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ABSTRACT 

 

Age-Related Disorders are the complex disorders associated with the process of ageing 

affecting the quality of life of our elderly population. Understanding the biology of 

ageing and age-related disorders has thus become one of the most important field of 

research in medicine and requires integration of the vast amount of biological data 

residing in the databases.  Large amount of data on ARD associated variants, genes and 

proteins are contained in these databases but they lack connectivity which otherwise is 

important to decipher the biology of aging and associated diseases.   Recently, studies 

have demonstrated that network approaches helps when applied to integrate biological 

information can provide novel insights and pave the way for understanding and curing 

complex diseases. Here we, therefore, propose a new platform ARDInteract that 

integrate different data sources and allow the creation of heterogeneous networks at 

various ‘-omic’ levels - SNP, gene, protein, disease and drug interaction levels. 

ARDInteract provides a user-friendly interface to integrate, visualize and analyse 

genome-scale biological networks for ARDs ultimately allowing the research community 

to connect distinct spots in space to solve the puzzle of human aging and ARDs. We 

believe that by using holistic approach we can achieve our rationale of personalized 

medicine, and eventually healthy ageing.  
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1. INTRODUCTION 

Aging is a multilevel and multifaceted process of getting older characterised by physical, 

physiological, psychological and social changes. It is an inevitable process and is usually 

marked by the negative deviation of the bodily structures and functions from the 

optimum. The decrease in ability to respond to stress, increase in homeostasis 

imbalance and increase in the rise of age-related diseases/disorders (ARDs) are some of 

the characteristic features of Aging. It has been found that nearly 100,000 people die 

per day of various ARDs such as cardiovascular diseases, cancer, arthritis, osteoporosis, 

type 2 diabetes, schizophrenia, Alzheimer’s disease to name a few. It has been observed 

that incidence of ARDs increases rapidly with aging and hence there are growing efforts 

in aging research to understand the biology of aging with the ultimate goal of 

delaying/stopping aging and extending the healthy lifespan. 

Aging and longevity are the consequences of the complex interplay of environmental 

and genetic factors. Number of biological pathways have been found to be play key role 

in aging and includes lipid/cholesterol metabolism, immune system processes, energy 

metabolism in mitochondria and insulin receptor signalling pathway. Researches in 

model organisms have shown that by manipulating a few genes the lifespan of the 

organism can be extended (Kenyon, 2010). One such example is demonstrated in C. 

elegans where inactivation in daf-2 gene increases the lifespan by approximately 100% 

(Sebastiani et. al., 2009). It has been estimated that nearly 30% of differences in life 

expectancy in humans are governed by genetic factors (Shi et. al., 2012). There is 

growing evidence that the genes involved in ARDs affect the human life expectancy. 

However, understanding the genetics of aging process and age-related diseases is 

complex and is currently one of the world’s major scientific challenges.  

Several approaches have been implemented to identify the genes associated with aging 

and ARDs in humans (Melzer et. al., 2007). One such approach is candidate gene 

approach in which scientists look for genes in humans that serve similar functions in the 

body as genes already associated with aging in model organisms and then looking for 

the variants of these genes which are found to be common in people with long lifespan. 

However, this method has its own shortcomings and cannot be used for determining all 

the genes associated with diseases. The other method that is used is linkage analysis. In 
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this method scientists look for regions of the human genome shared more often than 

expected by chance between close relatives who also share exceptional longevity. 

However, one major drawback of this method is its inability to map gene of modest 

relative risk (OR<2). With the advancements in genome sequencing methods, yet 

another powerful approach that has become the main pipeline for the identification of 

variants associated with diseases is Genome-Wide Association Study.  The rapid 

development and expanded use of microarray technologies, including oligonucleotide 

array comparative genomic hybridization and SNP genotyping arrays, as well as next-

generation sequencing with paired-end methods, has enabled a whole-genome analysis 

with almost unlimited resolution. State-of-the art GWAS studies most often look for 

individual genes with large impacts on a single phenotype. However, this approach also 

suffers from a limitation as the impact of genetic variations cannot be studied in 

isolation. Predictive elements, such as single nucleotides (SNPs), loci, genes, or entire 

biological pathways interact at all levels of granularity. The pervasiveness and strength 

of bio-molecular interactions thus require a step back from reductionist biology and an 

acknowledgement of the importance of biological networks and pathways. 

