegedus [88] S80 Soni & Khaliq [205]

S33 Hirota et al. [91] S81 Stavrinoudis et al. [210]

S34 Jeet et al. [98] S82 Sun & Wang [213]

S35 Jin & Liu [100] S83 Thongmak & Muenchaisri [217]

S36 Jorgensen [101] S84 Thwin & Quah [219]

S37 Kabaili et al. [102] S85 Upadhyay et al. [220]

S38 Kataoka et al. [104] S86 Velmourougan et al. [221]

S39 Kaur and Kaur [105] S87 Vivanco & Pizzi [222]

S40 Kaur & Singh [108] S88 Welker et al. [224]

S41 Kaur et al. [106] S89 Wen-Hua [225]

S42 Kumar & Dhanda [121] S90 Xing & Stroulia [228]

S43 Kumar [120] S91 Yamashita & Moonen [230]

S44 Kemerer & Slaughter [109] S92 Ye et al. [234]

S45 Koten & Gray [118] S93 Ying et al. [235]

Continued on next page

105

Chapter 3. Systematic Literature Review

Table 3.4 – continued from previous page

Study No. Author(s) Ref Study No. Author(s) Ref

S46 Li & Henry [127] S94 Zhang et al. [236]

S47 Lim et al. [130] S95 Zhou & Leung [237]

S48 Lin & Wu [131] S96 Zhou & Xu [238]

Visualization techniques were also used as it presents a considerably larger amount of

data in a compressed form using a picture which is always worth more than a million words.

In the present study, it helped us in quickly absorbing, interpreting, enhancing the clarity

by proving aesthetic appeal to the compiled data. We have used various visualization tech-

niques such as line graph, pie chart, bar chart etc to categorize various methods, models,

performance measures, metrics, year of publication and use of tools in the present study.

3.6.3 Distribution of Papers According to Source of Publication

All the shortlisted studies were divided into three parts as per the source in which they

are published i.e. published in journals, published in conferences and others which include

book chapters, technical reports, white papers, study material, symposium etc. In figure 3.2

distribution of the papers as per the three categories is depicted.

It was found that 49% papers were published in various journals of international repute,

38% papers were published in international conference whereas 13% sources were miscella-

neous. Trend in journals and conference is almost similar for the publication where as very

few papers were published as while paper (only one), technical report (only two) and .

3.6.4 Distribution of Papers According to the Year of Publication

Maintainability was first introduced by Belady and Lehman [19] in the year 1976 when

the cost of producing the software were quite high with fragile output. They raised need

of a design methodology that expresses the understanding and intentions of the designer

unambiguously and completely. During this period, researchers concentrated more on good

106

3.6. Conducting Review

Figure 3.2: Distribution of Studies according to the Source of Publication

programming rather than designing to make the software maintainable because at that time

the development of large-scle program was unpredictable. Problems in maintenance process

were identified by Lientz and Swanson [129], Martin and McClure [150], Nosek and Palvia

[167] etc. and many metrics were suggested [83, 168] to measure procedural languages.

Rombach [186] suggested that all those metrics which were useful for procedural language

cannot be applied blindly on OO languages.

Practitioners started giving importance to design rather than code and proposed various

metrics to measure different design aspects of OO paradigm such as coupling, cohesion,

polymorphism, inheritance etc. Further, with the help of empirical investigations, strong

correlation between software design metrics and subsequent maintainability were identified.

Many metric suites were proposed during this period like Chidamber and Kemerer [43], Li

[126], Chen and Lum [42], Lee [123], Li and Henry [127], Martin [151], Fernando and

Rogerio [66], Lorenz and Kidd [132], Tang et al. [216], Abreu and Carapuca [2].

Critical analysis of such metric suite has also been done by Grady [80], Chucher and

Martin [45], Mayer and Hall [155], Hitz [92]. Many empirical investigations were also

107

Chapter 3. Systematic Literature Review

carried out to verify and validate proposed metric suite such as Dagpinar and Jahnke [53],

Elish and Elish [62], Kaur et al. [106], Koten and Gray [118] and Zhou and Leung [237]

in terms of their effect on maintainability. From the year 2000 onward, researchers agreed

that we can measure maintainability by measuring the number of changes during operation.

Briand et al. [34] suggested that the design metrics can be used for quality prediction at quite

early stages of SDLC. The distribution of years for all the shortlisted studies from the year

1991 to 2015 is presented in figure 3.3.

Figure 3.3: Year Wise Distribution of Studies

It is clearly evident that the research on software maintainability has been quite consistent

over the years. When we analyzed the contents we found that from the year 1991 to 2004,

few important studies build statistical models to predict maintainability using design metrics

as they argued that since the value of change would be available only during operations and

it’s too late by then; we should be able to predict maintainability with the help of design

metrics at the earlier stages of SDLC. From the year 2005 onward, a shift has been observed

towards the use of machine learning techniques in prediction modeling. Hybrid models

were also applied by many researchers during this period in prediction modeling process.

108

3.7. Reporting of Review

Recently, interest in nature inspired algorithms called as evolutionary methods has also been

seen due to their obvious advantages as elaborated further in succeeding sub-section.

3.7 Reporting of Review
We have analyzed all shortlisted studies in the last two and half decade collected from

journals, conferences, symposiums etc in the field of software maintainability with an aim to

find answers of all the RQs raised in section 3.5.3 above. The following sub-sections present

summarized facts and answer to all RQs.

3.7.1 RQ1: Techniques used for Software Maintainability Prediction
Researchers are experimenting new prediction models every day to predict the software

maintainability more precisely.

To establish the relationship between software design metrics as the independent variable

and maintainability as the dependent variable, various techniques have been practiced in

last two and half decade which can be broadly classified in five categories i.e. Statistical

techniques, Machine Learning techniques, Expert Judgment and Feed backs, Nature Inspired

Techniques and Hybrid techniques. In Table 3.5 all the studies are categorized as per the

methods used in them. When we chronologically arranged the choice of models applied

for software maintainability prediction, it was quite evident that during the initial period

statistical methods such as Linear Regression (LR), Multivariate Binary Logistic Regression

(MBLR), Stepwise Logistic Regression (SLR), HMM etc were used. These methods were

not only highly mathematical in nature but also unable to handle noise present in the data.

In the later phases from the year 2000 onward, more robust models based on machine

learning techniques such as ANN [6, 219, 237] were applied. It works as an excellent al-

ternative to logistic regression since it offers a number of advantages such as less formal

statistical training is required, all possible interaction between independent and dependent

variables can be identified and complex non-linear relationship can be judged using ANN. In

figure 3.4 we have visualize the use of various learning techniques in prediction modeling.

109

Chapter 3. Systematic Literature Review

Table 3.5: Types of Modeling/ Methods used to Judge Maintainability

Type of
Tech-
niques

Prominent Prediction Techniques Respective
Study Identifier

Statistical
Techniques

Binary Logistic Regression, Multivariate Binary Lo-
gistic Regression, SLR, HMM, Multiplicative Adap-
tive Spline Regression, Random Forest, Naive Bays
Classifier, Multilayer Perceptrons, Bagging, Boost-
ing, Projection Pursuit Regression, SVM

S7, S8, S12, S16,
S22, S23, S27,
S31, S35, S36,
S38, S40, S41,
S46, S57, S59,
S63, S66, S84,
S88, S89, S92,
S95, S96 .

Machine
Learning
Techniques

Neural Network Based Models, ANN, Fuzzy Infer-
ence System (FIS), Adaptive Neuro FIS (ANFIS),
Fuzzy algorithms, Fuzzy Repertory Table (FRT),
BBN, Tree Nets, Decision Trees (DT), Data Clus-
tering (DC), Self-Organizing Map (SOM), Genera-
tive Topographic Map (GTM), Case-Based Reason-
ing (CBR), Association Rules (AR) etc.

S1, S2, S3, S13,
S21, S34, S35,
S39, S41, S43,
S45, S49, S51,
S53, S68, S72,
S84, S92

Nature
Inspired
Techniques

Evolutionary techniques, Genetic Programming,
ACO, PSO CA, Simulated Annealing, Hill Climbing

S5, S6, S10, S17,
S50, S82, S87

Expert
Judgment
Feedbacks

Questionnaires, Surveys, Opinions etc S12, S18, S20,
S22, S25, S29,
S47, S55, S65,
S66, S73, S81

Hybrid
Techniques

Genetic Algorithm with Neural Network (GANN),
Neural Network Evolutionary Programming (NNEP),
Evolutionary with Fuzzy Network, (GFS-GSP),
Genetic-Based Fuzzy Rule Base Construction and
Membership Functions Tuning (GFS-RB), Evolution-
ary with Neural Network, S9 (Evolutionary + Neu-
ral), S10 (Evolutionary + Decision Tree), S17 (Fuzzy
+ Genetic), S25 (UML + Expert Judgment), S47 (Hy-
brid network with Parallel Computing), S82 (Regres-
sion with Neural network), S92 (Multiple Classifier)

S9, S10, S17,
S25, S47, S82,
S92

In this method, available data from history is often divided into three sets: Learning

Set, Validating Set, and Testing Set. Learning Set is the sequence in which the dependent

variable is shown to the network during the learning phase and weights are assigned to the

independent variables depending upon the values of the independent variable. The network

110

3.7. Reporting of Review

Figure 3.4: Distribution of the use of Learning Techniques in Literature

continuously adapts itself to achieve the particular value of the dependent variable and during

this process, values of the assigned weights are changed. The difference between the required

output and actual output is measured using validating set to identify whether the learning can

be finished. Lastly, Testing Set is used to test whether the network is capable of predicting

for the unforeseen data or not. Various variants of ANN such as FFNN, BPN, Kohonen

Self-Organizing Network (KSON), Radial Basis Function Network (RBF), PNN, GRNN,

Adaptive Neuro-Fuzzy Inference System (ANFIS) were also explored for their predictive

capabilities as discussed in chapter 2.

From the year, 2012 onwards, hybrid methods have proven to be even better in predic-

tion, for example, Multiple Classifier (MC) is used by Ye et al. [234] and GMDH is used

by Malhotra and Chug [137]. Although nature inspired techniques are used in prediction

modeling in various fields of software engineering other than maintenance such as ACO was

applied by Azar and Vybihal [9] in software quality prediction, Particle Swarm Optimiza-

tion was applied by Saed et al. [190] in software performance prediction and Genetic model

was applied by Burgess and Leey [46] for software effort estimation. However, the applica-

111

Chapter 3. Systematic Literature Review

tions of these models for software maintainability prediction were reported to be very less

wherein only four studies could be found [12, 17, 213, 222]. Balogh et al. [12] did their

study on prediction of development effort, Basgalupp et al. [17] did their study on prediction

of maintenance effort, Sun and Wang [213] performed an empirical study on prediction of

preventive maintenance and Vivanco and Pizzi [222] identified important software metrics

using genetic techniques which can be used in prediction model. Well accepted, established,

recognized and generalized prediction method is still awaited by the software industry.

3.7.2 RQ2: Metric Suite used in Software Maintainability Prediction

The relationship between software design metrics and corresponding maintainability has

been proposed and validated by many researchers. With the help of many empirical studies,

it has been established that the quality of the software design, as well as code, is very impor-

tant to enhance software maintainability. We observed that during the period from 1969 to

1990, traditional metrics like function point, Halstead Software Science [83] and McCabe’s

CC [156] were used to judge the quality of procedural languages. Quantitative measure to

calculate Maintainability Index (MI) proposed by Oman and Hagemeister [168] is given in

equation (3.1).

MI = 171− 5.2 ∗ ln(HV) ∗ 0.23 ∗CC − 16.2 ∗ ln(LOC) + 50sin(
√
2.4 ∗ COM) (3.1)

Where HV is Halstead Volume metric [83], CC is Cyclomatic Complexity metric [156],

LOC is counted as a lines of code, and COM is a percentage of comment lines. With the

invention of OO paradigm, traditional metrics mentioned above was no longer effective since

other characteristics such as inheritance, coupling, cohesion and polymorphism present in

the code take the charge. Subsequently the necessity was highlighted by Rombach [186]

and new metric suite to measure the design characteristics of OO software was proposed by

Chidamber and Kemerer [43] famously known as Chidamber and Kemerer metric suite.

Some revisions into the Chidamber and Kemerer metric suite were made by Li [126] and

112

3.7. Reporting of Review

Table 3.6: Metric Suite Proposed in Empirical Studies

Studies Ref Referred in Following Studies Total
Halstead [83] S23, S59, S60, S81 5
McCabe [156] S23, S59, S60, S81 5
Chidamber and Ke-
merer

[43] S3, S11, S16, S21, S23, S35, S39, S40, S45,
S50, S51, S52, S53, S65, S68, S84, S95

18

Li [126] S3, S11, S16, S21, S23, S35, S39, S40, S45,
S50, S51, S52, S53, S55, S56, S65, S68, S84,
S95

20

Fernando and Roge-
rio

[66] S55 2

Lorentz and Kidd [132] S55 2
Tang et al. [216] S84 2
Abreu and Carapuca [2] S55 2
Aggarwal et al. [5] S1, S17, S48 4
Chen and Lum [42] S14 2
Fioravanti and Nesi [68] S23 2
Li and Henry [127] S3, S11, S16, S21, S23, S35, S39, S40, S45,

S50, S51, S52, S53, S65, S68, S84, S95
18

Lin and Wu [131] S48 2
Prasanth et al. [176] S64, S65 3
Sheldon et al. [200] S75 2
Stavrinoudis et al. [210] S81 2

two more metrics were added. Although Chidamber and Kemerer metric suite was criticized

by many researchers [53, 62, 106, 118, 137] for number of reasons such as Lack of Cohesion

(LCOM) is not true representation of cohesiveness, however, proposed metric suite became

quite popular and further referred by many researchers in their empirical studies from the

year 1990 to date as compiled in 3.6. During the same period, many researchers proposed

fresh metric suites while others revised or modified the existing metric suites. We collected

all proposed metric suites (resulted in 41 studies) and filtered highly cited studies in the field

of software maintenance, resulting in 16 studies as summarized in Table 3.6.

We further compiled the data and presented it in visualization form in figure 3.5. It is

quite evident from the figure, that the metric suites proposed by Chidamber and Kemerer [43]

and Li and Henry [127] are the most commonly used metric suites in empirical validations.

We also observed that many researchers empirically evaluated the effect of only one

113

Chapter 3. Systematic Literature Review

Figure 3.5: Distribution of the use of Metric Suite in Literature

particular design metric on maintainability, for example, inheritance was evaluated by Daly

et al. [55], Harrison et al. [85], Prechelt et al. [177] and Sheldon et al. [200], coupling by

Rajaraman and Lyu [179], UML diagram by Genero et al. [76], cohesion by Kabaili et al.

[102], code metrics by Polo et al. [174]. Inconsistencies in metric naming convention were

also seen, for instance somewhere two different names (DIT (Depth of Inheritance) and DIH

(Depth of Inheritance) represent same concept as both represents inheritance to measure the

longest distance from root node to leaf node whereas at some other places, the same name is

used to represent two different concepts (DC is used to represent Descendant Class as well

as for measuring Direct Cohesion).

3.7.3 RQ3: Various Tools Used to Calculate Values of the Design Met-

rics?
In order to find the answer for the RQ2, we observed that a large number of metrics

have been suggested in the literature to measure the design characteristics of given software.

Numerous free, as well as proprietary tools, have also been developed to collect the values of

these design metrics from the given source code so that specific characteristics of a software

114

3.7. Reporting of Review

Table 3.7: List of Important Tools to Measure Design Metrics

S.No. Tool Name Free/ Pro-
prietary

Developed
by

Remarks

1. ‘C and
C++ Code
Counter’
(CCCC)

Open
Source

Tim Little-
fair

It analyzes C++ and Java and generates re-
ports for LOC, Chidamber and Kemerer met-
ric suite, and Henry & Kafura metric suite.

2. Dependency
Finder

Open
Source

Jean
Tessier

This application comes as a command-line
tool for analyzing compiled Java code and
creating dependency graphs. It is also used
for computing OO software metrics to give
an empirical quality assessment of given
code.

3. Eclipse
Metrics
Plug-in
1.3.6

Open
Source

Frank
Sauer

It’s a plug-in for Eclipse platform which pro-
vides a calculation of metrics and depen-
dency analyzer.

4. Eclipse
Metrics
Plug-in 3.4

Open
Source

Lance Wal-
ton

It’s a plug-in for Eclipse platform which pro-
vides a calculation of metrics and depen-
dency analyzer.

5. Vizz Ana-
lyzer

Open
Source

Rudiger
Lincke

It’s a framework designed to support mainte-
nance and re-engineering.

6. Understand Proprietary Proprietary It is a reverse engineering, code exploration
and metrics tool for Java source code. It is
a static analysis tool for maintaining mea-
suring and analyzing critical or large code
bases.

7. Analyst4J Proprietary Proprietary It comes as Eclipse plug-in and offers an en-
vironment to visualize code quality with the
help of metrics and charts. Apart from help-
ing in estimating efforts, it also helps in iden-
tifying problem areas and respective refac-
toring method.

8. OO Meter Software
Metrics
Research
Group
(SMRG)

Alghamdi
et al.

It can be used to quantitatively measure a
number of qualities attribute which includes
requirement specifications and design mod-
els. It supports OO metrics such as coupling,
cohesion and code metrics such as LOC.

9. CKJM Open
Source

Diomidis
Spinellis

Chidamber and Kemerer Java Metrics is an
open source command-line tool which calcu-
lates the metrics by processing the byte code.

115

Chapter 3. Systematic Literature Review

code could be measured. In Table 3.7, we have summarized few prevalent tools along with

their details.

3.7.4 RQ4: Kind of dataset Used for Empirical Validations

Many researchers have conducted empirical studies in part to prove that the values of

design metrics significantly affect maintainability. All these studies are either based on small

projects, proprietary software datasets’, open source software, dataset published by NASA,

PROMISE repository or taken from students’ projects as compiled in Table 3.8.

Table 3.8: Kind of dataset Used for Empirical Validations

S.No. datasets Referred in Studies Total
1. Li and Henry S3, S16, S21, S39, S40, S45, S51, S84 8
2. Open Source S9, S12, S55, S66 4
3. Proprietary soft-

ware
S10, S14, S15, S20, S22, S36, S48, S52,
S64, S65

10

4. Students Projects S2, S25, S29, S48 4

Further, when we visualized the use of dataset in figure 3.6, we found that Li and Henry

[127] dataset is quite popular. To empirically validate and evaluate the effect of each metrics

on software maintainability, even though the availability of data is still a concern, research

studies have taken real life data whereas many studies have used the dataset proposed by Li

and Henry [127] from two commercial software’s UIMS and QUES.

Maintenance Efforts are generally calculated by counting the number of lines added,

deleted or modified during operations. The source code of old and new versions was col-

lected and analyzed against modifications made in every class. Values of OO software design

metric suite were calculated and combined with corresponding changes made into that class

so as to generate datasets which were further used while implementing prediction model.

116

3.7. Reporting of Review

Figure 3.6: Distribution of the use of dataset in Literature

3.7.5 RQ5: Accuracy Measures to Judge the Performance of Prediction

Models

For the prediction of maintainability, whatever tool, methods or datasets were suggested

in the literature, it is observed that the predicted values of the dependent variable on test data

is not very close to actual values. Hence, a number of statistical measures have also been

proposed by Conte et al. [50], Kitchenham et al. [110], and Fentom and Bieman [65] to

measure the prediction accuracies.

All these studies have presented some measures to ensure that the accurate prediction is

not due to sheer coincidence, but it exist in reality by proposing some formulas with their

corresponding interpretations. Widespread parameters proposed to measure the significance

of prediction model are Absolute Relative Error (ARE), MARE, StdDevARE (Standard de-

viation of ARE), MRE, MMRE, MaxMRE, Pred (q), R-Square, P-values and Root Mean

Square Error (RMSE) as summarized in Table 3.9.

Much attention has been paid for the development models capable of more accurate and

precise predictions while adhering to few fundamental characteristics like the models must

117

Chapter 3. Systematic Literature Review

Table 3.9: List of Commonly Used Prediction Accuracy Measures

Name Definition Referred in Studies Total
MRE Measure of the discrepancy

between actual values and
predicted value

S35, S45, S51, S52,
S53, S84, S95

7

MARE Normalized measure of the
discrepancy between actual
values and predicted value

S35, S39, S51, S52,
S53

5

MMRE Average relative discrepancy. S3, S21, S45, S51, S52,
S53, S84, S95

8

RMSE Root Mean Square Error S3 1
Pred What proportion of the pre-

dicted values have MRE less
than or equal to specified
value

S21, S45, S51, S52,
S53, S95

6

R-Square Measure of how well the vari-
ation in the output is ex-
plained by the targets

S2, S21, S35 3

P-values Used for testing the hypothe-
sis of no correlation

S3, S21, S35 3

Pearson Coef-
ficient of Cor-
relation

Standard Deviation of two se-
ries is compared

S35 1

be independent of the language and technology, simple to calculate, straightforward for inter-

pretations, and easy to understand. We analyze the papers and identified the kind of accuracy

measure used in them.

As compiled in figure 3.7, we found that MRE and MMRE are quite prevalent for mea-

suring the prediction accuracies and used by many researchers i.e. S3, S9, S10, S12, S14,

S15, S16, S20, S21, S22, S39, S40, S45, S51, S52, S64, S65, S66, and S84 to adjudge the

performance of their prediction model.

3.7.6 RQ6: Performance Comparison of Statistical, Machine Learning

and Evolutionary Techniques

We analyzed all kinds of empirical studies carried for software maintainability prediction

and compared the prediction accuracies achieved by all the modeling techniques. Due to the

118

3.7. Reporting of Review

Figure 3.7: Distribution of the use of Accuracy Measures in Literature

diversity in the performance measures considered in different studies, we could not get the

clear picture as different studies have considered different measures. MRE and MMRE were

used by most of the studies whereas R-value and P-value were used only for once. Machine

learning techniques based prediction models were found to be better then statistical tech-

niques based prediction models. Six such studies were found in which MMRE is used as

prediction accuracy measure to judge the performances based on ANN as compiled in Mal-

hotra and Chug [137]. In this regard, its values are achieved as 0.59 using ANN [106], 0.403

using BPN [118], 0.265 using ANN [6], 0.23 using PNN [137], 0.765 using GRNN [219]

and 0.242 using ANFIS [106]. Overall in each of these six studies, irrespective of the kind of

dataset used while making a prediction model, it is empirically proved that machine learning

based prediction techniques perform much better than statistical techniques. Use of recently

developed nature inspired techniques in maintainability prediction is also found to be very

limited. Only one study by Malhotra and Chug [137] has applied GA for software main-

tainability predictions although these techniques are successfully applied in related areas of

maintainability like the prediction of development effort by Balogh et al. [12], prediction of

119

Chapter 3. Systematic Literature Review

maintenance effort by Basgalupp et al. [17], prediction of preventive maintenance by Sun

and Wang [213], identifying software metrics by Vivanco and Pizzi [222].

The machine learning techniques are being successfully applied for making prediction

model in many domains other than software engineering such as finance, geography, en-

vironmental studies, medicine, engineering, geology and physics. Many machine learning

techniques are also explored such as ANN, Bayesian classification, SVM, fuzzy algorithms

for predicting quality attributes using OO metrics. However, most of the models present

in literature are using statistical methods and very few studies are using machine learning

techniques. Utility of many machine learning techniques need to be explored and compare

as they give different results. More data based empirical studies that are capable of being

verified by observation or experiments are needed. Recently, evolutionary techniques are

also explored by many researchers [12, 17, 213, 222] and found to be superior to machine

learning techniques due to various aspects listed as under:

• Evolutionary techniques are generally more robust in nature because there are no re-

strictions on the definition of the objective function.

• Use of evolutionary techniques removes the possibility of biased results.

• Search for an optimized solution is performed in a parallel manner.

• Since the results are only influenced by objective function as well as fitness function,

there is no such requirement of auxiliary knowledge.

• They can handle a large amount of noise present in the data as the transition rules are

probabilistic in nature not the deterministic in nature.

• They are more capable of working in large and discontinuous search space and able to

achieve global optima instead of local ones.

• Evolutionary techniques can provide a number of potential solutions to a given prob-

lem and final choice always lies with the user.

120

3.7. Reporting of Review

3.7.7 RQ7: Effects of Refactoring on Software Maintainability

Refactoring is maintenance process in which the design of an OO software code is im-

proved using various methods without affecting its behavior [69, 77, 158, 163, 170, 212,

226, 228]. It is an effort to improve the quality of the software either by improving the de-

sign or by improving readability and understandability while preserving the correctness of

the program. Many refactoring methods have been suggested in the literature and each has

a particular purpose and corresponding effect. Refactoring is a process in which the inter-

nal structure of the OO software system is improved and complexity of the code is reduced

however the external behavior of the system remains the same. The source code becomes

simpler and easier to maintain as the changes made into the code are very systematic in na-

ture. Few well-known methods of refactoring are dead code elimination, clone code removal,

extract method, lazy classes, pull up method, push down method, hide methods, renaming

etc. Each method has its own effect on software quality attributes such as extensibility, mod-

ularity, reusability, complexity, maintainability and efficiency. It is important and essential

to analyze the effects of refactoring on these quality attributes. Many studies have been

undertaken where the effect of refactoring has been analyzed on software maintainability

[69, 77, 158, 163, 170, 212, 226, 228]. When we analyze the findings of these empirical

investigations, it is found that even though refactoring is a very tedious process and might

introduce errors if not implemented with utmost care; it is still advisable to refactor the code

frequently in order to enhance the maintainability of software. Project managers must take

utmost care in identifying the opportunities of refactoring in large code while maintaining a

perfect balance between reengineering and over engineering.

3.7.8 RQ8: Various Methods to Measure Maintainability

Many ways have been proposed to access the maintainability as compiled by Berns [22]

and Burki & Harald [39] suggested many ways to save the maintenance cost and, in turn,

overall project costs. There is a consensus among researchers in this field that there should be

121

Chapter 3. Systematic Literature Review

some quantified value to measure software maintainability either at the process level, archi-

tecture level or at the code level. A range of software maintenance parameters such as Mean

Time to Repair (MTTR), Mean Corrective Maintenance Time (MCMT), Mean Preventive

Maintenance Time (MPMT), and Maximum Corrective Maintenance Time (MaCMT) are

available. As defined in ISO 9126 quality model [95], maintainability consists of external

quality attribute i.e. Analyzability, Changeability, Stability, and Testability. Ramil and Smith

[181] suggested measuring it in terms of the time taken when the failure was reported to the

time taken in repairing it. Jorgensen [101] proposed measuring it in terms of changeability

i.e. time taken to implement the changes. Many researchers [53, 62, 106, 118, 137, 219]

measured maintainability by measuring the ‘Change’ i.e. number of lines of source code

added, modified or deleted during operations.

3.7.9 RQ9: Advantage of Software Maintainability Prediction

The idea of predicting the maintainability has some inborn problems due to the fact that

it is very subjective in nature. Maintainability predictions help us to reduce system’s repair

time thereby reducing the downtime and increasing system availability as everything can be

planned in advance. Certain advantages of maintainability prediction are as follows:

• Managers would be able to compare the productivity and costs among different

projects.

• Managers would be able to do more effective planning of the use of valuable resources.

• Managers can take an important decision regarding staff allocation.

• Identify the maintenance process efficiency as it helps in keeping the maintenance cost

under control.

• The threshold values of various metrics which drastically affect maintainability of soft-

ware can be checked and kept under control so as to achieve least maintenance cost.

122

3.8. Current Trends and Future Opportunities

• Developers can identify the determinants of software quality and hence they can im-

prove the design.

• Practitioners would be able to improve the quality of systems and thus optimize main-

tenance costs.

3.8 Current Trends and Future Opportunities
Whenever an error occurs in any software, a certain amount of time is needed to correctly

identify, isolate and remove the fault. The longer it takes to recover from the occurrence of

an error, the higher will be the costs associated with software maintenance. From as early as

1969 to date, the field of software maintenance has evolved over a period of time. Each year

many research publications are added to the already available vast amount of knowledge.

We have arranged all the qualified studies chronologically and observed the trend. After

conducting the assessment of the results obtained in each of the shortlisted studies, we have

evaluated them and identified constraints present in order to identify future directions in this

field. Based on the results of primary studies, few emerging sub-fields in the field of software

maintenance are highlighted as under:

3.8.1 Addition of Dynamic Metrics Along With Static Metrics

In the previous section while finding the answer RQ2, we have discussed various kinds of

metric suites proposed, evaluated and validated empirically by many researchers. As evident

from the Table 3.6, Chidamber and Kemerer metric suite and Li and Henry metric suite are

the most popular one and used by many researchers’ in their respective studies. We have

observed that unfortunately both the metric suites are actually static in nature. Since some

lines of source code might not execute during execution of the software depending upon input

supplied and other conditions, hence relating these static design measures to maintainability

may not be correct. As Bieman and Ott [26] have measured function cohesion in his study,

it would be of great interest to evaluate and analyze the dynamic dependencies between

123

Chapter 3. Systematic Literature Review

various software artifacts [10, 229]. One of the promising fields is the measurement of

design properties of the software using dynamic metrics instead of static metrics such as

dynamic LCOM, dynamic RFC etc.

3.8.2 Equal Importance to External and Internal Quality Attributes

Even though Chidamber and Kemerer metric suite [43] is quite popular among re-

searchers, one limitation observed by us is that it takes into account only the internal design

metrics while ignoring the importance of external quality attributes such as familiarity with

the code, expertise level of programmer, development skills etc. which are semantic in na-

ture. Actually internal design metric suite is as per the specifications of ISO 9126 software

quality model, therefore, studying the effect of external quality attributes on maintainability

is another promising field which needs to be investigated.

3.8.3 New Metrics for Data Intensive Applications

In earlier times, the data which is stored at the back end might have been accessed a

couple of times a week, however with the increase in the use of mobile and mobile based

applications, now it is accessed multiple times per hour. As the software systems heavily

use databases; hence we observed that Chidamber and Kemerer metric suite would not be

adequate as it does not capture the database handling aspects of the applications. Another

promising sub-field for research is to explore the significant set of metrics under the new

circumstances wherein the applications are highly data intensive along with their respective

empirical validations. One such empirical study has been carried by authors Malhotra and

Chug [137] in past. In this study, equal attention to the database accesses was given and the

new metric suite was empirically proposed and verified to be superior. Analysis of a lot of

prevalent metrics to measure system’s maintainability, and exploit the possible combination

of these metrics into an index for the system’s maintainability is still a challenge, yet to be

solved.

124

3.8. Current Trends and Future Opportunities

3.8.4 Use of Hybrid Techniques with More Emphasis on Nature In-

spired Techniques

Synthesis of results suggests that initially statistical prediction modeling techniques were

in uses which were later on overpowered by machine learning prediction modeling and

claimed by the researchers that they better than statistical techniques as they can capture

the quality as well as quantity present in the data available for training. In order to achieve

more and more accuracy in the prediction, various versions of NN (Neural Network) was

used. In this review we have identified the maximum use of NN and seven such studies were

found. Regression was used five times whereas Fuzzy Model is used in two studies. We also

found here a gap in existing research as many modeling techniques are yet not explored for

their prediction capabilities. Ensemble learners (eg bagging, boosting) and instance-based

machine learning (eg K- Star) are few methods which have yet not been applied. It is also

advised to explore the use of evolutionary techniques for maintainability prediction and com-

bining them with other fields such as data mining, expert systems, GA, artificial intelligence,

nature-inspired techniques etc.

3.8.5 Prediction Models for Aspect Oriented Systems

Creating the prediction model(s) that can realistically predict maintainability of appli-

cations other than OO system is also yet to be explored. Only two studies were found on

relational database-driven software application by Riaz et al. [184] and Schneberger [197].

One study was also found on aspect-oriented systems by Thongmak and Muenchaisri [217].

Hence there is huge demand for creating a generalized prediction model for new systems

such as aspect oriented systems, relational database driven systems, component based sys-

tems etc.

125

Chapter 3. Systematic Literature Review

3.8.6 Use of the Agile Methods and their Effect on Maintainability

The agile software processes [18, 47, 52, 69, 70, 152, 199] such as XP, clean code, scrum,

design patterns, Crystal are based on four important pillars: Communication, Simplicity,

Feedback, and Courage. Recently a trend is also observed where researchers are taking help

of this methodology in keeping maintenance cost constant over time. Although the dataset

taken in both the studies Knippers [113] and Poole & Huisman [175] was comparatively

small and medium sized, this methodology was proved to be the best for software mainte-

nance work because the human factor is considered as the main component. More empirical

investigations on large or very large systems with the help of industry-institute partnership

are required to further explore the use of agile methodologies on software maintenance.

3.8.7 Effect of Modern Development Techniques such as Component

Based Development on Maintainability

Modern development techniques claim to make the code maintainable such as

component-based software development, product line development, model-based develop-

ment, and design patterns; however, additional research exploration is required to verify

such claims. One such study conducted by Mari and Eila [149] concluded that there are dif-

ferent dimensions of software maintainability and each dimension need different treatment.

In their study, maintainability is discussed at three levels i.e. abstraction level, architecture

level and component level.

3.8.8 Academia-Industry Partnership needs to be Expanded

While finding the answer of RQ4, we found that in the process of empirical investi-

gations, only 16% worked on students projects, 16% on open source, 40% on proprietary

software and remaining 28% worked on the data made available in research studies. Out of

40% studies which used proprietary software, 82% used small datasets mostly in academia.

Therefore, in order to improve the industrial relevance as well as the validity of the research,

126

3.8. Current Trends and Future Opportunities

it is highly desirable that large sized industrial software must be used in the datasets, their

access to the researchers should be provided, more and more industry-academia collabora-

tion in research should be made, and whenever possible the dataset should be made public

for carrying out the future research.

3.8.9 More Studies with datasets from Open Source Code Available in

Abundance

In continuation with the above point, lots of open source code is available due to the ob-

vious advantage of the internet. Study of open source code, their characteristics and working

on the datasets obtained from open source code and further relating it to the maintainability

is another promising field while making the prediction models and conducting the empirical

studies. Very few studies are found on this field except Zhou and Xu [238] and Malhotra and

Chug [142].

3.8.10 Judge Maintainability using Other Quality Measures

In addition to the prediction accuracy measures as described earlier in Table 3.9 to ad-

judge the quality of the prediction models, other performance measures should also be used

to review the prediction quality such as generalization capability, interpretability etc. One of

the future directions of research could be carried out in this area wherein overall evaluation

of the prediction models can be achieved.

3.8.11 Investigate the Effects of Refactoring on Software Maintainabil-

ity

Investigating the effects of refactoring on software maintainability is also a very promis-

ing field. Many empirical studies have been conducted to prove that local code restruc-

turing process makes the software code more cohesive, less coupled and becomes eas-

ier to read and maintain. It is anticipated by the researcher fraternity working in the

127

Chapter 3. Systematic Literature Review

field of software maintainability that such refactoring operation or software transforma-

tions would certainly improve the maintainability of software, however, it is so far un-

decided that which quality factors are improved by applying shortlisted refactoring meth-

ods in specific order. Empirical studies are already being undertaken by many researchers

[69, 77, 158, 163, 170, 212, 226, 228] to solve this mystery, still more empirical studies are

required to be conducted.

3.8.12 Effect of other Activities such As Risk Analysis, Effort Require-

ments on Software Maintainability

Most of the empirical research has focused on specific aspects such as programmer pro-

ductivity and error count which are measured mainly for the short term. It would be an

interesting study if undertaken to measure the amount of hours required for maintaining a

program developed using agile software development methods when compared to the pro-

gram developed using a traditional plan-driven approach over a long term, by setting up

experiments to specifically test the impact of software development methods on its maintain-

ability. Two such study were conducted by Aggarwal et al. [5] and Prasanth et al. [176] in

which effect of risk analysis on maintainability is studied.

3.8.13 Empirical Studies to Identify the Optimum Point when Drop-

ping the Software is more Viable than Developing the New One

For every product whether it is a hardware or software, over a period of time they cer-

tainly reach a stage where maintaining them becomes a more costly affair than developing

the new one. The researcher fraternity still needs to find the equilibrium point between

maintaining the existing software versus scrapping the existing one and developing the new

one.

128

3.9. Discussion

3.8.14 Solve the Mystery involved in Maintainability

Undoubtedly, accessing the maintainability is a bit subjective in nature. The understand-

ing of the intricacies involved in maintainability would certainly assist researchers in the

future work. In order to make software architecture and components more maintainable,

mysteries of maintainability have to be solved. More studies are required on this field as

only one study was found by Broy et al. [37].

3.9 Discussion
In the course of carrying out systematic review of the subject, we performed an exclusive

survey and systematic review of the studies published in the field of software maintainability

since 1991. Over a period, different researchers have adopted a diverse range of software

engineering paradigms and studied its consequences on maintenance cost. New models and

innovative techniques have been introduced so that software maintenance prediction could

be estimated more accurately. In the current chapter, an effort has been made to review all

these models, variables, programming practices etc and identify various important aspects

which could greatly affect the maintenance effort.

An extensive search was performed using nine digital libraries after identifying the pri-

mary studies in the said field. Overall 179 papers were shortlisted in the initial search out of

which only 96 studies were found to be suitable and rest were discarded. These studies were

further examined with respect to twelve quality assessment criteria questions and compiled

to explore and achieve new insights. Meaningful presentations of the vast collection of the

collected data were made using tables and graphs. An attempt has also been made to provide

recommendations, constructive guidelines, an overall overview as well as the opportunities

and challenges to carry out the future research in the field of software maintainability for

researchers and practitioners. This chapter is helpful to the beginners as they can study the

concepts of the related area and use the results of this study to identify the complete list of

relevant papers in the field. In the end, the survey conducted in this chapter is considered as

129

Chapter 3. Systematic Literature Review

significant for its contributions as well as timely support to the research community.

130

Chapter 4

Software Maintainability Prediction

using Machine Learning Techniques

4.1 Introduction
Many empirical studies have been conducted in the past to establish the relationship

between OO metrics and maintainability using prediction models. The empirical evidence

observed in these studies are very powerful support for testing a given hypothesis. However,

the relationships between OO metrics and its maintainability is very complex and non lin-

ear, hence, conventional statistical techniques based prediction models are not often enough

because they are purely based on quantity. Instead, use of machine learning techniques to

establish the relationship between metrics and maintainability is much better approach be-

cause these techniques are capable of capturing the quantity as well as quality present in the

data.

When we checked the accuracy of the models constructed in this study by comparing

the predicted results with actual values on 30% of the data which we kept aside initially

exclusively for testing, we found the minimum value of MMRE is as low as 0.210 with

QUES dataset by applying GMDH technique. Similarly, the value of MMRE is as low as

131

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

0.326 with genetic algorithm. It means that machine learning techniques are capable of

providing us the accuracy of almost 79% which is quite competitive. Hence, we can say

that it can be used as sound alternative for the prediction of maintainability. Many other

studies have also empirically examined the strong link between OO software metrics and

maintainability such as [53, 62, 106, 118, 137, 237]. Our results are in tandem with the

results found in all these studies. Hence, we can say that in general, Chidamber and Kemerer

[43] metrics can be used successfully as the predictors of maintenance effort.

Thus, the primary goal of this chapter is to provide empirical evidences using machine

learning techniques for investigating and validating OO metrics that capture different aspects

of OO design such as coupling, cohesion, inheritance, information hiding and polymorphism

and further using them for predicting maintainability. In this regard, the prediction model is

constructed using three machine learning techniques i.e. GMDH, GA and PNN with Gaus-

sian activation function. Maintainability is measured by measuring the number of ‘change’,

defined as the number of lines of code which were added, deleted or modified during a three

year maintenance period. In order to study and evaluate its performance, two commercial

datasets UIMS and QUES written in classical Ada are used. Both, UIMS and QUES are

based on OO paradigm and consist of 39 classes and 71 classes respectively. The study is

divided into following parts:

1. The descriptive statistics for each of the OO metric is calculated for each class. It

helped us to identify low variance metrics which are not useful because of their inca-

pability to differentiate classes.

2. The FSS is used to capture important independent variables for the measurement of

given UIMS and QUES system.

3. The relationship between OO design metrics and ‘change’ for each class is analyzed to

empirically determine whether the independent metrics are capable enough to predict

the dependent variable.

132

4.2. Research Background

4. Finally, a prediction model is developed and tested using the three machine learning

techniques namely GMDH, GA and PNN.

5. After conducting empirical study, performance of these three proposed machine learn-

ing techniques is compared with prevailing models taken from the literature such as

GRNN Model, ANN Model, BBN, RT (Regression Tree) Model, Backward Elim-

ination Model, Stepwise Selection Model, Multiple Adaptive Regression Splines

(MARS) Model, Tree Nets Model, Generalized Regression Model, Adaptive Neuro

Fuzzy Inference System (ANFIS) Model, SVM Model and MLR Model.

6. The comparisons were made using prevalent accuracy measures such as MRE,

MMRE, and MARE which indicates that GMDH based prediction model has high

accuracy in predicting maintainability.

The chapter is organized as follows: Section 4.2 states research background, the defi-

nition of the OO metrics, hypothesis to be tested in this chapter and the data sources. In

section 4.3, the results of the chapter are evaluated and compared with outcome present in

the literature followed by the validation of hypothesis is presented. Finally, discussion of the

chapter is presented in section 4.4.

The results of this chapter have been reported in [137].

4.2 Research Background
In this section, we describe the independent and dependent variables, the hypothesis to

be tested, methods used and the results evaluation.