The field of network biology has recently emerged as a powerful paradigm to visualize 

and analyse large data ensembles in novel ways with unparalleled flexibility (Barabasi 

and Otavi, 2004). The application of this approach in the recent past has enabled a 

detailed look at the genetic landscape of complex human phenotypes (Ideker and 

Sharan, 2005). In 2007, Goh et al. reported the first human disease network and 

provided a novel view of the genetic relationship among diseases (Goh et. al., 2007). 

Another pioneering study summarized the application of protein networks for network-

based classification of diseases (Ideker and Sharan, 2005) and integration of drug 

targets and disease gene products led to the field of systems pharmacology (Berger and 

Iyenagar, 2010; Yildrim et. al., 2007).  

Therefore, in order to understand the common etiology of complex ARDs and the how 

genetic variants play role in various ARDs, we have developed a framework for the 

construction, visualization and analysis of ARD networks at different granularity levels 

by integrating information from genome-wide association studies, protein-protein 

interaction and gene ontology databases. In this work, we used SNPs as a smaller unit, 
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and biological pathways as a larger unit. We took a bird’s eye view of the effect of 

genetic variations on the ARDs. We also took into account two phenomena that 

illustrate the underlying complexity of these genetic variations: pleiotropy, when a 

single mutation affects several traits, and epistasis, when multiple mutations have 

synergetic, usually non-linear, effects on a single phenotype (Moore et. al., 2014).  

Moore et. al. (Moore et. al. 2009) asserted that epistasis and pleiotropy are not isolated 

occurrences, but ubiquitous and inherent properties of biomolecular networks. A 

systems level understanding of epistasis and pleiotropy is, thus, critical to furthering 

our understanding of human genetics and its contribution to common human disease.  

Construction of ARD networks based on predictive elements of different scales, 

therefore, provide a deeper insight into how various diseases are associated together 

and allow us to identify the pleiotropic and epistatic interactions at the system’s level. 

The analysis of ARD networks can be applied to discover patterns and predict causal 

genetic markers (nodes in the network), or active modules (referred to as sub-networks 

or pathways) to help understand the molecular basis of ARDs and their relationships 

that an facilitate early diagnosis, prognosis, prevention and treatment of ARDs.   

The aim of the current study is:  

 To construct Age-Related Disorder (ARD) networks at different levels of 

granularity, from common genetic variants to entire biological pathway. 

 To explore the hypothesis that subsets of associated SNPs/genes characterize 

different pathways to ARDs. 

 To develop an integrated platform “ARDInteract” that allows visualization and 

analysis of ARD networks.  
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2. REVIEW OF LITERATURE 

This section introduces the commonly used network terminology and definitions 

followed by the applications of network biology in the medicine. The chapter ends with 

a review of recent computational work on network-based analysis of age-related 

diseases. 

2.1 NETWORK THEORY  

A network is a set of nodes connected by interactions, and can represent anything from 

social interactions between pupils in a school class, to traffic between airports. 

Organizing complex systems into networks can give a clear overview of the system, and 

effectively identify important components.  

The analysis of complex networks constitutes a field of science known as network 

theory. Network theory is a powerful tool for systems biologists. Disease-associated 

genes can be organized into networks using various biological sources such as physical 

protein-protein interactions (PPIs), literature co-citation or co-expression. Those 

networks can then be dissected to identify disease pathways, mechanisms, clinical 

markers and drug targets. Two concepts are of particular interest in this kind of 

analysis: modularity and centrality.  

2.1.1 Modularity 

In a modular network, the nodes are divided into groups that share many interactions 

internally but few interactions with other groups. Many real world networks, such as 

social networks and gene networks tend to be highly modular. Identifying modules in a 

large, complex network can reduce thousands of nodes to a handful of modules, thereby 

drastically simplifying the analysis.  