4.2.1 Independent and Dependent Variables

To measure the various features of OO paradigm such as inheritance, cohesion, cou-

pling, memory allocation etc different metrics are carefully selected. We have studied vari-

ous metrics available in literature and selected only those software metrics that have a strong

133

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

relationship with software maintainability and used them while constructing our model for

prediction of OO software maintainability. In total ten variables were selected as indepen-

dent variables comprising of five variables from Chidambar and Kemerer Metric Suite [43]

namely WMC, DIT, NOC, RFC, and LCOM, five variables are taken from Li and Henry

[127] namely MPC, DAC, NOM, SIZE1 and SIZE2. The detail descriptions of these metrics

can be found in chapter 2.

The dependent variable is maintenance effort measure by counting the number of lines

in the code that were changed during last three year maintenance period per class. A line

change could be an addition, deletion or modification.

4.2.2 Hypotheses
Following hypothesis were tested to compare the performance of statistical and machine

learning techniques used in this chapter:

4.2.2.1 H1 Hypothesis

• Null Hypothesis: The GMDH model does not outperform the prediction models based

on statistical learning methods.

• Alternate Hypothesis: The GMDH model outperforms the prediction models based on

statistical learning methods.

4.2.2.2 H2 Hypothesis

• Null Hypothesis: The PNN model does not outperform the prediction models based

on statistical learning methods.

• Alternate Hypothesis: The PNN model outperforms the models predicted using statis-

tical learning methods.

4.2.2.3 H3 Hypothesis

• Null Hypothesis: The GA model does not outperform the prediction models based on

statistical learning methods.

134

4.2. Research Background

• Alternate Hypothesis: The GA models outperforms the prediction models based on

statistical learning methods.

4.2.3 Group Method of Data Handling

The GMDH model has a forward multi-layer neural network structure. Each layer con-

sists of one or more units wherein two input arcs and one output arc are attached with every

unit as shown in equation (4.1), where each unit corresponds to the Ivakhnenko polynomial

form.

Z = a+ bX + cY + dX2 + eXY + fY 2 (4.1)

Where variables x and y are input variables and Z is output variable and a, b, c...f are the

parameters.

Figure 4.1: Architecture of Group Method of Data Handling Technique

135

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

4.2.3.1 GMDH Learning Technique:

As shown in figure 4.1, basic technique of GMDH learning technique is based on self-

organization method and it fundamentally consists of the following steps:

1. Given a learning data sample including a dependent variable Y and independent vari-

ables X1, X2, ... , Xm ; split the sample into a training set and a checking set.

2. Feed the input data of m input variables and generate combination (m, 2) units from

every two variable pairs at the first layer.

3. Estimate the weights of all parameters in the formula and apply it on training dataset

in the next step using step wise regression method.

4. Compute mean square error between the actual and predicted value of each unit.

5. Sort out the unit by a mean square error in decreasing order and eliminate bad units.

6. Set the prediction of units in the first Layer to new input variables for the next layer,

and build up a multilayer structure.

7. When the mean square error become larger than that of the previous layer, stop adding

layers and choose the minimum mean square error unit in the highest layer as the final

model output.

Input Layer

Xi(1) = ai(1) + bi(1)Xm(0) + ci(1)Xn(0) + di(1)Xm(0)Xn(0) (4.2)

Hidden Layer

X i(k) = ai(k) + bi(G)Xm(k − 1) + ci(k)Xn(k − 1) + di(k)Xm(k − 1)Xn(k − 1) (4.3)

136

4.2. Research Background

Output Layer

X i(K) = a(G) + b(G)X1(G− 1) + c(G)X2(G− 1) + d(G)X1(G− 1)X2(G− 1) (4.4)

4.2.3.2 Advantages of Group Method of Data Handling

It is found that with real problems where noise is present, this model is found to be more

accurate. GMDH finds the relationships present in the data and accordingly selects effective

input variables automatically. It also automatically determines the parameters, number of

layers and number of neuron in each layer present in the structure. GMDH model is found

to be most accurate and unbiased models because after each iterations sorting of all variants

is performed before switching to the next layer. The only disadvantage with GMDH is that

when the numbers of inputs are very large, i.e. more than seven input variables, we have to

separate it into several sub-networks with six or fewer input variables since the rule extraction

process becomes too complex with many input variables.

4.2.4 Parameters Setup for Prediction Techniques

The main idea behind the first proposed method GMDH is that it tries to build a function

called a polynomial model which behave in such a way that the predicted value of the output

to be as close as possible to the actual value of the output. Next proposed model is GA which

is based on the principles of Darwin’s evolution theory. Over many generations, the ‘fittest’

individuals tend to dominate the population. In predictions based problems, GA tries to

discover an optimal solution by simulating the evolution theory. Third model proposed in this

chapter is PNN based on neural network technology which mimics the human brain’s own

problem solving process. As the human beings use their knowledge from earlier experiences

to solve new problems or face situations, the neural network also considers earlier solved

examples to create a scheme of ‘neurons’ which makes new choices, classifications, and

predictions.

137

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

4.2.4.1 Parameters for Group Method of Data Handling

In this section, the parameters of GMDH model are presented for UIMS and QUES

datasets. GMDH technique is deployed using Neuroshell2 [81] tool to predict the maintain-

ability of software. We set the parameters as shown in Table 4.1 while applying the proposed

models on the selected dataset.

Table 4.1: Parameters Setup for Group Method of Data Handling

S.No. Parameter Value
1 Scale Function [0-1]
2 GMDH Type Advanced
3 Optimization Full
4 Maximum Variable X1, X2, X3
5 Selection Criteria Regular
6 Missing Value Considered as Error Condition

Following values of various parameters are received after we finished the process of

machine learning using GMDH technique for the given data and comparing the actual values

with that of predicted values. Best Formula obtained after applying GMDH machine learning

technique is summarized in equation (4.5).

Y = 0.34+1.8∗X2
2+0.68∗X11

2+17∗X7∗X8−3.2∗X2∗X10−0.76∗X7∗X8∗X11 (4.5)

Where X1, X2,..... X11 are the parameters estimated by GMDH in terms of OO metrics

and their values are given as described in Table 4.2.

4.2.4.2 Parameters for Probabilistic Neural Networks Technique

The PNN are known for their ability to train quickly on sparse datasets. PNN separates

data into a specified number of output categories. The network produces activation in the

output layer corresponding to the probability density function estimate for that category.

The highest output represents the most probable category. In this chapter, the operations of

PNN are organized into a multilayered feed forward network with four layers i.e. Input layer,

138

4.2. Research Background

Table 4.2: Weights Assigned to Each Independent Variable

S.No. Independent Variable Assigned Weight
1. X1 2*Class-1
2. X2 2* DIT/4 -1
3. X3 2*NOC -1
4. X4 2* (MPC-2)/40 -1
5. X5 2* (RFC-17)/139 -1
6. X6 2* (LCOM -3)/30-1
7. X7 2*DAC/25-1
8. X8 2* (WMC-1)/82-1
9. X9 2* (NOM-4)/53-1
10. X10 2* (Size2-4)/78-1
11. X11 2* (Size1-115)/894-1
12. Y Min (Max (change-6)/2.11))

Hidden layer, Pattern layer/Summation layer and an Output layer. As shown in Table 4.3, in

the first input layer eleven neurons are presented respectively for each independent variable.

The number of neurons in the hidden layer defaults to the number of patterns in the training

set because the hidden layer consists of one neuron for each pattern in the training set. Since

there are 39 classes for UIMS system, 27 sets are used for training which is approximately

70% share of the total available dataset. Similarly, for QUES system there are 71 classes

for UIMS system, 49 sets are used for training. Hidden Layer not only stores the values of

the each predictor variables but also stores each neuron along with its target value. In the

next pattern layer, one pattern neuron is presented for each category of the output variable.

Here remaining 12 datasets for UIMS and 22 datasets for QUES are used for comparing

the values. The last layer is output layer where a weighted votes for each target category is

compared and accordingly corrections are made.

The smoothing factor that is defined during the design stage is default but we change it in

the training sessions in order to make predictions more accurate and precise. We inspected

smoothing factor for each link and the same smoothing factor is applied to all links. We

have experimented with different smoothing factors to discover which works best for our

problem. The success of PNN networks is dependent upon the smoothing factor. There are

139

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

Table 4.3: Parameters Setup for Probabilistic Neural Networks

S.No. Parameter Value
1 Input Layer 11 in both UIMS system and QUES system
2 Hidden Layer 27 sets for UIMS system and 49 sets for QUES

system
3 Pattern Layer 12 sets for UIMS system and 22 sets for QUES

system
4 Output Layer 49 sets for UIMS system and 71 sets for QUES

system
5 Smoothing Factor Iterative Calibration method for UIMS system and

Genetic Adaptive for QUES system
6 Outliers Ignored and Considered as Error Condition
7 Probability at Predicted

Target
Bayes optimal classification approach

three ways for calibration of PNN networks. The first method is Iterative Calibration method

which works in two Parts. The first part trains the network with the data in the training set

whereas the second part uses a whole range of smoothing factors, trying to hone in on one

that works best for the network created in the first part. The second method is Genetic

Adaptive Method which uses a GA to find appropriate individual smoothing factors for each

input as well as an overall smoothing factor. The input smoothing factor is an adjustment

used to modify the overall smoothing factor to provide a new value for each input. In the

third method known as ‘None’ In this calibration technique simply trains the network and

we do not find an overall smoothing factor. The value for the smoothing factor is default

chosen and applied. The user will have to manually adjust the smoothing factor by entering

a new one in the edit box while using this module. Even though PNN are slower and require

more memory space, there are several advantages of PNN such as they are much faster, more

accurate, and relatively insensitive to outliers, use Bayes optimal classification approach and

generate target probability more accurately. Unlike BPN, which require feedback of errors

and subsequent adjustment of weights and many presentations of training patterns, training

a PNN network is very fast because it requires that each pattern be presented to the network

only once during training. During the training session we can see the number of learning

140

4.2. Research Background

events completed during training which is also called as “epoch”. Training can be done in

real time as it is almost instantaneous. When data is sparse, training is superior to other

network types.

4.2.4.3 Parameters for Genetic Algorithm

The five parameters are needed to be initialized for GA i.e. Generations, Population,

Mutation Rate, Mutation percentage and Crossover percentage as summarized in table 4.4

and table 4.5 for UIMS and QUES dataset respectively. Since, time complexity increases

drastically if we increase the number of generations; we set the generations at an optimal

value of 23 generations for UIMS system and 14 generations for QUES system. Mutation

rate also has to be less than 0.5 because more than this value can destroy the solutions.

Mutation percentage and crossover percentage also has to be judiciously decided because

of the tradeoff between efficiency and optimal value. In empirical study presented in this

chapter, since the dataset is comparatively small, the average values of all the parameters are

taken.

Table 4.4: Parameters Setup for Genetic Algorithms on UIMS system

S.No. Parameter Value
1 Number of Generations 23 generations for UIMS system
2 Number of population 49 sets for UIMS system
3 Mutation Rate 0.5
4 Mutation percentage on population 50%
5 Crossover percentage on population 50%

Table 4.5: Parameters Setup for Genetic Algorithms on QUES system

S.No. Parameter Value
1 Number of Generations 14 generations for QUES system
2 Number of population 71 sets for QUES system
3 Mutation Rate 0.5
4 Mutation percentage on population 50%
5 Crossover percentage on population 50%

141

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

4.2.5 Empirical Data Collection

In this chapter, we used two most popular OO maintainability datasets which are

also published by Li and Henry [127] i.e. UIMS and QUES datasets. These datasets

were chosen mainly because they have been recently used by many researchers to eval-

uate the performance of their proposed model in predicting OO software maintainability

[53, 62, 106, 118, 237]. Since the main aim of this chapter is to empirically evaluate the

predictive capability of machine learning models, the same dataset is selected so that we

can compare our results against this published work. The UIMS dataset contains class-level

metrics data collected from 39 classes whereas the QUES dataset contains the same metrics

collected from 71 classes. Both systems were implemented in Ada and their datasets consist

of eleven class-level metrics.

4.3 Results Analysis
In this section, descriptive statistics are collected and analyzed. Experiment setup and

values of various parameters initialized for each of the machine learning technique. Further,

we have also presented the weights assigned to each of the independent attribute by the

GMDH technique. Summarized results for all the three methods are also presented which

are used for training and at last results are compared with existing studies followed by their

analysis.

4.3.1 Descriptive Analysis

The UIMS and QUES datasets are used in this chapter wherein UIMS dataset contains 39

classes and QUES dataset contains 71 classes. The Descriptive statistics are given in Table

4.6 and Table 4.7 respectively followed by the interpretation.

From the descriptive statistics we noticed some observations as follows:

• In order to measure the inheritance, DIT metrics is used. The median and mean values

are minimum in both the system, so we draw the conclusion that the use of inheritance

142

4.3. Results Analysis

Table 4.6: Descriptive Statistics of UIMS dataset

S.No. Metric Minimum Maximum Mean Std Dev
1. WMC 0 69 11.38 15.90
2. DIT 0 4 2.15 0.90
3. NOC 0 8 0.95 2.01
4. RFC 2 101 23.21 20.19
5. LCOM 1 31 7.49 6.11
6. MPC 1 12 4.33 3.41
7. DAC 0 21 2.41 4.00
8. NOM 1 40 11.38 10.21
9. Size1 4 439 106.44 114.65
10. Size2 1 61 13.47 13.47
11. Change 2 253 42.46 61.18

Table 4.7: Descriptive Statistics of QUES dataset

S.No. Metric Minimum Maximum Mean Std Dev
1. WMC 1 83 14.96 17.06
2. DIT 0 4 1.92 0.53
3. NOC 0 0 08 0
4. RFC 17 156 54.44 32.62
5. LCOM 3 33 9.18 7.31
6. MPC 2 42 17.75 8.33
7. DAC 0 25 3.44 3.91
8. NOM 4 57 13.41 12.00
9. Size1 115 1009 275.58 171.60
10. Size2 4 82 18.03 15.21
11. Change 6 217 64.23 43.13

in both systems is limited.

• The values for median and mean for CHANGE (dependent variable) in the UIMS

dataset is lesser than those in the QUES, which means UIMS seems to be more main-

tainable.

• We removed NOC from the QUES dataset because it is observed that all data points

for NOC are zeros in the QUES dataset.

• We had observed that the coupling between classes in QUES is higher than those in the

UIMS because the medians and means values for RFC and MPC in the QUES dataset

143

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

were larger than UIMS dataset.

• Values of mean and median of LCOM were almost same in both systems that mean

both have almost similar cohesion.

• The similar medians and means for NOM and SIZE2 in both datasets suggest that

both systems had similar class sizes at the design level, however there is a significant

difference in SIZE1.

4.3.2 Evaluation of Results

Studies examining the link between OO software metrics and maintainability have found

that in general these metrics can be used as predictors of maintenance effort [53, 62, 106, 118,

137, 237]. Although a number of maintainability prediction models have been developed in

last two decades, they have low prediction accuracies according to the criteria suggested by

Conte et al. [50]. Therefore, it is necessary to explore new techniques, which are not only

easy in use, but also provide high prediction accuracy for the purpose of maintainability

prediction.

In the empirical study presented in this chapter, we have sought to build OO software

maintainability prediction model using three machine learning techniques i.e. GMDH, GA

and PNN using Gaussian Activation function. Although ANN has been used previously in

literature [6, 106, 219] but for the first time the Probabilistic Neural Network (PNN) along

with gaussian activation function has been applied. The GMDH and GA are also proposed

for the first time for prediction of the software maintainability. In this chapter, to draw most

realistic comparison we have also analyzed the same dataset which was originally proposed

by Li and Henry and earlier applied by various researchers to predict maintainability. For

analyzing the results of three proposed machine learning techniques in this chapter, MRE,

MMRE and Max MRE values are considered. Table 4.8 and Table 4.9 summarize their

values for UIMS and QUES datasets respectively.

144

4.3. Results Analysis

Table 4.8: Prediction Accuracy Measures for Various Techniques on UIMS dataset

S.No. Model Name Max
MRE

MMRE Pred
(0.25)

Pred
(0.75)

1 GMDH Model 0.883 0.432 0.72 0.821
2 Genetic Model 0.787 0.326 0.67 0.782
3 PNN Model 0.898 0.397 0.7 0.894

Table 4.9: Prediction Accuracy Measures for Various Techniques on QUES dataset

S.No. Model Name Max
MRE

MMRE Pred
(0.25)

Pred
(0.75)

1 GMDH Model 0.983 0.210 0.69 0.944
2 Genetic Model 0.794 0.220 0.66 0.972
3 PNN Model 0.923 0.230 0.68 0.944

Results of the preliminary analyses are presented in Table 4.8 and Table 4.9 for UIMS

and QUES dataset respectively. Minimum value of MMRE received is 0.210 (GMDH) for

QUES dataset and 0.326 (GA) for UIMS dataset. These values shows high confidence that

GMDH as well as GA can be used as a sound alternative for the prediction of maintainability.

The criteria for prediction given by Conte et al. [50] states that prediction model is consid-

ered accurate if the value of pred(0.25) is greater than pred(0.75) which clearly proposed

models in this chapter satisfies. In the literature, it is also suggested that prediction accuracy

of software maintenance effort prediction models is often low and thus, it is very difficult

to satisfy the criteria [62]. It can also be noticed from Tables that the GMDH model has

achieved improved Pred(0.25) and Pred (0.75) over the other models in QUES and UIMS

datasets, and its results are quite closer to the criteria set in literature.

4.3.3 Comparison with Existing Studies from Literature

We also have compared the values of prediction accuracy measures of certain selected

parameters with the studies conducted in the last decade. In Table 4.10 and 4.11 we presented

the summarized performance measures of proposed models and the models whose results are

available in the literature on UIMS dataset and QUES dataset respectively.

From the Table 4.10 and 4.11, it can be observed that out of the eighteen techniques,

145

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

Table 4.10: Results of Various Prediction Accuracy Measures on UIMS dataset
S.No Model Name Max

MRE
MMRE MARE Pred

(0.25)
Pred
(0.30)

Pred
(0.75)

R-
Square

p-
value

1. GMDH 0.883 0.432 - 0.72 0.77 0.821 - -
2. Genetic Model 0.787 0.326 - 0.67 0.72 0.782 - -
3. PNN 0.898 0.397 - 0.7 0.75 0.894 - -
4. GRNN [219] - - - - - - - -
5. ANN [4] - 0.265 - - - - 0.582 0.004
6. Bayesian Belief

Model [118]
7.039 0.972 - 0.446 0.469 - - -

7. Regression Tree
[118]

9.056 1.538 - 0.200 0.208
-

- - -

8. Backward Elimi-
nation [118]

11.890 2.586 - 0.215 0.223 - - -

9. Stepwise Selec-
tion [118]

12.631 2.473 - 0.177 0.215 - - -

10. MARS [237] 14.06 1.86 - 0.28 0.28 - - -
11. MLR [237] 18.88 2.70 - 0.15 0.21 - - -
12. SVM [237] 9.13 1.68 - 0.31 0.36 - - -
13. ANN [237] 19.63 1.95 - 0.15 0.15 - - -
14. Regression Tree

[237]
24.57 4.95 - 0.10 0.10 - - -

15. TreeNets [62] - 1.57 - 0.31 0.41 - - -
16. Generalized Re-

gression [106]
- - 0.308 - - - - -

17. ANFIS [106] - - 0.242 - - - - -
18. Linear Regres-

sion [127]
- - - - - - 0.9096 -

the GMDH model, Genetic model and PNN model gives very competitive results and hence

show their worth that they can be used in the process of software maintainability prediction.

It is also evident from the Table 4.10 and 4.11, that prediction accuracy of GMDH network

model is much better than other models. It is the only model which is close to the criterion

laid by Conte et al. [50]. At pred(0.25) its values are 0.69 which means that almost 69%

predictions are less than the error of 0.25 prediction accuracy. At pred(0.30) its value is

0.722 which means that almost 72% predictions are less than the error of 0.30 prediction

accuracy as compared to other models. Following comparative analysis, it is safe to conclude

that GMDH has clearly outperformed than other models. The GMDH models can predict

146

4.3. Results Analysis

Table 4.11: Results of Various Prediction Accuracy Measures on QUES dataset
S.No. Model Name Max

MRE
MMRE MARE Pred

(0.25)
Pred
(0.30)

Pred
(0.75)

R-
Square

p-
value

1. GMDH 0.983 0.210 - 0.69 0.722 0.944 - -
2. Genetic Model 0.794 0.220 - 0.66 0.722 0.972 - -
3. PNN 0.923 0.230 - 0.68 0.75 0.944 - -
4. GRNN [219] 4.295 0.765 - - - - - -
5. ANN [4] - 0.265 - - - - 0.582 0.004
6. Bayesian Belief

Model [118]
1.592 0.452 - 0.391 0.430 - - -

7. Regression Tree
[118]

2.104 0.493 - 0.352 0.383
-

- - -

8. Backward Elimi-
nation [118]

1.418 0.403 - 0.396 0.461 - - -

9. Stepwise Selec-
tion [118]

1.471 0.392 - 0.422 0.500 - - -

10. MARS [237] 1.91 0.32 - 0.48 0.59 - - -
11. MLR [237] 2.03 0.42 - 0.37 0.41 - - -
12. SVM [237] 2.07 0.43 - 0.34 0.46 - - -
13. ANN [237] 3.07 0.59 - 0.37 0.45 - - -
14. Regression Tree

[237]
4.82 0.58 - 0.41 0.45 - - -

15. TreeNets [62] - 0.42 - 0.58 0.65 - - -
16. Generalized Re-

gression [106]
- - 0.308 - - - - -

17. ANFIS [106] - - 0.242 - - - - -
18. Linear Regres-

sion [127]
- - - - - - 0.8737 -

maintainability of the OO software systems with least MMRE when compared with others

models such as GRNN, ANN, BBN, MARS, TreeNets and SVM for QUES dataset. Hence

it is clear inference that GMDH is the most accurate and best model for the predictions of

software maintainability.

The results of the validation of GRNN model studies by Thwin and Quah [219] for qual-

ity prediction is not available for UIMS dataset as it was conducted only on QUES dataset.

The SVM model was proposed recently by Jin and Liu [100] for predicting maintainability

using OO metrics, however it is not comparable to the current empirical study because of the

fact that their study was merely conducted on the code which was written for ‘Temper proof

147

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

HTML web page’ in C++ whereas our study is conducted on commercially available QUES

dataset written in ADA with much higher scope. Not only the sizes of the software differ to

a large degree but also both systems varied in to great extent with respect to their paradigm

and complexity. Secondly, Max MRE and Pred(q) were not provided despite being de facto

prediction standards. MARE in their model recorded as 0.218. When it is compared with

the current study, MMRE has been recorded better at 0.210 with GMDH model that clearly

confirms higher competence even in a complex environment.

4.3.4 Validation of Hypotheses

In this section, we validate our hypothesis stated in section 4.2.2.

4.3.4.1 H1 Hypothesis

We make the first assumption that the GMDH model do not outperform the models pre-

dicted using statistical learning methods. In order to validate this hypothesis, we compared

the MMRE values of all models and represented them graphically. As shown in figure 4.2,

MRE values for GMDH model is found to be minimum with both the system i.e. UIMS

dataset as well as for QUES dataset.

Figure 4.2: Comparison of Various Models with Reference to their MMRE values

148

4.3. Results Analysis

It is observed that the value of minimum MMRE with GMDH model is 0.21 which

means 79% accuracy is achieved. In order to verify whether these results are significant

and not coincidental, Wilcoxon significance test is also conducted. The level of significance

is revised from 0.05 to (0.05/14) due to the Benfeorrani adjustment discussed in Section

2.13.3 from equation 2.18. The value of α is divided by fifteen because there are fifteen

techniques whose MMRE values are available for UIMS and QUES dataset as shown in

Table4.10 and 4.11. Wilcoxon tests are conducted to compare GMDH technique with other

fifteen techniques because it is ranked most accurate in UIMS and QUES dataset. Table

4.12 shows the results of Wilcoxon test for UIMS and QUES dataset. Since, the value of

revised significance level α is 0.05/15=0.003, hence, the difference value at Z significance is

compared with 0.003.

Table 4.12: Results of Wilcoxon Test for MMRE Measure (paired with GMDH Model

S.No. Model Name Z Significance
1. GMDH - Genetic Model 2.972 (0.001)
2. GMDH - PNN 3.472 (0.025)
3. GMDH - GRNN 2.481 (0.002)
4. GMDH - ANN 2.258 (0.008)
5. GMDH - BBN 2.48 (0.003)
6. GMDH - Regression Tree 3.152 (0.002)
7. GMDH - Backward Elimination 4.466 (0.000)
8. GMDH - Stepwise Selection 3.553 (0.038)
9. GMDH - MARS 1.834 (0.001)
10. GMDH - MLR 1.891 (0.002)
11. GMDH - SVM 1.232 (0.025)
12. GMDH - ANN 3.502 (0.047)
13. GMDH - Regression Tree 3.672 (0.002)
14. GMDH - TreeNets 4.909 (0.026)

Wilcoxon test for UIMS and QUES dataset is compiled in Table 4.12 with all techniques

are paired with GMDH technique as it is ranked most accurate technique in terms of MMRE

values. However, the results of pair wise Wilcoxon Test for MMRE indicate that GMDH is

not significantly better from all other fourteen techniques. Instead, GMDH is significantly

superior only to eight out of fourteen techniques. Hence, we conclude that the GMDH

149

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

models outperform the models predicted using statistical learning methods.

4.3.4.2 H2 Hypothesis

The second hypothesis assumes that GA does not outperform the models based on sta-

tistical method. From the figure 4.2 it is evident that GA model is also very competitive in

terms of MMRE values. Its values are 0.33 with UIMS dataset and 0.22 with QUES dataset

which means almost 67% and 78% accuracy is achieved. As per the criterion set by Conte et

al. [50] the results are very competitive. Wilcoxon test is also conducted and the results are

summarized in Table 4.13 in order to investigate if the results are not coincidental.

Table 4.13: Wilcoxon Test for MMRE Measure (Paired with Genetic Algorithm Model)

S.No. Model Name Z Significance
1. GA - Genetic Model 2.972 (0.001)
2. GA - PNN 3.472 (0.025)
3. GA - GRNN 2.481 (0.002)
4. GA - ANN 2.258 (0.008)
5. GA - BBN 2.48 (0.003)
6. GA - Regression Tree 3.152 (0.002)
7. GA - Backward Elimination 4.466 (0.000)
8. GA - Stepwise Selection 3.553 (0.038)
9. GA - MARS 1.834 (0.001)
10. GA - MLR 1.891 (0.002)
11. GA - SVM 1.232 (0.025)
12. GA - ANN 3.502 (0.047)
13. GA - Regression Tree 3.672 (0.002)
14. GA - TreeNets 4.909 (0.026)

Wilcoxon test for UIMS and QUES dataset is compiled in Table 4.13 with all techniques

are paired with GA. The value of revised significance level α is 0.05/14=0.003. So the dif-

ference value at Z significance is compared with 0.003. However, the results of pair wise

Wilcoxon Test for MMRE indicate that GA is not significantly better from all other four-

teen techniques. Instead, it is significantly superior only to four out of fourteen techniques.

Hence, we conclude that the GA model does not outperform the models predicted using

statistical learning methods.

150

4.3. Results Analysis

4.3.4.3 H3 Hypothesis

The third hypothesis assumes that PNN model does not outperform the models based on

statistical method. From the figure 4.2, it is evident that PNN model is also very competitive

in terms of MMRE values. Its values are 0.397 with UIMS dataset and 0.230 with QUES

dataset which means almost 60% and 77% accuracy is achieved. As per the criterion set by

Conte et al. [50] the results are very competitive. Wilcoxon test is also conducted to confirm

that the results are not coincidental and results are summarized in Table 4.14.

Table 4.14: Wilcoxon Test for MMRE Measure (Paired with PNN Model)

S.No. Model Name Z Significance
1. PNN - Genetic Model 2.972 (0.001)
2. PNN - PNN 3.472 (0.025)
3. PNN - GRNN 2.481 (0.002)
4. PNN - ANN 2.258 (0.008)
5. PNN - BBN 2.48 (0.003)
6. PNN - Regression Tree 3.152 (0.002)
7. PNN - Backward Elimination 4.466 (0.000)
8. PNN - Stepwise Selection 3.553 (0.038)
9. PNN - MARS 1.834 (0.001)
10. PNN - MLR 1.891 (0.002)
11. PNN - SVM 1.232 (0.025)
12. PNN - ANN 3.502 (0.047)
13. PNN - Regression Tree 3.672 (0.002)
14. PNN - TreeNets 4.909 (0.026)

Wilcoxon test for UIMS and QUES dataset is compiled in Table 4.14 with all techniques

are paired with PNN technique. Value of revised significance level α is 0.05/14=0.003. So

the difference value at Z significance is compared with 0.003. However, the results of pair

wise Wilcoxon Test for MMRE indicate that PNN is not significantly better from all other

fourteen techniques. Instead, it is significantly superior only to four out of fourteen tech-

niques. Hence, we conclude that the PNN model does not outperform the models predicted

using statistical learning methods.

151

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

4.4 Discussion
Three different machine learning techniques GMDH technique, GA technique and PNN

technique are used for the purpose of prediction of software maintainability. Even though

many studies reported the wide application of GMDH model and GA model in diverse fields

for the purpose of prediction of high order input output relationship which is complex, non-

linear and unstructured but for the first time they are used for predicting software maintain-

ability. The results of this work are summarized as follows:

1. Minimum value of MMRE is received as 0.210 with QUES dataset when GMDH

technique is applied which means 79% accuracy is achieved. Hence, we can say that

it can be used as sound alternative for the prediction of maintainability.

2. For UIMS dataset, minimum value of MMRE is 0.326 with GA, hence, it also satisfies

the criteria laid out by Conte et al. [50].

3. When the results are analyzed using Pred(0.25), its values are 0.69 which means that

almost 69% predictions are less than the error of 0.25 prediction accuracy with GMDH

technique.

4. Pred(0.30) is also used to judge the performances of machine learning techniques and

we found that its best value is 0.722 with GMDH technique which means that almost

72% predictions are less than the error of 0.30 prediction accuracy as compared to

other models. Hence, it is safe to conclude that GMDH outperformed than other mod-

els.

5. In order to verify whether these results are significant and not coincidental, Wilcoxon

significance test is also conducted and performed with fifteen machine learning tech-

niques whose values were available in literature. The level of significance is revised

from 0.05 to (0.05/14= 0.003) due to the Benfeorrani adjustment.

152

4.4. Discussion

6. Results show GMDH is significantly superior only to eight techniques out of fourteen

techniques whose MMRE values were available.

7. The results of pair wise Wilcoxon Test for MMRE indicate that GA is not significantly

better from all other fourteen techniques. Instead, it is significantly superior only to

four out of fourteen techniques

8. The results of pairwise Wilcoxon Test for MMRE indicate that PNN is not significantly

better from all other fourteen techniques. Instead, it is significantly superior only to

four out of fourteen techniques.

153

Chapter 4. Software Maintainability Prediction using Machine Learning Techniques

154

Chapter 5

A Metric Suite for Predicting Software

Maintainability in Data Intensive

Applications

5.1 Introduction
Many empirical studies have conducted [6, 62, 106, 118, 137, 237] to validate that the

prediction of OO software maintainability can be achieved before actual operation of the

software using OO design metrics proposed by Chidamber and Kemerer [43]. However, the

framework and reference architecture in which the software systems are being currently de-

veloped have changed dramatically in recent times due to the emergence of data warehouse

and data mining field. All six metrics defined by Chidamber and Kemerer [43] measures the

object oriented properties such as inheritance, coupling and cohesion. None of the metric

measures the amount of data handling by an application. In the prevailing scenario, certain

deficiencies were discovered when Chidamber and Kemerer metric suite is evaluated for the

prediction of maintainability of data intensive software systems. Firstly, we take into the

considerations, the major observation given by Li and Henry [127] that Chidamber and Ke-

155

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

merer metric suite does not measure the structural complexity of the code. Hence, in this

study apart from using Chidamber and Kemerer metric suite, we have also added MI metric

[168] and CC metric to measure the structural complexity. Secondly, we observed that as

there is surge in the use of database technology nowadays, it’s very important to give equal

attention to the understandability of database. We proposed two new metrics in this regard

to overcome this aspect. First metric is Number of Data Base Connections (NODBC) which

counts the connections made by the application each time for query processing. Second

metric measures the understandability of the databases by comparing the ratio of the docu-

mentation to the number of fields in the schema and it is defined as Schema Complexity to

Comment Ratio (SCCR).

In this chapter, we propose a new metric suite and redefine the relationship between

design metrics with maintainability for data intensive applications. The proposed metric suite

is evaluated, analyzed and empirically validated using five proprietary software systems.

The study is divided into following parts:

1. The data was collected from five proprietary software systems developed in Microsoft

Visual Studio using C# language and based on OO methodologies with heavy use of

databases for processing of each query. They are operational in real time scenario

since last three years in the industry.

2. Two new metrics were proposed and validated for the data intensive applications.

3. The descriptive statistics for each of the OO metric is calculated for each class. It

helped us to identify low variance metrics which are not useful because of their inca-

pability to differentiate classes.

4. The uni-variate and multivariate linear regression are used to capture the relationship

between newly proposed metric with dependent variable on the basis of five real-life

datasets.

156

5.2. Research Method

5. The relationship between OO design metrics and ‘change’ for each class is analyzed to

empirically determine whether the independent metrics are capable enough to predict

the dependent variable.

6. Four different versions of ANN i.e. BPN, Kohonen Network, FFNN and GRNN are

used for making the prediction model along with GMDH for proprietary systems.

7. The performance of GMDH was compared with prevailing models using prevalent

accuracy measures such as MRE, MMRE and MARE.

The chapter is organized as follows: Section 5.2 states research background, the defi-

nition of the OO metrics, data sources, hypothesis for testing and the parameter setup for

crating machine learning based prediction model. In section 5.3, the results of the study are

evaluated and compared with existing studies and the hypotheses are validated. Discussion

of the study is presented in section 5.4.

The results of this chapter have been reported in [136, 138, 140, 141].

5.2 Research Method
In this section we summarize the independent and dependent variables, new proposed

metrics, details of the empirical data and hypothesis.

5.2.1 Independent and Dependent Variables

Various metrics have been proposed in the literature which has significant impact on soft-

ware maintainability. The main purpose of this empirical study is twofold, firstly to review

the role of Chidamber and Kemerer metric suite for the prediction of software maintainabil-

ity and secondly to propose a new suite of metrics with the induction of two new metrics

which have a larger impact on maintainability in highly data intensive applications.

To measure the features of OO paradigm, Chidamber and Kemerer metric suite [43] is

found to be a significant indicator of maintainability predictions in a large number of studies

157

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

[6, 62, 106, 118, 137, 237]. We rely on the outcome of these studies and use Chidamber

and Kemerer metric suite to capture the OO characteristics. Six variables were selected as

independent variables from Chidambar and Kemerer Metric Suite [43] namely WMC, DIT,

NOC, CBO, RFC and LCOM.

5.2.2 Proposed Metrics

There were two deficiencies found in Chidambar and Kemerer Metric Suite [43]. The

first observation was the same as noted by Li and Henry [127] that it does not take into

account the structural complexity of the software. To overcome this deficiency we added

two metrics as summarized in Table 5.1. First is MI proposed by Oman and Hagemeister

[168] and second is CC proposed by McCabe [156]. Both the metrics are defined in chapter

2.

Table 5.1: Metrics to Capture the Structural Complexity

S.No. Metric Name Description
1. Cyclomatic Com-

plexity (CC)
It is used to measure the complexity of the program in terms
of linearly independent paths in the given source code. If
the number of independent paths cross certain thresh-hold
limit, that means system/ class is more complex; hence, it
need more testing and maintenance efforts.

2. Maintainability
Index (MI)

It is calculated as a factored formula dependent upon LOC,
CC and Halstead volume as discussed in equation (3.1) in
chapter 3, which in turn dependent upon number of opera-
tors and operands.

Table 5.2: Proposed New Metrics for Data Intensive Applications

S.No. Metric Name Description
1. Scheme Complexity

to Comment Ratio
(SCCR)

It calculate the ratio of number of comments lines to
number of field in the schema of data base.

2. Number of Data Base
Connections (NODBC)

Number of Data Base Connection is a measure to
count number of times database connections were
made.

The second and main deficiency found in the metric suite is on account of the amount

158

5.2. Research Method

of database handling. To overcome this deficiency, two new metrics were proposed and

validated for the applications which heavily use databases. The proposed metrics are Number

of Data Base Connections (NODBC) made each time for query processing and the Schema

Complexity to Comment Ratio (SCCR) to measure the understandability of the databases

because it’s important to give equal attention to the database accesses with the enhancement

in data base usage nowadays. With the increase in the use of mobile and mobile based

applications, data that once might have been accessed a couple of times a week now might

be accessed multiple times per hour. As the software systems heavily use data bases; hence

we observed that Chidamber and Kemerer metric suite would not be adequate as it does not

capture the database handling aspects of the applications. We proposed two more metrics

as summarized in table 5.2, to remove these deficiencies and we claim that two proposed

metrics carries more impact on software maintainability in database intensive applications.

NODBC is measured by counting the number of times database connections were made

using the function call ‘Open()’. To count the SCCR, ratio of the numbers of the field in

the schema to the number of comment lines was considered. We are of the strong opinion

that understandability of the schema of the database is equally important in determining the

maintaining any application.

Overall a set of ten metrics were considered as independent variables in this study in-

cluding six from Chidamber and Kemerer metric suite and four metrics defined in table 5.1

and 5.2 i.e. CC, MI, NODBC and SCCR.

5.2.3 Dependent Variable

The dependent variable was the number of the changes in the lines of source code to

measure the amount of maintenance efforts required by each class. Two versions of each of

the software systems were taken and analyzed to count the changes made in the new version

with respect to the older version as described in chapter 2.

159

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

5.2.4 Hypotheses

Following hypothesis were tested to investigate the performance of new proposed metric

suite in this study:

5.2.4.1 H1 Hypothesis

• Null Hypothesis: The new proposed metric suite does not outperform the prediction

models based on Chidamber and Kemerer metric suite.

• Alternate Hypothesis: The new proposed metric suite outperforms the prediction mod-

els based on Chidamber and Kemerer metric suite.

5.2.4.2 H2 Hypothesis

• Null Hypothesis: The GMDH model does not outperform the prediction models based

on ANN based techniques such as BPN, Kohonen Network, FFNN and GRNN.

• Alternate Hypothesis: The GMDH model outperforms the prediction models based on

ANN based techniques such as BPN, Kohonen Network, FFNN and GRNN.

5.2.5 Parameters Setup for Prediction Techniques

In this section, we explain the various machine learning methods used for making the

prediction models as well as to ascertain the relationship of design metrics with maintain-

ability. In our previous studies [6, 136, 137, 141], we found that ANN is very powerful in

classifying and recognizing the data patterns, so they are well suited for prediction problems

as in such cases although the required knowledge is difficult to specify but enough data for

observations are available to learn. Hence in this study, four different versions of ANN mod-

els i.e. BPN, Kohonen Network, FFNN, and GRNN along with one more machine learning

model GMDH as discussed in chapter 4 are used. The brief description of parameters setup

of all these models is discussed as below.

160

5.2. Research Method

5.2.5.1 Back Propagation Network

During the training process parameters as shown in Table 5.3 are used in the prediction

model. In total, the numbers of input units are 7 and hidden units are 15. If the difference in

the values of actual and predicted is found then the weights of the network are readjusted to

reduce this error and the process is repeated until the desired output is produced.

Table 5.3: Parameters Setup for Back Propagation Network

S.No. Parameter Corresponding Value
1. Architecture Back Propagation Network
2. Layers 3
3. Input Units 7
4. Hidden Units 15
5. Output Units 1
6. Training Transfer Function Tansig
7. Technique Used Back Propagation
8. Training Function BR

5.2.5.2 Kohonen Network

Although, Kohonen Network is invented to provide a way of representing multidimen-

sional data in much lower dimensional spaces, a network is created that learn the information

such that any topological relationships within the training set are maintained without super-

vision. Kohonen feature maps are used for classifications purpose which are nothing but the

extension of learning vector quantification. During the training process parameters as shown

in Table 5.4 are used while creating the prediction model based on Kohonen Network. When

an input pattern is available for learning in Kohonen network, the closest neuron in the com-

petition layer is determined and called as winner neuron. It becomes the focal point of the

weight changes. Another attribute ‘Number of Iteration’ parameter defines how many itera-

tions the technique will execute. Neighborhood means the initial size of the neighborhood of

best matching which decreases with every iteration while running the algorithm every time.

If this parameter is set to 0, then the neighborhood will contain only the winner neuron. If

it is set to 1, then the network will contain neurons which are directly connected with the

161

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

winner neuron. Two shapes are available for neighborhood i.e. square and hexagonal and in

this study later one is selected. Alpha determines how much the neighborhood of the best

matching unit get affected and it is set to 0.5. The value of K which is also called cooling

determines how fast the fill size of the neighborhood and the alpha parameter decrease and

it is set to 0.2.

Table 5.4: Parameters Setup for Kohonen Network

S.No. Parameter Corresponding Value
1. Architecture Kohonen Network
2. Number of Iterations 200
3. Neighborhood 3
4. Shape of Neighborhood Hexagonal
5. Alpha (to determine the size of the neighborhood af-

fected)
0.5

6. Value of K (Cooling) to determine speed of the fill
size of neighborhood

0.2

7. Algorithm Kohonen Propagation

5.2.5.3 Feed Forward Neural Network

FFNN are the first and simplest type of ANN and as the name implies they do not have

any cycle or loops in the network. Information moves in forward direction only from the

input unit to the output unit. In the current study, as shown in Table 5.5, the number of hidden

neuron selected as 10 for the sample data collected from these five real life applications. The

approach we follow is that the weights of hidden layer are chosen randomly and the output

layer is trained by single layer learning rule using the pseudo-learning technique.