The most extreme version of module is termed clique. A clique is a set of nodes that are 

completely connected with each other. All cliques in a network that are not subsets of 

another clique, are termed as maximal cliques.   
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A method to determine if a gene is part of a module or not is termed clustering 

coefficient (see Table 1 for the description of properties of a node in a network). The 

clustering coefficient of a node is defined by how many of the node’s interactors that are 

connected with each other. Average clustering coefficient of a network calculated as the 

mean of the clustering coefficients of all the nodes in the network gives a measure of 

cohesiveness in the network which is also commonly referred to as the extent of 

modularity. The higher the clustering coefficient greater is the modular nature of the 

network. To compare the extent of cohesiveness in a network often clustering 

coefficients of the real networks are compared with random networks with similar size 

and degree distribution. 

Table 1. Different local properties which can be defined for a node in complex networks. 

Property Description 

Indegree/Incoming 

degree 

In directed networks where directionality of an interaction is 

taken into account, indegree refers to the number of incoming 

connections to a node of interest. In other words, indegree is the 

number of arrows that flow into the node under investigation. 

Outdegree/Outgoing 

degree 

Out degree refers to the number of edges which start from a 

node of interest and point to other nodes in the network and is 

valid for directed networks where there is direction associated 

with each edge represented. 

Degree or 

Connectivity 

Degree or connectivity of a node refers to the total number of 

interactions it has in a network – the higher the connectivity 

(i.e., hub nodes) the more the number of targets it interacts with. 

In directed networks degree simply corresponds to the sum of in 

and out degrees of a node. 

Clustering 

Coefficient 

Clustering coefficient of a node reflects the extent to which the 

neighbors of a given node are interconnected among themselves 

to what is expected theoretically and indicates the cohesiveness 
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or local modularity of the network. An extension of this metric to 

the complete network defined as the average clustering 

coefficient of all nodes, tells whether the network is modular or 

is sparsely connected. 

Betweenness Betweenness centrality of a node measures the number of 

shortest paths between all pairs of nodes in the network that 

pass through a node of interest – the higher the number of paths 

that pass through a node, the more important it is. 

Average path length Average length of the shortest paths between all pairs of nodes 

in the network. 

Closeness Closeness centrality is defined as the inverse of the average 

length of all the shortest paths from a node of interest to all 

other nodes in the network - note that closeness centrality 

defined this way implies that higher the closeness value, the 

higher the importance (centrality) of a node. 

Diameter The diameter of a network is the length of the longest path 

among all the shortest paths defined between two nodes. It gives 

an estimation of the distance between the farthest nodes in the 

network. 

Graph density The density of a network is the ratio of the number of edges to 

the number of total possible edges. 

Power law fit Fitting a power-law distribution function to the degree 

distribution of the network to study whether the network is 

likely to exhibit a scale-free network structure. 
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2.1.2 Centrality 

Centrality is a way to prioritize nodes within a network. A central node is well-

connected with the rest of the network; removing it will strongly affect the integrity of 

the network. The measures of centrality are: Degree, Betweenness and Closeness. 

a. Network degree 

The most straightforward definition of centrality is degree (sometimes called 

connectivity), which corresponds to the number of interactions (i.e. the number of 

immediate neighbors) a node has. Calculation of the degree allows determining the 

degree distribution P(k), which gives the probability that a selected node has exactly k 

links. P(k) is obtained by counting the number of nodes N(k) with k = 1, 2, 3 ... links and 

dividing by the total number of nodes N. Determining the degree distribution allows 

distinguishing different kind of graphs. For instance, a graph with a peaked degree 

distribution (Gaussian distribution) indicates that the system has a characteristic 

degree with no highly connected nodes (most of the nodes have average degree). This is 

typical of random, non-natural, networks. By contrast, a power-law degree distribution 

indicates the presence of few nodes having a very high degree. And this behaviour has 

been shown to be non-random. Networks displaying a degree distribution 

approximating a power-law are called scale-free networks. Many networks have been 

identified to show the characteristics of the scale free networks.  

Nodes with a high degree are commonly referred to as hubs and they hold together 

several nodes with lower degree. This behaviour gives these networks a kind of 

robustness against random node deletion/failure. Additionally it also gives an 

opportunity to identify few network influential nodes in disease related biological 

networks as potential therapeutic targets. 