Table 5.5: Parameters Setup for Feed Forward Neural Network

S.No. Parameter Corresponding Value
1. Architecture Feed Forward Neural Network
2. Number of Hidden Layers 10
3. Learning technique Sigmoid Non Linear
4. Weights Random
5. Output layer Learning Pseudo-inverse Techniques

162

5.2. Research Method

5.2.5.4 General Regression Neural Networks

Since it performs well even in the case of noisy and sparse data and the over-fitting prob-

lem does not arise as neither do they set the training parameters during the commencement

of learning process, nor they define the momentum. Once the network finished the training

process, the only smoothing factor is applied to determine how tightly the network matches

its prediction.

Table 5.6: Parameters Setup for General Regression Neural Network

S.No. Parameter Corresponding Value
1. Architecture General Regression Neural Net-

work
2. Density Function Uni-variate Probability Estimator
3. Gradient of Regression Sur-

face
Numerical Approximation

4. Kernel Function Symmetric
5. Smoothness Function Standard Deviation

5.2.5.5 Group Method of Data Handling

GMDH technique was deployed using Neuroshell2 [81] tool to predict the maintainabil-

ity of software. We set the parameters as shown in Table 5.7 while applying the proposed

models on the selected dataset.

Table 5.7: Parameters Setup for Group Method of Data Handling

S.No. Parameter Corresponding Value
1 Scale Function [0-1]
2 GMDH Type Simple
3 Optimization Maximum
4 Maximum Network Layer 20
5 Maximum Polynomial Order 12
6 Missing Value Data Point Not Considered
7 Convergence to Learn 1.000e-04
8 Network Layer Connections Previous Layer and Original Input Variables

163

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

5.2.6 Empirical Data Collection
In this chapter, five proprietary systems are used for the validation of new metric suite

namely FLM system, EASY system, SMS system, IM system and ABP system as described

in chapter 2. They consist of 233, 292, 129, 96 and 114 classes respectively. Descriptive

statistics such as Max, Min, Mean, and Median (Med) and Standard Deviation (Std Dev)

were calculated for FLM system, EASY system, SMS system, IM system and ABP system

and presented in Table 5.8 to 5.12 respectively.

Table 5.8: Descriptive Statistics of FLM System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 16 1 6.276 5 4.97
2. DIT 7 1 4.379 5 1.32
3. NOC 7 0 3.1 3 1.67
4. CBO 50 3 26.14 30 13.85
5. RFC 67 12 25.16 18 7.89
6. LCOM 0 0 0 0 0
7. SCCR 5 2 3.276 3 2.97
8. NODBC 12 0 2.483 0 3.53
9. MI 91 40 61.14 56 18.04
10. CC 29 1 19.31 16 13.76
11. Change 95 5 41.98 67 45.67

Table 5.9: Descriptive Statistics of EASY System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 23 1 10.5 9.5 8.57
2. DIT 5 1 3.6 4 2.50
3. NOC 8 0 4.23 3 2.91
4. CBO 54 0 33.73 38.5 21.58
5. RFC 78 21 37.73 27 4.89
6. LCOM 0 0 0 0 0
7. SCCR 7 3 4.57 5 5.57
8. NODBC 7 0 2.79 0.5 3.43
9. MI 94 43 64.14 56.5 17.91
10. CC 22 1 20.6 19 14.26
11. Change 87 9 52.52 63 43.23

From the tables Table 5.8 to 5.12 following observations are made:

164

5.2. Research Method

Table 5.10: Descriptive Statistics of SMS System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 29 2 16.63 17.5 9.17
2. DIT 6 1 3.25 4 2.12
3. NOC 11 0 4.85 4 2.67
4. CBO 59 3 45.38 52.5 18.66
5. RFC 83 19 37.09 31 5.87
6. LCOM 0 0 0 0 0
7. SCCR 6 2 4.625 16.5 9.17
8. NODBC 6 0 3.89 3 2.50
9. MI 81 49 55.25 52 10.56
10. CC 27 1 21.50 19.5 19.61
11. Change 79 13 67.89 47 32.43

Table 5.11: Descriptive Statistics of IMS System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 12 0 3.147 3 2.57
2. DIT 5 4 4.029 4 0.17
3. NOC 7 0 2.81 3 1.91
4. CBO 30 2 13 13.5 8.09
5. RFC 43 18 21.09 27 5.07
6. LCOM 0 0 0 0 0
7. SCCR 12 0 3.147 3 2.57
8. NODBC 5 0 2.118 1 3.85
9. MI 100 48 71.79 67 17.84
10. CC 13 2 10.79 7 12.78
11. Change 213 18 79.87 103 67.93

• The size of a class measured in terms of lines of source code ranges from 23-7890.

• Max value of LCOM for FLM, EASY, SMS, IMS and ABP are 0, 0, 0, 3 and 6 respec-

tively which represents that classes are quite cohesive in first three applications.

• Values of DIT for FLM, EASY, SMS, IMS and ABP are 7, 5, 6, 5 and 6 which repre-

sents that inheritance is properly exploited in all systems.

• SCCR is medium in FLM, EASY and SMS and High in IMS and ABP which means

schema are better documented for IMS and ABP system.

165

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

Table 5.12: Descriptive Statistics of ABP System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 11 1 2.483 2 1.84
2. DIT 6 3 4.017 4 0.13
3. NOC 9 0 5.25 5 1.09
4. CBO 29 4 14.93 17 8.56
5. RFC 49 21 26.83 31 9.89
6. LCOM 6 0 0.155 0 0
7. SCCR 11 1 2.483 2 1.84
8. NODBC 8 0 4.931 1 1.04
9. MI 100 40 69.5 61 21.03
10. CC 14 2 10.33 8.5 8.88
11. Change 189 19 91.23 78 45.63

• A value of NODBC is more than 8 in FLM and ABP systems and less than 7 in EASY,

SMS and IMS systems which means first two systems are more data intensive than the

later three systems.

5.2.7 Prediction Accuracy Measures

After obtaining the results, we analyzed their performances using various prediction ac-

curacy measures given by Conte et al. [50], Fentom and Bieman [65] and Kitchenham et

al. [110]. Most commonly measures are used to adjudge the prediction accuracy such as

MRE, MMRE and prediction accuracy at 25% and 30%. Their detail definition and formula

of each measure are given in chapter 2.

5.3 Results and Analysis
In this section, we have summarized the descriptive stastistics of ten independent and

one dependent variable. Total 864 classes were collected from all five proprietary systems

and combined with respective changes made in each class. Data analysis was performed

using correlation coefficient to verify the findings. Univariate and Multivariate analysis were

performed to find the significance of each metric proposed individually and cumulatively

have also been explained.

166

5.3. Results and Analysis

5.3.1 Univariate Linear Regression

Univariate Analysis using linear regression was performed to find the individual effect

of NODBC and SCCR on change and the results are presented in Table 5.13. Four columns

represent estimated coefficient, standard error, the t-ratio and p-value. The value of Sig (p-

value) represents the amount of significance of these metrics on change. As evident from

the outcome, both variables received the p-value as 0.000 which means they are significantly

correlated with change.

Table 5.13: Univariate Analysis between NODBC, SCCR and ‘Change’

S.No. Metrics Unstandardized
Coefficients (B)

Unstandardized
Coefficients
(Standard
Error)

Standardized
Coefficients
(Beta)

t-
value

Significance
(p-value)

1. NODBC 0.228 0.047 -0.587 4.868 0.000
2. SCCR 0.245 0.046 0.626 5.382 0.000

5.3.2 Multivariate Linear Regression

MLR was also performed using stepwise linear regression model in order to identify the

most significant metrics for each system. MLR is the most commonly used technique for

fitting a linear equation on observed data. There are three methods used for identifying and

picking the subset of important metrics from the set of independent variables i.e. forward

selection, backward selection and stepwise selection. In this study, the stepwise selection

method is used as it guarantees to provide optimum and a most significant subset of inde-

pendent variables. At each step either the certain variables are added or deleted to identify

the final most optimized regression model. Unstandardized Coefficient, Std Error, t-ratio and

p-value (sig) to three decimal places are presented in Table 5.14.

Results show that two proposed metrics were found to be significantly correlated with a

dependent variable for all systems as almost all p-value are less than .050. Unstandardized

Coefficients represents the value when the dependent and independent (predictor) variables

167

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

Table 5.14: Multivariate Analysis between NODBC, SCCR and Dependent variable
‘Change’

S.No. Metrics Unstandardized
Coefficients (B)

Unstandardized
Coefficients
(Standard
Error)

Standardized
Coefficients
(Beta)

t-value Significance
(p-value)

1. WMC 0.860 0.211 0.055 -0.150 0.002
2. DIT 0.707 9.876 0.013 0.013 0.074
3. NOC 0.758 0.463 0.019 -0.055 0.001
4. CBO 0.912 0.798 0.258 0.049 0.049
5. RFC 0.345 0.605 0.069 -0.021 0.042
6. LCOM 0.707 2.463 0.150 0.531 0.062
7. SCCR 0.301 4.501 0.663 0.659 0.011
8. NODBC -0.032 1.268 -0.757 0.661 0.003
9. MI 0.817 3.412 0.681 0.119 0.010
10. CC 0.476 3.406 0.146 0.249 0.004

were all transformed to standard scores before running the regression and used to compare

the relative strength of the various predictors. NODBC has the largest coefficient and one

standard deviation increase in NODBC leads to a 0.915 decrease in change for IMS system.

Variable SCCR is also found to be quite competitive as one standard deviation increase in

SCCR, in turn, leads to 0.858 standard deviation increase in change for SMS system. Apart

from two reported metrics WMC and MI were also found to be a most significant predictor

of change.

5.3.3 Correlation Analysis

Correlation Analysis provides important information about the interdependence between

two variables. We calculated the Pearson’s correlation coefficient represented as ‘r’ to mea-

sures the linear relationship between independent variables versus change and presented in

Table 5.15.

The value of ‘r’ represents the amount of correlation exists between the two variables and

lies between +1 to -1. Values in the range of ±0.5 to ±1 represent high correlation; ±0.3 to

±0.5 represents medium correlation whereas less than ±0.3 represents very low correlation.

168

5.3. Results and Analysis

Table 5.15: Pearson Correlation Coefficient at 0.01 Level of Significance (Two-Tailed)

S.No. Metrics FLM
Change

EASY
Change

SMS
Change

IMS
Change

ABP
Change

1. WMC 0.73 0.66 0.54 0.61 0.59
2. DIT 0.38 0.42 0.36 0.42 0.44
3. NOC 0.29 0.48 0.33 0.41 0.45
4. CBO 0.46 0.61 0.49 0.58 0.51
5. RFC 0.64 0.49 0.50 0.51 0.47
6. LCOM 0.48 0.42 0.41 0.68 0.71
7. SCCR 0.54 0.55 0.66 0.69 0.73
8. NODBC 0.74 0.65 0.58 0.79 0.81
9. MI 0.61 0.49 0.36 0.47 0.58
10. CC 0.59 0.62 0.39 0.41 0.55

It is inferred that NODBC metric, as well as SCCR metric is significantly related to change

metric for all the systems. The value of ‘r’ for the newly proposed metric is quite competitive

as compared to other metrics. For IMS and ABP systems, more than 75% correlation was

observed whereas for FLM, EASY and SMS systems it was in the range of 58-75% which is

quite significant. SCCR is also found to be significantly correlated with change metric for all

systems. When compared with other metrics it was found that although DIT is comparatively

less correlated with the change, however MI and CC are reasonably well correlated. Among

the Chidamber and Kemerer metric suite, WMC is found to be most significantly related

as for all systems, the value of ‘r’ is found to be more than 54% for all systems. RFC is

significantly correlated with change for FLM, SMS and IMS systems. CBO found to be

significantly correlated with change in EASY and IMS systems.

5.3.4 Maintainability Prediction

Two types of prediction models were constructed for each system. Model-1 is con-

structed using metric suite presented by Chidamber and Kemerer and Model-2 is constructed

by adding four more metrics MI, CC, NODBC and SCCR to the existing Chidamber and

Kemerer metric suite resulting in the set of 10 metrics in all. BPNN, Kohonen Network,

FFNN and GRNN were employed for software maintainability prediction by dividing the

169

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

data into three parts i.e. 70% for training and 30% for testing as it is the commonly ac-

cepted proportion used by many practitioners. Three prediction accuracy measures proposed

by Kitchenham et al. [110] are used to compare the performance of Model-1 and Model-2

as discussed in chapter 2 i.e. Max MRE, MMRE and Prediction accuracy at 25%. Results

are presented in Tables 5.16, 5.17, 5.18 and 5.19 when BPNN, Kohonen Network, FFNN

and GRNN were used respectively for machine learning. For each software system, val-

ues of accuracy measures are shown when all four machine learning techniques are applied

with metric suite Model-1 and Model-2. For example first three rows belong to the results

received using FLM system.

Table 5.16: Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric Suite
with Back Propagation Neural Network Machine Learning Technique

Software System Prediction
Accuracy
Measures

Proposed Metric
Suite (Model-2)

Chidamber and
Kemerer metric
suite (Model-1)

FLM System
Max MRE 1.207 1.987
MMRE 0.47 0.49
Pred(0.25) 0.69 0.57

EASY System
Max MRE 1.656 1.246
MMRE 0.46 0.51
Pred(0.25) 0.63 0.59

SMS System
Max MRE 1.223 1.302
MMRE 0.40 0.44
Pred(0.25) 0.69 0.52

IMS System
Max MRE 1.431 1.521
MMRE 0.35 0.40
Pred(0.25) 0.71 0.59

ABP System
Max MRE 1.339 1.292
MMRE 0.29 0.37
Pred(0.25) 0.67 0.58

5.3.5 Validation of Hypotheses

In this section, we validate our hypothesis stated in section 5.2.4.

170

5.3. Results and Analysis

Table 5.17: Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric Suite
with Kohonen Network Machine Learning Technique

Software System Prediction
Accuracy
Measures

Proposed metric
suite (Model-2)

Chidamber and
Kemerer metric
suite (Model-1)

FLM System
Max MRE 1.090 1.876
MMRE 0.42 0.45
Pred(0.25) 0.78 0.68

EASY System
Max MRE 0.985 0.998
MMRE 0.36 0.46
Pred(0.25) 0.74 0.69

SMS System
Max MRE 0.973 1.112
MMRE 0.41 0.43
Pred(0.25) 0.77 0.63

IMS System
Max MRE 1.109 2.332
MMRE 0.32 0.43
Pred(0.25) 0.70 0.68

ABP System
Max MRE 0.332 1.898
MMRE 0.32 0.43
Pred(0.25) 0.72 0.62

Table 5.18: Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric Suite
with Feed Forward Neural Network Machine Learning Technique

Software System Prediction
Accuracy
Measures

Proposed metric
suite (Model-2)

Chidamber and
Kemerer metric
suite (Model-1)

FLM System
Max MRE 0.989 1.332
MMRE 0.39 0.41
Pred(0.25) 0.71 0.66

EASY System
Max MRE 1.023 1.090
MMRE 0.37 0.43
Pred(0.25) 0.77 0.70

SMS System
Max MRE 1.109 2.786
MMRE 0.38 0.46
Pred(0.25) 0.69 0.52

IMS System
Max MRE 1.223 1.803
MMRE 0.30 0.39
Pred(0.25) 0.63 0.59

ABP System
Max MRE 1.667 2.092
MMRE 0.37 0.48
Pred(0.25) 0.66 0.67

171

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

Table 5.19: Comparison of Chidamber and Kemerer Metric Suite and Proposed Metric Suite
with General Regression Neural Networks Machine Learning Technique

Software System Prediction
Accuracy Mea-
sures

Proposed metric
suite (Model-2)

Chidamber and
Kemerer metric
suite (Model-1)

FLM System
Max MRE 1.112 1.782
MMRE 0.41 0.48
Pred(0.25) 0.76 0.68

EASY System
Max MRE 1.329 1.478
MMRE 0.42 0.49
Pred(0.25) 0.69 0.68

SMS System
Max MRE 1.762 1.986
MMRE 0.39 0.42
Pred(0.25) 0.71 0.60

IMS System
Max MRE 1.632 1.886
MMRE 0.29 0.38
Pred(0.25) 0.69 0.58

ABP System
Max MRE 1.456 1.672
MMRE 0.40 0.58
Pred(0.25) 0.74 0.71

5.3.5.1 H1 Hypothesis

From the results, it is quite evident that overall improvement in the prediction accuracy

is observed with new proposed metric suite for all systems. To further analyze the results we

further sorted the systems in ascending order on the values of NODBC and SCCR. We ob-

served that more improvement in prediction accuracy was achieved for those systems which

have high values of NODBC and SCCR. ABP system has maximum SCCR and NODBC as

compared to other systems. For ABP system, maximum improvement in prediction accuracy

is observed i.e. 23% in the for MMRE whereas other systems such as FLM, EASY, SMS and

IMS observed 7%, 14%, 11%, and 19% improvement in MMRE respectively. MaxMRE was

improved by 39%, 1%, 21% 28% and 29% for FLM, EASY, SMS, IMS and ABP System

respectively.

Lowest improvement for Easy systems was noticed which also has lowest SCCR as well

as NODBC among all systems. Prediction accuracies achieved by all models were also

172

5.3. Results and Analysis

compared and observed that the performance of machine learning models is better than MLR

in general.

Figure 5.1: Comparison of Model 1 (M-1, Chidamber and Kemerer metric suite) and Model
2 (M-2, Proposed metric suite) with Reference to their MMRE values

Figure 5.2: Comparison of Model 1 (M-1, Chidamber and Kemerer metric suite) and Model
2 (M-2, Proposed metric suite) with Reference to Max MRE values

When we compared the MMRE values for Model-2, it is found to be 0.94, 0.82, 0.66,

0.79 and 0.86 for MLR, BPNN, Kohonen Network, FFNN and GRNN respectively. That

means Kohonen Network performance is best among all machine learning models.

Graphs were also plotted to observe the improvement in prediction accuracies from

Model-1 to Model-2 and presented in figure 5.1, figure 5.2 and figure 5.3 for MMRE,

173

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

Figure 5.3: Comparison of Model 1 (M-1, Chidamber and Kemerer metric suite) and Model
2 (M-2, Proposed metric suite) at 25% prediction accuracy

MaxMRE and Pred(0.25) respectively. Enhancement in MaxMRE, MMRE and Pred(0.25)

were observed in Model-2 than Model-1 for all prediction models. In figure 5.2, improve-

ment in the value of MaxMRE is observed from Model-1 to Model-2. Figure 5.3 represents

the comparison of prediction accuracies achieved at 25%. It is quite visible from the graph

that pred(0.25) is improved for all systems. Hence, we accept the alternate hypothesis and

reject the null hypothesis and on the basis of these results, we reasonably claim that proposed

metric suite is more efficient and concise in predicting maintainability.

5.3.5.2 H2 Hypothesis

In order to observe the performance of GMDH model, we compared the MMRE values

on all five datasets viz FLM, EASY, SMS, IMS and ABP for all five prediction models i.e.

GMDH, BPN, Kohonen Network, FFNN and GRNN and compiled them in Table 5.20. We

observed that the performance of GMDH is found to be best among all machine learning

models. Graphs were also plotted to observe the improvement in terms of MMRE prediction

accuracy measure. According to the results as visible in figure 5.4, the best performing model

on all the datasets was developed using GMDH technique. This model gave an accuracy

measure of 65%, 66%, 72%, 73% and 70% on FLM, EASY, SMS, IMS and ABP system

respectively.

174

5.3. Results and Analysis

Table 5.20: Prediction Accuracy Measures for Various Techniques on all datasets

S.No. Model Name FLM
System

EASY
System

SMS
System

IMS
System

ABP
System

1 GMDH Model 0.356 0.342 0.282 0.273 0.308
2 BPN Model 0.47 0.46 0.40 0.35 0.29
3 Kohonen Net-

work Model
0.426 0.368 0.419 0.321 0.327

4 FFNN Model 0.391 0.375 0.384 0.303 0.372
5 GRNN Model 0.412 0.429 0.397 0.298 0.413

Figure 5.4: Comparison of MMRE Prediction Accuracy Measure for Machine Learning
Various Techniques

In the current chapter, we were analyzing the performance of five techniques on five

datasets. Although it’s visible from the figure 5.4 and Table 5.20 that there is the difference

in the performance of the models developed using various techniques, we need to assess

whether the difference in performance is significant statistically. In order to verify the per-

formance of GMDH model, we conducted Friedman Statistical test and obtained mean ranks

for each of the techniques and compiled in Table 5.21. This classification is based on the

MMRE values received by each of the models on all datasets. According to the results, the

best performing technique on all datasets was the GMDH technique as it obtained a mean

rank of 2.45. The second rank was given to the BPN technique which was closely followed

by the Kohonen Network technique. The GRNN technique was designated as the worst tech-

nique with a mean rank of 6.83. Hence we reject the null hypothesis, accept the alternate

175

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

hypothesis and reasonably claim that GMDH technique outperforms other machine learning

techniques in maintainability prediction model.

Table 5.21: Mean Rank assigned to Various Machine Learning techniques from Friedman
Test Results w.r.t. MMRE Values

S.No. Technique Mean Rank
1. GMDH 2.45
2. BPN 3.53
3. Kohonen Network 3.83
4. FFNN 4.53
5. GRNN 4.68

5.4 Discussion
We found that the new proposed metric suite is significantly related to the dependent vari-

able. It is also observed that maintainability predictions for the applications which heavily

use databases were more precise and accurate using the new metric suite. Univariate as well

as multivariate analysis further confirmed the results and proved the significance of proposed

metric suite. Software practitioners can considerably take decisions whether the developed

application is maintainable or not, which would save the time and money for the organiza-

tions responsible for developing and deploying the customized software’s for the customers

to gain their better satisfaction in the industry.

The goal of the empirical study conducted in this chapter is to empirically examine the

effectiveness of new proposed metric suite for predicting software maintainability for data

intensive applications as it’s important to give equal attention to the database accesses with

the increase in data as well as the number of times data get accessed. We employed GMDH,

BPNN, FFNN, Kohonen Network, and GRNN techniques for making software maintain-

ability prediction model. Observing five proprietary software namely FLM system, EASY

system, SMS system, IM system and ABP system over a period of three years, we analyzed

the performance of proposed metric suite using prediction accuracy measures such as MRE,

MMRE and pred(0.25). The results of this work are summarized as follows:

176

5.4. Discussion

1. Two metrics Maintainability Index and Cyclomatic Complexity are added to measure

the structural complexity of the software.

2. Two metrics Number of Database Connections (NODBC) and Schema to comment

ratio (SCCR) are added to measure the database handling aspect of the software.

3. Univariate analysis of the proposed metrics NODBC and SCCR indicates that they

are very much correlated to change as p-value with between metrics and change is

received as 0.000, hence, both of them can be used along with OO metrics for the

early detection of change.

4. Multivariate analysis using stepwise linear regression identified NODBC and SCCR

as a good indicator of software maintainability in data intensive applications. It was

found that maximum two values of correlation coefficient are 0.915 between NODBC

and change for IMS system and 0.858 between SCCR and change for SMS system.

That means NODBC and SCCR are highly correlated with change.

5. The predicted results indicate that proposed metric suite is significant indicator of soft-

ware maintainability as improvements in all five datasets were observed by 23%, 7%,

14%, 11%, and 19% for ABP system, FLM, EASY, SMS and IMS system respectively

6. When four metrics are added to Chidamber and Kemerer metric suite and prediction

accuracy measure MaxMRE is used, we observed that it is improved by 39%, 1%,

21% 28% and 29% for FLM, EASY, SMS, IMS and ABP System respectively.

7. We observed that the performance of GMDH is best among all machine learning tech-

niques as accuracy of 65%, 66%, 72%, 73% and 70% is achieved on FLM, EASY,

SMS, IMS and ABP system respectively.

8. We conducted Friedman Statistical test and obtained mean ranks for each of the tech-

nique based on MMRE values. Results indicated the best performing technique on all

177

Chapter 5. A Metric Suite for Predicting Software Maintainability in Data Intensive
Applications

datasets was the GMDH technique as it obtained a mean rank of 2.45. We also found

the GRNN technique as the worst technique with a mean rank of 6.83 in respect of

MMRE values.

9. The results help us in identification of those classes which require big share of main-

tenance resources.

178

Chapter 6

Benchmarking Framework for

Maintainability Prediction of Open

Source Software using Object-Oriented

Metrics

6.1 Introduction
Controlling the software maintainability and understandability of any open source soft-

ware system is extremely challenging because it’s written and constantly modified by the

developers located all over the world. The open source software development process fa-

cilitates the production of low cost software in very less time. Many companies willingly

provide funds to the open source development community because they can further use these

software in their own work. As these types of software systems are written and modified by

different persons, it is essential that they must be easy to understand and maintain. Since

the development process of open source software is entirely different from proprietary soft-

ware, it is also equally important to develop maintainability prediction model for open source

179

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

software.

This study analyzes the effectiveness of machine learning techniques for the maintain-

ability prediction of open source software systems. In this work, large-scale empirical com-

parisons of thirteen classifiers over seven open source datasets were conducted followed by

extensive statistical tests and post hoc analysis to establish the confidence on the performance

of one machine learning technique over another. In this study, maintenance prediction model

is developed to assess accurate maintainability of open source system during the early phases

of the SDLC. This is achieved with the help of some measurable software design character-

istics such as cohesion, coupling, abstraction, complexity and inheritance as suggested by

Jorgensen [101] and Lucia et al. [133].

Although various maintainability prediction models using statistical and machine learn-

ing techniques have been developed in past [13, 34, 53, 62, 68, 100, 118, 127, 133, 162,

210, 219, 237] but to the best of author’s knowledge, studies on observing the maintainabil-

ity of open source software systems are very limited except one conducted by Zhou and Xu

[238]. Even though Ramil et al. [180] has compiled many empirical studies on open source

software, however, all the studies focused on intuitively judging the software maintainability

instead of creating a mathematical prediction model. Myrtveit et al. [165] have also raised

an important issue that more reliable research procedures must be developed before believing

on the outcome of any one of the prediction models. As the interest for open source software

has been rising across the globe, a powerful customized machine learning technique based

prediction model for open source software was seen as the potential scope of research.

In order to address these issues, an effort has been made in this study to create main-

tainability prediction model for open source dataset using machine learning techniques. In

order to get unbiased, accurate and repeatable maintainability prediction model for open

source software, the current study attempts to create an empirical framework using thirteen

machine learning techniques over various releases of seven open source software. The main

contribution of this chapter is summarized as follows:

180

6.2. Research Background

• Analyze the characteristics of open source software.

• Explore the impact of OO metrics on maintainability in the context of open source

software?

• Comparative performance of machine learning techniques is analyzed for maintain-

ability prediction using open source software.

• Identify which machine learning techniques perform significantly better from another

in terms of prediction accuracy measures?

We extensively compare the experimental results of thirteen machine learning classifiers

over seven open source software systems using statistical test followed by post hoc analysis

to scrutinize if there exists a significant difference among the performance of any partic-

ular machine learning technique. The thirteen selected classifiers include Linear Regres-

sion (LR), M5Rules, DT, SVM, K Star, Bagging, JERN, BPN, Kohonen Network, PNN,

GMDH, GRNN, and GGAL. The source code of seven open source software Drumkit,

OpenCV, Abdera, Ivy, Log4j, JEdit and JUnit is obtained from http://sourceforge.net and

https://apache.org to carry out this widespread investigation.

The chapter is organized as follows: Section 6.2 begin with the hypothesis to be tested in

this study followed by the research background, the definition of the OO metrics, sources for

empirical data collection and description of machine learning techniques. In section 6.3, the

results of the study are evaluated and validation of all hypothesis is performed. Discussion

of the study is presented in section 6.4.

The results of this chapter have been reported in [142].

6.2 Research Background
Development of open source software is entirely different from proprietary software sys-

tem even though both the systems are not polar opposites. In the open source software, term

’openness’ refers to the ability of diverse parties to create a technology that can inter-operate.

181

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Open source software is usually developed by developers spread geographically apart over

the world and working cooperatively without the need of license. Several empirical studies

have carried out to investigated the relationships between design metrics and maintainabil-

ity of open source software. [130, 162, 192, 238]. There are many advantages associated

with open source software over proprietary software. Since open source software projects

is developed by millions of persons, the probability of detecting an error is higher in con-

trast with proprietary software which have far smaller development staff. Furthermore, open

source communities are quick to fix if there is an error. Even the customers are also free to

apply their own patches at will. Maintenance of open source software is comparatively easier

because there is minimal reliance on a single vendor or group for continued improvements.

Basically, there are two broad approaches in which the maintainability of a software can

be measured, firstly through the measurement of external quality factors such as understand-

ability, analyzability, modifiability etc. and secondly through the measurement of internal

quality metrics and use them for making software maintainability prediction model. In the

first approach, external factors can only be measured by collecting the opinion from the de-

velopers who participate in writing the source code of the open source software. Conducting

such surveys is not only time-consuming and involves high cost but also produces differ-

ent opinion due to the subjective nature of external quality factors. The second approach

of measuring the internal quality attributes through OO metrics suite has been used in many

empirical studies [53, 62, 68, 100, 118, 127, 133, 137, 141, 210, 219, 237]. Almost all of the

studies showed the existence of the relationship between OO metric suite and maintainabil-

ity. In the current empirical investigation, the second approach is used and we have adopted

the research methodology presented in chapter 2.

This section presents the selection of dependent and independent variables, states the

hypothesis to be tested and subsequently the process of collecting the empirical data for the

validation of machine learning techniques. We have also presented the descriptive statistics

followed by their interpretations. Various machine learning techniques used in the prediction

182

6.2. Research Background

model are also explained along with their parameter value settings.

6.2.1 Hypotheses

Following hypothesis are tested to compare the performance various machine learning

techniques used in this study:

6.2.1.1 H1 Hypothesis

• Null Hypothesis: Impact of OO metrics on software maintainability does not exist in

the context of open source software?

• Alternate Hypothesis: Impact of OO metrics on software maintainability exist in the

context of open source software?

6.2.1.2 H2 Hypothesis

• Null Hypothesis: There is no significant difference between the performance of ma-

chine learning techniques.

• Alternate Hypothesis: There exist significant difference between the performance of

machine learning techniques.

6.2.1.3 H3 Hypothesis

• Null Hypothesis: The GMDH and GGAL technique does not outperforms the eleven

compared techniques (LR, M5Rules, DT, SVM, K Star, Bagging, JERN, BPN, Koho-

nen Network, PNN and GRNN) in predicting software software maintainability of the

classes.

• Alternate Hypothesis: The GMDH and GGAL technique outperforms the eleven com-

pared techniques (LR, M5Rules, DT, SVM, K Star, Bagging, JERN, BPN, Kohonen

Network, PNN and GRNN) in predicting software software maintainability of the

classes.

183

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

6.2.2 Independent and Dependent Variables

Our goal was to capture the various attributed of OO paradigm such as size, coupling,

cohesion, abstraction, complexity and inheritance. In the current study, we have used Chi-

damber and Kemerer metric suite which is very common and used by various researchers

[53, 62, 100, 106, 118, 137, 141, 219, 237]. In previous chapter 5, we realized few short-

comings in Chidamber and Kemerer metric suite such as it does not take into account the

structural complexity of the software and any metric on account of the amount of database

handling. In order to overcome such shortcomings, in addition to Chidamber and Kemerer

metric suite, we have also included the metric suites proposed by Henderson-Seller [89]

and Bansiya and Davis [15]. Various OO metrics were carefully selected from the met-

ric suites proposed by researchers [15, 43, 89] to capture all the design attributes such as

coupling, cohesion, inheritance, abstraction and complexity of OO paradigm. In total 17

independent variables are selected consisting of 6 from the Chidamber and Kemerer met-

ric suite (WMC, DIT, NOC, RFC, CBO, LCOM), 2 from Martin Metric suite (Ca, Ce),

5 from Bansiya and Devis metric suite (NPM, MOA, MFA, CAM, DAM), 1 from Li and

Henry metric suite (Size1 as LOC), 1 from Tang metric suite (IC) and 1 from Henderson-

Seller metric suite (LCOM3). The detail definitions of these metrics are provided in chapter

2. The dependent variable in the current study is maintenance effort observing the num-

ber of changes made between two consecutive versions and it is counted in terms of a

number of lines of source code added, deleted or modified in the newer version with re-

spect to the older version for each class. Same approach is adopted by many researchers

[53, 62, 68, 100, 118, 127, 133, 137, 141, 210, 219, 237].

6.2.3 Empirical Data Collection

We explore open source repositories for collecting the empirical data keeping in mind two

important characteristics which include that it should follow OO paradigm and it should have

a high number of downloads in recent times (last 12 months) as it is a clear indication that

184

6.2. Research Background

there are active users contributing constantly. Seven open source software systems collected

in this regard are Drumkit, OpenCV, Abdera, Ivy, Log4J, JEdit and JUnit. Their details such

as versions, release date, size, number of classes etc are summarized in chapter 2. After the

data collection, pre-processing was performed as described in chapter 2 during which we

extract those classes which are common in current as well as the previous version for each

software system. Classes either added in latest version or deleted from the older version are

simply discarded. Library classes, as well as interface classes were also excluded from the

list.

6.2.4 Descriptive Statistics

For the purpose of the qualitative analysis, the descriptive statistics are calculated from

the collected data for each of the selected software in the current study, Outliers were re-

moved by taking 95 percentile of each metrics followed by calculations of descriptive statis-

tics. The Mean, Median, Standard Deviation, Minimum and Maximum for all the Chidamber

and Kemerer metrics were calculated and presented in Table 6.1 and Table 6.2, Table 6.3,

Table 6.4, Table 6.5, Table 6.6, Table 6.7 for Drumkit, OpenCV, Abdera, Ivy, Log4J, JEdit

and JUnit respectively. It is very useful in understanding and comparing the characteristics

of both OO systems. During this process 11 classes of Drumkit, 14 classes of OpenCV, 37

classes of Abdera, 16 classes of Ivy, 23 classes for Log4J, 18 classes of JEdit and 33 classes

for JUnit datasets were removed and following observations were made from the descriptive

statistics:

• Size measured in terms of lines of source code i.e. LOC is ranging from 0 to 2558 for

all selected software.

• The mean values of DIT and NOC are Drumkit (0.78, 0.20), OpenCV (1.70, 0.38),

Abdera (0.91, 0.17), Ivy (0.64, 0.24), Log4J (0.95, 0.20), JEdit (1.21, 0.46) and JUnit

(0.73, 0.42) which means inheritance is comparatively less exploited in all the systems.

The median of DIT for all software is more than 0 which means that at least more

185

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Table 6.1: Descriptive Statistics for Drumkit System

Name of the Metric Mean Median Std Dev Max Min
WMC 8.02 10.00 34.44 213.00 1.00
DIT 0.78 1.00 0.65 4.00 0.00
NOC 0.20 0.00 0.77 5.00 0.00
CBO 5.60 2.50 7.48 34.00 0.00
RFC 27.22 14.00 36.30 214.00 2.00
LCOM 803.75 27.00 2796.44 22578.00 0.00
Ca 1.66 0.00 3.72 24.00 0.00
Ce 4.20 2.00 5.94 34.00 0.00
NPM 15.48 5.00 30.88 212.00 0.00
LCOM3 1.21 1.07 0.44 2.00 0.00
LOC 213.93 99.50 296.03 1721.00 4.00
DAM 0.40 0.16 0.42 1.00 0.00
MOA 1.52 0.00 4.03 37.00 0.00
MFA 0.05 0.00 0.22 1.00 0.00
CAM 0.40 0.37 0.26 1.00 0.00
IC 0.02 0.00 0.14 1.00 0.00
CBM 0.02 0.00 0.14 1.00 0.00
AMC 8.30 5.00 16.48 144.00 0.00

than half of the classes have a parent class. Thus, inheritance is widely used in these

selected software.

• Cohesion which is measured through LCOM have high mean values for Drumkit

(803.75), OpenCV (111.17), Abdera (273.18), Ivy (308.80), Log4J (130.65), JEdit

(244.36) and JUnit (24.88) that means cohesion is high in all systems.

• the value of the metric CBO which is used to measure the interaction between the

classes is high for all the software used except Poi which indicates that there is a high

interaction between classes.

• WMC is used for comparing the complexity characteristics between two software. It

was observed that its value for three software i.e. Abdera (11.48), Ivy (12.90) and JEdit

(10.77) is more than 10, that means these three software systems are comparatively

more complex.

186

6.3. Result Analysis

Table 6.2: Descriptive Statistics for OpenCV System

Name of the Metric Mean Median Std Dev Max Min
WMC 9.71 4.00 13.17 87.00 1.00
DIT 1.70 1.00 1.84 6.00 0.00
NOC 0.38 0.00 2.37 23.00 0.00
CBO 10.26 5.00 13.25 68.00 0.00
RFC 28.17 15.00 30.93 226.00 1.00
LCOM 111.17 3.00 399.55 3705.00 0.00
Ca 6.49 2.00 11.61 68.00 0.00
Ce 4.61 2.00 5.82 31.00 0.00
NPM 7.69 3.00 12.10 85.00 0.00
LCOM3 1.11 0.97 0.62 2.00 0.00
LOC 231.65 85.00 346.14 2558.00 1.00
DAM 0.61 0.60 0.05 1.00 0.05
MOA 0.71 0.00 2.67 33.00 0.00
MFA 0.24 0.00 0.41 1.00 0.00
CAM 0.57 0.56 0.27 1.00 0.00
IC 0.17 0.00 0.44 3.00 0.00
CBM 0.32 0.00 1.24 15.00 0.00
AMC 19.40 14.63 22.15 175.17 0.00

6.2.5 Machine Learning Techniques
Overall thirteen machine learning techniques are used in the current study for making

prediction models namely LR, M5Rules, DT, SVM, K Star, Bagging, JERN, BPN, Kohonen

Network, PNN, GMDH, GRNN, and GGAL. Their details are provided in chapter 2.

6.3 Result Analysis
This section presents the prediction results of various classifiers based on machine learn-

ing techniques for maintainability prediction using OO metrics.

6.3.1 Feature Sub Selection
The aim for carrying out the feature sub-selection process is to remove irrelevant and

redundant independent variables from the dataset before it can be used further by the sev-

enteen classifiers selected in the current study for training purpose as suggested by Donell

[60]. This dimensionality reduction process not only reduces the unnecessary attributes and

187

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Table 6.3: Descriptive Statistics for Abdera System

Name of the Metric Mean Median Std Dev Max Min
WMC 11.48 6 20.67 255 0
DIT 0.91 1 0.61 4 0
NOC 0.17 0 0.98 17 0
CBO 1.17 1 1.94 17 0
RFC 12.42 7 20.70 256 0
LCOM 273.18 15 1665.13 32385 0
Ca 0.60 0 1.63 17 0
Ce 0.61 0 0.93 5 0
NPM 9.96 4 20.08 254 0
LCOM3 1.65 2 0.43 2 1.0039
LOC 64.74 27 120.40 1531 0
DAM 0.39 0 0.48 1 0
MOA 0.89 0 14.28 327 0
MFA 0.03 0 0.16 1 0
CAM 0.48 0.4375 0.30 1 0
IC 0.06 0 0.27 3 0
CBM 0.07 0 0.41 5 0
AMC 3.28 5 2.24 5 0

irrelevant noisy data, but it also enhances the execution time, improves the quality of datasets

and thereof amplifies the accuracy of the prediction process. The first step in this empirical

study was FSS in which irrelevant and unimportant features were removed. Table 6.8 sum-

marizes the relevant metrics found after applying FSS over all the releases of seven datasets

selected in the current study.

Out of the seventeen independent variables, we found that LCOM3, LOC, and DIT are

the most commonly selected OO metrics in the current study. Efferent coupling, Ce is also

found to be significant in Abdera and Log4j Systems. In total 17%, 17%, 41%, 35%, 23%,

41% and 35% reductions were observed for Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit and

JUnit datasets respectively. On an average 24% saving is observed for all datasets. We also

found that the results obtained using reduced set of independent variables after applying FSS

were slightly better as compared to the results obtained using all independent variables in

prediction models. Similar observations were made by Kohavi and John [115] as well as

188

6.3. Result Analysis

Table 6.4: Descriptive Statistics for Ivy System

Name of the Metric Mean Median Std Dev Max Min
WMC 12.90 7.00 21.56 243.00 1.00
DIT 0.64 1.00 0.60 4.00 0.00
NOC 0.24 0.00 1.22 17.00 0.00
CBO 1.81 1.00 1.96 17.00 0.00
RFC 13.90 8.00 21.56 244.00 2.00
LCOM 308.80 21.00 2147.88 29403.00 0.00
Ca 0.82 0.00 1.74 17.00 0.00
Ce 1.05 1.00 1.17 9.00 0.00
NPM 10.42 5.00 18.89 215.00 0.00
LCOM3 1.45 1.25 0.42 2.00 1.00
LOC 77.00 42.00 132.46 1461.00 6.00
DAM 0.60 1.00 0.47 1.00 0.00
MOA 0.24 0.00 0.69 7.00 0.00
MFA 0.02 0.00 0.12 1.00 0.00
CAM 0.53 0.48 0.28 1.00 0.06
IC 0.04 0.00 0.21 2.00 0.00
CBM 0.04 0.00 0.21 2.00 0.00
AMC 2.57 2.50 2.39 5.00 0.00

Yang and Honavar [231] that not only the impact of FSS on the accuracy is minimal but they

are also capable of capturing all the characteristics irrespective of the size of the extracted

subset. Moreover, the time consumed by prediction model on newly reduced dataset using

FSS is comparatively lesser than the time consumed on the actual dataset.

6.3.2 Summary of Results for Various Prediction Accuracy Measures

Firstly, we present the results of all 13 machine learning techniques for maintainability

prediction models validated using 10-fold cross-validation on seven open source software.

The difference between the predicted value and actual value is compared and analyzed using

various accuracy measures such as MARE, RMSE, Pred(25%) and Pred(75%) and described

in following subsections respectively.