In biological terms, the degree allows an immediate evaluation of the regulatory 

relevance of the node. For instance, in signaling networks, proteins with very high 

degree are interacting with several other signaling proteins, thus suggesting a central 

regulatory role of the proteins, that is they are likely to be regulatory hubs.  
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However, degree is a local centrality measure. It is often important to know a node’s 

centrality with respect to the entire network. Two common global centrality measures 

are betweenness and closeness (Junker et al., 2006). 

b. Betweenness Centrality 

Betweenness is calculated by first identifying the shortest paths between all nodes in 

the network. The betweenness centrality of a node n is calculated considering couples of 

nodes (s and t) and counting the number of shortest paths linking node s and node  t 

and passing through the node n . Then, the value is related to the total number of 

shortest paths linking s and t. Thus, a node can be traversed by only one path linking s 

and t, but if this path is the only connecting s and t the node i will score a higher 

betweenness value. Nodes with many shortest paths passing through them receive a 

high betweenness and are sometimes referred to as bottlenecks. 

The betweenness centrality of a node in a biological network, for instance a protein 

interaction network, can indicate the  relevance of a protein as functionally capable of 

holding together different communicating proteins. The higher the value the higher the 

relevance of the protein as organizing regulatory component. Betweenness centrality of 

a protein effectively indicates the capability of a protein to bring together 

communication between distant proteins. In signaling modules, proteins with high 

betweenness centrality are likely to be crucial in maintaining functionality and 

coherence of signaling mechanisms. 

c. Closeness Centrality 

Closeness is calculated in a similar way. A node’s closeness is a measure of its average 

distance to all other nodes in the network.  The closeness centrality of a node is 

calculated by computing the sum of the shortest path between the node and all other 

nodes in the graph, and then dividing by the number of nodes. Once this value is 

obtained, its reciprocal is calculated, so higher values assume a positive meaning in 

term of node proximity. Notably, high values of closeness centrality should indicate that 

all other nodes are in proximity to the node. In contrast, low values of closeness should 

indicate that all other nodes are distant from the node. 
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The closeness of a node in a biological network, for instance a protein-signaling 

network, can be interpreted as a measure of the possibility of a protein to be 

functionally relevant for several other proteins, but with the possibility to be irrelevant 

for few other proteins. Thus, a protein with high closeness, compared to the average 

closeness of the network, will be easily central to the regulation of other proteins but 

with some proteins not influenced by its activity. 

The inverse of closeness is called average shortest path length. Since closeness is based 

on the average distance to all other nodes in the network, some nodes could still be very 

distant from a node with high closeness. To compensate for this, closeness should be 

complemented with eccentricity, which is the distance from a given node to the farthest 

node in the network. Note that unlike for degree, betweenness and closeness, a low 

eccentricity value implies high centrality. 

2.2 NETWORKS IN MOLECULAR BIOLOGY 
 

Development of several high throughput approaches in the last decade have not only 

increased the amount of information that we could gather to reveal important insights 

on the transcriptional, post-transcriptional or functional organization of an organism 

but they have also enabled us to start our journey to uncover the principles which hold 

them together. This is mainly because of the extent of information that has been 

possible to be collected by interrogating the cell’s environment at different levels of 

detail. For instance, availability of modern techniques now enable us to identify the set 

of protein-protein interactions, genetic interactions, metabolic maps and small molecule 

interactions at a whole-organism level. Perhaps the most common form of interaction 

graphs which have been studied since the early days of genome sequencing are protein 

interactions. 

2.2.1 Protein-Protein Interactions 

In order to fulfil their function, proteins interact with other substances (molecules, ions, 

DNA, etc.) or other proteins. Proteins interact in numerous different contexts and with 

different outcomes. Some proteins activate or deactivate other proteins by binding to 

them or by (de)phosphorylating them. In the process of (de)phosphorylation, a 
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phosphate group is (removed)added from a protein, which activates or deactivates the 

protein. Some proteins bind to each other, creating so-called protein complexes. These 

have important roles in the entire cell. Another class of proteins bind to each other to 

create structural complexes which give the cell its 3-dimensional structure. Yet other 

proteins pass on signals by interacting with source and destination proteins in so-called 

signaling pathways. Transcription factors are proteins that bind to DNA to activate the 

transcription process of a gene. This activation often requires multiple transcription 

factors to interact and also bind to the DNA. Thus, the elucidation of protein interactions 

is a central problem in biology. Unless we understand the complex interaction patterns 

of the tens of thousands of proteins that constitute our proteome, we cannot hope to 

attempt to efficiently combat some of the most important diseases. 