189

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Table 6.5: Descriptive Statistics for Log4J System

Name of the Metric Mean Median Std Dev Max Min
WMC 9.29 5 14.16 123 1
DIT 0.95 1 1.09 6 0
NOC 0.20 0 1.20 16 0
CBO 3.06 1 6.65 76 0
RFC 14.42 7 20.48 137 1
LCOM 130.65 6 696.02 7503 0
Ca 1.47 0 5.41 65 0
Ce 1.65 1 2.98 29 0
NPM 7.42 4 12.39 122 0
LCOM3 1.41 1.3 0.52 2 0
LOC 102.63 36 207.78 1864 1
DAM 0.40 0 0.45 1 0
MOA 0.43 0 1.25 14 0
MFA 0.10 0 0.28 1 0
CAM 0.48 0.45 0.22 1 0
IC 0.08 0 0.34 3 0
CBM 0.13 0 0.55 5 0
AMC 6.35 5 15.81 205 0

6.3.2.1 Mean Absolute Relative Error

Predicted value of the dependent variable ‘change’ is compared with the actual value of

change for each class and the mean absolute error is calculated as given in equation (2.8)

defined in chapter 2. The MARE values of each machine learning technique for all seven

datasets in the study are summarized in Table 6.9.

From the table, it is observed that when LR technique was applied on JEdit datasets,

it gave an accuracy of 62% (since the error is 0.38, its accuracy is 100-38). Similarly, we

found 67% accuracy when GGAL technique applied on Drumkit datasets respectively. Best

machine learning technique found to be the GGAL technique as it has achieved 33%, 31%,

29%, 36%, 28%, 34% and 36% error for the Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit

and JUnit datasets respectively. Second best machine learning technique is found to be the

GMDH technique as it has achieved 49%, 37%, 32%, 34%, 32%, 30% and 35% error for the

Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit and JUnit datasets respectively. The accuracy

190

6.3. Result Analysis

Table 6.6: Descriptive Statistics for JEdit System

Name of the Metric Mean Median Std Dev Max Min
WMC 10.77 5.00 24.85 351.00 0.00
DIT 1.21 1.00 1.46 7.00 0.00
NOC 0.46 0.00 2.71 38.00 0.00
CBO 11.69 7.00 22.78 396.00 0.00
RFC 34.77 19.00 54.74 570.00 0.00
LCOM 244.36 3.00 2376.47 41713.00 0.00
Ca 6.77 2.00 18.91 327.00 0.00
Ce 6.26 4.00 8.93 116.00 0.00
NPM 6.58 3.00 15.04 228.00 0.00
LCOM3 0.99 0.81 0.69 2.00 0.00
LOC 347.70 130.00 962.51 1253.00 0.00
DAM 0.45 0.28 0.46 1.00 0.00
MOA 1.01 0.00 1.89 13.00 0.00
MFA 0.15 0.00 0.33 1.00 0.00
CAM 0.48 0.45 0.25 1.00 0.00
IC 0.16 0.00 0.55 3.00 0.00
CBM 0.49 0.00 2.34 21.00 0.00
AMC 25.80 18.87 27.07 201.50 0.00
CHANGE 4.96 0.00 22.05 249.00 0.00

of all the machine learning techniques w.r.t. MARE on all seven selected datasets lies be-

tween the ranges of 39-77% which is quite encouraging. Thus, it highlights the capability of

machine learning technique for effective maintainability predictions of open source software.

6.3.2.2 Root Mean Square Error

For each class, the value of ‘change’ is compared with predicted value of change and the

value of RMSE is obtained using equation 2.9 after performing ten runs of ten-fold cross-

validation for each machine learning technique on each dataset are tabulated in Table 6.10.

In the table 6.10, each row represents the RMSE value of a particular technique on spe-

cific datasets. For example, first row compiles the value of RMSE when LR technique is used

with all seven datasets Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit and JUnit datasets and

generates values as 0.66, 0.56, 0.61, 0.58, 0.49, 0.42 and 0.47 respectively. Similarly, last row

compiles the value of RMSE when GGAL technique is used with all seven datasets Drumkit,

191

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Table 6.7: Descriptive Statistics for JUnit System

Name of the Metric Mean Median Std Dev Max Min
WMC 5.10 3.00 6.33 50.00 0.00
DIT 0.73 1.00 0.84 4.00 0.00
NOC 0.42 0.00 1.68 16.00 0.00
CBO 5.80 4.00 6.54 53.00 0.00
RFC 12.30 7.00 14.67 80.00 0.00
LCOM 24.88 0.00 105.89 1225.00 0.00
Ca 3.15 1.00 5.86 53.00 0.00
Ce 3.15 2.50 3.37 24.00 0.00
NPM 3.43 2.00 4.83 42.00 0.00
LCOM3 1.02 0.71 0.84 2.00 0.00
LOC 63.67 30.00 94.95 546.00 0.00
DAM 0.40 0.00 0.48 1.00 0.00
MOA 0.54 0.00 0.82 3.00 0.00
MFA 0.06 0.00 0.24 1.00 0.00
CAM 0.50 0.50 0.29 1.00 0.00
IC 0.02 0.00 0.14 1.00 0.00
CBM 0.02 0.00 0.18 2.00 0.00
AMC 8.55 7.29 8.00 53.50 0.00

Table 6.8: Metrics Obtained using Feature Subset Selection Technique

Name of the Software Selected Relevant OO Attributes
Drumkit WMC, RFC, DIT, LCOM3
OpenCV CBO, DIT, LCOM3, LOC
Abdera Ce, NPM, LOC, LCOM3, DAM, CAM
Ivy LCOM3, LOC, DAM, MOA, CAM, AMC
Log4j NPM, Ce, LOC, LCOM3, DIT, MOA, CAM
JEdit WMC, LOC, DIT, DAM, CAM, AMC
JUnit RFC, CBO, LCOM, LCOM3, NPM, IC

OpenCV, Abdera, Ivy, Lo4j, JEdit and JUnit datasets and generates values as 0.33, 0.41, 0.49,

0.36, 0.28, 0.37 and 0.32 respectively. Best result was found at 77% accuracy when GMDH

technique applied on Drumkit datasets. Best machine learning technique found to be the

GMDH technique as it has achieved 23%, 37%, 32%, 34%, 37%, 38% and 42% error for

the Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit and JUnit datasets respectively. Second best

machine learning technique is found to be the GMDH technique as it has achieved 49%,

37%, 32%, 34%, 32%, 30% and 35% error for the Drumkit, OpenCV, Abdera, Ivy, Lo4j,

192

6.3. Result Analysis

Table 6.9: Mean Absolute Relative Error Values

dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
LR 0.57 0.48 0.41 0.29 0.36 0.38 0.54
M5Rule 0.49 0.52 0.43 0.37 0.38 0.41 0.52
DT 0.58 0.57 0.44 0.39 0.42 0.45 0.49
SVM 0.43 0.64 0.46 0.49 0.46 0.61 0.52
K Star 0.45 0.62 0.51 0.33 0.48 0.42 0.43
Bagging 0.51 0.45 0.43 0.41 0.47 0.52 0.44
JERN 0.53 0.54 0.41 0.59 0.51 0.52 0.44
BPN 0.42 0.58 0.61 0.37 0.35 0.42 0.47
Kohonen
Network

0.56 0.49 0.37 0.41 0.43 0.52 0.50

PNN 0.38 0.42 0.38 0.53 0.37 0.41 0.47
GMDH 0.49 0.37 0.32 0.34 0.32 0.30 0.35
GRNN 0.38 0.42 0.45 0.41 0.32 0.49 0.48
GGAL 0.33 0.31 0.29 0.36 0.28 0.34 0.36

Table 6.10: Root Mean Square Error Values

dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
LR 0.66 0.56 0.61 0.58 0.49 0.42 0.47
M5Rule 0.72 0.38 0.30 0.37 0.41 0.56 0.63
DT 0.86 0.74 0.41 0.34 0.43 0.47 0.58
SVM 0.64 0.67 0.47 0.42 0.39 0.48 0.54
K Star 0.67 0.77 0.55 0.38 0.39 0.56 0.61
Bagging 0.78 0.83 0.59 0.39 0.47 0.59 0.43
JERN 0.53 0.54 0.41 0.59 0.47 0.39 0.48
BPN 0.42 0.58 0.61 0.33 0.41 0.42 0.51
Kohonen
Network

0.56 0.48 0.37 0.40 0.35 0.43 0.52

PNN 0.38 0.42 0.33 0.53 0.43 0.53 0.41
GMDH 0.23 0.37 0.32 0.34 0.37 0.38 0.42
GRNN 0.38 0.42 0.45 0.41 0.32 0.49 0.47
GGAL 0.33 0.41 0.49 0.36 0.28 0.37 0.32

JEdit and JUnit datasets respectively. The accuracy of all the machine learning techniques

w.r.t. MARE on all seven selected datasets lies between the ranges of 39-77% which is quite

encouraging. Thus, it highlights the capability of machine learning technique for effective

maintainability predictions of open source software.

193

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

6.3.2.3 Prediction Accuracy at 25% and 75%

Prediction accuracy of each classifier on each dataset is calculated at 25% as well as at

75% and the results are compiled in Tables 6.11 and 6.12.

Table 6.11: Results of Prediction Techniques at 25% Accuracy

S.No. dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
1. LR 62 58 56 61 63 59 54
2. M5Rule 63 49 57 59 65 51 57
3. DT 70 53 49 57 68 61 63
4. SVM 65 47 51 52 73 42 49
5. K Star 68 55 52 58 72 57 61
6. Bagging 75 51 59 65 69 43 38
7. JERN 68 69 72 62 74 61 52
8. BPN 62 57 62 73 77 49 60
9. Kohonen

Network
67 63 53 48 73 58 52

10. PNN 51 61 59 64 73 59 61
11. GMDH 69 73 65 78 79 73 68
12. GRNN 65 59 65 68 71 75 62
13. GGAL 72 67 73 75 69 70 74

Table 6.12: Results of Prediction Techniques at 75% Accuracy

S.No. dataset Drumkit OpenCV Abdera Ivy Log4j JEdit JUnit
1. LR 67 71 66 71 73 70 64
2. M5 Rule 69 69 76 74 75 73 55
3. DT 78 72 63 87 78 71 69
4. SVM 76 67 72 82 81 64 66
5. K Star 88 75 69 78 88 72 69
6. Bagging 79 69 72 77 89 61 52
7. JERN 88 73 74 71 81 69 64
8. BPN 86 77 81 79 87 57 77
9. Kohonen

Network
87 79 83 69 81 65 72

10. PNN 83 73 79 71 85 66 75
11. GMDH 77 78 74 88 86 84 79
12. GRNN 81 83 75 73 84 80 73
13. GGAL 85 82 72 69 88 83 81

It also helps in determining whether the results are as per the criterion set by Conte et

194

6.3. Result Analysis

al. [50] and kitchenham et al. [110], that any prediction model is considered accurate if

the value of (0.25) is less than Pred(0.75). As per the results presented in Table 6.9, 6.10,

6.11 and 6.12 for the respective values of MARE, RMSE, Pred(25%) and Pred(75%), we

found that even though the prediction models for software maintainability usually attain less

accuracy for example in many studies such as Bandi et al. [13], Briand et al. [34], Dagpinar

and Jhanke [53], Stavrinoudis et al. [210], Elish [62], Fioravati and Nasi [68], Jin and

Liu [100], Koten and Gray [118], Li and Henry [127], Lucia et al. [133], Misra [162],

Thwin and Quah [219] and Zhou & Lung [237], however in the current study we found

their reasonable values.

6.3.3 Validation of Hypotheses

To assess the outcome of machine learning techniques based prediction models, their

prediction accuracy was measured through MARE, RMSE, Pred(0.25) and Pred(0.75). Their

values were evaluated as per criterion set by previous researchers [50, 110] that any predic-

tion model is considered accurate if its MARE values are less than 0.40 also the value of

Pred(0.25) should always be greater than Pred(0.75).

6.3.3.1 H1 Hypothesis

When we analyzed the values of pred(0.25) and pred(0.75) from the Table 6.11 and 6.12,

its recorded in the range of 72-78% for Pred(25%) and 66-89% for Pred(75%) which is quite

reassuring that machine learning techniques are very effective. With respect to Pred(0.25),

GMDH is found to be most accurate with Log4j dataset and JUnit dataset i.e. 79% accuracy.

We also observe that GMDH method achieved more than 70% accuracy with four out of

seven datasets. Similarly, if Pred(0.75) is taken as accuracy measure, Bagging is found to

be most accurate with Log4j dataset i.e. 89% accuracy. GGAL is also found to be the best

machine learning technique because more than 80% accuracy is achieved with five out of

seven datasets at Pred(0.75). When we closely observe the range of accuracies, GGAL has

performed outstandingly. Results are in the range of 67-75% across all datasets which are

195

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

quite close to the criterion set by Kitchenham et al. [110] and Conte et al. [50].

Further, figure 6.1 and figure 6.2 depicts the MARE and RMSE values obtained by each

machine learning technique on all the seven datasets. The figure 6.1 clearly shows that

GMDH and GGAL machine learning techniques have performed highest over the all seven

datasets. It’s also evident from the figure 6.1 that minimum values recorded for MARE on

all seven datasets were within the range of 0.28-0.36. Additionally, with respect to RMSE

as depicted in figure 6.2, we found that mean values of RMSE range from 0.23-0.63. It is

also observed that four machine learning techniques PNN, GMDH, GRNN and GGAL have

achieved less than 30% error which is considered to be excellent.

Figure 6.1: Mean Absolute Relative Error (MARE) Values of Machine Learning Technique
on Corresponding datasets using 10-Fold Cross-Validation

On judging the overall performance of all machine learning techniques using four mea-

sures in the current chapter, it clearly satisfies the criteria laid down by [50, 110]. Hence we

reject the NULL hypothesis, accept the alternate hypothesis and conclude that the impact of

OO metrics on maintainability indeed exists in the perspective of open source software, thus

machine learning techniques can be successfully applied for their maintainability prediction

using OO metric suite.

196

6.3. Result Analysis

Figure 6.2: Root Mean Square Error (RMSE) Values of Machine Learning Technique on
Corresponding datasets using 10-Fold Cross-Validation

6.3.3.2 H2 Hypothesis

We applied extensive statistical tests in order to check whether the performances of pro-

posed machine learning techniques are significantly different or not. As per Demvsar [59],

non-parametric tests are safer as they do not assume normal distribution or homogeneity of

variance in the data. In the current investigation, Friedman test was used to compare the per-

formance of thirteen machine learning techniques on seven datasets. We calculate the value

of critical region at 5% significance level and degree of freedom twelve (for thirteen ma-

chine learning techniques). The value of X(tabulated) is obtained from Chi-square table where

the degree of freedom is twelve (for thirteen machine learning techniques) at 95% level of

significance.

The null hypothesis of the Friedman test states that there is no significant difference be-

tween the performance of machine learning techniques. We found that at significant level

0.05, calculated value of Friedman measure i.e. Xcalculated lies in the critical range for MARE

as well as RMSE, hence, the Null hypothesis is rejected and alternative hypothesis is ac-

cepted and it is concluded that significant difference exists between the performances of

participant machine learning techniques.

Further, in order to rank the performance of each of the machine learning technique,

197

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

their FIR is calculated using equation 2.15 and compiled in Table 6.13 and Table 6.14, for

MARE and RMSE respectively. As discussed earlier, lower the mean rank means better the

performance. The outcome of the Friedman test using FIR for ranking as compiled in Table

6.13 with respect to MARE measure indicates that the performance of GGAL technique is

the best and GMDH is the second best technique. With respect to RMSE from the 6.14, we

observe that GMDH technique is the second best and GGAL as the best technique for the

maintainability prediction of open source software on the basis of their mean rank.

Table 6.13: Mean Ranking of Machine Learning Techniques by Friedman Test on Mean
Absolute Relative Error Value

S.No. Machine Learning
Technique

Mean Rank

1. GGAL 1.79
2. GMDH 2.71
3. PNN 3.57
4. GRNN 4.36
5. LR 5.36
6. BPN 6.64
7. M5 Rule 7.14
8. K Star 8.57
9. Bagging 9.1
10. Kohonen Network 9.43
11. DT 10.6
12. JERN 11.28
13. SVM 11.57

In order to ascertain whether the performance differences which exist between FIR values

of various machine learning techniques is statistically significant or not, we proceed towards

post hoc analysis in RQ3.

6.3.3.3 H3 Hypothesis

In hypothesis H2, with the help of Friedman Test, we concluded that there exists a sig-

nificant difference in the performance of machine learning technique; hence we proceed

towards post hoc analysis using Nemenyi test to determine whether the difference is actually

statistically significant between the performances of machine learning techniques or not.

198

6.3. Result Analysis

Table 6.14: Mean Ranking of Machine Learning Techniques by Friedman Test on Root Mean
Square Error Values

S.No. Machine Learning
Technique

Mean Rank

1. GMDH 1.21
2. GGAL 2.08
3. GRNN 3.79
4. Kohonen Network 4.14
5. PNN 5.79
6. BPN 7.28
7. M5Rule 7.87
8. JERN 8.32
9. DT 8.5
10. SVM 9.21
11. LR 9.57
12. K Star 10.36
13. Bagging 11.58

The value of CD is calculated as 6.8 after putting the values of n as 13 (Number of

machine learning techniques) and value of k as 7 (number of datasets) into equation (2.14).

Next, we make a pair for each machine learning technique with every other to calculate their

rank differences (FIR) and compiled in Table 6.15 and Table 6.16 for MARE and RMSE,

respectively. In total, 78 such pairs were formed as we have used 13 machine learning

techniques in our study.

199

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Ta
bl

e
6.

15
:

C
om

pu
ta

tio
n

of
Pa

ir
w

is
e

R
an

k
D

iff
er

en
ce

A
m

on
gs

ta
ll

M
ac

hi
ne

L
ea

rn
in

g
Te

ch
ni

qu
es

in
Te

rm
s

of
M

ea
n

A
bs

ol
ut

e
R

el
at

iv
e

E
rr

or
Te

ch
G

G
A

L
G

M
D

H
PN

N
G

R
N

N
L

R
B

PN
M

5R
ul

e
K

St
ar

B
ag

gi
ng

K
oh

on
en

N
et

-
w

or
k

D
T

JE
R

N
SV

M

G
G

A
L

–
0.

92
1.

78
2.

57
3.

57
4.

85
5.

35
6.

78
7.

31
7.

64
8.

81
9.

49
9.

78
G

M
D

H
–

0.
86

1.
65

2.
65

3.
93

4.
43

5.
86

6.
39

6.
72

7.
89

8.
57

8.
86

PN
N

–
0.

79
1.

79
3.

07
3.

57
5.

00
5.

53
5.

86
7.

03
7.

71
8.

00
G

R
N

N
–

1.
00

2.
28

2.
78

4.
21

4.
74

5.
07

6.
24

6.
92

7.
21

L
R

–
1.

28
1.

78
3.

21
3.

74
4.

07
5.

24
5.

92
6.

21
B

PN
–

0.
5

1.
93

2.
46

2.
79

3.
96

4.
64

4.
93

M
5R

ul
e

–
1.

43
1.

96
2.

29
3.

46
4.

14
4.

43
K

St
ar

–
0.

53
0.

86
2.

03
2.

71
3.

00
B

ag
gi

ng
–

0.
33

1.
5

2.
18

2.
47

K
oh

on
en

N
et

w
or

k
–

1.
17

1.
85

2.
14

D
T

–
0.

68
0.

97
JE

R
N

–
0.

29
SV

M
–

200

6.3. Result Analysis

In the Table 6.15, we have highlighted those entries which have values greater than CD.

It is quite evident that the out of 78 pairs of machine learning techniques, 13 pairs (bold

entries) were found to have significant differences among their performances. One pair be-

tween GGAL and K Star has attained the difference (6.78) almost touching the CD value

(6.8). Hence, 14 pairs out of 78 means, the performance of 17.9% of pairs was found to be

significantly different using statistical test and not coincidental.

201

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

Ta
bl

e
6.

16
:C

om
pu

ta
tio

n
of

Pa
ir

W
is

e
R

an
k

D
iff

er
en

ce
A

m
on

gs
ta

ll
M

ac
hi

ne
L

ea
rn

in
g

Te
ch

ni
qu

es
in

Te
rm

s
of

R
oo

tM
ea

n
Sq

ua
re

E
rr

or

Te
ch

G
M

D
H

G
G

A
L

G
R

N
N

K
oh

on
en

N
et

-
w

or
k

PN
N

B
PN

M
5

R
ul

e
JE

R
N

D
T

SV
M

L
R

K
St

ar
B

ag
gi

ng

G
M

D
H

–
0.

87
2.

58
2.

93
4.

58
6.

07
6.

66
7.

11
7.

29
8.

00
8.

36
9.

15
10

.3
7

G
G

A
L

–
1.

71
2.

06
3.

71
5.

2
5.

79
6.

24
6.

42
7.

13
7.

49
8.

28
9.

5
G

R
N

N
–

0.
35

2.
00

3.
49

4.
08

4.
53

4.
71

5.
42

5.
78

6.
57

7.
79

K
oh

on
en

N
et

w
or

k
–

1.
65

3.
14

3.
73

4.
18

4.
36

5.
07

5.
43

6.
22

7.
44

PN
N

–
1.

69
2.

08
2.

53
2.

71
3.

42
3.

78
4.

57
5.

79
B

PN
–

0.
59

1.
04

1.
22

1.
93

2.
29

3.
08

4.
3

M
5R

ul
e

–
0.

45
0.

63
1.

34
1.

7
2.

49
3.

71
JE

R
N

–
0.

18
0.

89
1.

25
2.

04
3.

26
D

T
–

0.
71

1.
07

1.
86

3.
08

SV
M

–
0.

36
1.

15
2.

37
L

R
–

0.
79

2.
01

K
St

ar
–

1.
22

B
ag

gi
ng

–

202

6.4. Discussion

Results are shown in Table 6.15 also depicts that GGAL performed better than K Star,

Bagging, Kohonen Network, DT, JERN and SVM whereas GMDH performed better than

DT, JERN and SVM. Hence, on the basis of post hoc analysis of MARE, we conclude that

GMDH and GGAL outperformed than other machine learning techniques. The difference

between the performances of all other machine learning techniques were not found to be

significant.

We performed the same procedure for RMSE and the rank difference of each pair was

calculated and compiled in Table 6.16. Highlighted entries in the table indicate that the

difference of FIR between that pair of machine learning technique is greater than CD. It is

observed that out of 78 pairs of machine learning techniques, 12 pairs (bold entries) were

found to have significant differences among their performances. So, with the help of Ne-

menyi Test conducted on RMSE measure, 12 pairs were found to be significantly different

out of 78 pairs which is almost 15.3% of the total pairs.

It is also quite apparent that GMDH-JERN, GMDH-DT, GMDH-SVM, GMDH-LR,

GMDH-K Star and the GMDH-Bagging pair were found to be significant as they have a

value greater than CD. GGAL was found to be performing significantly superior to SVM,

LR, K Star and Bagging. GRNN and Kohonen Network also performed better than bagging

technique.

Hence, Hence we reject the NULL hypothesis, accept the alternate hypothesis and con-

clude that the difference in the performance of GGAL and GMDH were statistically differ-

ent significantly as well as better than other machine learning techniques and the difference

among the performance of all other machine learning techniques is not found to be signifi-

cant.

6.4 Discussion
There are three broad categories of research papers working in the field of software main-

tainability of open source software. First category belongs to those papers which are finding

203

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

if the open source software has better maintainability than closed source software. In the sec-

ond category, research papers find how the maintainability evolves with every new version

of the open source software. In the third category, researchers are investigating the relation-

ships between design metrics and maintainability in the context of open source software. In

this chapter which apparently lies in third category, we identified that the design metrics can

be very useful for predicting maintainability of open source software. We investigated the

relationships between a numbers of OO metrics and maintainability using large open source

software systems. We built software maintainability prediction models based on OO metrics

for open source software. Since few open source datasets are explored, hence this work can

be repeated on other open source datasets in order to confirm or improve our findings.

The objective was to analyze the effectiveness of machine learning techniques for pre-

dicting software maintainability and the results are validated using dataset collected from

open source software. An extensive empirical comparison of thirteen machine learning tech-

niques on seven datasets obtained from open source code repositories is conducted. Predic-

tion models were developed using seventeen most commonly used OO metrics. We further

compared the performance of machine learning techniques using four prediction accuracy

measures MARE, RMSE, Pred(0.25) and Pred(0.75). The variations amongst the perfor-

mance of various machine learning techniques were further evaluated for significance using

Friedman Test. Post hoc analysis using Nemenyi Test was also conducted to identify whether

there exists the statistical difference of performance between the pair of different machine

learning techniques. The main findings of the work are summarized below:

1. Feature sub-selection using GA is used and the relevant metrics are extracted for each

dataset. It was found that in total 17%, 17%, 41%, 35%, 23%, 41% and 35% re-

ductions were observed for Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit and JUnit

datasets respectively. On an average, it could successfully reduce the dimensions by

almost 26.6%.

2. Out of the seventeen independent variables, we found that LCOM3, LOC, and DIT are

204

6.4. Discussion

the most commonly selected OO metrics whereas Efferent coupling and Ce is found

to be significant in only Abdera and Log4j Systems. We also found that the results

obtained using reduced set of independent variables after applying FSS were better by

8.3% as compared to the results obtained using all independent variables in prediction

models.

3. To measure the residual error, MARE and RMSE prediction accuracy was used and we

found that GGAL and GMDH techniques perform better than other machine learning

techniques.

4. The accuracy of all the machine learning techniques w.r.t. MARE on all seven selected

datasets lies between the ranges of 39-77% which is quite encouraging.

5. When we analyzed the values of pred(0.25) and pred(0.75), its recorded in the range

of 72-78% for Pred(25%) and 66-89% for Pred(75%) which is quite encouraging.

6. We also observe that GMDH method achieved more than 70% accuracy with four out

of seven datasets. Similarly, if Pred(0.75) is taken as accuracy measure, Bagging is

found to be most accurate with Log4j dataset i.e. 89% accuracy

7. We found that mean values of RMSE range from 0.23-0.63 and it is also observed that

four machine learning techniques PNN, GMDH, GRNN and GGAL have achieved

less than 30% error which is considered to be excellent.

8. The outcome of the Friedman test using FIR for ranking with respect to MARE mea-

sure indicates that the performance of GGAL technique is the best and GMDH is the

second best technique. With respect to RMSE, we observe that GMDH technique is

the second best and GGAL as the best technique for the maintainability prediction of

open source software on the basis of their mean rank.

9. It is found that out of 78 pairs of machine learning techniques, 14 pairs were found

205

Chapter 6. Benchmarking Framework for Maintainability Prediction of Open Source
Software using Object-Oriented Metrics

to have significant different among their performances. It means 17.9% of pairs was

found to be significantly different using statistical test and not coincidental.

10. GGAL performed significantly better than K Star, Bagging, Kohonen Network, DT,

JERN and SVM machine learning technique and GMDH performed significantly bet-

ter than DT, JERN and SVM techniques.

11. With the help of post-hoc analysis using Nemenyi Test conducted on RMSE measure,

12 pairs were found to be significantly different out of 78 pairs which is almost 15.3%

of the total pairs.

12. It is also quite apparent that GMDH-JERN, GMDH-DT, GMDH-SVM, GMDH-LR,

GMDH-K Star and the GMDH-Bagging pair were found to be significant as they have

value greater than CD.

13. GGAL was found to be performing significantly superior to SVM,LR, K Star and

Bagging. GRNN and Kohonen Network also performed better than bagging technique.

14. The work presented in this chapter confirms that machine learning techniques have

overall fare predictive ability as Pred(0.25) values are more than 60% in all cases. The

superiority of GGAL and GMDH techniques over other machine learning techniques

in the context of maintainability prediction of open source software was further con-

firmed by the results of Friedman test and post hoc analysis.

206

Chapter 7

Application of Evolutionary Techniques

for Software Maintainability Prediction

using Object-Oriented Metrics

7.1 Introduction
This study was undertaken with a view of applying evolutionary techniques in design-

ing prediction model for software maintainability which is a very important software quality

attribute. The task of is not as simple as it seems due to the subjective nature of software

maintainability. There is the pressing demand for more and more precise software main-

tainability prediction models so that the resource planning can be optimized well in advance

to produce cost effective software systems. The significance of the evolutionary technique

has substantially increased in recent time due to their capability of maximizing the quality

function. Inspired by the evolutionary process we have conducted an empirical study for ex-

ploring the application of the evolutionary technique for software maintainability prediction.

Although several traditional methods such as statistical and machine learning were applied

in past, we experimented to apply the evolutionary technique for the first time in the current

207

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

study and compared their performance with traditional ones.

Five open source software projects viz Apache Poi 3.9, Apache Rave 0.21.1, OrDrumBox

0.6.5, HuDoKu 2.0 and JWebUnit 1.2 written in Java languages were used to carry out this

empirical investigation and the results were analyzed using prevalent prediction accuracy

measures. Although, evolutionary techniques are successfully applied in various another

discipline of software engineering [12, 16, 213, 222], however there is a need to evaluate its

performance in predicting software maintainability. Few significant metrics are also success-

fully identified in this study which can be used by software maintainability practitioner in the

early phases of software development to predict those classes which needs more maintenance

efforts.

The proposed prediction model may also be used as a quality benchmark to assess and

compare various software maintainability prediction models. The results showed that the

proposed evolutionary techniques can be used to achieve good accuracy while predicting

maintainability. In this chapter, we investigate the following issues:

1. How accurately and precisely do the OO metrics predict the maintainability of open

source software?

2. Can evolutionary techniques be used for software maintainability prediction?

3. How accurately and precisely do the evolutionary techniques predict maintainability

of open source software using OO metrics?

4. Is the performance of evolutionary techniques is better than traditional machine learn-

ing techniques and statistical techniques?

The chapter is organized as follows: Section 7.2 depicts the evolutionary techniques, their

advantages and classification. Section 7.3 summarizes the research methodology consisting

of OO metrics, empirical data collection, setting values of the parameters and hypothesis

to be tested in the study. The results of the study are given in section 7.4 followed by the

validation of the hypothesis. Finally, discussion of the study is presented in section 7.5.

208

7.2. Evolutionary Techniques

The results of this chapter have been reported in [139].

7.2 Evolutionary Techniques
The evolutionary techniques are the set of techniques inspired by the metaphor of natural

biological evolution such as ant-colony optimization, bees techniques, cuckoo techniques,

and particle swarm optimization etc [7, 11, 125, 159]. As shown in figure 7.1, certain oper-

ators are applied on potential solutions to produce better and better approximations in these

techniques. Each time, at each generation various operators such as selection, recombination,

mutation, migration, locality and neighborhood are applied to produce the next generation

[125]. Each individual solution of the next generation is calculated against the survival of the

fittest and the unqualified solutions are discarded [11]. When this process is repeated again

and again, it leads to the evolution of populations consisting of potential solutions which are

optimized and better suited to their environment.

Figure 7.1: Architecture of Evolutionary Techniques

209

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

When this process is repeated over time, only the better-fit individuals survived; hence

the evolutionary techniques are also called as function optimizer. While implementing evo-

lutionary techniques we first create a population with or without fixed size; First time usu-

ally, this population is randomly generated. Each individual of this population is then tested

against ‘fit function’. Reproductive opportunities are given to those individuals who have a

better solution to the target problem and they have better chances of survival. Those indi-

vidual solutions of the populations which are poorer and produce ‘weaker’ solutions, they

have fewer chances of survival. The ‘goodness’ of a solution is defined in terms of the

problem which needs to be solved. While solving any issue using evolutionary techniques,

researchers first break the given issue into two problems i.e. the encoding problem and the

evaluation problem. Evolutionary technique are found to be superior to traditional methods

due to various aspects listed as under:

• Evolutionary techniques are generally more straightforward to apply because there are

no restrictions on the definition of the objective function.

• Use of evolutionary technique removes the possibility of biasness and the results are

only influenced by objective function and fitness function and as such there is no re-

quirement of auxiliary knowledge.

• Search for an optimized solution is performed in a parallel manner and evolutionary

technique provides a number of potential solutions to a given problem with final choice

lies with the user.

• They can handle a large amount of noise present in the data as the transition rules are

probabilistic in nature and not deterministic in nature.

• They are more capable of working in large and discontinuous search space and able to

achieve global optima instead of local ones.

210

7.2. Evolutionary Techniques

• Evolutionary techniques are generally more straightforward to apply because no re-

strictions for the definition of the objective function exist.

7.2.1 Classification of Techniques
In this section classification of various machine learning techniques used in this empirical

study are presented. In the current study, we have identified a set of 14 techniques divided

into three major categories as shown in figure 7.2.

Figure 7.2: Categories of Evolutionary Techniques

A set of 14 techniques including 2 statistical, 6 machine learning, and 6 evolutionary

based techniques have been carefully selected to compare their performance on the diverse

platform using the accuracy measures proposed by Conte et al. [50], Fentom and Bieman

[65], and Kitchenham et al. [110]. The prediction model was developed using the KEEL tool

(http://www.keel.es) and we performed some initial experiments to adjudge the effectiveness

of the evolutionary technique against the traditional techniques. Each technique is explained

in brief as under:

211

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

• Linear-LMS-R: It is an adaptive technique which follows an iterative procedure that

makes successive corrections to the weight vector in the direction of the negative of

the gradient vector. Continuous improvement in each iteration eventually leads to the

minimum mean square error [189].

• ProQuardratic-MS-R: In this technique, based on the quantitative information

present in the individual terms, terms are placed in respective groups for classifica-

tions [189].

• CART: Classification and Regression Trees (CART) are machine learning methods

for constructing prediction models obtained by recursively partitioning the data space

and fitting a simple prediction model within each partition [33]

• M5-Rules: M5 build tree-based models like CART but unlike CART, here the tree

can have a multivariate linear model to tackle high dimensionality up to 100 attributes

[33].

• Decr-RBFN-R: Generalization in terms of interpolation between known points is cre-

ated for such networks. Thus RBFN-R model represents the non-linear relationship

with guaranteed learning rules [36].

• Non Linear Boosting Projections: In NLBP approach, instead of random space, con-

structive non linear projections are created using neural networks and further combined

with the philosophy of boosting to handle noise present in the data [74].

• EPSILON-SVR-R: In this method, first order approximation of the objective function

is used to achieve faster convergence during the working set selection for training

SVM [64].

• NU-SVR-R: Instead of first order information, this method uses the second order in-

formation to achieve faster convergence for working set selection while training the

SVM [64].

212

7.2. Evolutionary Techniques

• GFS-GPG-R: It combines genetic programming and genetic techniques to solve sym-

bolic regression problems and applied to find an analytic expression in order to relate

input variables with output variables [193].

• THRIFT: It was given by Philip Thrift [218] and in this technique, the discrete nature

of fuzzy strategies are used during the discovery process by genetic techniques .

• GFS-GAP-Sym-R: Designed especially for electrical engineering problems, in this

technique, a fuzzy arithmetic-based GA-P procedure is applied to the search of an

analytic expression that relates input and output variables [193].

• GFS-SAP-Sym-R : It is a Symbolic Fuzzy-Valued Data Learning based on Genetic

Programming Grammar Operators and Simulated Annealing [193].

• GANN-R: It stands for Genetic technique with Neural Network. When neural network

is combined with genetic techniques, convergence characteristics degrade significantly

as the size of network increases. In this technique graph grammatical encoding is used

to encode the chromosome in order to generate more regular connective patterns [159].

• NNEP-R: It stands for Neural Network Evolutionary Programming for Classification.

In this technique basis function, units of FFNN model is evolved both in terms of

weight and structure using evolutionary programming technique which leads to overall

performance gain for real world high order functions [153].

Although evolutionary techniques have been used successfully for predictions in many

fields such as structure prediction of molecular crystals [73], Prediction of protein contact

map [223] etc however to the best of authors knowledge yet not applied in any study for

maintainability prediction. In the current study, these excellent bio-inspired techniques have

been used for the first time for software maintainability prediction using software design

characteristics of five open source software systems.

213

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

7.3 Research Methodology
This section is further divided in to sub-sections wherein we begin our empirical study

by setting up the goal and hypothesis. The summary of the OO metrics used to measure

various characteristics of software is presented in next sub section followed by the details of

the empirical data collection process.

7.3.1 Hypotheses
The goal of this study is to evaluate the performance of the evolutionary technique with

the traditional statistical and machine learning methods and compare their prediction accu-

racies. In this section, research hypotheses are presented as follows:

7.3.1.1 H1 Hypothesis

• Null Hypothesis: The relationship between design metrics and subsequent maintain-

ability does not exist.

• Alternate Hypothesis: The relationship between design metrics and subsequent main-

tainability significantly exist.

7.3.1.2 H2 Hypothesis

• Null Hypothesis: The evolutionary techniques can not be applied for software main-

tainability prediction.

• Alternate Hypothesis: The evolutionary techniques can be applied for software main-

tainability prediction.

7.3.1.3 H3 Hypothesis

• Null Hypothesis: Evolutionary techniques do not outperform the models predicted

using statistical and machine learning techniques.

• Alternate Hypothesis: Evolutionary techniques significantly outperform the models

predicted using statistical and machine learning techniques.

214

7.3. Research Methodology

7.3.2 Independent and Dependent Variables

We have investigated the prediction capability of the evolutionary technique on datasets

collected from five open sources software system. An attempt has been made to test whether

the OO software design metrics measured at development time could be used for the predic-

tion of software maintainability. Various characteristics of open source software metric suites

were measured using Chidamber & Kemerer [43] metric suite. To measure the OO features

present in the software, we determine the amount of coupling, cohesion and inheritance.

Coupling of the class is measured through RFC and CBO, inheritance is measure through

DIT and NOC, cohesion is measure through LCOM. Further, size is measured through LOC

and complexity is measure through WMC. Detail definitions of independent variables are

summarized in chapter 2. The dependent variable is the maintenance effort as defined in

chapter 2. In order to determine the degree of maintainability of the software on the basis of

its design metrics, the evolutionary techniques were applied.

7.3.3 Empirical Data Collection

In the current study five open source software namely Apache Poi 3.9, Apache Rave

0.21.1, OrDrumBox 0.6.5, HuDoKu 2.0 and JWebUnit 1.2 were analyzed as summarized in

Table 7.1.

215

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Ta
bl

e
7.

1:
D

et
ai

ls
of

th
e

D
at

a
Po

in
ts

fo
rO

pe
n

So
ur

ce
So

ft
w

ar
e

Sy
st

em
s

N
am

e
of

th
e

So
ft

w
ar

e

Ve
rs

io
n

R
el

ea
se

D
at

e
To

ta
l

N
um

-
be

r
of

C
om

m
on

C
la

ss
es

N
o.

of
C

ha
ng

e
in

C
la

ss

Pe
rc

en
ta

ge
of

C
ha

ng
es

L
O

C
of

C
om

m
on

C
la

ss
es

L
O

C
C

ha
ng

ed
L

O
C

D
el

et
e

L
O

C
A

dd
ed

A
pa

ch
e

3.
9

28
N

ov
20

13
94

0
91

9
ch

an
ge

d
97

%
20

80
94

0
72

54
07

45
39

42
27

14
65

Po
i

3.
10

01
Fe

b
20

14
21

no
t

ch
an

ge
d

A
pa

ch
e

0.
21

.1
02

M
ay

20
13

67
2

22
2

cl
as

se
s

ch
an

ge
d

33
%

14
11

5
61

05
20

89
40

16

R
av

e
0.

22
09

Ju
ly

20
13

44
0

no
ch

an
ge

O
rD

ru
m

B
ox

0.
6.

5
24

A
ug

20
06

21
8

10
6

ch
an

ge
d

48
%

19
87

60
2

57
39

02
53

92
27

14
65

0.
9.

8
07

Ja
n

20
12

11
2

no
t

ch
an

ge
d

H
uD

oK
u

2.
0

01
A

pr
20

10
24

5
10

2
cl

as
se

s
ch

an
ge

d

41
%

67
45

02
39

21
43

54
66

82
28

29
31

2.
2

01
A

ug
20

12
14

3
no

ch
an

ge
JW

eb
U

ni
t

1.
2

06
Ju

ly
20

09
23

0
17

2
cl

as
se

s
ch

an
ge

d

74
%

54
32

0
42

39
31

60
10

39
8

3.
0

08
O

ct
20

15
58

no
ch

an
ge

216

7.3. Research Methodology

7.3.4 Descriptive Statistics
For the purpose of the qualitative analysis, the descriptive statistics are calculated from

the collected data for each of the selected software in the current study, Outliers were re-

moved by taking 95 percentile of each metrics followed by calculations of descriptive statis-

tics. The Mean, Median, Standard Deviation, Minimum and Maximum for all the Chidamber

and Kemerer metrics were calculated and presented in Table 7.2, Table 7.3, Table 7.4, Table

7.5, Table 7.6 for Apache Poi 3.9, Apache Rave 0.21.1, OrDrumBox 0.6.5, HuDoKu 2.0 and

JWebUnit 1.2 respectively. It is very useful in understanding and comparing the character-

istics of both OO systems. During this process 21 classes of Poi, 39 classes of Rave, 27

classes for OrDrumBox, 46 classes for HuDoKu and 58 classes for JWebUnit datasets were

removed.

Table 7.2: Descriptive Statistics for Apache POI 3.9

Name of the Metric Mean Median Std Dev Max Min
WMC 9.72 72 12.67 142 0
DIT 1.01 3 0.332 4 0
NOC 0.02 1 0.192 3 0
CBO 2.35 17 1.290 27 0
RFC 10.69 69 12.91 143 0
LCOM 29.83 38 42.18 127 0
LOC 155.67 389 73.39 858 27
CHANGE 0.62 72 34.13 470 0

Table 7.3: Descriptive Statistics for Apache Rave 0.21.1

Name of the Metric Mean Median Std Dev Max Min
WMC 11.48 118 14.44 165 6
DIT 0.62 4 0.701 5 0
NOC 0.45 12 5.07 151 1
CBO 9.08 7 21.39 38 0
RFC 27.45 35 33.34 426 0
LCOM 39.87 41 48.53 208 0
LOC 224.51 849 368.32 4455 12
CHANGE 7.56 87 121.27 956 0

Following observations were made from the descriptive statistics:

217

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Table 7.4: Descriptive Statistics for OrDrumBox 0.6.5

Name of the Metric Mean Median Std Dev Max Min
WMC 8.68 57 20.09 93 0
DIT 2.13 2 0.832 4 0
NOC 0.04 2 0.168 2 0
CBO 13.72 21 22.08 42 0
RFC 9.52 58 11.39 139 0
LCOM 33.41 38 36.78 281 0
LOC 143.32 278 53.07 780 21
CHANGE 0.59 73 37.52 338 0

Table 7.5: Descriptive Statistics for HuDoKu 2.0

Name of the Metric Mean Median Std Dev Max Min
WMC 8.53 61 13.17 205 0
DIT 2.34 4 0.897 5 0
NOC 0.89 2 0.439 6 0
CBO 16.92 41 16.62 18 0
RFC 13.09 49 13.73 256 0
LCOM 19.43 28 37.18 209 0
LOC 159.73 423 88.73 791 53
CHANGE 1.41 83 41.93 408 0

Table 7.6: Descriptive Statistics for JWebUnit 1.2

Name of the Metric Mean Median Std Dev Max Min
WMC 7.63 43 8.76 34 0
DIT 0.93 2 0.74 3 0
NOC 0.09 1 0.168 2 0
CBO 11.35 16 2.79 21 0
RFC 9.88 32 9.12 131 0
LCOM 9.17 24 34.09 97 0
LOC 113.57 254 53.55 7658 39
CHANGE 0.51 59 29.63 308 0

• Size measured in terms of lines of source code i.e. LOC is ranging from 0 to 4455 for

all selected software.

• The mean values of DIT and NOC are Poi (1.01, 0.02), Rave (0.62, 0.45), OrDrumBox

(2.13, 0.04), HuDoKu (2.34, 0.89) and JWebUnit (0.93, 0.09) which means inheritance

is comparatively less exploited in all the systems. The median of DIT for all software

218

7.3. Research Methodology

is more than 0 which means that at least more than half of the classes have a parent

class. Thus, inheritance is widely used in these selected software.

• Cohesion which is measured through LCOM have high mean values. Maximum value

of LCOM have recorded as 127 (for Poi), 208 (for Rave), 281 (for OrDrumBox), 209

(for HuDoKu) and (2.34, 0.89) and 97 (for JWebUnit). Since the values are either

approximately 100 or more, that means cohesion is high in both the software systems.

• The value of coupling is measured through CBO and RFC which is found to be notably

less. Its minimum values are 0 for all the datasets. Maximum values are recorded as

27 and 143 (for Poi), 38 and 426 (for Rave), 42 and 139 (for OrDrumBox), 18 and

256 (for HuDoKu), 21 and 131 (JWebUnit) are recorded. Since the value of the CBO

metric which is used to measure the interaction between the classes is high for all the

software, it indicates that there is a high interaction between classes.

• WMC is used for comparing the complexity characteristics between two software. It

was observed that its value for Rave is 11.48, for Poi its value is 9.72, for OrDrumBox

its value is 8.68, for HuDoKu its value is 8.53 and for JWebUnit its value is 7.63, that

means Rave software is more complex.

• Since the characteristics of all datasets are heterogeneous in nature, hence they can-

not be combined and they have to be considered separately while building software

maintainability prediction models.

7.3.5 Parameter Setting for Evolutionary Techniques

The evolutionary technique is bio-inspired computer technique and it mimics the natural

evolution of living organisms. Parameters shown in Table 7.7 are used for evolution strategy

in order to decide how to proceed for the next generation. The evolution continues until

either a good enough optimized solution is found or we reached the maximum number of

generations allowed.

219

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Table 7.7: Parameters Setup for Experiments

S.No. Technique Parameter Value
1. CART MaxDepth = 90
2. M5-Rules Prunning Factor = 2, Verbosity = 0, Heuristic = Coverage
3. Decr-

RBFN-R
Percent = 0.1, Neurons = 20, alpha = 0.3

4. NLBP Hidden-layers =2, Hidden-nodes = 15, Transfer = Htan, Eta = 0.15,
Alpha = 0.10, Lambda = 0.0, cycle = 10000, improve = 0.01, verbose
= false, Tipify-input = true, ensemble method = BEM, combination =
WeightedSum, Network = 10

5. EPSILON-
SVR-R

Kernal = RBF, eps = 0.001, Degree = 3, Gamma = 0.001, coef() = 0.0,
nu = 0.5, p=1.0, Shrinking = 0

6. NU-SVR-R Kernal = RBF, eps = 0.001, Degree = 1, Gamma = 0.001, coef() = 0.0,
nu = 0.1, p=1.0, Shrinking = 0

7. GFS-GPG-
R

Numlabels = 3, numrules = 8, popsize = 30, numisland = 2, steady = 1,
numitera = 10000, toursize=4, probmuta = 0.1, amplmuta = 0.1, prob-
migra = 0.001, proboptimlocal = 0.00, numoptimlocal = 0, idoptimlocal
= 0, probmutaga = 0.5, maxtreeheight = 8

8. THRIFT Number of labels = 3, population size = 61, number of evaluation =
10000, Crossover Probability 0.6, Mutation Probability 0.1

9. GFS-GSP-
Sym-R

Popsize = 30, numisland = 2, steady = 1, numitera = 10000, toursize =
4, probmuta = 0.01, amplmuta = 0.1, probmigra = 0.001, maxtreeheight
= 8

10. GFS-SAP-
Sym-R

Deltafitsap = 0.5, posap = 0.5, p1sap = 0.5, amplmuta = 0.1, nsub-
sap = 10, proboptimlocal = 0.00, numoptimlocal = 0, idoptimlocal =
0, probcrossga = 0.5, probmutaga = 0.5, maxtreeheight = 8

11. GANN-R Hidden-layers = 2, Hidden-nodes = 15, Transfer = Htan, Eta = 0.15,
Alpha = 0.10, Lambda = 0.0, Test-data = true, Validation-data = false,
BP-Cycle = 10000, Improve = 0.01, Tipify-inputs = true, Verbose =
true, Elite = 0.1, individual = 100, W-range = 5.0, connectivity = 0.5,
max-generations = 100

12. NNEP-R Hidden-nodes = 4, Transfer = Product-Unit, Generations = 1000

7.3.6 Prediction Accuracy Measures

After obtaining the results, we analyzed their performances using various prediction ac-

curacy measures given by Conte et al. [50], Fentom and Bieman [65] and Kitchenham [110].

Most commonly used accuracy measures are applied in this chapter such as MaxMRE,

MMRE and prediction accuracy at 25% and 30%. Their detail definition and formula of

each measure are given in chapter 2.

220

7.4. Results and Discussion

7.4 Results and Discussion
In this section, results are presented for all the techniques on five selected software sys-

tems along with their interpretations. In the next sub-section results of various prevalent

accuracy measures are presented which are used to adjudge the various techniques and in the

last sub-section based on the results, validations of the hypothesis are conducted.

7.4.1 Feature Sub Selection

For the purpose of dimensionality reduction, feature sub selection was performed in the

beginning as discussed in chapter 2. Table 7.8 summarizes the relevant metrics found after

applying FSS for all of the five datasets selected in the current study. In total 21%, 19%, 29%,

13%, 19% reductions were observed for Poi, Rave, OrDrumBox, HuDoKu and JWebUnit

datasets respectively. On an average approximately 20% saving is observed for all datasets.

Table 7.8: Metrics Obtained using Feature Sub-Selection using Genetic Algorithm Tech-
nique

Software Name Selected Relevant OO Attributes
Poi WMC, RFC, DIT, LCOM
Rave CBO, DIT, LCOM
OrDrumBox WMC, DIT, LOC, LCOM
HuDoKu LCOM, LOC, RFC, CBO
JWebUnit LCOM, DIT, CBO

When a minimal optimized subset of attributes is selected using features subset selection

method, it enhances the prediction accuracy and reduces the time taken by the model on

account of training of the prediction model.

7.4.2 Summary of Results for Various Prediction Accuracy Measures

This section presents the prediction results of various evolutionary techniques and their

comparison with traditional statistical and machine learning techniques. We present the re-

sults of various accuracy measures achieved by applying software maintainability prediction

modeling techniques for Apache Poi, Apache Rave, OrDrumBox, HuDoKu and JWebUnit

221

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

as compiled in Tables 7.9, Table 7.10, Table 7.11, Table 7.12 and Table 7.13 respectively.

The first column represents the category, the second column represents the name of the tech-

nique, the third column represents the maximum value of MRE, the fourth column represents

MMRE, the fifth column represents prediction accuracy at 25% and sixth column represents

accuracy at 30%.

Table 7.9: Results of Various Prediction Techniques on Apache Poi dataset

Category of the Technique Name of the
Technique

Max
MRE

MMRE Pred
(0.25)

Pred
(0.30)

Statistical Regression
Linear-LMS-R 12.94 1.511 0.34 0.38
ProQuardratic-
MS-R

16.83 1.003 0.23 0.29

Decision Tree
CART 14.27 1.007 0.42 0.48
M5-Rules 20.69 0.856 0.52 0.55

Neural Networks
Decr-RBFN 10.96 0.617 0.49 0.57
NLBP 15.65 0.557 0.37 0.44

SVM
EPSILON-SVR-
R

8.28 0.739 0.29 0.36

NU-SVR-R 6.76 0.619 0.41 0.48

Evolutionary Fuzzy
GFS-GPG-R 3.67 0.246 0.59 0.67
THRIFT 6.89 0.224 0.64 0.69

Fuzzy Symbolic Regression
GFS-GAP-Sym-
R

5.73 0.396 0.52 0.58

GFS-SAP-Sym-
R

6.88 0.422 0.57 0.61

Evolutionary Neural
GANN-R 4.56 0.364 0.46 0.49
NNEP-R 6.37 0.257 0.51 0.58

7.4.3 Validation of Hypotheses

The purpose of conducting any empirical study is essentially to obtain unbiased results

which can be generalized and their interpretation can be stored and applied on future release.

Hence, it is very vital that the model should be properly validated on the dataset which is

different from the training dataset. As discussed in chapter 2, in this research 10-fold cross-

validation is used which divides the data into 10-folds and each time nine parts are used for

training whereas one part is used for validation purpose. In order to statistically analyze the

222

7.4. Results and Discussion

Table 7.10: Results of Various Prediction Techniques on Apache Rave dataset

Category of the Technique Name of the
Technique

Max
MRE

MMRE Pred
(0.25)

Pred
(0.30)

Statistical Regression
Linear-LMS-R 14.63 1.047 0.42 0.43
ProQuardratic-
MS-R

15.89 0.809 0.51 0.59

Decision Tree
CART 13.73 0.814 0.52 0.6
M5-Rules 10.98 0.758 0.39 0.45

Neural Networks
Decr-RBFN 11.96 0.791 0.41 0.48
NLBP 13.92 0.845 0.47 0.52

SVM
EPSILON-SVR-
R

16.82 0.692 0.55 0.59

NU-SVR-R 15.49 0.54 0.49 0.6

Evolutionary Fuzzy
GFS-GPG-R 7.02 0.251 0.59 0.59
THRIFT 8.06 0.238 0.63 0.66

Fuzzy Symbolic Regression
GFS-GAP-Sym-
R

8.78 0.434 0.43 0.49

GFS-SAP-Sym-
R

9.68 0.354 0.45 0.48

Evolutionary Neural
GANN-R 7.81 0.362 0.53 0.51
NNEP-R 8.22 0.395 0.55 0.59

results, we use non-parametric tests i.e. Friedman test followed by post hoc Nemenyi test

to compare the efficiency of various machine learning techniques. This section validate the

various hypothesis stated in section 7.3.1.

7.4.3.1 H1 Hypothesis

The first hypothesis was stated to identify the relationship between design metrics and

subsequent maintainability. We divided the data into 3:1 ratio between training and testing

respectively which is commonly accepted proportion [219]. The value of MMRE represents

the goodness of fit of the proposed models. From the Table 7.9 to Table 7.13, it is quite

evident that the values of MMRE are significantly better for all the datasets. When we calcu-

lated the average MMRE values of all 14 techniques selected in the current empirical study,

its value is 0.629, 0.595, 0.486, 0.473 and 0.523 for Poi, Rave, OrDrumBox, HudoKu and

JWebUnit respectively. The values of MMRE were quite competitive as per the standards of

accuracy measurements set by Kitchenham [110] and followed by researcher’s community.

223

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Table 7.11: Results of Various Prediction Techniques on OrDrumBox dataset

Category of the Technique Name of the
Technique

Max
MRE

MMRE Pred
(0.25)

Pred
(0.30)

Statistical Regression
Linear-LMS-R 11.59 0.937 0.51 0.59
ProQuardratic-
MS-R

10.92 0.813 0.38 0.43

Decision Tree
CART 9.73 0.753 0.44 0.48
M5-Rules 12.34 0.837 0.41 0.49

Neural Networks
Decr-RBFN 13.47 0.913 0.46 0.53
NLBP 9.89 0.743 0.49 0.52

SVM
EPSILON-SVR-
R

15.47 0.903 0.52 0.56

NU-SVR-R 12.73 0.635 0.54 0.59

Evolutionary Fuzzy
GFS-GPG-R 11.27 0.348 0.67 0.72
THRIFT 7.86 0.372 0.61 0.68

Fuzzy Symbolic Regression
GFS-GAP-Sym-
R

9.23 0.402 0.59 0.68

GFS-SAP-Sym-
R

8.43 0.392 0.55 0.61

Evolutionary Neural
GANN-R 9.72 0.782 0.56 0.63
NNEP-R 8.39 0.621 0.49 0.56

This clearly shows a high degree of relationship between design metrics and maintainability.

Hence, we accept the alternate hypothesis and claimed that there exist a strong relationship

between OO metrics and maintainability using evolutionary techniques.

7.4.3.2 H2 Hypothesis

The second hypothesis was stated to check whether evolutionary techniques can be ap-

plied for software maintainability prediction. In order to check the capabilities of evolution-

ary techniques for maintainability prediction, the MMRE values of each of the prediction

technique on all dataset was compiled and visually represented in figure 7.3. It was quite ev-

ident that from the graph that THRIFT under the category of Evolutionary Fuzzy technique

was found to be most accurate in predicting software maintainability.

The same process is repeated for another accuracy measure MaxMMRE on both of the

datasets and visually presented in figure 7.4. In terms of MaxMRE measure, the GFS-GPG-

R technique of evolutionary fuzzy technique category was found to be more accurate than

224

7.4. Results and Discussion

Table 7.12: Results of Various Prediction Techniques on HuDoKu dataset

Category of the Technique Name of the
Technique

Max
MRE

MMRE Pred
(0.25)

Pred
(0.30)

Statistical Regression
Linear-LMS-R 11.53 0.918 0.45 0.48
ProQuardratic-
MS-R

9.78 0.813 0.39 0.49

Decision Tree
CART 6.73 0.872 0.37 0.41
M5-Rules 12.43 0.811 0.24 0.44

Neural Networks
Decr-RBFN 10.72 0.792 0.43 0.5
NLBP 9.87 0.853 0.48 0.49

SVM
EPSILON-SVR-
R

13.47 0.779 0.46 0.53

NU-SVR-R 10.92 0.562 0.39 0.44

Evolutionary Fuzzy
GFS-GPG-R 6.08 0.341 0.61 0.66
THRIFT 7.89 0.451 0.58 0.62

Fuzzy Symbolic Regression
GFS-GAP-Sym-
R

9.21 0.782 0.55 0.59

GFS-SAP-Sym-
R

10.92 0.984 0.49 0.53

Evolutionary Neural
GANN-R 12.34 0.781 0.46 0.49
NNEP-R 11.04 0.709 0.42 0.48

Figure 7.3: Comparison of Various Models with Reference to their MMRE Values

225

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Table 7.13: Results of Various Prediction Techniques on JWebUnit dataset

Category of the Technique Name of the
Technique

Max
MRE

MMRE Pred
(0.25)

Pred
(0.30)

Statistical Regression
Linear-LMS-R 8.79 0.986 0.57 0.59
ProQuardratic-
MS-R

8.34 0.713 0.61 0.66

Decision Tree
CART 9.3 0.756 0.48 0.52
M5-Rules 11.09 0.673 0.59 0.63

Neural Networks
Decr-RBFN 13.42 0.509 0.49 0.52
NLBP 12.44 0.593 0.55 0.58

SVM
EPSILON-SVR-
R

10.91 0.692 0.51 0.54

NU-SVR-R 11.93 0.567 0.46 0.52

Evolutionary Fuzzy
GFS-GPG-R 8.02 0.345 0.63 0.66
THRIFT 7.73 0.238 0.66 0.71

Fuzzy Symbolic Regression
GFS-GAP-Sym-
R

9.98 0.432 0.48 0.52

GFS-SAP-Sym-
R

8.23 0.912 0.58 0.63

Evolutionary Neural
GANN-R 8.29 0.302 0.59 0.65
NNEP-R 9.13 0.419 0.41 0.49

others techniques. When Pred(0.25) is used as an indicator, both techniques under the cat-

egory of evolutionary fuzzy technique were found to be the most accurate. Thus, from the

results, it is evident that evolutionary fuzzy technique can be used for more precise maintain-

ability predictions. We observed that the evolutionary technique achieved the optimization

values more accurately and precisely than the traditional models when they were used for

software maintainability prediction. Thus, we accept the null hypothesis and conclude that

the evolutionary technique based models developed in the current study can be successfully

applied for accurate software maintainability prediction during early phases of the software

development cycle.

7.4.3.3 H3 Hypothesis

Third hypothesis checked if the evolutionary techniques perform significantly better or

worse than traditional statistical and machine learning methods. In order to validate this

hypothesis, we performed extensive statistical tests using Friedman test and post-hoc analysis

226

7.4. Results and Discussion

Figure 7.4: Comparison of Various Models with Reference to their Max MRE Values

using Nemenyi test described in chapter 2.

We followed the suggestions given by Demvsar [59] that if the data does not follow

normal distributions, its safe to conduct non-parametric tests. Hence, in the current study

Friedman test was used to compare the performance of fourteen machine learning techniques

repeated over five datasets (Poi, Rave, OrDrumBox, Hudoku and JWebUnit). In this regard,

the value of critical region was calculated at 5% significance level. Since there are fourteen

techniques, degree of freedom becomes thirteen and for this value the value of X(tabulated) is

obtained from Chi-square table. Further, to rank the performance of each of the machine

learning technique, their FIR is calculated using equation 2.15 and compiled in Table 7.14

and Table 7.15, for MMRE and MaxMRE respectively. As discussed earlier, lower the mean

rank means better the performance. The outcome of the Friedman test as compiled in Table

7.14 with respect to MMRE measure indicates that the performance of THRIFT technique

is the best and GFS-GPG-R is the second best technique. With respect to MaxMRE from

the 7.15, we observe that GFS-GPG-R technique is the best and THRIFT as the second best

technique for the maintainability prediction of open source software on the basis of their

227

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

mean rank.

Table 7.14: Mean Ranking of Techniques by applying Friedman Test on MMRE Values

S.No. Machine Learning Technique Mean Rank
1. THRIFT 1.40
2. GFS-GPG-R 1.80
3. GANN-R 5.00
4. GFS-GAP-Sym-R 5.40
5. NU-SVR-R 6.40
6. GFS-SAP-Sym-R 7.80
7. Decr-RBFN 9.00
8. EPSILON-SVR-R 9.00
9. NLBP 9.20
10. M5-Rules 9.80
11. ProQuardratic-MS-R 10.80
12. CART 11.40
13. Linear-LMS-R 13.80
14. NNEP-R 4.20

Table 7.15: Mean Ranking of Techniques by Applying Friedman Test on MaxMRE Values

S.No. Machine Learning Technique Mean Rank
1. GFS-GPG-R 2.80
2. THRIFT 3.00
3. GFS-GAP-Sym-R 5.00
4. GANN-R 5.10
5. GFS-SAP-Sym-R 5.30
6. NNEP-R 5.40
7. CART 7.20
8. ProQuardratic-MS-R 8.80
9. Linear-LMS-R 9.60
10. NLBP 9.60
11. NU-SVR-R 9.90
12. Decr-RBFN 10.20
13. M5-Rules 11.20
14. EPSILON-SVR-R 12.00

We reject the null hypothesis and accept the alternate hypothesis and conclude that the

evolutionary fuzzy techniques are significantly better than their counterpart. Further, in order

to ascertain whether the performance differences which exist between FIR values of various

228

7.4. Results and Discussion

machine learning techniques is statistically significant or not, we proceed towards post hoc

analysis. The value of CD is calculated as 8.7 after putting the values of n as 14 (Number of

machine learning techniques) and value of k as 5 (number of datasets) into equation (2.14).

Next, we make a pair for each machine learning technique with every other to calculate their

rank differences (FIR) and compiled in Table 7.16 and Table 7.17 for MMRE and MaxMRE,

respectively. In total, 91 such pairs were formed as we have used 14 machine learning

techniques in our study.

229

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Ta
bl

e
7.

16
:C

om
pu

ta
tio

n
of

Pa
ir

W
is

e
R

an
k

D
iff

er
en

ce
am

on
g

al
lM

ac
hi

ne
L

ea
rn

in
g

Te
ch

ni
qu

es
in

te
rm

so
fM

ea
n

M
ag

ni
tu

de
of

R
el

at
iv

e
E

rr
or

Te
ch

ni
qu

e
T

H
R

IF
T

G
FS

-
G

PG
-

R

N
N

E
P-

R
G

A
N

N
-

R
G

FS
-

G
A

P-
Sy

m
-

R

N
U

-
SV

R
-

R

G
FS

-
SA

P-
Sy

m
-

R

D
ec

r-
R

B
FN

E
PS

I
L

O
N

-
SV

R
-

R

N
L

B
P

M
5-

R
ul

es
Pr

o
Q

ua
rd

ra
tic

M
S-

R

C
A

R
T

L
in

ea
r-

L
M

S-
R

T
H

R
IF

T
0.

0
0.

4
2.

8
3.

6
4.

0
5.

0
6.

4
7.

6
7.

6
7.

8
8.

4
9.

4
10

.0
12

.4
G

FS
-

G
PG

-R
0.

0
0.

0
2.

4
3.

2
3.

6
4.

6
6.

0
7.

2
7.

2
7.

4
8.

0
9.

0
9.

6
12

.0

N
N

E
P-

R
0.

0
0.

0
0.

0
0.

8
1.

2
2.

2
3.

6
4.

8
4.

8
5.

0
5.

6
6.

6
7.

2
9.

6
G

A
N

N
-R

0.
0

0.
0

0.
0

0.
0

0.
4

1.
4

2.
8

4.
0

4.
0

4.
2

4.
8

5.
8

6.
4

8.
8

G
FS

-
G

A
P-

Sy
m

-R

0.
0

0.
0

0.
0

0.
0

0.
0

1.
0

2.
4

3.
6

3.
6

3.
8

4.
4

5.
4

6.
0

8.
4

N
U

-S
V

R
-

R
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
1.

4
2.

6
2.

6
2.

8
3.

4
4.

4
5.

0
7.

4

G
FS

-
SA

P-
Sy

m
-R

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1.
2

1.
2

1.
4

2.
0

3.
0

3.
6

6.
0

D
ec

r-
R

B
FN

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
2

0.
8

1.
8

2.
4

4.
8

E
PS

IL
O

N
SV

R
-R

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
2

0.
8

1.
8

2.
4

4.
8

N
L

B
P

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
6

1.
6

2.
2

4.
6

M
5-

R
ul

es
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
1.

0
1.

6
4.

0
Pr

o
Q

ua
rd

ra
tic

M
S-

R

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
6

3.
0

C
A

R
T

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

2.
4

L
in

ea
r-

L
M

S-
R

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

230

7.4. Results and Discussion

In the Table 7.16, we have highlighted those entries which have values greater than CD. It

is quite evident that the out of 91 pairs of machine learning techniques, 10 pairs (bold entries)

were found to have significant differences among their performances. One pair between

GFS-GAP-Sym-R and Linear-LMS-R has attained the difference (8.4) almost touching the

CD (8.6). Hence, 10 pairs out of 91 means, the performance of 10.8% of pairs was found

to be significantly different using statistical test and not coincidental. Results shown in

Table 7.16 also depicts that THRIFT performed better than M5Rule, ProQuardratic-MS-R

, CART and Linear-LMS-R. Similarly GFS-GPG-R performed better than ProQuardratic-

MS-R , CART and Linear-LMS-R techniques. Hence, on the basis of post hoc analysis of

MMRE, we conclude that evolutionary fuzzy techniques outperformed than other machine

learning techniques. The difference between the performances of all other machine learning

techniques were not found to be significant.

We performed the same procedure for MaxMRE and the rank difference of each pair

was calculated and compiled in Table 7.17. Highlighted entries in the Table 7.17 indicate

that the difference of FIR between that pair of machine learning technique is greater than

CD. It is observed that out of 91 pairs of machine learning techniques, 3 pairs (bold entries)

were found to have significant differences among their performances. So, with the help

of Nemenyi Test conducted on MaxMRE measure, 3 pairs were found to be significantly

different out of 91 pairs which is almost 3.2% of the total pairs. It is also quite apparent that

GFS-GPG-R is significantly better than M5Rule and EPSILON-SVR-R techniques.

231

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

Ta
bl

e
7.

17
:C

om
pu

ta
tio

n
of

pa
ir

w
is

e
ra

nk
di

ff
er

en
ce

am
on

g
al

lM
ac

hi
ne

L
ea

rn
in

g
te

ch
ni

qu
es

in
te

rm
s

of
M

ax
M

R
E

Te
ch

ni
qu

es
G

FS
-

G
PG

-
R

T
H

R
IF

T
G

FS
-

G
A

P-
Sy

m
-

R

G
A

N
N

-
R

G
FS

-
SA

P-
Sy

m
-

R

N
N

E
P-

R
C

A
R

T
Pr

o
Q

ua
rd

ra
tic

-
M

S-
R

L
in

ea
r-

L
M

S-
R

N
L

B
P

N
U

-
SV

R
-

R

D
ec

r-
R

B
FN

M
5-

R
ul

es
E

PS
IL

O
N

-
SV

R
-R

G
FS

-
G

PG
-R

.0
0

.2
0

2.
20

2.
30

2.
50

2.
60

4.
40

6.
00

6.
80

6.
80

7.
10

7.
40

8.
40

9.
20

T
H

R
IF

T
.0

0
.0

0
2.

00
2.

10
2.

30
2.

40
4.

20
5.

80
6.

60
6.

60
6.

90
7.

20
8.

20
9.

00
G

FS
-

G
A

P-
Sy

m
-R

.0
0

.0
0

.0
0

.1
0

.3
0

.4
0

2.
20

3.
80

4.
60

4.
60

4.
90

5.
20

6.
20

7.
00

G
A

N
N

-R
.0

0
.0

0
.0

0
.0

0
.2

0
.3

0
2.

10
3.

70
4.

50
4.

50
4.

80
5.

10
6.

10
6.

90
G

FS
-

SA
P-

Sy
m

-R

5.
30

.0
0

.0
0

.0
0

.0
0

.1
0

1.
90

3.
50

4.
30

4.
30

4.
60

4.
90

5.
90

6.
70

N
N

E
P-

R
5.

40
.0

0
.0

0
.0

0
.0

0
.0

0
1.

80
3.

40
4.

20
4.

20
4.

50
4.

80
5.

80
6.

60
C

A
R

T
7.

20
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
1.

60
2.

40
2.

40
2.

70
3.

00
4.

00
4.

80
Pr

o
Q

ua
rd

ra
tic

-
M

S-
R

8.
80

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.8
0

.8
0

1.
10

1.
40

2.
40

3.
20

L
in

ea
r-

L
M

S-
R

9.
60

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.3
0

.6
0

1.
60

2.
40

N
L

B
P

9.
60

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.3
0

.6
0

1.
60

2.
40

N
U

-S
V

R
-

R
9.

90
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.3

0
1.

30
2.

10

D
ec

r-
R

B
FN

10
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
1.

00
1.

80

M
5-

R
ul

es
11

.2
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.8
0

E
PS

IL
O

N
-

SV
R

-R
12

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

232

7.5. Discussion

Hence, we conclude that the difference in the performance of GFS-GPG-R and THRIFT

both under the category of evolutionary fuzzy techniques were significantly better than ma-

chine learning and statistical techniques. Difference among the performance of all other

machine learning techniques is not found to be significant.

7.5 Discussion
In open source software, practitioners across the globe are allowed to change, expand

and redistribute the newly created version without any requirement of the license [196].

Changes in open source software are made continuously in order to remove defects, improve

functionality, and increase usefulness [192]. Estimating the maintainability of open source

software becomes more challenging due to the lack of technical support and the absence of

adequate documentation. In this chapter, we evaluate the performance of evolutionary tech-

niques for software maintainability predictions. We compared the prediction performance of

evolutionary fuzzy, evolutionary neural and evolutionary neural symbolic regression meth-

ods with traditional statistical and machine learning models. dataset was collected from five

open source software systems using OO metrics proposed by Chidamber and Kemerer [43].

Based on publicly available open source dataset, we empirically analyzed the performance

of methods using the prevalent accuracy measures. Our main results are as follows:

1. The results indicate evolutionary techniques generally perform better than traditional

techniques and they could achieve accuracy within the range of 75% to 78%.

2. We conducted Nemenyi test to compare the performance of the evolutionary tech-

niques performs significantly better than the traditional machine learning and statisti-

cal techniques.

3. With the help of post hoc analysis, the performance of evolutionary fuzzy techniques

were compared and we found that 10.8% of pairs were significantly better and not

coincidental.

233

Chapter 7. Application of Evolutionary Techniques for Software Maintainability
Prediction using Object-Oriented Metrics

4. An important contribution in this chapter is that we have compared results using OO

metric suite on five open source software systems. Hence, we can generalize our

results and they can be repeated in future empirical studies.

5. This results achieved in this chapter confirms that construction of evolutionary tech-

nique for software maintainability prediction is feasible, adaptable and useful in pre-

dicting software maintainability.

6. We observed that overall good prediction accuracy is achieved by almost all machine

learning techniques, however, the prediction models using evolutionary fuzzy tech-

niques perform better than the other machine learning techniques in the context of

open source software systems.

234

Chapter 8

Empirical Study to Assess Refactoring

Effects on Software Maintainability

8.1 Introduction
Once the software product is developed and delivered to the customer, maintenance pro-

cess keeps modifying it to improve performance, correct fault or adapt the product to a

modified environment. Refactoring is the part of maintenance phase in which the design

of software is improved and complexity is reduced without affecting its external behavior.

Many refactoring methods have been suggested in the literature and each has a particular

purpose and corresponding effect. Unfortunately, it is unclear how the specific refactoring

method affects software maintainability. The objective of this empirical study was to observe

the quantifiable effects of few widely used refactoring methods on maintainability. In this

regard, the design metrics of the software were calculated and analyzed before as well as

after the application of refactoring on five proprietary systems. Comprehensive reports were

prepared to observe the effect of selected refactoring methods on design metrics which were

further mapped to maintainability. Findings of this study would be useful to project man-

agers in identifying the opportunities of refactoring in large code so that particular refactoring

235

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

method could be applied to optimize software maintainability.

During the maintenance phase, we keep modifying the code and the code turns so bad

that it really needs major refurbishment. Whether refactoring should be applied at this stage

or not, what are the advantages and disadvantages associated with refactoring process at

this stage require substantial empirical investigation. In this work we empirically evaluated

the consequences of refactoring process on maintainability. The results are validated using

five proprietary systems developed in Microsoft Visual Studio (.NET) software using C# lan-

guage. The values of the OO metrics of source codes for the selected software were collected

before and after refactoring methods were applied. Change in the values of the OO metrics

helped us in determining its overall effects on maintainability. To the best of our knowledge

there have been so far no reports to undertake organized study which classify various com-

monly used refactoring methods along with their corresponding quantitative effects on the

OO metrics. This study guides in taking appropriate direction regarding ‘when to refactor’,

‘what to refactor’ and ‘how much to refactor’. The main aims of this study are given as

follows:

• To find if the impact of refactoring exists significantly on OO metrics?

• To investigate how the refactoring affects software maintainability?

• To ascertain whether the effect of refactoring is same on small, medium and large

systems?

The chapter is organized as follows: Section 8.2 presents the basics of refactoring process

and ways to ensure safe refactoring into the code. Section 8.3 presents the research method-

ology followed and state the hypotheses in this chapter. The results of the study are given

in section 8.4 and the validation of the hypothesis is presented in section 8.5 and finally,

discussion of the work done in this chapter is presented in section 8.6.

The results of this chapter have been reported in [144].

236

8.2. Refactoring Process

8.2 Refactoring Process
Refactoring is a process in which for any given software, its internal structure is im-

proved, complexity is reduced and external behavior remains the same. Due to refactoring

treatment provided into the source code, it becomes simpler and easier to maintain as the

changes are very systematic in nature. There are many methods of refactoring like dead code

elimination, clone code removal, extract method, lazy classes, pull up method, push down

method, hide methods, renaming etc and each method has its effects on software quality

attributes. It is very important to critically examine and quantify the effects of refactoring

on software maintainability. Generally, during the SDLC good design is developed first fol-

lowed by the coding process; whereas in refactoring, improvement in the design is performed

after the coding of the software [69]. Various advantages of refactoring includes enhance-

ment of new features and improvements in understandability, readability and maintainability

by enforcing fine-grained encapsulation in to the code.

Figure 8.1: Steps Undertaken during the Refactoring Process

During the refactoring process, various elements of source code such as fields, methods,

classes and packages are redesigned to improve the overall code quality of the software. Al-

237

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

though automated application of refactoring is provided by many IDEs nowadays, however,

refactoring is not as easy as it seems. In general the steps undertaken during the refactoring

process are shown in figure 8.1.

While refactoring the software, first of all the bad smells present into the code needs to

be identified. Bad smells are actually the structural characteristics of software that indicate

problem in code or design due to which software become complex thus hard to understand

and maintain. Bad smells increases the overall cost of the software, hence, whenever code

smells are recognized, then actions need to be taken to improve it by applying appropriate

refactoring treatment. So we can say that that bad smells are the indicator for the need of

refactoring. Moreover, if refactoring is not applied properly with utmost care, than it may

lead to the accumulation of technical debt, hence results in failure of the software.

Table 8.1: Bad Smells and Respective Refactoring method

S.No. Bad Smell Definition Refactoring
1. God Class It is the class which tends to centralize the

system intelligence.
Extract Class

2. Long Method It is the method which is long that makes
it difficult to modify and understand.

Extract Method

3. Type Checking In this bad smell, the function is split into
multiple functions so to handle a single
type and thus increases redundancy.

Replace Type
code with
State/Strategy

4. Feature Envy It means that a method is interested more
in other class than the one where it is cur-
rently located.

Move Method

Initially, Fowler [69] introduced 22 different kind of bad smells which are further en-

hanced by many researchers. Few very common bad smells are God class (violates the de-

composition design principles), Long Method (method is very large), Data Class (indicates

bad data abstraction), Refused Bequest Class (class inherits another class but does not use

it), Duplicate Code (code appears in more than one place) etc.

For each kind of the bad smell, different kind of refactoring method is suggested. For

example, if there is bad smell such as “God Class”, then the class is split into two or many

238

8.3. Research Methodology

classes and decomposition design principle is induced into the code. Code becomes modular

which further increases understandability and reusability. In Table 8.1, we have given four

such examples of bad smell and respective refactoring method.

After identifying the corresponding refactoring method for the particular bad smell, it

is applied into the code. In order to ensure that that there is no side effect on external

behavior of the software due to the application of the refactoring method, regression testing

is conducted. In the current study, we further analyze the effect on OO metrics to investigate

the effects of refactoring on software quality attributes.

8.3 Research Methodology

This section discusses the research methodology adopted to investigate the effect on

software maintainability by the application of specific refactoring methods. As shown in

figure 8.2, we begin our work with the selection of the OO metric suite to measure maintain-

ability. Important refactoring methods were also selected that redistribute responsibilities

among classes. The research hypothesis was stated and experiments were conducted. Values

of each of the metric was recorded before and after the application of refactoring treatment

into the code. Individual effects of refactoring method on the OO metric suite were analyzed

and finally, the cumulative effect of this process is calculated on maintainability.

The methodology adopted for the current study is presented in figure 8.2. Firstly, we

identify ‘Bad Smell’ present in the code using Jdeodrant tool. Next, we identify and select

corresponding refactoring method to remove this smell. The OO metrics of the code were

collected before applying the particular refactoring method. In the next process, refactoring

was applied and the values of the OO metrics were again collected. Change in the values of

each OO metric for each class corresponding to the application of each refactoring method

was tabulated. Finally a comprehensive report was prepared for each refactoring method to

observe its subsequent effects on each of the system. Cumulative effects on the OO met-

rics for each refactoring method was evaluated and mapped to maintainability and finally

239

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

Figure 8.2: Research Methodology

null/alternative hypothesis was accepted/ rejected.

8.3.1 Relationship of Object-Oriented Metrics and Maintainability

As discussed in the previous section, in this study the metric suite proposed by Chi-

damber and Kemerer [43] is used to capture the design characteristics. We have chosen this

metric suite as it is validated by many researchers [6, 53, 62, 118, 219]. In their respective

empirical studies, they were able to find a significant positive correlation between OO metric

suite and maintainability. The values for these OO metrics are obtained for each class of

the software before as well as after the application of refactoring process and the changes

observed in the values of the OO metrics were further mapped to maintainability. The formal

definition of Chidamber and Kemerer metrics suite and their effects on maintainability are

given below.

8.3.1.1 Relationship of WMC with Maintainability

It is calculated as the sum of McCabe’s Cyclomatic Complexities of all local methods

defined in a class. Many empirical studies such as Koten and Gray [118], Aggarwal et al. [6]

240

8.3. Research Methodology

and Li and Henry [127], suggested keeping its values as much less as possible for achieving

more maintainability. More methods if packed in one class would not only reduce its reuse,

but the class also becomes more complex which in turn increases maintainability.

8.3.1.2 Relationship of DIT with Maintainability

It measures the maximum inheritance path from any class to the root class. As we in-

crease depth by implementing inheritance in our code, it increases reusability and maintain-

ability but beyond a certain depth, the code becomes very complex and hard to maintain as

suggested by Daly et al. [55].

8.3.1.3 Relationship of NOC with Maintainability

It is used to measures the breadth present in the class hierarchy. It is counted as the

number of immediate child classes derived from the base class. The depth which is measured

through DIT is always preferred over breadth since it promotes reusability as empirically

proved by Li and Henry [127].

8.3.1.4 Relationship of CBO with Maintainability

It measures the coupling present between the given class and other classes. Two classes

are said to be ‘coupled’ if methods declared in one class uses methods or instance variables

which are defined in other class. The value of CBO should be kept as lower as possible in

order to have a good maintainable system. Sahraoui et al. [191] suggested a maximum CBO

value to be less than 14 as increased value means there is very high coupling between the

classes which would have negative impact on maintainability. Also from the point of view

of ‘Reusability’ excessive coupling should be avoided.

8.3.1.5 Relationship of RFC with Maintainability

It is counted as the number of methods which gets executed whenever a message is com-

municated to any object of that class. Its value should be kept as low as possible to keep

the system maintainable as suggested by Li et al.[127]. In their study, it is also empirically

241

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

proved that large RFC means more and more methods get executed in response to any mes-

sage received by an object of that class. Due to this phenomenon, tracing an error would be

extremely difficult and so the maintenance process.

8.3.1.6 Relationship of LCOM with Maintainability

It actually measures the cohesiveness present in a given class. It is calculated by counting

the number of disjoint sets of local methods present in the class with respect to the member

variables used in each function. More cohesive classes are easier to maintain and as the value

of LCOM increases, classes become harder to maintain. Although many deficiencies were

identified in LCOM metric by Mayer and Hall [155] and new metric LCOM3 is proposed,

however current study uses original definition of LCOM given by Chidamber and Kemerer

[43].

8.3.2 Selection of Refactoring Methods

Fowler [69] has defined more than 70 methods of refactoring along with their motivation

and a step-by-step description of execution. Few are very simple in nature such as renaming,

code extraction or pull-up methods where as few are very complex such as exchanging risky

and long language idioms with safer alternatives or the code optimization. In the current

study, we have chosen five refactoring methods and evaluated their effect on maintainability.

Only those refactoring methods were chosen which either redistributes the responsibilities

within classes or operate at methods’ level so that their effects on the OO metrics could

be observed. Our criteria is also influenced by the tool being used for implementing the

refactoring methods. Very primitive methods such as renaming etc have been deliberately

avoided since they do not have any significant impact on the OO metric suite and we will not

be able to ascertain its effects on maintainability. The five refactoring methods chosen in the

current study are explained in brief as follows:

242

8.3. Research Methodology

8.3.2.1 Consolidate Conditional Expression

Consolidate Conditional Expression (CCE) refactoring method combines many consec-

utive conditional statements into a single statement which contains the corresponding condi-

tional expression.

8.3.2.2 Encapsulating Field

If a data field is public and accessed directly in the program it violates data hiding prin-

cipal of the OO programming. Encapsulating Field (EF) refactoring process converts public

data members in to private data members and provides two extra member functions to ‘get’

and ‘set’ their values.