A number of different approaches have been in use towards reconstructing the 

interactions between proteins. The literature comprises studies that use high 

throughput experiments to find if there exist pairwise interactions between a large set 

of query proteins. Other studies use computational modeling to determine which 

proteins may bind to each other based on their (predicted) structural properties. Some 

of the most popular and widely used experimental and computational techniques are 

explained below: 

a. Yeast two hybrid (Y2H) (Fields and Song, 1989) : It is the genetic method that uses 

the transcriptional activity as a measure of protein-protein interaction. Two hybrid 

proteins are created corresponding to the proteins A and B between which the 

interaction is to be identified. One protein(say A) is bind with the DNA binding domain. 

Other protein(B) is fused with the transcription activation domain. These two hybrids 

are expressed in a cell containing reporter genes. The positive expression of the 

reporter genes identifies the interaction between the proteins A and B.  

b. Co-localization: These methods work on the hypothesis that the genes which 

physically interact should be present in physically close proximity in the genome. 

c. Co-occurrence: This method exploits the co-occurrence of homologous pairs of genes 

across multiple genomes. The fact that a pair of genes express together across many 
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different species suggest that these genes are functional associated or physically 

interacting. 

As a result of the high throughput experiments and computational techniques, many 

databases have been designed and setup to store the protein-protein interaction data. 

These databases usually are the results of integration of diverse data-sets. Some of the 

databases providing information about the protein-protein interactions are given 

below:  

1. Biomolecular Interaction Network Database - BIND 

2. Database of Interacting Proteins - DIP 

3. Search Tool for the Retrieval of Interacting Genes/Proteins - STRING 

4. General Repository for Interaction Datasets - GRID 

5. Human Protein Reference Database - HPRD 

6. Molecular Interactions Database –MINT 

 

PPI Networks 

The protein-protein interaction network is generally represented as undirected graph 

G(V,E), where the set of nodes V are the proteins. An edge (p1, p2)->E is present if there 

is an interaction between the two proteins p1 and p2. Multiple sources of protein 

interaction networks from different studies and databases represent the protein 

interaction networks differently. 

2.2.2 Metabolic Networks 

Another class of networks which are commonly studied is that of metabolic networks. 

They comprise of representing the metabolites and enzymes involved in catalyzing 

metabolic reactions as the nodes and edges in a directed network. The metabolic 

network maps are likely the most comprehensive of all biological networks. Most of the 

work on understanding metabolic networks relies on either manually curated or semi-

automated metabolic databases such as the kyoto encyclopedia of genes and genomes 

(KEGG) and Metacyc which are available for a wide range of model organisms (Caspi et 



 
 
 

14 
 

al., 2008; Grossetete et al., ; Kanehisa et al., 2008). Recently, Duarte et al. published a 

comprehensive literature-based genome-scale metabolic reconstruction of human 

metabolism with 2,766 metabolites and 3,311 metabolic and transport reactions. An 

independent manual construction by Ma et al. contains nearly 3,000 metabolic 

reactions, organized into about 70 human-specific metabolic pathways.  

2.2.3 Regulatory Networks 

Mapping of the human regulatory network is in its infancy, making this network 

perhaps the most incomplete among all biological networks. Data generated by 

experimental techniques, such as ChIP-on-chip and ChIP-Sequencing, have started to be 

collected in databases such as Universal Protein Binding Microarray Resource for 

Oligonucleotide Binding Evaluation (UniPROBE) and JASPAR. Literature-curated and 

predicted protein-DNA interactions have been compiled in various databases, such as 

TRANSFAC and the B-cell interactome (BCI). Human post-translational modifications 

can be found in databases such as Phospho.ELM, PhosphoSite, and phosphorylation site 

database (PHOSIDA).  

2.2.4 RNA networks 

RNA networks can refer to networks containing RNA-RNA or RNADNA interactions. 

Recently, with the increased understanding of microRNAs’ role in disease, microRNA-

gene networks have been constructed using predicted microRNA targets available in 

databases such as TargetScan, PicTar, microRNA, miRBase, and miRDB. The number of 

experimentally supported targets is also increasing, which are now compiled in 

databases such as TarBase and miRecords. 