8.3.2.3 Extract Class

If the existing class becomes too complex, Extract Class (EC) refactoring method creates

a new class and move the relevant fields and methods from the source class into the newly

created class.

8.3.2.4 Extract Method

In Extract Method (EM) refactoring method first we identify a piece of code that can be

grouped together; we extract those groups of statements, put them into a new method and

give some sensible name to the newly created method.

8.3.2.5 Hide Method

In Hide Method (HM) refactoring process, the visibility of member function is changed

from public mode to private mode before ensuring that it is not used by any other class in the

system.

8.3.3 Research Hypotheses

To focus our study on measuring the effects of refactoring methods on maintainability,

we set up Null Hypothesis and Alternative Hypothesis as follows:

243

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

8.3.3.1 Consolidated Conditional Expression Hypothesis

Null Hypothesis: A Class on which CCE refactoring method is applied does not alter its

Maintainability.

Alternate Hypothesis: A Class on which CCE refactoring method is applied, its code

quality improves which further enhances its Maintainability.

8.3.3.2 Encapsulating Field Hypothesis

Null Hypothesis: A Class on which EF refactoring method is applied does not alter its

Maintainability.

Alternate Hypothesis: A Class on which EF refactoring method is applied, its code qual-

ity improves which further enhances its Maintainability.

8.3.3.3 Extract Method Hypothesis

Null Hypothesis: A Class on which EM refactoring method is applied does not alter its

Maintainability.

Alternate Hypothesis: A Class on which EM refactoring method is applied, its code

quality improves which further enhances its Maintainability.

8.3.3.4 Extract Class Hypothesis

Null Hypothesis: A Class on which EC refactoring method is applied does not alter its

Maintainability.

Alternate Hypothesis: A Class on which EC refactoring method is applied, its code qual-

ity improves which further enhances its Maintainability.

8.3.3.5 Hide Method Hypothesis

Null Hypothesis: A Class on which HM refactoring method is applied does not alter its

Maintainability.

Alternate Hypothesis: A Class on which HM refactoring method is applied, its code

quality improves which further enhances its Maintainability.

244

8.3. Research Methodology

These hypotheses are further tested at 5% level of significance using Z-test statistical

measure to figure out whether the individual effects of each refactoring methods on main-

tainability is significant or not. The sample mean and population mean is calculated. Z-test

is applied on the final compiled data using equation (8.1).

Z =
X − µ

σ√
n

(8.1)

Where X is Sample Mean, µ is population mean, σ is population standard deviation and

n is the size of the population.

8.3.4 Empirical Data Collection

The current study was undertaken to establish the effect of refactoring process on the

simple software system as well as on more complex system software. With an aim to accom-

modate beginners as well as professionals, two software codes were chosen from the projects

undertaken by the students of B.Tech and three software codes were taken from the software

industry. These three complex systems were developed and maintained by professionals.

First, two software’s FLM system and SMS were medium in size whereas IMS, ABP and

EASY classes online services were large systems.

8.3.5 Descriptive Statistics

Five proprietary systems are used for the validation of new metric suite namely FLM

system, EASY system, SMS system, IM system and ABP system as described in chapter 2.

They consists of 233, 292, 129, 96 and 114 classes respectively. Descriptive statistics such

as Max, Min, Mean, Median and Std Dev were calculated for FLM system, EASY system,

SMS system, IM system and ABP system and presented in Table 8.2, Table 8.3, Table 8.4,

Table 8.5 and Table 8.6 respectively. These statistics are closely examined and analyzed for

easy and correct comparison between different case studies. Following are the observations

made:

245

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

Table 8.2: Descriptive Statistics of FLM System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 16 1 6.276 5 4.97
2. DIT 7 1 4.379 5 1.32
3. NOC 7 0 3.1 3 1.67
4. CBO 50 3 26.14 30 13.85
5. RFC 67 12 25.16 18 7.89
6. LCOM 0 0 0 0 0
7. SCCR 5 2 3.276 3 2.97
8. NODBC 12 0 2.483 0 3.53
9. MI 91 40 61.14 56 18.04
10. CC 29 1 19.31 16 13.76
11. Change 95 5 41.98 67 45.67

Table 8.3: Descriptive Statistics of EASY System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 23 1 10.5 9.5 8.57
2. DIT 5 1 3.6 4 2.50
3. NOC 8 0 4.23 3 2.91
4. CBO 54 0 33.73 38.5 21.58
5. RFC 78 21 37.73 27 4.89
6. LCOM 0 0 0 0 0
7. SCCR 7 3 4.57 5 5.57
8. NODBC 7 0 2.79 0.5 3.43
9. MI 94 43 64.14 56.5 17.91
10. CC 22 1 20.6 19 14.26
11. Change 87 9 52.52 63 43.23

• First two projects namely FLMS and SMS systems are small sized projects and last

three projects namely IM system, ABILL system and EASY classes are medium sized

software.

• The maximum value of NOC for FLMS, SMS, IMS, ABILL and EASY are 7, 8, 11, 7

and 9 respectively which means reusability is properly implemented.

• The minimum value of LCOM is zero for all the software systems which means the

classes are quite cohesive. To calculate LCOM, number of pairs of methods which

have common attribute among themselves are subtracted from the number of pairs of

246

8.3. Research Methodology

Table 8.4: Descriptive Statistics of SMS System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 29 2 16.63 17.5 9.17
2. DIT 6 1 3.25 4 2.12
3. NOC 11 0 4.85 4 2.67
4. CBO 59 3 45.38 52.5 18.66
5. RFC 83 19 37.09 31 5.87
6. LCOM 0 0 0 0 0
7. SCCR 6 2 4.625 16.5 9.17
8. NODBC 6 0 3.89 3 2.50
9. MI 81 49 55.25 52 10.56
10. CC 27 1 21.50 19.5 19.61
11. Change 79 13 67.89 47 32.43

Table 8.5: Descriptive Statistics of IMS System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 12 0 3.147 3 2.57
2. DIT 5 4 4.029 4 0.17
3. NOC 7 0 2.81 3 1.91
4. CBO 30 2 13.08 13.5 8.09
5. RFC 43 18 21.09 27 5.07
6. LCOM 0 0 0 0 0
7. SCCR 12 0 3.147 3 2.57
8. NODBC 5 0 2.118 1 3.85
9. MI 100 48 71.79 67 17.84
10. CC 13 2 10.79 7 12.78
11. Change 213 18 79.87 103 67.93

methods having no common attributes among them. Its negative value is also consid-

ered as 0.

• Maximum values of DIT are 7, 5, 6, 5 and 6 respectively for FLMS, SMS, IMS,

ABILL and EASY systems which means inheritance is properly exploited in most of

the systems to their best.

• Mean values of CBO are 26.14, 33.73, 45.38, 13.08 and 14.93 respectively for FLMS,

SMS, IMS, ABILL and EASY systems. These values are observed as comparatively

less in all the systems which means coupling is comparatively towards the lower side.

247

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

Table 8.6: Descriptive Statistics of ABP System

S.No. Metric Max Min Mean Median Std Dev
1. WMC 11 1 2.483 2 1.84
2. DIT 6 3 4.017 4 0.13
3. NOC 9 0 5.25 5 1.09
4. CBO 29 4 14.93 17 8.56
5. RFC 49 21 26.83 31 9.89
6. LCOM 6 0 0.155 0 0
7. SCCR 11 1 2.483 2 1.84
8. NODBC 8 0 4.931 1 1.04
9. MI 100 40 69.5 61 21.03
10. CC 14 2 10.33 8.5 8.88
11. Change 189 19 91.23 78 45.63

Classes with less coupling are always preferable as they are easy to understand, main-

tain and reuse.

Mapping of changes observed in the values of independent variables to maintainability

is performed using the outcome of existing studies.

Figure 8.3: Roadmap to Link Changes in OO Metric to Maintainability

Measuring the external quality attributes is very difficult due to the subjective nature in-

248

8.4. Results and Analysis

volved as suggested by Moser et al. [163]. However, in this chapter, four external quality

attributes were carefully selected as they found to be directly correlated with maintainability

and measured using independent variables discussed in the previous section. The six impor-

tant software quality attributes specified in ISO 9126 [95] Quality Model are ‘Functionality’,

‘Reliability’, ‘Usability’, ‘Efficiency’, ‘Maintainability’ and ‘Portability. Selected OO met-

rics are measured before refactoring is applied for software code and collected again after the

particular refactoring method is applied. This enables us to observe the change in the values

of the OO metrics due to the application of specific refactoring method. At a given time only

one refactoring method is applied and its effects were observed. The process is repeated

each time for all refactoring methods one by one. Since this study is primarily related with

‘maintainability’, road map presented in figure 8.3 is used to map any change in the values

of the OO metric suite to its subsequent effect on maintainability.

8.4 Results and Analysis
In this section we present the results consisting of the changes observed in the OO met-

rics due to the application of particular refactoring method. First we observe the amount of

changes taken place in the values of each the OO metrics due to the application of selected

refactoring method one by one. Further, cumulative effects consisting of positive and neg-

ative direction due to the application of each refactoring method on the OO metrics were

analyzed and judged at 95% level of significance. Validation of hypothesis depending upon

the cumulative effects of particular refactoring method on all the OO metrics is discussed in

the last subsections.

8.4.1 Effects of Extract Method Refactoring
In this refactoring method, no new class is created. As evident from the Table 8.7, for

all the software systems there is no direct effect on the DIT, NOC and CBO metrics. The

newly created method increases the mean value of WMC metric for all systems. For small

systems, the mean value of WMC is increased by more than 2% whereas for large systems

249

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

it is increased by less than 1%. Creation of extracted method means there would be more

number of methods in each class. For any message received by any object of that class, more

number of methods would be executed hence proportionate increase in RFC for all systems

is observed. An increase in the LOC metric is also observed due to the addition of newly

extracted methods.

Table 8.7: Mean Effects of Extract Method Refactoring on OO Metrics

S.No. Refactoring Mean
WMC

Mean
DIT

Mean
NOC

Mean
CBO

Mean
RFC

Mean
LCOM

Mean
LOC

1. Before
refactoring

34 3 4 4.86 36.48 2 1484

2. After refac-
toring

39 3 4 4.86 42.69 1 1504

3. Mean
change

0.294 0.000 0.000 0.000 0.365 -0.059 1.176

4. % Change 0.754 0.000 0.000 0.000 0.856 -5.882 0.078

8.4.2 Effects of Encapsulating Field Refactoring

The Encapsulating Field refactoring method converts public data members to private data

members and creates two additional methods to get and set their values. As evident from the

Table 8.8 that the values of DIT, NOC and CBO metrics remain same when encapsulating

field refactoring method was applied for all systems. The mean value of the WMC metric is

increased by 4.71% and 2.76% for FLMS system and SMS system respectively. For larger

systems also increase in the mean value of WMC is observed. For IM system 2.09%, for

ABILL system 1.48% and for EASY system 2.07% change is observed. The value of LOC

is also increased for all the systems.

8.4.3 Effects of Consolidate Conditional Expression Refactoring

In this method many conditional statements are replaced by a single conditional statement

and the code becomes more compact. The effect of Consolidate Conditional Expression on

OO metrics is compiled in Table 8.9. We found that the effect of CCE refactoring method on

250

8.4. Results and Analysis

Table 8.8: Mean Effects of Encapsulating Field Refactoring on OO Metrics

S.No. Refactoring Mean
WMC

Mean
DIT

Mean
NOC

Mean
CBO

Mean
RFC

Mean
LCOM

Mean
LOC

1. Before
refactoring

34 3 4 4.86 36.48 2 1484

2. After refac-
toring

42 3 4 4.86 39.4 1 1518

3. Mean
change

0.47 1 0.000 0.000 0.000 0.172 -0.059 2.000

4. % Change 1.12 0.000 0.000 0.000 0.436 -5.882 0.132

the value of the LOC metric is negative for all systems as expected because many conditional

statements were replaced by a single statement. As evident from the Table 8.9 that, for

smaller systems more than 2% increase in WMC is observed whereas for larger systems this

increase is less than 1%. No effect on the mean values of DIT, NOC and CBO metric is

observed. Cohesiveness increases by 5%, 10%, 7%, 9% and 3% due to the creation of new

methods in few classes for FLMS, SMS, IMS, ABILL and EASY systems respectively.

Table 8.9: Mean Effects of Consolidate Conditional Expression Refactoring on OO Metrics

S.No. Refactoring Mean
WMC

Mean
DIT

Mean
NOC

Mean
CBO

Mean
RFC

Mean
LCOM

Mean
LOC

1. Before
refactoring

41 7 7 5.69 28.4 6 5941

2. After refac-
toring

49 7 7 5.69 31.8 1 5771

3. Mean
change

0.148 0.000 0.000 0.000 0.063 -0.093 -3.148

4. % Change 0.302 0.000 0.000 0.000 0.198 -9.259 -0.055

8.4.4 Effects of Extract Class Refactoring

We observed that the mean values of DIT, NOC and CBO metric increases significantly

whereas the increase in the mean value of NOC is very marginal for simple as well as com-

plex systems. As evident from the Table 8.10 that, in the context of simple systems for FLM

systems increase in the mean value of NOC is 2 and for SMS system it is 3. In the context

251

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

of complex systems, for IM system, an increase in the mean value of NOC is 3, for ABILL

system increase in the mean value of NOC is 5 and for EASY system increase in the mean

value of NOC is 5.

Table 8.10: Mean Effects of Extract Class Refactoring on OO Metrics

S.No. Refactoring Mean
WMC

Mean
DIT

Mean
NOC

Mean
CBO

Mean
RFC

Mean
LCOM

Mean
LOC

1. Before
refactoring

27 5 6 2.48 24.62 4 1729

2. After refac-
toring

22 7 9 3.19 21.44 7 1889

3. Mean
change

-0.172 0.069 0.103 0.024 -0.110 0.103 5.517

4. % Change -0.784 0.985 1.149 0.767 -0.511 1.478 0.292

8.4.5 Effects of Hide Method Refactoring

These refactoring methods neither create new classes nor redistribute responsibilities

among classes/ methods. As evident from the Table 8.11, it was observed that the OO metrics

were not at all affected by the application of this refactoring method, however, it is always

advisable to make use of ‘Hide Method’ refactoring process as it constantly enforces the

principle of OO paradigm into the code.

Table 8.11: Mean Effects of Hide Method Refactoring on OO Metrics

S.No. Refactoring Mean
WMC

Mean
DIT

Mean
NOC

Mean
CBO

Mean
RFC

Mean
LCOM

Mean
LOC

1. Before
refactoring

34 3 4 4.86 36.48 2 1484

2. After refac-
toring

39 3 4 4.86 42.69 1 1504

3. Mean
change

0.294 0.000 0.000 0.000 0.365 -0.059 1.176

4. % Change 0.754 0.000 0.000 0.000 0.856 -5.882 0.078

252

8.4. Results and Analysis

8.4.6 Cumulative Effect of Refactoring Method on Object Oriented

Metrics

In this section we first find cumulative effects of each refactoring method on the OO

metrics. To achieve this, the percentage change in the mean value of each metric due to the

application of all refactoring method is compiled for each software system and presented in

Table 8.12.

Table 8.12: Z-Test Results for 5% Level of Significance Against the Change in the Values of
OO Metrics

S.No. Statistical
Measures

WMC DIT NOC CBO RFC LCOM LOC

1. Standard
Deviation

0.518 0.405 0.530 0.428 0.483 3.942 0.152

2. Sample
Mean

0.268 0.199 0.263 0.153 0.114 -2.664 0.096

3. Population
Mean

-0.223895

4. Z-test
Values

0.192 0.132 0.167 0.366 0.505 1.638 1.867

These results are further checked at 5% level of significance for all the five systems under

study. A cumulative effect of each refactoring method is calculated by summing the values

of effects for each system using Table 8.7 to Table 8.11.

They are further checked for the mean change in the value of each OO metrics and

divided into three categories i.e. less than 5%, 5% to 10% and more than 10%. Finally

we also analyze if the effects of refactoring method are positive or negative and presented

in Table 8.13. The up direction of the arrow represents positive effect of refactoring on

maintainability whereas the down arrow represents the negative effects of refactoring on

maintainability.

↑ if the cumulative effect is positive and less than 5%

↑↑↑ if the cumulative effect is positive and between 5% to 10%

↑↑↑↑↑if the cumulative effect is positive and more than 10%

253

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

Table 8.13: Cumulative Effects of all Refactoring Methods on OO Metrics

S.No. Refactoring Mean
WMC

Mean
DIT

Mean
NOC

Mean
CBO

Mean
RFC

Mean
LCOM

Mean
LOC

1. Encapsulate Field ↑↑↑↑↑ - - - ↑↑↑ ↓↓↓ ↑
2. Extract Method ↑↑↑↑↑ - - - ↑↑↑ ↓↓↓↓ ↑
3. Hide Method - - - - - - -
4. Consolidate

Conditional
Expression

↑↑↑ - - - ↑ ↓ ↓↓↓

5. Extract Class ↓↓↓↓ ↑↑↑↑↑ ↑↑↑ ↑↑↑ ↓↓↓ ↑ ↑↑↑↑

↓ if the cumulative effect is negative and less than 5%

↓↓↓ if the cumulative effect is negative and between 5% to 10%

↓↓↓↓↓ if the cumulative effect is negative and more than 10%

− means there is no change

A line graph is also plotted to observe and compare the impact of each refactoring method

on each of the OO metrics. Figure 8.4 presents the cumulative effects of each refactoring

method on the OO metrics. It can easily be observed that CCE method introduces new

methods in the class which uses instances of same data members and class becomes more

cohesive. This can be observed in figure 8.4 that the value of LCOM is reduced due to the

application of CCE. The impact of CCE on LOC is also visible as many lines are replaced by

one or two conditional expressions. The introduction of new class due to the application of

‘Extract Class’ refactoring method, increases the values of the DIT, NOC and RFC metrics.

Refactoring Method ‘Encapsulating Field’ increases the values of WMC as well as RFC. Due

to the application of two refactoring methods namely ‘Extraction of class’ and ‘Extraction

of method’ the value of LOC increases. ‘Hide method’ does not have any direct impact on

the values of the OO metrics.

We have also compared our results with other related studies. Further, the effects of

selected refactoring method on the OO metrics and subsequently on maintainability were

also analyzed one by one along with their cumulative effects on the maintainability which

254

8.5. Validation of Hypotheses

Figure 8.4: Change in Metrics due to Refactoring

are briefly discussed in subsequent section.

8.5 Validation of Hypotheses
In this section we analyze the effects in depth and validate the hypothesis given in section

4.3. Before accepting or rejecting any hypothesis, the effects of applied refactoring methods

are evaluated on internal quality attributes as well as on external quality attributes.

8.5.1 Consolidated Conditional Expression Hypothesis

Many lines of source code are merged into a single statement which reduces the value of

LOC. Many studies [83, 127, 156, 168, 203] found that the LOC metric has a direct effect

on maintainability. WMC and RFC increases due to an additional method being added in

the same class and it has a negative impact on maintainability. This newly added method

accesses existing instances of data member which results in a reduction of LCOM value and

the class becomes more cohesive. There is no change on DIT, NOC and CBO as any new

class are not introduced. The cumulative effect on maintainability would be positive as LOC

255

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

and LCOM found to be a more significant predictor of maintainability in comparison with

WMC and RFC. Therefore, we reject the Null Hypothesis and accept Alternate Hypothesis

with the conclusion that CCE would certainly have a positive effect on maintainability.

8.5.2 Encapsulating Field Hypothesis

In this refactoring method, public data members are converted in to private and two ad-

ditional methods (to get and set the value) are created. The values of WMC, RFC and LOC

metrics are increased which is attributed to two newly created methods. There was no change

in the values of CBO, NOC and DIT as any new class was not introduced. LCOM value re-

duces as these newly created methods to ‘get’ the values of a member variable and ‘set’

the values of member variables uses the same instances of variable and class becomes more

cohesive. The LOC also increases due to newly created methods to get and set the values

of private members. Stroggylos and Spinellis [212] and Wie et al. [127] found that if we

add any method in to a class, this in turn add responsibilities to the class and it becomes

more complex and harder to maintain. However, our study found that it does not neces-

sarily reflect in the corresponding decline in maintainability as the level of abstraction also

increases which in turn contributes towards augmented understandability and overall main-

tainability. The positive effects of ‘understandability due to abstraction’ are much more than

the negative effects of WMC, LOC and RFC on maintainability. Hence, we accept alterna-

tive hypothesis and reject the null hypothesis and state that EF would have a positive effect

on maintainability.

8.5.3 Extract Method Hypothesis

This refactoring method is extremely easy where a large method is decomposed into

smaller ones and offers several benefits. The code becomes more readable and the next

developer needs less time in investigating the existing code before modifying it during the

maintenance phase. It increases the values of the WMC, RFC and LOC metrics because

new methods are extracted from existing methods in the same class. There is no effect on the

256

8.5. Validation of Hypotheses

values of the CBO, DIT and NOC metrics as any new class is not created. The class becomes

more cohesive as the value of the LCOM metric is reduced due to a newly created method

which uses same instances. This study found that even though increased values of the WMC,

RFC and LOC metrics gives negative impact on maintainability, yet overall maintainability

improves. This can be understood by the beautiful example of a house where although walls

made in the house consumes space but it clearly separates each room and the overall house

becomes more organized. Hence, we accept the alternative hypothesis and reject the null

hypothesis and state that EM would have a positive effect on maintainability.

8.5.4 Extract Class Hypothesis

In this refactoring method new class is created which moves the relevant fields and meth-

ods from source classes into a new class. It increases the values of the DIT, CBO and NOC

metrics due to the addition of a new class. However reduction in the values of the RFC,

WMC and LOC metrics is observed due to additional new classes in which common code of

few classes was moved upward with an endeavor to achieve reusability. Further it increases

the coupling between the classes as the extracted class and source class shares same data

which is visible through the increased value of CBO metric. Since common attributes and

methods of many classes are extracted in to a new class in this refactoring process with the

sole aim to achieve ‘Reusability’, overall the value of LOC metric is reduced. Many studies

[43, 55, 127] found a reduction in maintainability due to increased values of the DIT, NOC

and CBO metrics. In the current study we also found that this refactoring method decreases

‘Maintainability’ at the cost of gaining ‘Reusability’. Hence, we accept the Null Hypothesis

and reject the Alternate Hypothesis and state that EC would certainly have a negative effect

on maintainability. Here, the software practitioner has to make a cautious choice between

‘Maintainability’ and ‘Reusability’.

257

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

8.5.5 Hide Method Hypothesis

This refactoring method only changes the visibility of the member function from public

mode to private mode after ensuring that it is not used by any other class. There is no

change recorded on the value of internal the OO metric when this refactoring method was

applied. It is so because this process does not redistribute responsibilities assign to any

class and only the visibility of one method was converted from public to private. Results

are in full agreement with Elish and Elish [62]. This refactoring process neither alters the

structural design nor do amends responsibilities assign to any class hence we accept the Null

Hypothesis and reject the Alternate Hypothesis. Even though this refactoring method found

to be not related to the OO metrics and further to maintainability in any circumstances, yet

it is an important refactoring process which ensures that codes follow data hiding principle

which is an important part of ‘Encapsulation’.

At the end we would like to mention very interesting observation that decision about

refactoring should not be made only on the basis of change in the values of the OO metrics,

instead while calculating the final impact on maintainability, all the internal quality met-

rics along with the external quality attributes should also be given enough weightage and

based upon cumulative effects of internal and external quality factors, overall final impact

on maintainability should be calculated. Programmers cannot blindly apply refactoring each

and every day, instead enough time should be spent to find pros and cons of refactoring

process and the final call should be adopted.

8.6 Discussion
The effects of few selected refactoring techniques on maintainability have been inves-

tigated in this chapter. In the process, a customized source code was used to perform a

refactoring process using automated tool. Values of the OO metrics proposed by Chidamber

and Kemerer [43] were calculated before and after refactoring process and changes in met-

rics were further mapped to maintainability. The results achieved in this chapter are based

258

8.6. Discussion

on the experiment’s output obtained by applying refactoring methods on real life applica-

tions. Since these applications have specific development environment to achieve particular

behavior, therefore results cannot be generalized. Based on another empirical investigations

carried by us [137], it is assumed that the OO metrics used in the current study to capture

software design characteristics of the systems have significant relationship with maintain-

ability. Experiments conducted in controlled environment would be more preferable where

all the OO metrics will be kept constant except the one under investigation. To measure the

cohesion present in the classes, LCOM metric proposed by Chidamber and Kemerer is used

in the current study although it has been criticized by researchers [155]. It is also an impor-

tant point worth mentioning that code used in the current study is developed in C# and we

assume it is equally valid for other OO methodologies, however, further research is required

to be undertaken to verify these results on other OO languages such as Java. Five real life

systems were used to analyze and empirically validate the effect of refactoring process on

maintainability and following results were obtained:

• First observation is that although ‘Encapsulating Field’ and ‘Extract Method’ increases

values of WMC, LOC and RFC which means reduced maintainability however it is

not so because of the increased level of abstraction, increased understandability and

increased reusability.

• Second observation is that ‘Extract Class’ increases maintainability as classes becomes

clearer, crisper and organized which further increases reusability understandability,

modifiable and maintainability.

• The third observation is that although ‘Hide Method’ does not change any metrics

value and do not have direct effects on maintainability but OO principles are injected

into the code and code becomes modifiable.

• Finally, we conclude that decision about maintainability of any given code should not

be made on the basis of sheer reflection of values of OO metrics but other external

259

Chapter 8. Empirical Study to Assess Refactoring Effects on Software
Maintainability

quality attributes such as ‘Level of Abstraction’, ‘Understandability’, ‘Modifiability’,

‘Extensibility’ and ‘Reusability’ should also be taken in to account while judging the

maintainability of the code as they have much larger impact.

260

Chapter 9

Comparative Analysis of Agile Methods

and Iterative Enhancement Model in

Assessment of Software Maintenance

9.1 Introduction
Achieving the desired quality of software becomes difficult for developers and they often

overstep budgetary constraints, therefore, it is an ongoing endeavor to find a most appropriate

solution with minimum cost. The agile approach helps in business to address the problem

of unpredictability. The software industry is moving swiftly towards agile methodology to

ensure quality, reliability and scalability of software products delivered since it provides

alternatives to the traditional project management techniques.

The current chapter provides insight into the impact of the agile framework using scrum

on the deliverable as compared to the IEM. Scrum is the most commonly used agile method

applied to the projects having fast changing requirements. Development of this method is

implemented through a series of iterations known as sprints. In this study, the same product

is developed using scrum methods as well as IEM Method and various metrics were used to

261

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

compare both the products such as the stage of SDLC when the defect was identified, the

number of defects identified, the number of change requests received etc. All these metrics

are carefully selected as they are significant while analyzing the maintainability of any given

software.

In this chapter, we investigate the following issues:

1. How quickly the defects can be identified in the product if it developed using agile

based development instead of traditional development.

2. What is the difference in features provided when the product is rolled out using agile

methods instead of traditional development with respect to time?

3. Does the number of change requests decrease during the maintenance phase, if the

product is based on agile methods instead of traditional methods?

4. Are we able to identify the presence of error sooner if the product is developing in the

presence of customer using agile methods?

5. How accurately and precisely the errors can be identified when development is based

on scrum method.

In the current chapter, an attempt has been made to quantitatively compare the perfor-

mance of the agile method and IEM method on software maintenance using maintenance

metrics. The chapter is organized as follows: Section 9.2 states the characteristics of agile

methodologies, their advantages and disadvantages. Section 9.3 describes various methods

covered under the umbrella of agile methodologies. Section 9.4 presents the experimental

design, problem statement and design description of two methods IEM and scrum selected in

the current study. The results of the study are analyzed in section 9.5 where scrum model is

evaluated and compared with IEM method. Finally, discussions of the research is presented

in section 9.6.

The results of this chapter have been reported in [143].

262

9.2. Comparison of Agile Development with Traditional Development

9.2 Comparison of Agile Development with Traditional De-

velopment
There are many differences between traditional software development methods and ag-

ile software development methods. As suggested by Boehm [28], the primary objective of

traditional development is high assurance whereas the primary objective of agile software de-

velopment is rapid value. Traditional systems are designed with meticulous planning hence

they are very predictable in nature, however, in the case of agile software, they are devel-

oped by small teams imparting the continuous improvements in the system, based on rapid

feedback hence they are unpredictable in nature.

9.2.1 Major Characteristics of Agile Technology

Agile methodology results in the addition of new features in a flexible manner when

applied to any software development domain. Agile is iterative, incremental and evolutionary

which consists of short time frames. It gives special emphasis on face-to-face communication

in the presence of a customer representative. It does not involve long-term planning; instead

creates a working model and adapts to change requirement quickly as per the continuous

feedback received from the customer. It is focused on the quality of the products and the

process of unit testing is automated to efficiently run regression suites as and when required.

Cross Functional Teams (CFT) are formed in the beginning which includes members with

functional expertise in different areas. Pair programming practice is strictly followed to

ensure that every modification of addition, deletion or update of the LOC is peer reviewed

before it is sent for production. Brief characteristics of agile methodology are described as

follows:

1. In agile development, a cross functional team is created which consists of team mem-

bers with varied functional expertise and specialist knowledge. Most agile methods

divide the tasks into smaller increments. Duration of one iteration is typically 15-30

263

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

days and it involves a team working in the required functions like planning, require-

ment elicitation, system design, coding, unit testing and user acceptance testing. After

the completion of one iteration, working segment of the product that has been de-

veloped is demonstrated to the stakeholders. This helps risk mitigation and allows

the project to adjust to changes quickly. A single iteration might not be cumbersome

enough to add a major chunk of functionality that could ensure a market release, but

after each iteration, the aim is to have a correct working product segment. The release

of an entire product with the required feature set is only possible after a number of

iterations.

2. Agile is methodical and involves face-to-face communication; hence, it can be used for

the development in all domains. However the presence of a customer representative is

imperative. For example, in the scrum methodology of agile the product owner acts as

the customer representative. The product owner becomes an active participant in the

scrum team. Any business related query that affects the development is answered by

the product owner. He is the single point of contact for all the stakeholders as well. A

continuous re-evaluation of priorities, in terms of the features required to be developed,

are initiated after each iteration to maximize the returns and adapt to customer changes

efficiently. This also helps in keeping up with the company goals.

3. Agile adapts to requirement changes quickly and aids in continuous feedback. In order

to keep track of the progress of the work allocated to a team, daily status meetings are

conducted. In the scrum framework these status meetings are referred to as stand ups

or the daily scrum. In these meetings the team members notify the other team members

of daily progress on their assigned tasks, their plan for that day and if there is some

delay in functionality and how they are going to deal with it.

4. The quality of the end product is a prime deciding factor in the success of any devel-

opment approach based on agile methods. To ensure quality, the team follows certain

264

9.2. Comparison of Agile Development with Traditional Development

best practices and adheres to coding standards. The code from the branched working

copy is merged back into the trunk periodically to ensure that the working copy of the

developers is up to date and hence the code impact is minimal. The process of unit

testing is automated to efficiently run regression suites as and when required. The pair

programming practice is followed which ensures that every modification of addition

of LOC is reviewed by a peers before being sent to production.

9.2.2 Principles of Agile Technology

Agile methodology has emerged as development paradigm with following set of princi-

ples which give an upper hand over the traditional SDLC approaches:

1. Involvement of the user in all development and delivery activities is imperative.

2. The decision-making power should lie with the team.

3. The team’s analysis on the time-lines should be trusted.

4. The timescale of iteration is fixed even if the requirements get mature.

5. The requirements should be captured at a high level.

6. The process should always be flexible.

7. Development should be done in small and additive releases.

8. The focus should always remain on frequent roll out of releases and delivery of prod-

ucts

9. The feature being worked upon should be completed before any new feature is picked

up for implementation.

10. Pareto principle of 80:20 rules is applied in all cases.

11. The Quality Assurance (QA) activities are introduced early in the development cycle.

265

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

12. Stakeholders always remain in perfect synchronization about the requirements and

expectations.

9.2.3 Advantages of Agile Methodology

The software industry is moving towards the agile methodology to ensure quality, reli-

ability and scalability of software products delivered as it provides alternatives to the tra-

ditional project management techniques. Moreover, the agile approach also helps in the

business to respond to the problem of unpredictability. Scrum is most commonly used agile

method that can be applied to a project which has rapidly changing requirements because

development is implemented through a series of iterations known as sprints.

Agile methodologies always have up-front requirements. Instead of sheer development,

it focuses more on the developers’ and customers’ relationship. Agile methods are iterative

in nature which helps the organization to maintain their software in more flexible manner.

Due to these continuous iterations that too in the presence of customer, product quality and

performance enhances remarkably. With agile methods put in place, customers are more

satisfied and maintenance work consumes lesser time and cost.

Figure 9.1: Advantages of Agile Methodologies

266

9.2. Comparison of Agile Development with Traditional Development

Agile releases short prototypes after each cycle, so that the users can continuously re-

view it and monitor the development to provide much needed continuous feedback. With

the rapidness in the product delivery, the transition of maintenance from waterfall to agile

methodology environment is increasingly faster. The advantages of agile methodologies are

summarized in figure 9.1.

9.2.4 Disadvantages of Agile Methodology

One of the major disadvantages of agile methods arises due to the presence of customer

that it require a big commitment for the duration. Miscommunication is another major factor

that leads to the problem during the implementation of the agile methodologies in the SDLC.

Testing is conducted throughout the SDLC, therefore, it requires the testers to be at the

same place during the lifespan of the project development. This unnecessarily increases the

resources of the project which in turn increases the overall cost. It becomes difficult to find

the pace for the software development. The overall weaknesses of agile are summarized in

figure 9.2.

Figure 9.2: Disadvantages of Agile Methodologies

267

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

9.3 Types of Agile Methodologies
There are various methodologies covered under the umbrella of the agile methodology

such as crystal programming, scrum, pair programming etc. In figure 9.3 we have summa-

rized all those technologies which are covered under agile methods. However, there are two

characteristics which are common to all methods; firstly, they all are iterative, incremen-

tal and evolutionary in nature and secondly, customer involvement throughout the SDLC is

obligatory. All these technologies are explained in brief as under:

Figure 9.3: Various Technologies Cover under Agile Method

1. Kanban: It acts as a pull system for work-in-progress stories. The visual work-flow is

very important and the billboard is prepared to elucidate the status of all the stories.

Its aim is to control and manage the business chain instead of simple book keeping by

setting an upper cap on the number of work in progress stories.

2. Scrum: It is an iterative model particularly concentrates on performing development

tasks in a team based domain. A Cross Functional Teams (CFT) works in collaboration

268

9.3. Types of Agile Methodologies

with other CFTs on a framework consists of a set of rules, a defined pattern of roles,

artifacts and planned meetings.

3. eXtreme Programming: Relatively stringent, as the name suggests it goes to the ex-

tremes of any applied process. It has a major focus on perpetual reviews, pair program-

ming, code refactoring activities, testing activities, and code reviews which results in

a better quality product.

4. Test-driven development: In this approach test cases are written even before the coding

itself. Software development involves short cycles wherein quality is always kept as a

top most priority. Refactoring into the existing code is frequently carried out till code

quality reaches to an acceptable level.

5. Lean: It is specially designed for the application developed under extreme economic

conditions. Instead of formal business plans, it starts with plan-as-you-go approach;

hence it’s a quickest and most effective way to build a new business application.

6. Crystal: It is considered as a lightweight method which can be applied to the devel-

opment of software systems that are not life-critical. It concentrates on frequent code

delivery to the user with the provision of enhancement. Ease of access to the expert

user is the most important principle.

7. Adaptive Software Development: Major focus is on handling rapidly changing envi-

ronments during any stage of the product development. The system is developed by

the small team and focus is to embrace, rather than reject, higher rates of change.

8. Dynamic Systems Development Method: It’s mainly based on rapid application de-

velopment with continuous and active customer involvement. It concentrates on co-

operation and collaboration between all stakeholders and removes any communication

barrier between them. The software system always delivered on time, within budget

and meet almost all of the customer requirements.

269

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

9. Clean code: Clean codes are based on three principles i.e. developer should use the

right tool before writing the code. They should optimize the signal to noise ratio and

code should always be self documented. Clean code always presses for small func-

tions and only one function for one job. This principle also highlights the importance

of comments and suggests that every code must be written along with clear under-

standable comments.

10. Pair Programming: Pair programming is one of the famous agile methods originated

from XP. As the name suggests, in this technique two developers work together on

the single computer during the development phase. One developer is called as ‘driver’

whereas another is called ‘navigator’. Duties of driver involves looking after the tech-

niques, syntaxes, and semantics part whereas the duties of navigator are more towards

the level of abstraction. Navigator always think from the tester point of view for ex-

ample ‘time elapsed since last test run’, ‘type of test cases which have to be passed’,

‘technical tasks to be delivered next’ etc. The basic idea of implementing pair pro-

gramming is that pairing always results in improved design, less bugs, more function-

ality and compliance to standards.

9.4 Discussion
There are so many agile methodologies available in the industry as discussed in the pre-

vious section and choosing the one was real herculean task. From all these available options,

Scrum technique is selected in the current study due to numerous reasons. The main reason

of using Scrum is because it is the only method which offers time bound delivery. It is also

the most transparent agile method and offers high quality product. Fundamental principal of

Scrum is ‘stop starting start finishing’ [97, 112, 178]. It also allows client to change priorities

and requirements quickly as per the limitation of the time.

When the product is developed using Scrum, it becomes more stable. As the scrum

method require strict adherence to the time-line and schedules, team members can achieve

270

9.5. Experimental Design

sustainable peace with scrum methods. Although, the framework of the Scrum is very sim-

ple, yet it works very well for any complex and innovative projects. It emphasizes team

collaboration and provides a small set of rules that create boundaries for teams members and

they can focus on problem solving. Scrum gives power to client that he can prioritize the re-

quirements, or even change the requirements during development. At the same time, it gives

power to the team to commit to the requirements per their capability. All the work done in

Scrum is iterative and incremental, and it time boxes the process. Scrum also emphasizes on

feedback, hence the cross functional team get feedback from the client as early as possible

and deliver a working product that will actually be used. It also allows the team members

to review the product after each sprint so that the improvement can be made within short

cycles.

9.5 Experimental Design
This section first explains the difference between scrum and IEM methodology and then

presents the problem statement and experiment setup for both the methods.

9.5.1 Scrum versus Iterative Enhancement Method

In this section, we have compared the agile approach with the non-agile approach. For

agile based approach, one of the famous agile methods ‘Scrum’ is selected and for non-agile

based method IEM is selected. Both the methods are described as follows:

9.5.1.1 Iterative Enhancement Method

The progress is made through successive refinements in IEM Method during which de-

velopmental team tries to put first cut into the system knowingly well that many areas are

incomplete. The product is improved through refinement in greater detail with each iteration

till it reaches a satisfactory level.

As depicted in figure 9.4, massive planning for each sub-part is planned first by creating a

working prototype. After the requirement, analysis and design phases for the whole system

271

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

Figure 9.4: Architecture of Iterative Enhance Model

are put in place, functionality expected out of the system are divided into critical, vital,

significant, considerable and trivial. Code, test, evaluate and verify phase for each of the

subsystems are achieved in next successive phases in sequence. Hence, the team does not

focus on tracking the progress of individual feature; instead the focus is on refining the whole

product with each phase.

9.5.1.2 Scrum Method

Scrum, one of the most popular agile methods is used in the current study which is based

on various concepts such as user stories, daily scrum meetings, product backlog, sprint back-

log, sprints, and delivery-ready after each sprint [112, 178, 185]. Developed by Schwaber

and Sutherland [199], scrum word is originated from the popular sport ‘rugby’ because the

strategy to describe development process is exactly the way it is created in rugby. As shown

in figure 9.5, it reduces the planning overhead as the product is very flexible and easily ac-

commodates the changing needs of stakeholders at any developmental stage. Each short

cycle known as sprint includes requirement gathering, analysis, design, testing, evaluation

and prioritization of features.

272

9.5. Experimental Design

Figure 9.5: Architecture of Scrum Model

9.5.1.3 The Framework of Scrum

There are three major components in scrum framework i.e. roles, ceremonies, and arti-

facts’. Three major roles in the scrum are the product owner, team and the scrum master.

Duties of the product owner involve initial and on-going funding, listing of requirements and

release plans. Duties of the teams involve design and implementations of the listed require-

ments in the presence of the customer. These teams are intentionally made cross functional

in order to maximize the performance because they are self-organizing and self managing.

Success or failure of any project solely depends on the teams’ functionality. One person

is appointed as scrum master to ensure that scrum values, practices, and rules are properly

enforced. He is also responsible for removing if there are any impediments imposed on the

developers.

9.5.2 Problem Statement

In a bid to compare the results provided by the scrum method with IEM method, the first

step was to identify the problem statement to be created and developed. The idea was to

work on the same problem statement with two different approaches and compare the quality

273

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

of the product through both methodologies. The aim was to develop an application with an

average size and complexity so that the focus could be on implementing the SDLC process

efficiently.

The requirements were further scaled down to one project and it was finalized that a hotel

management system would be developed using IEM method as well as scrum method. Once

the project was selected and finalized, the next step was to decide the requirements of the

application which would be similar for both the development methodologies. This led to the

requirement gathering phase which was similar for both the development methodologies.

9.5.3 Experiment Setup

The requirement gathering process started with identifying the purpose and scope of the

application. It was identified that the purpose of this application was to gradually manage

the activities of hotel electronically. A hotel deals with multiple check-in and check-out

of guests every day wherein keeping data pertaining to all guests, their daily expenditure

incurred on messing, laundry and services have to be adjusted in their final bill at the time

of check-outs. It leads to a lot of data management which was required to be developed

and the Software Requirement Specification (SRS) for the project was finalized. After the

requirement gathering, the design documents were prepared for IEM method and scrum

method which were entirely different.

9.5.4 Development using Iterative Enhancement Method

As we finished with requirement gathering, working on IEM method started with the de-

velopment of the analysis and design documents of the product. The technical design and the

architecture of all modules were included during this phase. All functionalities were defined

for the product. The next step in this model was to convert the specified design into appli-

cation code. As we begin with code and test part, first of all, the functionality for add room,

display room, and the delete room was coded and tested. Unit testing was done to check for

any defects, the bugs were logged, reported and the defect sheet was prepared. In the next

274

9.5. Experimental Design

phase, we included the Utility Module and now Check-in, Check-out, and Room-occupancy

Status functionality were added. This phase also started and continued in the same fashion as

the previous two phases. In the next phase, restaurant-dining functionality was added. The

last phase included the Report generation for modules on Occupied-Rooms, Free-Rooms,

and List-of-All-Rooms. Finally, the documentation of all the phases was completed and it

was marked as the end of the first part of the research work.

9.5.5 Development using Scrum Method

In scrum development, a team consisting of six individuals was formed and respective

roles were assigned as the main principle involves working in a team. The team includes one

product owner, one designer, two developers, one tester and one quality analyzer. The team

members acted as the stakeholders and they were empowered to take the decisions for the ap-

plication. They were provided with the design requirement and given the authority to sched-

ule and prioritize the stories on the basis of the team’s bandwidth and the inter-dependencies

between stories. The hardware and software requirements, technical specifications of design

and architecture were also fixed. At the inception of the project, it was also planned that

Agilefant tool will be used. It is a tracking and planning software tool for agile projects

which provides end-to-end project management, portfolio management and support product

planning. It helps in project scheduling and tracking by managing various activities such as

track the progress, check individual assignments, update status and verify burn downs.

9.5.5.1 Activities in Sprint 0

To begin with, requirements were defined in the product backlog tab in Agilefant. It

can hold the description of all the new features that have to be incorporated, the bugs which

have been identified in the product and the ideas that can be introduced as an improvement

to the existing product. The parent level is the product level which holds the name and

description of the product while the second level is a project and multiple projects created

under a product. A product backlog has a number of stories which have to be completed

275

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

before a product is considered as completed. The third level is that of iteration, known as a

sprint in scrum method. The team decides the stories that can be picked up and completed

from the backlog in a sprint. These stories were made as one of the constituents of the sprints.

In addition to these stories, a sprint also contains tasks that are required to be performed in

order to accomplish these stories. The selection of stories was based on various factors, like

their priority for the customer or their dependency on another story.

9.5.5.2 Activities in Sprint 1

The first sprint was used for planning by the team to understand the flow and structure of

the application. The team members analyzed the stories that could be started and completed

in the first sprint. By this way, they had a fair idea of the product backlog and the require-

ments of the product owner. They were introduced to the stakeholders of the application.

They also attended a story grooming session so that the expectations from various stories

were clear to the entire team. At the end of this sprint, the team knew the technology that

had to be used to build this application, the stories in the product backlog, the scheduled sto-

ries, the stakeholders and Agilefant tool. A spiked story was created to show the occupancy

of the users in this Sprint, however, no story points or estimation hours were assigned.

9.5.5.3 Activities in Sprint 2

The second sprint started with the story planning meet during which story points are

assigned to the scheduled stories. For example, the add room story remained open due to the

defects identified in it and hence the tasks were not deemed complete. The story cannot be

considered as closed unless all the constituent tasks of the story get complete individually.

9.5.5.4 Activities in Sprint 3

Similar to the process followed in the earlier sprint, the third sprint started with the plan-

ning meet and assigning the story points to the scheduled stories. The team started the

development activities on the scheduled stories. The stories for which all acceptance tests

correctly passed were successfully closed (marked as done) and the others for which some

276

9.6. Result Analysis

alternate case flows failed were re-opened and assigned back to the scrum master for fur-

ther action. For example, the Guest Dining story was successfully closed as no defects were

pending to be completed. The story was closed, marked as done and assigned back to the

scrum master. Towards the closure of the sprint, the functionality of the done stories was

demonstrated to the product owner (PO). The stories are marked as delivered when the PO

approves the functionality of the application. With the end of this sprint, the application was

developed using both the methodologies as defined above.

9.6 Result Analysis
In the current study, an endeavor was made to compare the same product developed,

using IEM method as well as scrum method. In order to identify the cost and other benefits

using the agile method, both products were compared using various metrics such as the

number of defects identified, time and stage of SDLC when the defects were identified,

number of change requests received, time of error detection and the features rolled out by

both methods. The results provide evidence that scrum method is beneficial both in terms

of fast development and cost reduction without compromising on the quality issue. It also

emerged that scrum method starts early on cracking the problem without wasting much time

on requirements gathering and initial planning. As the development cycles are short in scrum

method, it was also observed that due to the frequent end-user interaction, early feedback

was extremely helpful in implementing the corrective maintenance procedures. Surprisingly,

the defect rates were reduced and the teams’ productivity was also enhanced using scrum

method.

The under mentioned four metrics were used to compare both the processes to measure

wherever any improvement was provided by scrum over the IEM method:

9.6.1 Number of Defects Identified in the Product
The defect is defined as a condition in software system when it does not meet the re-

quirement or expectations of the customer due to malfunctioning of the program because of

277

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

the error in coding or logic. In this study, this metric counts the number of defects that were

identified in the product using both methods. In Table 9.1, we have compiled the number of

defects identified in each of the phases for both methods.

Table 9.1: Number of Defects Identified in IEM and Scrum Method

S.No. Phase IEM Method Sprints Scrum Method
1. Phase 1 6 Sprint 0 2
2. Phase 2 9 Sprint 1 5
3. Phase 3 1 Sprint 2 4
4. Phase 4 1 Sprint 3 2

In IEM method, as evident from Table 9.1, the number of the defect was very high in

the first two phases and after that decline was observed. However, when the development

was done using scrum method, the numbers of defects identified during all the sprints were

found to be relatively consistent. When we delve deeper into the statistics and understood

the type of defects identified, we realized that the scrum method poses a clear advantage over

IEM method because it involves demonstration to the customer and constantly considering

his feedback. For example, in the first sprint, the majority of bugs identified dealt with field

validations and negative scenarios of junk data entries which were not stated specifically

in the SRS. While working in the scrum method, this gap in the requirements was easily

noticed just after the first sprint because of the presence of the customer. Hence, the timely

feedback from the customer was incorporated in all further stories. However, this advantage

could not be derived with the IEM method and the team could not bridge the gap between

the stipulated requirements and customer expectations.

9.6.2 Number of Change Requests Received

This metric counts the time (in days) when the change requests were logged by the cus-

tomer during the product development using the IEM and scrum method which is compiled

in Table 9.2.

As evident from the Table 9.2, scrum method detects change requests earlier than the

278

9.6. Result Analysis

Table 9.2: Description of the Change Request Received

S.No. Change Request Description Day When Change Request Received
IEM Method Scrum Method

1. Change the date format from dd-mm-
yyyy to mm-dd-yyyy

15th days 9th day

2. Provision for inventory control of the
items needed to manage the hotel on a
daily basis.

15th days 11th day

3. Round off for the bill to nearest rupees 15th days 16th day
4. Provision of foreign currency such as

Pound, Dollars, and Yen
30th days 21st day

5. Trend analysis for the yearlong occu-
pancy for launching the promotional
schemes

30th day 26th day

6. The Rooms that are deleted in the appli-
cation should be tracked and audited

45th day 32nd day

IEM method as the customer was present constantly during development. For example, the

date format used in the application was expected to be changed because the dimensions of

the business had changed before the application was finally ready and ported to the customer

for use. The customer wanted to sell this product to a third party in the UK which follows

a strict mm-dd-yyyy date format. This way the above change in business requirement was

addressed at 15th day with IEM method whereas with scrum method, it was detected on 9th

day itself. Consider the second case, wherein the customer realized that after deletion of a

room from the system, the data was not being audited. This deletion activity was not being

tracked whereas it might be required at a later stage for maintenance purpose. Accordingly

it was requested that this data should be removed from the active database of the application

and stored in a different set of files which can be accessed on as on required basis. This

change was actually an addition of a new feature in the application, unlike the previous

change requests which was a change in the business requirement. As the product using scrum

method was more flexible, accommodating such a request at a later stage was comparatively

easier to address than IEM method.

279

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

9.6.3 Features Rolled Out with Respect to Time

This metric compares the number of features which were made available to the customer

in the product for final use. Table 9.3 and 9.4 highlights the number of features developed

and delivered with respect to time at the end of each iterations with IEM and scrum method

respectively. The data represented in tables highlight how the major features were developed

and delivered.

Table 9.3: Features Rolled Out With Respect to Time in IEM Method

S.No. Phases Time Spent Nos. of fea-
tures

Features

1. Phase 1 15 days 3 Add Room, Delete Room, Dis-
play Room

2. Phase 2 15 days 3 Check-in, Check-out, Bills
3. Phase 3 5 days 1 Room Occupied
4. Phase 4 15 days 3 Restaurant dinning

The scrum method followed a strict demo and release pattern at the end of every sprint;

hence the stories completed in each sprint were made available to the customer. However,

in the case of the IEM method, each feature was delivered and without a comprehensive

feedback cycle the team started working on the development of next phase for delivery. For

example, it can be seen that the added room and display room features were delivered to the

customer within 10 days using the scrum method. However, it took 15 days to deliver the

same features using the IEM method. Hence, it was found that with the use of scrum method,

faster delivery of the developed software can be achieved to the customer in comparison of

IEM method.

9.6.4 Time of Error Detection

It’s well documented that error correction gets costly as their detection is delayed in the

SDLC [171]. This metric compares the time of defect detection in IEM and scrum method

of development. Table 9.5 compiles the type of defect and time of detection of defects using

both the methods separately. As evident from the Table, the scrum method facilitated the

280

9.7. Discussion

Table 9.4: Features Rolled Out with Respect To Time in Scrum Method

S.No. Sprint Time Spent Nos. of Fea-
tures

Features Description

1. Sprint 0 10 days 0 Spike only sprint. This sprint is
not billed

2. Sprint 1 9 days 2 Add Room, Display Room
3. Sprint 2 12 days 8 Delete Room, Check-in, Check-

out, Room Occupied, Free
Rooms, List all rooms, Bills

4. Sprint 3 8 days 8 Restaurant dining room

identification of errors much earlier in the cycle as compared to their time of identification

in the IEM method.

This difference is seen because of fixed length iterations and the competency of the team

members participating in scrum method. The team members were comfortable with their

respective software development technology which further improves the overall productivity

of the software.

9.7 Discussion
Agile methodology is becoming the de-facto standard in the software development in-

dustry. In the current empirical study, an attempt was made to validate its usefulness for the

customer as well as the developer. The benefits that agile methodologies provide needs to be

weighed against the code and design quality of the software produced using these methods.

In this empirical study, given problem was solved using two approaches, agile based and

non-agile based. For the agile based approach, scrum method was selected and for non-agile

based approach, IEM was selected to develop the product. Further, their quality was com-

pared against various metrics such as the number of defects identified, time when the defect

was identified, stage of the SDLC when the defect was found, number of change requests

received, and the features rolled out by both methods. The main findings of the work are

summarized below:

1. It clearly emerges that agile methodology encourages better planning due to the cus-

281

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

Table 9.5: Time of Defect Detection With IEM and Scrum Method

S.No. Defect Title Description Time of Error Detection
IEM
Method

Scrum
Method

2. During Room Addition time, Invalid inputs are getting
accept in Room No. Field.

15 10

3. Duplicate Room no. Values are getting accept while
Room Addition.

15 9

4. On entering numeral value in ”More Rooms” option, the
value is getting accept

15 9

5. Numeral values are getting accepted in room type while
adding Room.

15 8

6. Crash is observed on entering alphabets while adding
Room

30 12

7. On entering alphabets in ”Menu-Admin-Delete Room”
Delete Room functionality is not working.

30 14

8. Wrong error message ”The rooms of this type are full” is
displayed on ”check-in” room type which is not available

30 16

9. Rooms are getting ”check out” without getting ”check
in” and junk values are displayed in phone no. And to-
day’s date.

45 22

10. Occupant name is displayed as ”@” in ”List of Rooms”
displayed.

45 21

11. Check in date is getting accepted as date higher than the
current date.

15 7

12. On entering invalid Room no. For checkout, no error
message is displayed.

15 8

13. Spelling error of ”Restaurant” observed at the home
page.

30 22

14. At ”Check-in” option, on entering numerals value in
Name, wrong value is displayed in List of Rooms avail-
able[name + address value appended]

30 18

15. At check-out option, in phone no. Option, the date is
appended with phone no.

45 17

16. On entering invalid numeral input in ”Number of days”
at ”Check out” time, everything is calculated as 0

45 19

17. On entering alphabet input in ”Number of days” at
”check out” time, wrong results are displayed.

30 21

18. All available room of the desired type are not displayed
for check in.

30 20

282

9.7. Discussion

tomer involvement thus more amenable to accommodate the desired changes easily.

2. Agile methodology is also beneficial as it overtly emphasizes on highly interactive

and frequent communication between developers and customers. This method also

ensures dynamic development and facilitates quick delivery with a scope of continuous

enhancement because the product is very flexible in nature.

3. We found that defects are identified at early stages of SDLC thereby avoiding any cost

overrun. Software maintenance is the most expensive phase of SDLC as it utilizes the

maximum share of the overall project costs.

4. Collaboration among various teams was seen as an issue in agile methodology because

of the scattering of information in various systems which sometimes make it difficult

for making daily decisions.

5. Further, velocity was also seen as an issue because composite applications, applica-

tions that consist of multiple components impose challenges. It may be difficult to

track and resolve defect within time constraints in the products developed using agile

methodology because a defect can have its roots spread in multiple parts of the system

of the enterprise environment. Further, regression testing also becomes an issue post

defect fixing which sometimes severely affects the quality of a software system.

6. We observed that product developed using scrum method was more interactive as the

customer participate more during scrum process and the product was found to be more

flexible. It was developed faster with scrum method because not much time was in-

vested on initial planning and analysis. Feedback from the customer was constantly

available throughout the product development which facilitated early defect detection.

7. We could clearly notice that the maintenance phase in IEM method was by and large

costlier due to the less involvement from a customer during the development phase.

283

Chapter 9. Comparative Analysis of Agile Methods and Iterative Enhancement
Model in Assessment of Software Maintenance

8. The product was also found to be less flexible using IEM method because initial plan-

ning was done in advance and accommodating the change requests was comparatively

difficult.

9. It was also ascertained that defects detection using scrum was made available earlier

than IEM method which further assisted in an overall reduction in maintenance cost.

Hence, agile methods have a positive impact on maintenance due to the early defect

detection.

284

Chapter 10

Conclusions

10.1 Introduction
The need of change performed during maintenance phase is essential for a software sys-

tem to reside longer in the market. Whenever some maintenance activity is performed into

the code and it is modified, it gives birth to a new software release that is a refined from the

previous one. This phenomenon is known as the evolution of the software. Software de-

velopers involved into the maintenance task have to get familiar themselves with the source

code and documentation of the software before modifying it. So, thorough understanding of

source code is necessary for effective change implementation.

Software maintainability prediction is gaining more and more significance in the context

of continuously evolving software to meet the customer’s expectations. The main aim of

this research was to develop and investigate various models, methods and metrics to improve

overall maintainability of the software and reduce the maintenance cost. Empirical studies

on proprietary software and open source software were conducted to build prediction models

using OO metrics. The software developers can use these maintainability prediction models

during the early phases of project development to measure the maintainability in advance.

Project managers can use this information in planning proper resource allocation. Prediction

285

Chapter 10. Conclusions

models created in this research also provide subset of metrics which are more significant

among large set of available metrics and any software development organization can use

them in keeping their values under threshold in order to enhance life of the software. Various

statistical techniques ranging from simple linear regression to more complex and non-linear

machine learning techniques have been proposed in this research. Since there is no well

accepted theory for predicting maintainability, more and more empirical studies should be

conducted to guide the choice of technique and creating a generalized prediction model. In

this research, comparative analysis of all prediction techniques have also been carried out in

order to analyze whether one technique outperforms the another. Since the characteristics

of open source software systems are entirely different from proprietary software systems,

hence in this research a prediction model for open source software was also developed and

validated separately which investigate the quality in general and maintainability of the open

source software in particular using OO metrics. The conclusions derived from the research

and the industrial applications of the work done in this thesis are summarized in the following

subsections:

10.2 Major Findings

An overview of existing literature on OO metrics and maintainability prediction is pre-

sented in this thesis. Research methodology to carry out the empirical study while making

prediction model for the purpose of maintainability prediction is also stated. The initial steps

that need to be performed in any empirical studies have been described in detail. The im-

portance of descriptive statistics as it helps to present the data in a more meaningful way

is elaborated along with the method for simpler interpretations. The process of FSS which

selects a subset of relevant features for the use in model construction is explained. Various

advantages of FSS such as shorter training time, enhanced generalization, easier interpre-

tation and reduction in over fitting are elaborated. Various steps to carry out an extensive

empirical study such as identification of the dependent variables and independent variables,

286

10.2. Major Findings

method for empirical data collection and selection of machine learning techniques have been

described. The method for identifying whether there exists any correlation between indepen-

dent and dependent variables is explain followed by the interpretation of various parameters

used in this regard. Various statistical, machine learning and evolutionary techniques used

for model prediction are described. We have also described various performance measures

which are used for the model evaluation. Different statistical tests used for hypothesis test-

ing are being explained in greater detail and finally, in this thesis we have also explained

many methods to establish the significance of the test results using post hoc analysis such as

Wilcoxon method, Friedman Method and Nemenyi testing methods.

In order to find out existing research done in the field of software maintenance, an

overview of the work done in the literature is presented in an established systematic form.

Databases of Inspec, IEEE Xplore and ACM Digital Library were searched to find the em-

pirical studies related to this field. These studies were further explored and compiled from

numerous points of view such as the use of metrics, datasets, methods, tools etc. Major

thrust areas of the said field were identified which provided us the future directions. We

have systematically summarized the empirical evidence obtained from the existing litera-

ture and provided a brief description of each study in terms of the independent variables,

the data analysis techniques, the performance measures and the software used. We obtained

the answers to various RQs which primarily focus on the following issues: 1) use of var-

ious techniques for predicting software maintainability; 2) type of design metrics used for

predicting software maintainability 3) Kind of datasets used for predicting maintainability;

4) type of validation technique for validating the models; 5) various tools used to collect

significant metrics and 6) use of performance measures for evaluating the performance of

prediction models;

According to the systematic review results, we found that the use of machine learning

techniques in predicting maintainability has increased since 2005. The use of evolutionary

techniques has also begun in related sub-fields after 2010. We have observed that design

287

Chapter 10. Conclusions

metrics is still the most favoured option to capture the characteristics of any given software

before deploying it further in prediction model for determining the corresponding software

maintainability. A significant increase in the use of public dataset for making the prediction

models has also observed and in this regard two public datasets UIMS and QUES proposed

by Li and Henry [127] is quite popular among researchers. Although machine learning tech-

niques are still the most popular methods, however, we observed that researchers engaged

in research on software maintainability may experiment by using datasets from open source

software systems with hybrid techniques. We concluded the review with an observation that

more empirical studies are also required to be conducted on a large number of datasets so

that a generalized theory could be made.

The GMDH technique is ideal for complex, unstructured system in obtaining a high order

input-output relationship as it is heuristic in nature and not based on a solid foundation such

as is regression analysis. The GMDH technique and its modified versions have been previ-

ously applied to a wide array of problems to ascertain predictions such as bio-informatics,

weather forecast, software reliability etc. In this research study an attempt was made to ap-

ply this model perhaps for the first time for the task of software maintainability prediction

using OO software design metrics and compare with prevailing prediction models proposed

in last decade to ascertain their performance. GMDH technique could achieve 79% accu-

racy for QUES dada set 68% accuracy for UIMS dataset. It was also found that almost

69% predictions are less than the error of 0.25 prediction accuracy with GMDH technique

and 72% predictions are less than the error of 0.30 prediction accuracy. In order to verify

whether these results are significant and not coincidental, Wilcoxon significance test is also

conducted and results are compared with fifteen machine learning techniques available in lit-

erature on the same dataset UIMS and QUES. GMDH was found to be significantly superior

to eight techniques out of fourteen techniques.

There are a number of internal quality attributes such as coupling, cohesion, size, com-

plexity etc. of a software, that are used to predict many external quality attributes of a

288

10.2. Major Findings

software and maintainability is most significant one of them. However, with the advent of

internet technologies, drastic increase in the use of mobiles and mobile based applications

is observed. The metric suite developed by Chidamber and Kemerer [43] is not sufficient to

capture the internal characteristics of the software build these days. Data intensive OO ap-

plications should be measured differently than the way they are currently measured. Hence

in this study, deficiencies in Chidamber and Kemerer metric suite is identified and two new

metrics NODBC and SCCR are being proposed to measure new applications. Univariate

analysis found strong correlation (p-value as 0.000) between dependent variable change and

new metrics. Multivariate analysis found the values of correlation coefficient as 0.915 (with

NODBC) and 0.858 (with SCCR). Accuracy in MMRE is observed at 23%, 7%, 14%, 11%,

and 19% for ABP system, FLM, EASY, SMS and IMS system respectively.

Recently interest in open source software has significantly increased in public and pri-

vate sector of software organizations. It has numerous advantages such as less cost, more

innovation, no copyright issues, better security, higher quality, faster adoption etc. In this

research, we have explored various widely used open source software systems such as Ivy,

Adbera, OpenCV, Poi, Rave, DrumKit, OrDrumBox, Log4J, JEdit, JUnit, JWebUnit an Hu-

DoKu for predicting their software maintainability. Use of machine learning techniques in

prediction modeling in various fields such as actuarial science, financial services, telecom-

munications, retail, travel, capacity planning, marketing, insurance, health-care etc. is in-

creasing day by day. However, literature shows that maintainability prediction models are

mostly based on statistical techniques and machine learning techniques are not much used

for predicting software maintainability. In this view, we have compared the performance of

13 machine learning techniques on seven open source datasets. This extensive comparison

provides an opportunity to fairly evaluate all the techniques and enables to judge the perfor-

mance of one technique over the other. Prediction models were developed using seventeen

most commonly used OO metrics and compared using four prediction accuracy measures

MARE, RMSE, Pred(0.25) and Pred(0.75).

289

Chapter 10. Conclusions

We found that FSS could reduced the size by 17%, 17%, 41%, 35%, 23%, 41% and

35% for Drumkit, OpenCV, Abdera, Ivy, Lo4j, JEdit and JUnit datasets respectively. The

accuracy of all the machine learning techniques lies between the ranges of 39-77% on all

datasets. It was also found that 72-78% predictions are less than the error of 25% and 66-89%

predictions are less than the error of 75%. We also found that GGAL and GMDH techniques

perform better than other machine learning techniques as GMDH technique achieved more

than 70% accuracy with four out of seven datasets. It is also observed that four machine

learning techniques PNN, GMDH, GRNN and GGAL have achieved less than 30% error.

The outcome of the Friedman test indicates that the performance of GGAL and GMDH is

best among all machine learning techniques as 17.9% of pairs was found to be significantly

different using statistical test and not coincidental. With the help of post hoc analysis using

Nemenyi Test, 12 pairs were found to be significantly different out of 78 pairs which is

almost 15.3% of the total pairs. GGAL performed significantly better than K Star, Bagging,

Kohonen Network, DT, JERN and SVM machine learning technique and GMDH performed

significantly better than DT, JERN and SVM techniques.

One of the major contribution of this thesis is to analyze the predictive capability of evo-

lutionary techniques for maintainability prediction. Although evolutionary techniques have

been successfully applied in many fields other than software engineering with great suc-

cess, an efficient and reliable evolutionary technique based prediction model for software

maintainability is created for the first time. Prediction performance of evolutionary fuzzy,

evolutionary neural and evolutionary neural symbolic regression methods with traditional

statistical and machine learning models were compared and it was found that evolutionary

techniques perform better than traditional techniques. Accuracy within the range of 75% to

78% could be achieved using evolutionary techniques. With the help of post hoc analysis us-

ing Nemenyi test the performance of evolutionary fuzzy techniques were compared and we

found that 10.8% of pairs were significantly better and not coincidental. The results achieved

in this chapter confirms that construction of evolutionary technique for software maintain-

290

10.2. Major Findings

ability prediction is feasible, adaptable and useful in predicting software maintainability.

Refactoring is a technique that transforms various types of software artifacts for the pur-

pose of improvement in internal structure of the software without affecting its external be-

havior. Although, it is is commonly applied after a significant amount of features are added,

however the ripple effects of the applications of refactoring on maintainability of the software

are yet to be explored. We conducted an empirical study in which the code of proprietary

software was modified using refactoring methods and the effects on maintainability were

adjudged. To achieve this goal, same software is measured before the application of certain

refactoring method as well as after the application. Change in the values of the OO metrics is

observed and mapped to the ascertain nature of maintainability behaviour. We observed that

although ‘Encapsulating Field’ and ‘Extract Method’ refactoring increases values of WMC,

LOC and RFC, however, maintainability increased because of the increased level of abstrac-

tion, increased understandability and increased reusability. It was also found that ‘Extract

Class’ increases maintainability as classes becomes clearer, crisper and organized. There

was no effect of ‘Hide Method’ refactoring on OO metrics. We found that decision about

maintainability of any given code should not be made on the basis of only internal quality

attributes measured though OO metrics but equal attentions should be given to external qual-

ity attributes such as Abstraction, Understandability, Modifiability, Extensibility, Reusability

etc.

Agile methodologies are widely applied in software development nowadays both in small

as well as large-scale organizations. Even though traditional life cycle processes such as the

V model are quite predominant, however, the adoption rate of the agile methodology is also

rapidly increasing. We found that there are no precise study available in literature which

study can analyze its effects on software maintainability. Therefore, the goal of one of the

case study was to render what the agile methods are and how can they can be applied while

development of the software so as to maximize the maintainability of the software. In this

empirical study, effects of agile processes on software maintainability were observed. We

291

Chapter 10. Conclusions

developed the same software using agile as well as non-agile method and compared both of

them using certain metrics which are important from maintenance point of view. The results

from this case study show that agile methods have positive impact on maintainability. We

identified that the maintenance work is strongly influenced by how well the software was

developed. We found that the agile processes are very helpful to keep track of software

systems lifetime and its architecture and functionality. It was found that if this methodology

is adopted during development time, error rate is reduced and less number of change request

are received once the product enter into maintenance phase.

10.3 Applications of the Work
Software maintainability is one of the key quality attribute which determines the success

of any software product. Since software maintainability is an important attribute of software

quality, accurate prediction of it can help the practitioners to improve the overall quality of

a software. In this research study, various ways including methods, metrics and models are

suggested to improve the software maintainability of a given software. The results of this

research would be helpful to developers, practitioners, project managers and academicians

in following ways:

1. Feature subset selection using genetic algorithms as discussed in chapter 2nd can be

used by the developers to identify a subset of significant metrics instead of working

on large set of available metrics. This data reduction not only increases the speed, but

also the accuracy would also be increased.

2. The software maintainability prediction model created in the 4th and 7th chapter of this

thesis using various machine learning techniques and evolutionary techniques can be

used by the software professionals to identify the classes requiring more maintenance

effort in the earlier stages of software development. Maintainability prediction has

numerous applications such as schedule planning, cost estimation, quality assurance

292

10.3. Applications of the Work

testing, software debugging, budget preparation, and software performance optimiza-

tion. The outcome of this investigation would be helpful for developers in order to

predict maintenance behavior of the software at the earlier stages of SDLC and ac-

cordingly, they can optimize their resource allocations, prioritize maintenance tasks

and produce high-quality low maintenance software systems.

3. With the help of software maintainability prediction model created in the 4th and 7th

chapter, project managers can actually predict the the maintenance effort required dur-

ing the maintenance phase. They can take benefit from this available information and

plan the utilization of the resources accordingly. As the first hand information about

the maintenance efforts is available at development stage only, better staff deployment

can be planned. Practitioners can use and adapt the validated machine learning and

evolutionary techniques based prediction models in this thesis for predicting software

maintainability in the software industry.

4. Research on the usefulness of software metrics to adjudge the quality of the software

has come a long way. Right from the initial days when traditional structural metrics

were proposed for analyzing a given software till today when modern OO metrics

are used for the same job, various metrics have been suggested and validated. In

the 5th chapter of this thesis, we have proposed a new set of metrics which is more

significant for the data-intensive applications because instead of measuring only the

object-oriented attributes, this new metric suite also measures the understandability of

the databases. This newly proposed metrics suite for data intensive applications in this

thesis can be use by the software industry to precisely predict software maintainability

for mobile based applications where the amount of database handling is very very

large.

5. In the 6th chapter, we have provided empirical evidences that overall good predic-

tion accuracy can be achieved by using the prediction models based on evolutionary

293

Chapter 10. Conclusions

fuzzy techniques and they perform better than the other machine learning techniques

in the context of open source software systems. During the development of traditional

software, maintenance is considered as important factors and special efforts are taken

during the early phase of software development process by the developers to control

the maintaining efforts. In order to reduce the maintenance, closeness between the

client and developer is highly emphasized so that correct requirements could be cap-

tured. Unfortunately, development process of open source software is entirely different

from traditional software. The development of open source software is more difficult

because of the absence of direct communication between the client and the develop-

ers. Thus the client does not know whether the developers have considered important

aspects of software development in order to keep the maintenance cost under control

or not. The study conducted in chapter 6, has identified empirical evidence which can

possibly be used by vendor to predict the maintainability of particular open source

software before adopting and deploying it at the client site.

6. In the 8th chapter of this thesis, we have explored the effects of various refactoring

methods on maintainability. In the software industry, re-engineering is always pre-

ferred, however, special care is taken to avoid over-engineering. In this chapter we

have exactly calculated the effects which can be utilized by the software practition-

ers and researchers. They can use the guidelines and results obtained from the study

to understand the effects of refactoring on each object-oriented metrics and they can

make right decisions regarding the selection of appropriate refactoring method.

7. In the 9th chapter of this thesis, a case study was conducted and presented to under-

stand the effects of agile methodology on software maintainability. The information

provided in this chapter would be helpful to projects managers as it demonstrate the

usefulness of agile techniques in enhancing the software maintainability. We have also

explained various metrics which should be considered to explore the quality of newly

294

10.4. Future Work

developed software product in this chapter.

10.4 Future Work
There is enormous scope for empirical studies to know the level of maintenance require-

ment during the development phase of software product. One of the weaknesses of the

current research is that the maintenance prediction models consider cumulative effects of all

OO metrics on change. So investigating how individual OO metric affects the maintenance

effort is another possible future extension of this work. Similar type of empirical valida-

tions with different metrics, datasets and prediction techniques need to be carried out so that

generalized conclusions can be drawn based on the obtained results.

In this research, most of the OO metrics used while creating software maintainability

prediction models are evaluated from the static source code based analysis. However, static

metrics are insufficient in evaluating the dynamic behavior of a software application because

the behavior of a software application is not only influenced by the complexity but also by

the operational or run time environment of the source code. Therefore it is important to

develop models which can provide us optimal maintainability prediction duly incorporating

the dynamic metrics. This is one of the possible future extensions of our work. In the

last couple of decades, many metrics have developed to measure the quality of OO software.

Over the years, large number of such metrics have been proposed, developed and empirically

validated. However, for the recently developed mobile based applications which are purely

communication oriented, new metrics needs to be proposed and validated.

295

Chapter 10. Conclusions

296

Bibliography

[1] ABDELMOEZ, W., GOSEVA-POPSTOJANOVA, AND AMMAR, H. Maintainability

based risk assessment in adaptive maintenance context. In 2nd International Predictor

Models in Software Engineering Workshop, PROMISE (2006), pp. 1-17, Philadelphia,

PA.

[2] ABREU, F., AND CARAPUCA, R. Candidate metrics for object-oriented software

within a taxonomy framework. Journal of Systems and Software 26, 1 (1994), pp.

87-96.

[3] AGGARWAL, K. K., AND SINGH, Y. Software engineering programs documentation,

operating procedures. New Age international publishers (2008).

[4] AGGARWAL, K. K., SINGH, Y., CHANDRA, P., AND PURI, M. Measurement of

software maintainability using a fuzzy model. Journal of Computer Sciences 1, 4

(2005), pp. 538-542.

[5] AGGARWAL, K. K., SINGH, Y., AND CHHABRA, J. K. An integrated measure of

software maintainability. In Proceeding of Annual Reliability and maintainability

symposium (2002), IEEE, pp. 235-241, Seattle, WA.

[6] AGGARWAL, K. K., SINGH, Y., KAUR, A., AND MALHOTRA, R. Application of

artificial neural network for predicting maintainability using object- oriented metrics.

World Academy of Science 15, 1 (2006), pp. 285-289.

297

Bibliography

[7] ALBA, E. Parallelism and evolutionary algorithms. IEEE Transactions on Evolution-

ary Computation 6, 5 (2002), pp. 443-462.

[8] ARISHOLM, E., AND SJOBERG, D. Evaluating the effect of a delegated versus cen-

tralized control style on the maintainability of object-oriented software. IEEE Trans.

Software Engineering 30, 8 (2004), pp. 11-25.

[9] AZAR, D., AND VYBIHAL, J. An ant colony optimization algorithm to improve

software quality prediction models. Case of class stability, Journal of Information

and Software Technology 53, 4 (2011), pp. 388-393.

[10] BABU, S., AND PARVATHI, R. Design dynamic coupling measurement of distributed

object oriented software using trace events. Journal of Computer Science 7, 5 (2011),

pp. 770-778.

[11] BACK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Handbook of evolutionary com-

putation. IOP Publishing Ltd., 1997.

[12] BALOGH, G., ZOLTAN, A., AND BASZEDES, A. Prediction of software development

effort enhanced by a genetic algorithm. In Proceedings of the International Confer-

ence on Software Maintenance and Evolution (ICSME) (2015), pp. 28–30, Bremen,

Germany.

[13] BANDI, R., VAISHNAVI, V., AND TURK, D. Predicting maintenance performance

using object-oriented design complexity metrics. IEEE Transaction on Software En-

gineering 29, 1 (2003), pp. 77-87.

[14] BANKER, R. D., M, M. S., KEMERER, C. F., AND ZWEIG, D. Software complexity

and maintenance costs. Communications of the ACM 36, 11 (1993), pp. 81-95.

[15] BANSIYA, J., AND DAVIS, C. A hierarchical model for object-oriented design quality

assessment. IEEE Transactions on Software Engineering 28, 1 (2002), pp. 4-17.

298

Bibliography

[16] BAQAIS, B., ALSHAYEB, M., AND BAIG, Z. Hybrid intelligent model for software

maintenance prediction. In Proceedings of the International Conference on World

Congress on Engineering (2013), pp. 358–362, London, UK.

[17] BASGALUPP, M. P., BARROS, R. C., AND RUIZ, D. D. Predicting software main-

tenance effort through evolutionary-based decision trees. In Proceedings of the 27th

Annual ACM Symposium on Applied Computing (2012), ACM, pp. 1209-1214, Riva

(Trento), Italy.

[18] BECK, K. Extreme programming explained: embrace change. Addison-Wesley Pro-

fessional, 2000.

[19] BELADY, L., AND LEHMAN, M. A model of large program development. IBM

Systems journal 15, 3 (1976), pp. 225-252.

[20] BENLARBI, S., AND MELO, W. Polymorphism measures for early risk prediction.

In Proceedings of the 21st International Conference on Software Engineering (ICSE)

(1999), pp. 335–344, Los Angeles, USA.

[21] BENNETT, K. H., AND RAJLICH, V. T. Software maintenance and evolution: a

roadmap. In Proceedings of the Conference on the Future of Software Engineering

(2000), ACM, pp. 73-87, Limerick, Ireland.

[22] BERNS, G. M. Assessing software maintainability. Communications of the ACM 27,

1 (1984), pp. 14-23.

[23] BHATT, P., SHROFF, G., AND MISRA, A. Dynamics of software maintenance. ACM

SIGSOFT Software Engineering Notes 29, 5 (2004), pp. 1-5.

[24] BHATTACHARYA, P., AND NEAMTIU, I. Assessing programming language impact

on development and maintenance: A study on c and c++. In Proceedings of the 33rd

299

Bibliography

International Conference on Software Engineering (ICSE) (2011), IEEE, pp. 171-180,

Honolulu, Hawaii, USA.

[25] BIEMAN, J. M., AND KANG, B. K. Cohesion and reuse in an object-oriented system.

ACM SIGSOFT Software Engineering Notes 20, SI (1995), pp. 259-262.

[26] BIEMAN, J. M., AND OTT, L. M. Measuring functional cohesion. IEEE Transactions

on Software Engineering 20, 8 (1994), pp. 644-657.

[27] BLAND, J. M., AND ALTMAN, D. G. Multiple significance tests: the bonferroni

method. Bmj 310, 6973 (1995), pp. 170-191.

[28] BOEHM, B. Get ready for agile methods with care. IEEE Computer 35, 1 (2002), pp.

64-69.

[29] BOIS, B. D., DEMEYER, S., AND VERELST, J. Refactoring-improving coupling and

cohesion of existing code. In Proceedings of the 11th Working Conference on Reverse

Engineering, WCRE (2004), pp. 144–151, Delft, The Netherlands.

[30] BOIS, B. D., AND MENS, T. Describing the impact of refactoring on internal pro-

gram quality. In Proceedings of the International Workshop on Evolution of Large-

scale Industrial Software Applications ELISA (2003), pp. 37–48, Amsterdam, The

Netherlands.

[31] BOSCH, J., AND BENGTSSON, P. Assessing optimal software architecture maintain-

ability. In Fifth European Conference on Software Maintenance and Reengineering

(2001), IEEE, pp. 168-175, Lisbon, Portugal.

[32] BRAVO, F. A. Logic Meta-Programming Framework for Supporting the Refactoring

Process. PhD thesis, Vrije University, Brussel, 2003.

[33] BREIMAN, L., FRIEDMAN, J., C.J.STONE, AND RICHARD, A. Classification and

Regression Trees. CRC press, 1984.

300

Bibliography

[34] BRIAND, L. C., BUNSE, C., AND DALY, J. A controlled experiment for evaluating

quality guidelines on the maintainability of object-oriented designs. IEEE Transac-

tions on Software Engineering 27, 6 (2001), pp. 513-530.

[35] BRIAND, L. C., DEVANBU, P., AND MELO, W. An investigation into coupling

measures for c++. In Proceedings of the International Conference on Software Engi-

neering ICSE (1997), pp. 513-530, Bostan, USA.

[36] BROOMHEAD, D. S., AND LOWE, D. Radial basis functions, multi-variable func-

tional interpolation and adaptive networks. Tech. rep., DTIC Document, 1988.

[37] BROY, M., DEISSENBOECK, F., AND PIZKA, M. Demystifying maintainability. In

Proceedings of the international workshop on Software quality (2006), ACM, pp. 21-

26,Shanghai, China.

[38] BRYSON, A. E. Applied Optimal Control: Optimization, Estimation and Control.

CRC Press, 1975.

[39] BURKI, C. J., AND HARALD, H. V. How to save on software maintenance costs.

Technical Report : Omnext White Paper (2014), pp. 1-16.

[40] CAPER, J. The Economics of Software Maintenance. Twenty First Century Version

3, 1950. http://www.compaid.com/ caiinternet/ ezine/ capersjones.

[41] CHAPIN, N. Do we know what preventive maintenance is? In In Proceedings of

International Conference on Software Maintenance,ICSM (2000), IEEE, pp. 1–15,

San Jose, CA, USA.

[42] CHEN, J., AND LUM, J. A new metrics for object-oriented design. Journal of Infor-

mation of Software Technology 35, 4 (1993), pp. 232-240.

[43] CHIDAMBER, S. R., AND KEMERER, C. R. A metrics suite for object oriented

design. IEEE Transactions on Software Engineering 20, 6 (1994), pp. 476-493.

301

Bibliography

[44] CHOW, T. S., AND CAO, D. B. A survey study of critical success factors in agile

software projects. Journal of System Software 81, 6 (2008), pp. 961-971.

[45] CHUCHER, N. I., AND MARTIN, J. S. Comments on a metrics suite for object-

oriented design. IEEE Transaction on Software Engineering 21, 3 (1995), pp. 263-

265.

[46] C.J.BURGESS, AND M.LEEY. Can genetic programming improve software effort

estimation? a comparative evaluation. Information and Software Technology 43, 14

(2001), pp. 863-873.

[47] COCKBURN, A. Crystal clear: A human-powered Methodology for Small Teams.

Pearson Education, 2004.

[48] COHN, M., AND FORD, D. Introducing an agile process to an organization. Computer

36, 6 (2003), pp. 74-78.

[49] COLEMAN, D., ASH, D., LOWTHER, B., AND OMAN, P. Using metrics to evaluate

software system maintainability. Computer 27, 8 (1994), pp. 44-49.

[50] CONTE, S. D., DUNSMORE, H. E., HUBERT, E., AND Y.VINCENT. Software engi-

neering metrics and models. Benjamin-Cummings Publishing Co., Inc., 1986.

[51] CORTES, C., AND VAPNIK, V. Support-vector networks. Machine learning 20, 3

(1995), pp. 273-297.

[52] CUNNINGHAM, W., AND BECK, K. Using pattern languages for object-oriented

programs. In Proceedings of Object-Oriented Programming, Systems, Languages &

Application, OOPSLA (1987), pp. 87–130, Orlando, Florida.

[53] DAGPINAR, M., AND JAHNKE, J. H. Predicting maintainability with object-oriented

metrics-an empirical comparison. In Proceedings of the 10th IEEE Working Confer-

ence on Reverse Engineering, WCRE (2003), pp. 155–170, Victoria, B.C., Canada.