Organisms respond to continuous variations in internal and external cellular conditions 

by orchestrating their responses depending on the environmental challenges they are 

faced with. This involves the usage of a complex network of interactions among 

different proteins, RNA, metabolites and several other cellular entities, which undergo 

rewiring when perturbed by small molecules such as chemicals or drugs. The 

interaction between different chemicals and cellular entities can be represented in the 

form of a network- so called Drug-Target network.  
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Table 2. Summary of the aspects of network theory that pertain to biological networks 

Degree 

distribution 

and hubs 

In a random network, most nodes have approximately the same 

number of links, and highly connected nodes (hubs) are quite rare. 

The fraction of links with a given degree, called the degree 

distribution, follows the well-known Poisson distribution. In contrast, 

many real networks, including human protein-protein interaction and 

metabolic networks are scale-free, which means that the degree 

distribution has a power-law tail, i.e., the degree distribution P(k) with 

degree k follows P(k) ~ k−γ, where γ is called the degree exponent. 

The most noticeable consequence of this property is the presence of a 

few highly connected hubs that hold the whole network together. The 

biological role and dynamical behavior of hubs allowed their 

classification into “party” hubs, which function inside modules and 

coordinate specific cellular processes, and “date” hubs, which link 

together rather different processes and organize the interactome. 

Small world 

phenomena 

Most complex networks (including random networks) display the 

small world property, which means that there are relatively short 

paths between any pair of nodes. This observation means that most 

proteins (or metabolites) are only a few interactions (or reactions) 

from any other proteins (metabolites). Therefore, perturbing the state 

of a given node can affect the activity of most nodes in their vicinity as 

well as of the behavior of the network itself 

Motifs Some subgraphs (a group of nodes that link to each other forming a 

small subnetwork within a network) in biological networks appear 

more (or less) frequently than expected given the network’s degree 

distribution. Such subgraphs are often called motifs, and they are 

likely associated with some optimized biological function (e.g., 

negative feedback loop, positive feed forward loop). 
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Modules Most networks display a high degree of clustering, implying the 

existence of topological modules, representing highly interlinked local 

regions in the network. While the identification of such modules can 

be computationally challenging, a wide array of network clustering 

tools have emerged in the past few years. 

 

2.3 NETWORK BIOLOGY APPROACH TO COMPLEX DISORDERS 

Networks have an important role in systems biology, as a method to organize large 

numbers of disease-associated genes, or analyze cellular signaling pathways (e.g. the 

insulin signaling pathway). Network approaches offer an improved understanding of 

the relationship between the genes implicated in diseases and may be a valuable 

resource to find candidate disease genes. It has been reported that the Mendelian 

component of complex diseases, such as for example breast cancer, represent less than 

30% of its incidence. In the particular case of breast cancer and the BRCA1 and BRCA2 

genes, it is a mere 5% of all cases. Furthermore, the recent results of the many GWAS 

undertaken in recent years have shown that a large amount of disease-causing genes 

are yet to be accounted for. To explain the missing causal factors of complex disease, it 

is suggested future investigations should focus not on the genes in and of themselves, 

but rather on the effect of the interaction at various –omics and environmental level. 

Exploring associations between various diseases by using multi-omics information is 

expected to improve our current knowledge of disease relationships, which may lead to 

further improvements in diseases diagnosis, prognosis and treatment (Park et al., 

2009). Recent research has increasingly demonstrated that many seemingly dissimilar 

diseases have common molecular mechanisms and strong associations among them (Yu 

et al., 2015). Because of the associations among diseases, multiple diseases occur 

together in a patient, which is called disease comorbidities. Comorbidity associations 

can be due to direct or indirect causal relationships and the shared risk factors among 

them (Tong and Stevenson, 2007). If two diseases have comorbidity association, the 

incidence of one of them in an individual may increase the likelihood of another disease 

occurring. Certain diseases, such as diabetes and obesity often co-occur in the same 



 
 
 

17 
 

patient, sometimes one being considered a significant risk factor for the other (Lee et al., 

2008). Disease comorbidities are increasingly placing a greater burden on individuals, 

societies and health care services. It is an important factor for better risk stratification 

of patients and treatment planning. 