302

Bibliography

[54] DAHIYA, S. S., CHHABRA, J. K., AND KUMAR, S. Use of genetic algorithm for soft-

ware maintainability metrics conditioning. In Proceeding of International Conference

on Advanced Computing and Communications (ADCOM) (2007), IEEE, pp. 87-92,

Guwahati, India.

[55] DALY, J., BROOKS, A., MILLER, J., ROPER, M., AND WOOD, M. Evaluating inher-

itance depth on the maintainability of object-oriented software. Empirical Software

Engineering 1, 2 (1996), pp. 109-132.

[56] DAVIS, N. Driving quality improvement and reducing technical debt with the defini-

tion of done. In Proceedings of the IEEE Agile Conference (AGILE) (2013), pp. 164–

168.

[57] DEISSENBOECK, F., WAGNER, S., PIZKA, M., TEUCHERT, S., AND GIRARD, J.-F.

An activity-based quality model for maintainability. In Proceeding of International

Conference on Software Maintenance,ICSM 2007 (2007), IEEE, pp. 184-193, Paris,

France.

[58] DELIGIANNIS, I., SHEPPERD, M., ROUMELIOTIS, M., AND STAMELOS, I. An em-

pirical investigation of an object-oriented design heuristic for maintainability. Journal

of Systems and Software 65, 2 (2003), pp. 127-139.

[59] DEMVSAR, J. Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research 7 (2006), pp. 1-30.

[60] DONELL, S. G. M. Establishing relationships between specification size and soft-

ware process effort in case environments. Information and Software Technology 39, 1

(1997), pp. 35-45.

[61] DUBEY, S. K., RANA, A., AND DASH, Y. Maintainability prediction of object ori-

ented software system by using artificial neural network approach. International Jour-

nal of Soft Computing and Engineering (IJSCE) 2, 2 (2012), pp. 420–423.

303

Bibliography

[62] ELISH, M. O., AND ELISH, K. O. Application of treenet in predicting object-oriented

software maintainability: A comparative study. In Proceedings of the 13th European

Conference on Software Maintenance and Reengineering, CSMR (2009), pp. 69–78,

Kaiserslautern, Germany.

[63] ENGINEERING, I. S. S. IEEE Std. 828-1998 IEEE Standard for Software Config-

uration Management Plans standard. Standards Committee of the IEEE Computer

Society, 1998.

[64] FAN, R. E., AND P. H. CHEN, C. J. L. Working set selection using second order

information for training support vector machines. The Journal of Machine Learning

Research 6 (2005), pp. 1889-1918.

[65] FENTON, N., AND BIEMAN, J. Software Metrics: A Rigorous and Practical Ap-

proach: Brooks. CRC Press, 2014.

[66] FERNANDO, A. B., AND ROGERIO, C. Candidate metrics for object-oriented soft-

ware within a taxonomy framework. Journal of Systems Software 26, 1 (1994), pp.

87-96.

[67] FERNELEY, E. H. Design metrics as an aid to software maintenance: an empirical

study. Journal of Software Maintenance: Research and Practice 11, 1 (1999), pp.

55-72.

[68] FIORAVANTI, F., AND NESI, P. Estimation and prediction metrics for adaptive main-

tenance effort of object-oriented systems. IEEE Transactions on Software Engineer-

ing 27, 12 (2001), pp. 1062–1084.

[69] FOWLER, M. Refactoring: Improving the Design of Existing Code. Pearson Educa-

tion India, 1999.

304

Bibliography

[70] FOWLER, M., AND HIGHSMITH, J. The agile manifesto. Journal of Software Devel-

opment 9, 8 (2001), pp. 28-35.

[71] FREUND, Y., SCHAPIRE, R., AND ABE, N. A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence 14, 5 (1999), pp. 771-780.

[72] FRIEDMAN, M. A comparison of alternative tests of significance for the problem of

m rankings. The Annals of Mathematical Statistics 11, 1 (1940), pp. 86-92.

[73] GAMALIELSSON, J., AND OLSSON, B. Evaluating protein structure prediction mod-

els with evolutionary algorithms. In Book Series: Information Processing with Evo-

lutionary Algorithms (2005), pp. 143–158.

[74] GARCIA-PEDRAJAS, N., GARCAOSORIO, C., AND FYFE, C. Nonlinear boosting

projections for ensemble construction. The Journal of Machine Learning Research 8

(2007), pp. 1-33.

[75] GAWALI, A. R. Impact of Agile Software Development Model on Software Maintain-

ability. PhD thesis, Walden University, 2012.

[76] GENERO, M., PIATTINI, M., MANSO, E., AND CANTONE, G. Building uml class

diagram maintainability prediction models based on early metrics. In Proceedings

of the 9th international symposium on software metrics, METRICS’03 (2003), IEEE

Computer Society, pp. 263-275, Washington, DC.

[77] GEPPERT, B., MOCKUS, A., AND ROBLER, F. Refactoring for changeability: A way

to go? In Proceedings of the 11th IEEE International Symposium on Software Metrics

(2005), pp. 10–14, Como, Italy.

[78] GHOSH, S., RANA, A., AND KUMAR, A. Comparative study of the factors that

affect maintainability. International Journal on Computer Science and Engineering

3, 12 (2011), pp. 3763-3769.

305

Bibliography

[79] GOODMAN, P. Practical Implementation of Software Metrics. London: McGraw-

Hill, 1993.

[80] GRADY, R. B. Successfully applying software metrics. Computer 27, 9 (1994), pp.

18-25.

[81] GROUP, W. S. Artificial intelligence, genetic algorithm and neural network software

for predicting, forecasting, classification and optimization. Mathwork systems (2012).

[82] HALL, M. A. Correlation-based Feature Selection for Machine Learning. Doctoral

dissertation at the University of Waikato, Hamilton, New Zealand, 1999.

[83] HALSTEAD, H. Elements of Software Science. Elsevier North-Holland, ISBN 0-444-

00205-7, 1977.

[84] HANENBERG, S., KLEINSCHMAGER, S., ROBBES, R., TANTER, E., AND STEFIK,

A. An empirical study on the impact of static typing on software maintainability.

Empirical Software Engineering 19, 5 (2014), pp. 1335-1382.

[85] HARRISON, R., COUNSELL, S., AND NITHI, R. Experimental assessment of the

effect of inheritance on the maintainability of object-oriented systems. Journal of

Systems and Software 52, 2 (2000), pp. 173–179.

[86] HATTON, L. How accurately do engineers predict software maintenance tasks? Com-

puter 40, 2 (2007), pp. 64–69.

[87] HAYES, J. H., AND ZHAO, L. Maintainability prediction: a regression analysis of

measures of evolving systems. In Proceedings of the 21st International Conference

on Software Maintenance, ICSM (2005), IEEE, pp. 601-604, Budapest, Hungary.

[88] HEGEDUS, P. Revealing the effect of coding practices on software maintainability.

In 29th IEEE International Conference on in Software Maintenance (ICSM) (2013),

IEEE, pp. 578–581, Eindhoven, Netherlands.

306

Bibliography

[89] HENDERSON-SELLERS, B. Object-oriented Metrics: Measures of Complexity.

Prentice-Hall, Inc., 0-13-239872-9, 1996.

[90] HENRY, S., AND KAFURA, D. Software structure metrics based on information flow.

IEEE Transactions on Software Engineering 7, 5 (1981), pp. 510-518.

[91] HIROTA, T., TOHKI, M., OVERSTREET, M., HASHIMOTO, M., AND CHERINKA,

R. An approach to predict software maintenance cost based on ripple complexity.

In Proceedings of Firrst Asia-Pacific Software Engineering Conference (1994), IEEE,

pp. 439-444, Tokyo, Japan.

[92] HITZ, M., AND MONTAZERI, B. Measuring coupling and cohesion in object-oriented

systems. IEEE Transactions on Software Engineering 22, 4 (1996), pp. 267-271.

[93] HOFFMANN, J. P., AND SHAFER, K. Linear regression analysis: Assumptions and

applications. Department of Sociology Brigham Young University, 2005.

[94] HU, M. C. J. Application of the adaline system to weather forecasting. Master

Thesis, Technical Report, Stanford Electronics Laboritries, Department of Sociology,

Brigham Young University, 1964.

[95] ISO-9126, I. S. Software Production Evaluation Quality Characteristics and guide-

lines for their Use. Standards Committee of the ISO Society, 1991.

[96] IVAKHNENKO, A. G., AND KOPPA, Y. U. Regularization of decision functions in

the group method of data handling. Soviet Automatic Control 15, 2 (1970), pp. 28-37.

[97] JAMES, M. http://scrumreferencecard.com/scrum-reference-card.

[98] JEET, K., DHIR, R., AND VERMA, H. A comparative study of bayesian and fuzzy

approach to assess and predict maintainability of the software using activity-based

quality model. ACM SIGSOFT Software Engineering Notes 37, 3 (2012), pp. 1-9.

307

Bibliography

[99] JIEPING, Y., JANARDAN, R., AND LI, Q. Two-dimensional linear discriminant anal-

ysis. In Advances in neural information processing systems (2004), pp. 1569–1576,

University of Pennsylvania, Philadelphia, USA.

[100] JIN, C., AND LIU, J. A. Applications of support vector mathine and unsupervised

learning for predicting maintainability using object-oriented metrics. In Proceedings

of the Second International Conference on Multimedia and Information Technology

(MMIT) (2010), pp. 24–27, Kaifeng, China.

[101] JORGENSEN, M. Experience with the accuracy of software maintenance task effort

prediction models. IEEE Transactions on Software Engineering 21, 8 (1995), pp.

674-681.

[102] KABAILI, H., KELLER, R., AND LUSTMAN, F. Cohesion as changeability indicator

in object-oriented systems. In Fifth European Conference on Software Maintenance

and Reengineering (2001), IEEE, pp. 39-46, Lisbon, Portugal.

[103] KAJKO-MATTSSON, M., AND NYFJORD, J. A model of agile evolution and main-

tenance process. In Proceedings of the 42nd Hawaii International Conference on

System Sciences, HICSS (2009), pp. 1–10, Waikoloa, Hawaii.

[104] KATAOKA, Y., IMAI, T., ANDOU, H., AND FUKAYA, T. A quantitative evaluation of

maintainability enhancement by refactoring. In Proceedings of the IEEE International

Conference on Software Maintenance ICSM (2002), pp. 576–585, Montreal, Canada.

[105] KAUR, A., AND KAUR, K. Statistical comparison of modelling methods for soft-

ware maintainability prediction. International Journal of Software Engineering and

Knowledge Engineering 23, 06 (2013), pp. 743-774.

[106] KAUR, A., KAUR, K., AND MALHOTRA, R. Soft computing approaches for predic-

tion of software maintenance effort. International Journal of Computer Applications

1, 16 (2010), pp. 80-86.

308

Bibliography

[107] KAUR, A., KAUR, K., AND PATHAK, K. Software maintainability prediction by data

mining of software code metrics. In International Conference on Data Mining and

Intelligent Computing ICDMIC) (2014), pp. pp. 1-6, New Delhi,India.

[108] KAUR, K., AND SINGH, H. Determination of maintainability index for object ori-

ented systems. ACM SIGSOFT Software Engineering Notes 36, 2 (2011), pp. 1-6.

[109] KEMERER, C. F., AND SLAUGHTER, S. Determinants of software maintenance pro-

files: An empirical investigation. Journal of Software Maintenance 9, 1 (1997), pp

235–251.

[110] KITCHENHAM, B. A., PICKARD, L. M., LESLEY, M., MACDONELL, S. G., AND

SHEPPERD, M. J. What accuracy statistics really measure software estimation. IEEE

software Proceedings 148, 3 (2001), pp. 81-85.

[111] KITCHENHAM, B. A., RIALETTE, P., DAVID, B., BRERETON, O. P., TURNER, M.,

NIAZI, M., AND LINKMAN, S. Systematic literature reviews in software engineering

a tertiary study. Information and Software Technology 52, 8 (2010), pp. 792–805.

[112] KNIBERG, H., AND FARHANG, R. Bootstrapping scrum and xp under crisis a story

from the trenches. In Proceedings of the Agile (AGILE) (2008), pp. 436–444, Girona,

Spain.

[113] KNIPPERS, D. Agile Software Development and Maintainability. PhD thesis, Uni-

versiteit Twente, 2011.

[114] KOH, T. W., SELAMAT, M. H., GHANI, A., AZIM, A., AND RUSLI, A. Review of

complexity metrics for object oriented software products. IJCSNS Int J of Computer

Science and Network Security 8, 11 (2008), pp. 314-320.

[115] KOHAVI, R., AND JOHN, G. H. Wrappers for feature subset selection. Artificial

intelligence 97, 1 (1997), pp. 273–324.

309

Bibliography

[116] KOHAVI, R., AND SOMMERFIELD, D. Targeting business users with decision table

classifiers. In Proceedings of the International Conference on Knowledge Discovery

and Data Mining, KDD (1998), pp. 249–253, New York, USA.

[117] KOHONEN, T. The self-organizing map. Proceedings of the IEEE 78, 9 (1990), pp.

1464–1480.

[118] KOTEN, V. C., AND GRAY, A. R. An application of bayesian network for predicting

object-oriented software maintainability. Information and Software Technology 48, 1

(2006), pp. 59-67.

[119] K.SHIBATA, RINSAKA, K., DOHI, T., AND OKAMURA, H. Quantifying software

maintainability based on a fault-detection / correction model. In Proceedings of Sym-

posium on 13th Pacific Rim International on Dependable Computing (2007), pp. 35-

42, Melbourne, Victoria, AUSTRALIA.

[120] KUMAR, L. Predicting object-oriented software maintainability using hybrid neural

network with parallel computing concept. In Proceedings of the 8th India Software

Engineering Conference, ISEC (2015), pp. 100–109, Banglore, India.

[121] KUMAR, R., AND DHANDA, N. Maintainability measurement model for object ori-

ented design. International Journal of Advanced Research in Computer and Commu-

nication Engineering 4, 5 (2015), pp. 331-340.

[122] LEE, S. W., AND SONG, H. H. A new recurrent neural-network architecture for

visual pattern recognition. IEEE Transactions on Neural Networks 8, 2 (1997), pp.

331-340.

[123] LEE, Y., LIANG, B., WU, S., AND WANG, F. Measuring the coupling and cohesion

of an object-oriented program based on information flow. In In Proceedings of the

International Conference on Software Quality (1995), pp. 81–90, Maribor, Slovenia.

310

Bibliography

[124] LESSMANN, S., BAESENS, B., MUES, C., AND PIETSCH, S. Benchmarking clas-

sification models for software defect prediction: A proposed framework and novel

findings. IEEE Transactions on Software Engineering 34, 4 (2008), pp. 485-496.

[125] LI, F., MORGAN, R., AND WILLIAMS, D. Hybrid genetic approaches to ramping

rate constrained dynamic economic dispatch. Electric Power Systems Research 43, 2

(1997), pp. 97-103.

[126] LI, W. Another metric suite for object-oriented programming. Journal of Systems

and Software 44, 2 (1998), pp. 155–162.

[127] LI, W., AND HENRY, H. Object-oriented metrics that predict maintainability. Journal

of systems and software 23, 2 (1993), pp. 111-122.

[128] LI, W., HENRY, S., KAFURA, D., AND SCHULMAN, R. Measuring object-oriented

design. Journal of Object-Oriented Programming 8, 4 (1995), pp. 48-55.

[129] LIENTZ, B. P., AND SWANSON, E. B. Problems in application software maintenance.

Communications of the ACM 24, 11 (1981), pp. 763-769.

[130] LIM, J., JEONG, S., AND SCHACH, S. An empirical investigation of the impact

of the object-oriented paradigm on the maintainability of real-world mission-critical

software. Journal of System Software 77, 1 (2005), pp. 131–138.

[131] LIN, J.-C., AND WU, K.-C. A model for measuring software understandability. In

The Sixth IEEE International Conference on Computer and Information Technology

(2006), IEEE, pp. 192-192, Seoul, South Korea.

[132] LORENZ, M., AND KIDD, J. Object-oriented software metrics: A Practical Guide.

Prentice-Hall, Inc., 1994.

311

Bibliography

[133] LUCIA, A. D., POMPELLA, E., AND STEFANUCCI, S. Assessing effort estimation

models for corrective maintenance through empirical studies. Information and Soft-

ware Technology 47, 1 (2005), pp. 3-15.

[134] MALHOTRA, R. Empirical Validation of Object-Oriented Metrics for Predicting

Quality Attributes. PhD thesis, University School of Information Technology, Guru

Gobind Singh Indraprastha University, Kashmere Gate, Delhi-110403, (2009).

[135] MALHOTRA, R. Empirical Research in Software Engineering: Concepts, Analysis,

and Applications. Chapman and Hall, CRC Press, ISBN 9781498719728, 2015.

[136] MALHOTRA, R., AND CHUG, A. An empirical validation of group method of data

handling on software maintainability prediction using object oriented systems. In

Proceedings of the 6th International Conference on Quality, Reliability and Infocom

Technology (ICQRIT) (2012), pp. 348–351, New Delhi, India.

[137] MALHOTRA, R., AND CHUG, A. Software maintainability prediction using machine

learning algorithms. Software Engineering: An International Journal (SEIJ) 2, 2

(2012), pp. 19-36.

[138] MALHOTRA, R., AND CHUG, A. Metric suite for predicting software maintain-

ability in data intensive applications. Book Chapter in Transactions on Engineering

Technologies, Springer 5, 2 (2013), pp. 165-173.

[139] MALHOTRA, R., AND CHUG, A. Application of evolutionary algorithms for soft-

ware maintainability prediction using object-oriented metrics. In Proceedings of the

8th International Conference on Bioinspired Information and Communications Tech-

nologies (2014), pp. 348–351, Boston, USA.

[140] MALHOTRA, R., AND CHUG, A. Application of group method of data handling

model for software maintainability prediction using object oriented systems. Inter-

312

Bibliography

national Journal of System Assurance Engineering and Management 5, 2 (2014), pp.

165-173.

[141] MALHOTRA, R., AND CHUG, A. An empirical study to redefine the relationship be-

tween software design metrics and maintainability in high data intensive applications.

In Proceedings of the World Congress on Engineering and Computer Science (2014),

pp. 161–175, San Francisco, USA.

[142] MALHOTRA, R., AND CHUG, A. Benchmarking framework for maintainability pre-

diction of open source software using object oriented metrics. International Journal

of Innovative Computing, Information and Control 12, 2 (2016), pp.615-634.

[143] MALHOTRA, R., AND CHUG, A. Comparative analysis of agile methodology and

iterative enhancement model in assessment of software maintenance. In Proceedings

of the Computing for sustainable Global Development,IndiaCom 2016, Conference

ID 37465 (2016), pp. 1–7, New Delhi, India.

[144] MALHOTRA, R., AND CHUG, A. An empirical study to assess the effects of refactor-

ing on software maintainability. In International Conference on Advances in Comput-

ing, Communications and Informatics, ICACCI-2016, IEEE Conference No. 38419

(2016), pp. 110–117, Jaipur, India.

[145] MALHOTRA, R., AND CHUG, A. Software maintainability: Systematic literature

review and current trends. International Journal of Software Engineering and Knowl-

edge Engineering 26, 8 (2016), pp. 1221-1253.

[146] MALHOTRA, R., CHUG, A., AND KHOSLA, P. Prioritization of classes for refac-

toring: A step towards improvement in software quality. In Proceedings of the Third

International Symposium on Women in Computing and Informatics (2015), pp. 228–

234, Kotchi, India.

313

Bibliography

[147] MALHOTRA, R., PRITAM, N., NAGPAL, K., AND UPMANYU, P. Defect collection

and reporting system for git based open source software. In Proceedings of the In-

ternational Conference on Data Mining and Intelligent Computing (ICDMIC) (2014),

pp. 1–7, New Delhi, India.

[148] MARCO, T. D. Controlling Software Projects, Management Measurement & Estima-

tion. Prentice Hall PTR Upper Saddle River, NJ, USA, 1986.

[149] MARI, M., AND EILA, N. The impact of maintainability on component-based soft-

ware systems. In Proceedings of the 29th Conference on EUROMICRO (2003), IEEE

Computer Society, pp. 25-31, Washington, DC, USA.

[150] MARTIN, J., AND MCCLURE, C. L. Software Maintenance: The Problems and Its

Solutions. Prentice Hall Professional Technical Reference, 1983.

[151] MARTIN, R. O o design quality metrics. An analysis of dependencies 12 (1994), pp.

151-170.

[152] MARTIN, R. C. Clean code: A handbook of agile software craftsmanship. Pearson

Education, 2009.

[153] MARTINEZ, E. A., MARTINEZ, F. E., MARTINEZ, C. H., AND GARCIA, N. P.

Evolutionary product unit based neural networks for regression. Neural Networks 19,

4 (2006), pp. 477-486.

[154] MATTSSON, M. K. Can we learn anything from hardware preventive maintenance?

In iceccs (2001), IEEE.

[155] MAYER, T., AND HALL, T. A critical analysis of current oo design metrics. Software

Quality journal 8, 2 (1999), pp. 97-110.

[156] MCCABE, J. T. A complexity measure. IEEE Transactions on Software Engineering

2, 4 (1976), pp. 308-320.

314

Bibliography

[157] MCCALL, J., RICHARDS, P. K., AND WALTERS, G. F. Factors in Software Quality.

Information Systems Programs, General Electric Company, 1977.

[158] MENS, T., AND TOURWE, T. A survey of software refactoring. IEEE Transactions

on Software Engineering 30, 2 (2004), pp. 126-139.

[159] MILLER, G. F., TODD, P. M., AND HEGDE, S. U. Designing neural networks using

genetic algorithms. In Proceedings of the third international conference on Genetic

algorithms (1989), pp. 379–384, Virginia, USA.

[160] MILLER, J. Techniques of program and system maintenance. Winthrop Publishers,

1981.

[161] MISHRA, S., AND SHARMA, A. Maintainability prediction of object oriented soft-

ware by using adaptive network based fuzzy system technique. International Journal

of Computer Applications 119, 9 (2015), pp. 50-73.

[162] MISRA, S. C. Modeling design/coding factors that drive maintainability of software

systems. Software Quality Journal 13, 3 (2005), pp. 297-320.

[163] MOSER, R., SILLITTI, A., ABRAHAMSSON, P., AND SUCCI, G. Does refactoring

improve reusability? In Reuse of Off-the-Shelf Components (2006), pp. 287–297.

[164] MUTHANNA, S., KONTOGIANNIS, K., PONNAMBALAM, K., AND STACEY, B. A

maintainability model for industrial software systems using design level metrics. In

Proceedings of Seventh Working Conference on Reverse Engineering, 2000 (2000),

IEEE, pp. 248-256, Washington, DC, USA.

[165] MYRTVEIT, I., STENSRUD, E., AND SHEPPERD, M. Reliability and validity in com-

parative studies of software prediction models. IEEE Transactions on Software Engi-

neering 31, 5 (2005), pp. 380-391.

315

Bibliography

[166] NIESSINK, F., AND VLIET, H. V. Predicting maintenance effort with function points.

In Proceedings of the International Conference on Software Maintenance ICSM 1997

(1997), IEEE, pp. 32-39, Bari, Italy.

[167] NOSEK, J. T., AND PALVIA, P. Software maintenance management: changes in the

last decade. Journal of Software Maintenance: Research and Practice 2, 3 (1990),

pp. 157-174.

[168] OMAN, P., AND HAGEMEISTER, J. Metrics for assessing a software system’s main-

tainability. In Proceedings of the International Conference on Software Maintenance,

ICSME (1992), pp. 337–344, Goteborg, Sweden.

[169] OMAN, P., AND HAGEMEISTER, J. Construction and testing of polynomials pre-

dicting software maintainability. Journal of Systems and Software 24, 3 (1994), pp.

251-266.

[170] OPDYKE, W. F. Refactoring: A program restructuring aid in designing object-

oriented application frameworks. PhD thesis, University of Illinois at Urbana-

Champaign, 1992.

[171] PENG, W. W., AND WALLACE, D. R. Software Error Analysis. Silicon Press, 1995.

[172] PING, L. A quantitative approach to software maintainability prediction. In Proceed-

ings of the International Forum on Information Technology and Applications (IFITA)

(2010), vol. 1, pp. 105–108, Kumning, China.

[173] PIZKA, M., AND DEISENBOCK, F. How to effectively define and measure maintain-

ability. Software Management European Forum (2007), 21–28.

[174] POLO, M., PIATTINI, M., AND RUIZ, F. Using code metrics to predict mainte-

nance of legacy programs: A case study. In Proceedings of the IEEE International

316

Bibliography

Conference on Software Maintenance (ICSM’01) (2001), IEEE Computer Society,

pp. 202-208, Washington, DC, USA.

[175] POOLE, C., AND HUISMAN, J. W. Using extreme programming in a maintenance

environment. IEEE Software 18, 6 (2001), pp. 42-50.

[176] PRASANTH, N. N., RAJA, S., BIRLA, X., NAVAZ, K., AND RAHUMAN, S. Improv-

ing software maintainability through risk analysis. International Journal of Recent

Trends in Engineering 2, 4 (2009), pp. 198-200.

[177] PRECHELT, L., UNGER, B., PHILIPPSEN, M., AND TICHY, W. Re-evaluating inher-

itance depth on the maintainability of object-oriented software. International Journal

of Empirical Software Engineering (1998), pp. 1-16.

[178] PRIES-HEJE, L., PRIES-HEJE, J., AND DALGAARD, B. Scrum code camps. In Pro-

ceedings of the Agile Conference (AGILE) (2013), pp. 64–73, Bishopsgate, London,

UK.

[179] RAJARAMAN, C., AND LYU, M. R. Reliability and maintainability related software

coupling metrics in c++ programs. In Third International Symposium on Software Re-

liability Engineering (1992), IEEE, pp. 303-311, Research Triangle Park, NC, USA.

[180] RAMIL, F., JUAN, LOZANO, A., WERMELINGER, M., AND CAPILUPPI, A. Empir-

ical studies of open source evolution. In Book Chapter : Software evolution, Springer

(2008), pp. 263–288.

[181] RAMIL, J. F., AND SMITH, N. Qualitative simulation of models of software evolu-

tion. Software Process: Improvement and Practice 7, 3-4 (2002), pp. 95-112.

[182] R.E.SCHAPIRE, AND Y.SINGER. Improved boosting algorithms using confidence

rated predictions. Journal of Machine Learning Reseach 37, 5 (1999), pp. 297-336.

317

Bibliography

[183] RIAZ, M., MENDES, E., AND TEMPERO, E. A systematic review of software main-

tainability prediction and metrics. In Proceedings of the 3rd International Sympo-

sium on Empirical Software Engineering and Measurement, ESEM, Orlando (2009),

pp. 367–377, Florida, USA.

[184] RIAZ, M., TEMPERO, E., SULAYMAN, M., AND MENDES, E. Maintainability pre-

dictors for relational database-driven software applications: Extended results from a

survey. International Journal of Software Engineering and Knowledge Engineering

23, 04 (2013), pp. 507-522.

[185] RISING, L., AND JANOFF, N. S. The scrum software development process for small

teams. IEEE software 1, 4 (2000), pp. 26-32.

[186] ROMBACH, H. D. Design measurement: Some lessons learned. Software, IEEE 7, 2

(1990), pp. 17-25.

[187] ROYCE, W. W. Managing the development of large software systems. proceedings of

IEEE Western Electronic Show and Convention, WESCON 26, 8 (1970), pp. 328-388,

LA, USA.

[188] RUMELHART, D., HINTON, G., AND WILLIAMS, R. Learning Internal Presentation

by Back Propagating Errors. The PDP research Group, Parallel Distributing Process-

ing, Exploration in the Microstructure of cognition, MIT Press, MA, 1994.

[189] RUSTAGI, J. S. Optimization techniques in statistics. Elsevier, 2014.

[190] SAED, A., ADIL, A., KADIR, W., AND WAN, M. Applying particle swarm opti-

mization to software performance prediction an introduction to the approach. In 5th

Malaysian Conference in Software Engineering (MySEC) (2011), IEEE, pp. 207-212,

Johor Bahru, Malaysia.

318

Bibliography

[191] SAHRAOUI, H. A., GODIN, R., AND MICELI, T. Can metrics help to bridge the gap

between the improvement of oo design quality and its automation? In Proceedings

of International Conference on Software Maintenance (ICSM) (2000), IEEE, pp. 154-

162, San Jose, CA, USA.

[192] SAMOLADAS, I., STAMELOS, I., ANGELIS, L., AND OIKONOMOU, A. Open source

software development should strive for even greater code maintainability. Communi-

cations of the ACM 47, 10 (2004), pp. 83-87.

[193] SANCHEZ, L., AND COUSO, I. Fuzzy random variables-based modeling with ga-p

algorithms. Information, uncertainty and fusion (2000), pp. 245-256.

[194] SARAIVA, J. A roadmap for software maintainability measurement. In Proceedings

of the 35th International Conference on Software Engineering (ICSE) (2013), IEEE,

pp. 1453–1455 , San Francisco, CA, USA.

[195] SARAIVA, J., SOARES, S., AND CASTOR, F. Towards a catalog of object-oriented

software maintainability metrics. In Proceedings of the 4th International Workshop on

Emerging Trends in Software Metrics (WETSoM) (2013), pp. 84–87, San Francisco,

CA, USA.

[196] SCACCHI, W. Understanding the requirements for developing open source software

systems. Software IEE Proceedings 149, 1 (2002), pp. 24-39.

[197] SCHNEBERGER, S. L. Distributed computing environments: effects on software

maintenance difficulty. Journal of Systems and Software 37, 2 (1997), pp. 101-116.

[198] SCHNEIDEWIND, N. Software quality control and prediction model for maintenance.

Annals of Software Engineering 9, 1 (2000), pp. 79-101.

[199] SCHWABER, K., AND SUTHERLAND, J. The scrum guide. Scrum Alliance (2011).

319

Bibliography

[200] SHELDON, F. T., JERATH, K., AND CHUNG, H. Metrics for maintainability of class

inheritance hierarchies. Journal of Software Maintenance and Evolution: Research

and Practice 14, 3 (2002), pp. 147-160.

[201] SINGH, Y., AND GOEL, B. A step towards software preventive maintenance. ACM

SIGSOFT Software Engineering Notes 32, 4 (2007), pp. 10-21.

[202] SINGH, Y., AND MALHOTRA, R. Object-Oriented Software Engineering. PHI Learn-

ing Pvt. Ltd., 2012.

[203] SNEED, H. M. A cost model for software maintenance & evolution. In Proceedings of

20th IEEE International Conference on Software Maintenance (ICSM) (2004), IEEE,

pp. 264-273, Chicago, USA.

[204] SNEED, H. M., AND MERAY, A. Automated software quality assurance. IEEE

Transactions on Software Engineering 11, 9 (1985), pp. 909-935.

[205] SONI, N., AND KHALIQ, M. Maintainability estimation of object-oriented software:

Design phase perspective. International Journal of Advanced Research in Computer

and Communication Engineering 4, 3 (2015), pp. 52-57.

[206] SOUNDARARAJAN, S., ARTHUR, J. D., AND BALCI, O. A methodology for as-

sessing agile software development methods. In Proceedings of the Agile Conference

(AGILE) (2012), pp. 51–54, Bengaluru, India.

[207] SPECHT, D. F. A general regression neural network. IEEE Transactions on Neural

Networks 2, 6 (1991), pp. 568-576.

[208] SPECHT, D. F., AND SHAPIRO, P. D. Generalization accuracy of probabilistic neural

networks compared with backpropagation networks. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, IJCNN (1991), vol. 1, pp. 887–892,

Seattle, USA.

320

Bibliography

[209] STARK, G. E., KERN, L. C., AND VOWELL, C. A software metric set for program

maintenance management. Journal of Systems and Software 24, 3 (1994), pp. 239-

249.

[210] STAVRINOUDIS, D., XENOS, M., AND CHRISTODOULAKIS, G. D. Relation be-

tween software metrics and maintainability. In Proceedings of the International Con-

ference, Federation of European Software Measurement Associations, FESMA (1999),

pp. 465–476, Amsterdam, The Netherlands.

[211] STONE, M. Cross-validatory choice and assessment of statistical predictions. Journal

of the Royal Statistical Society. Series B (Methodological) 36, 2 (1974), pp. 111-147.

[212] STROGGYLOS, K., AND SPINELLIS, D. Refactoring–does it improve software qual-

ity? In Proceedings of the 5th International Workshop on Software Quality, WoSQ

(May 2007), pp. 1–6, Minnesota, USA.

[213] SUN, P., AND WANG, X. Application of ant colony optimization in preventive soft-

ware maintenance policy. In Proceedings of the International Conference on Infor-

mation Science and Technology (ICIST), Guangdong, China (2012), pp. 141–144,

Guangdong, China.

[214] SVENSSON, H., AND HOST, M. Introducing an agile process in a software mainte-

nance and evolution organization. In Proceedings of the Ninth European Conference

on Software Maintenance and Reengineering, CSMR (2005), pp. 256–264, Manch-

ester, UK.

[215] SWANSON, E. B. The dimensions of maintenance. In Proceedings of the 2nd in-

ternational conference on Software engineering, ICSE (1976), pp. 492–497, Estoril,

Portugal.

321

Bibliography

[216] TANG, M. H., KAO, M. H., AND CHEN, M. H. An empirical study on object-

oriented metrics. In Proceedings of the Sixth International Symposium on Software

Metrics, BocaRaton (1999), pp. 242–249, Florida, USA.

[217] THONGMAK, M., AND MUENCHAISRI, P. Maintainability metrics for aspect-

oriented software. International Journal of Software Engineering and knowledge En-

gineering 19, 03 (2009), pp. 389-420.

[218] THRIFT, P. R. Fuzzy logic synthesis with genetic algorithms. In Proceedings of the

Fourth International Conference on Genetic Algorithms, ICGA (1991), pp. 509–513,

San Diego, CA, USA.

[219] THWIN, M. M., AND QUAH, T. S. Application of neural networks for software

quality prediction using object-oriented metrics. Journal of systems and software 76,

2 (2005), pp. 147-156.

[220] UPADHYAY, N., DESHPANDE, B., AND AGARWAL, V. Developing maintainability

index of a software component: a digraph and matrix approach. ACM SIGSOFT

Software Engineering Notes 35, 5 (2010), pp. 1-11.

[221] VELMOUROUGAN, S., DHAVACHELVAN, P., BASKARAN, R., AND RAVIKUMAR,

B. Software development life cycle model to improve maintainability of software ap-

plications. In Fourth International Conference on Advances in Computing and Com-

munications (2014), IEEE, pp. 270–273, Kotchi, India.

[222] VIVANCO, R., AND PIZZI, N. Finding effective software metrics to classify main-

tainability using a parallel genetic algorithm. In Proceedings of the Genetic and Evo-

lutionary Computation, GECCO (2004), pp. 1388–1399, Seattle, WA, USA.

[223] WANG, Z., AND XU, J. Predicting protein contact map using evolutionary and phys-

ical constraints by integer programming. Bioinformatics 29, 13 (2013), pp. 266-273.

322

Bibliography

[224] WELKER, K. D., OMAN, P. W., AND ATKINSON, G. G. Development and ap-

plication of an automated source code maintainability index. Journal of Software

Maintenance: Research and Practice 9, 3 (1997), 127-159.

[225] WEN-HUA, Y. Predicting object-oriented software maintainability using projection

pursuit regression. In The 1st International Conference on Information Science and

Engineering (ICISE) (2009), pp. 3827-3835, Wuhan, China.

[226] WILKING, D., UMAR, F., AND KOWALEWSKI, S. An empirical evaluation of refac-

toring. e-Informatica 1, 1 (2007), pp. 27-42.

[227] XIA, F., AND SRIKANTH, P. A change impact dependency measure for predicting

the maintainability of source code. In Proceedings of the 28th Annual International

Computer Software and Applications Conference (COMPSAC) (2004), pp. 258–262,

Hong Kong.

[228] XING, Z., AND STROULIA, E. Refactoring practice: How it is and how it should

be supported-an eclipse case study. In Proceedings of the 22nd IEEE International

Conference on Software Maintenance, ICSM (2006), pp. 458–468, Eindhoven, The

Netherlands.

[229] YACOUB, S. M., AMMAR, H. H., AND ROBINSON, T. Dynamic metrics for object

oriented designs. In Proceedings of Sixth International Software Metrics Symposium

(1999), IEEE, pp. 50-61, Boca Raton, FL, USA.

[230] YAMASHITA, A., AND MOONEN, L. Do code smells reflect important maintainabil-

ity aspects? In 28th IEEE International Conference on Software Maintenance (ICSM)

(2012), IEEE, pp. 306–315, Trento, Italy.

[231] YANG, J., AND HONAVAR, V. Feature subset selection using a genetic algorithm.

Feature extraction, construction and selection 453, 1 (1998), pp. 117-136.

323

Bibliography

[232] YAU, S. S., AND COLLOFELLO, J. S. Some stability measures for software mainte-

nance. IEEE Transactions on Software Engineering 6, 6 (1980), pp. 545-552.

[233] YAU, S. S., COLLOFELLO, J. S., AND MACGREGOR, T. Ripple effect analysis of

software maintenance. In Proceedings of the Second IEEE International conference

on Computer Software and Application Conference, COMPSAC (1978), pp. 60–65,

Chicago, USA.

[234] YE, F., ZHU, X., AND WANG, Y. A new software maintainability evaluation model

based on multiple classifier combination. In International conference on Quality, Reli-

ability, Maintenance and Safety Engineering (2013), pp. 1588–1591, Chengdu,China.

[235] YING, A. T., MURPHY, G. C., NG, R., AND CHUCARROLL, M. Predicting source

code changes by mining change history. IEEE Transactions on Software Engineering

30, 9 (2004), pp. 574-586.

[236] ZHANG, W., HUANG, L. G., VINCENT, N., AND JIDONG, G. Smplearner: learning

to predict software maintainability. Automated Software Engineering 22, 1 (2015),

pp. 111–141.

[237] ZHOU, Y., AND LEUNG, H. Predicting object-oriented software maintainability us-

ing multivariate adaptive regression splines. Journal of Systems and Software 80, 8

(2007), pp. 1349-1361.

[238] ZHOU, Y., AND XU, B. Predicting the maintainability of open source software using

design metrics. Wuhan University Journal of Natural Sciences 13, 1 (2008), pp. 14-20.

324

SUPERVISOR’S BIOGRAPHY

Ruchika Malhotra

Associate Head and Assistant Professor

Department of Software Engineering

Delhi Technological University Delhi-110042, India

Email: ruchikamalhotra2004@yahoo.com

Educational Qualification:

Post Doctoral (Indiana University-Purdue University Indianapolis, USA), Ph.D. (Infor-

mation Technology), MCA(SE), BIS(H)

Dr. Ruchika Malhotra is an assistant professor in the Department of Computer Science

& Engineering, Delhi Technological University (formerly Delhi College of Engineering),

325

Delhi, India. She is a Raman Scholar and was awarded the prestigious UGC Raman Post-

doctoral Fellowship by the government of India, under which she pursued postdoctoral re-

search in the Department of Computer and Information Science, Indiana University - Purdue

University Indianapolis, Indiana. She earned her master’s and doctorate degrees in software

engineering from the University School of Information Technology, Guru Gobind Singh In-

draprastha University, Delhi, India. She was an assistant professor at the University School

of Information Technology, Guru Gobind Singh Indraprastha University, Delhi, India. Dr.

Malhotra received the prestigious IBM Faculty Award in 2013 and has received the Best

Presenter Award in Workshop on Search Based Software Testing, ICSE, 2014, Hyderabad,

India. She is an executive editor of Software Engineering: An International Journal and is a

coauthor of the book, Object-Oriented Software Engineering. Dr. Malhotra’s research inter-

ests are in empirical research in software engineering, improving software quality, statistical

and adaptive prediction models, software metrics, the definition and validation of software

metrics, and software testing. Her H-index as reported by Google Scholar is 18. She has

published more than 120 research papers in international journals and conferences, and has

been a referee for various journals of international repute in the areas of software engineering

and allied fields. She is guiding several doctoral candidates and has guided several under-

graduate projects and graduate dissertations. She has visited foreign universities such as

Imperial College, London, UK; Indiana University - Purdue University Indianapolis, Indi-

ana; Ball State University, Muncie, Indiana; and Harare Institute of Technology, Zimbabwe.

She has served on the technical committees of several international conferences in the area

of software engineering (SEED, WCI, ISCON).

326

AUTHOR’S BIOGRAPHY

Anuradha Chug

Assistant Professor

University School of Information and Communication Technology

Guru Gobind Singh Indraprasth University

Dwarka, New Delhi-110077, India

Email: anuradha@ipu.ac.in, a chug@yahoo.co.in

Educational Qualification:

Bachelor of Computer Science(Banasthali Vidyapith), Master of Computer Science (Ba-

nasthali Vidyapith), M.Tech Information Technology (GGSIP University, Dwarka)

Anuradha Chug has long teaching experience of almost 20 years to her credit as faculty

and in administration at various educational institutions in India. She has worked as guest

faculty in Netaji Subhash Institute of Information and Technology, Dwarka, New Delhi and

Regular Faculty at Government Engineering College, Bikaner. Before picking the current

assignment as Assistant Professor at USICT, GGSIP University, she has also worked as Aca-

327

demic Head, Aptech, Meerut and Program Coordinator at Regional Centre, Indira Gandhi

National Open University (IGNOU), Meerut.

In academics, she has achieved top rank in her M.Tech (IT) degree and conferred the Uni-

versity Gold Medal in 2006 from Guru Gobind Singh Indraprastha University. Previously

she has acquired her Master’s degree in Computer Science from Banasthali Vidyapith, Ra-

jasthan in the year 1993. Her H-index as reported by Google Scholar is 4. She has published

more than 20 research papers in international journals and conferences.

328