Diseases with similar molecular, environmental, and lifestyle risk factors may be 

comorbid in individuals or may be risk factors for another disorder (Davis et al., 2010). 

Shared genetic, environmental and lifestyle factors have similar consequences, 

increasing the co-occurrence of associated diseases in the same individual. So, a person 

diagnosed for a combination of disorders and exposed to particular environmental, 

lifestyle and genetic risk factors may be at an increased risk of developing several other 

genetically and environmentally associated diseases (Barabási et al., 2011). It is now 

well accepted that phenotypes are determined by genetic material under environmental 

influences. For instance, many well-known and influential lifestyle factors such as 

smoking, diet, and alcohol intake are actively related to diabetes type 1 and type 2, and 

obesity (Astrup, 2001). Moreover, many complex diseases, such as cancer and diabetes, 

are affected by an integrated effect of environment and epistasis among many genes 

(Davis et al., 2010). 

Recently, genome-wide association studies (gwas) proved to be useful as a method for 

exploring phenotypic associations with diseases (Lewis et al., 2011). Single-nucleotide 

polymorphisms (SNPs), a variation of a single nucleotide, are assumed to play a major 

role in causing phenotypic differences between individuals. It has become possible to 

assess systematically the contribution of common SNPs to complex diseases.  

Most of the research works focussed on a particular data type, for example gene 

expression, to find profiles that are associated with particular disease, prognosis and 

drug response. The integrative analysis of various omics data has become increasingly 

widespread because each approach has intrinsic caveats. For instance, important 

information may be missing because of false negatives or may be misleading because of 

false positives. In addition, by analyzing different types of data in isolation we may miss 

important information that results from the coordinated activity of biological 

components at various levels. Some studies indicated that these limitations can be 

mitigated by integrating two or more omics datasets. Several studies (Goh et al., 2007; 



 
 
 

18 
 

Lee et al., 2008; Lu et al., 2008; Hu and Agarwal, 2009; Liu et al., 2009;Park et al., 2009; 

Schadt, 2009; Jiang et al., 2010; Suthram et al., 2010) reported on the role of a single 

omic or phenotypic measure to represent disease-disease associations (such as shared 

pathways or gene ontology). But, one needs to study diverse sources of evidence  

including  shared genetic factors, ontology, SNPs, and phenotypic manifestations for 

better understanding. 

Since, diseases may share many different types of associations with varying levels of 

risk for disease comorbidities, a singular view of associations between diseases is not 

enough to predict comorbidities. As more and more ontology, phenotype, omics and 

environmental data sets become publicly available, it is beneficial to improve our 

understanding of human diseases and diseases comorbidities based on these new 

system-level biological data. Combination of multiple types of omics, phenotype and 

ontology data identifies integrative biomarkers for the stratification of patients with 

clinical outcome. Therefore, it is clear that network based methods and tools are of 

critical importance in the field of medicine.  

Network approaches for the study of the aging and age-related disorders(ARDs)  

Aging is one of the most multifactorial, complex processes of living organisms. In spite 

of this complexity, until very recently the majority of studies examined separate 

elements of the aging process. The multiplicity of approaches has contributed to the 

large number of aging theories and definitions (Simko et. al, 2009). 

• According to the antagonistic pleiotropy theory of aging, genes, which are preferable 

during early development, become detrimental in the aged organism. 

• The disposable soma theory of ageing highlights the relocation of resources from 

somatic maintenance towards increased fertility leading to a slow deterioration .  

• The reliability theory gives a rather descriptive picture of aging emphasizing that 

aging is a phenomenon of increasing risk of failure with the passage of time. 

• The network theory of ageing integrates many elements of the previous theories and 

describes the shifting balance between various types of damage and repair mechanisms 
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in aging of cellular systems. The young state is characterized by well-repaired damage, 

while the aged organism cannot cope with the accumulated damage and gradually 

surrenders. 

Aging is accompanied by a number of age-related diseases, cancer, atherosclerosis, and 

diabetes and neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s 

disease or others. For the understanding and complex treatment of these interrelated 

diseases we need novel approaches. The network approach proved to be a highly 

efficient tool to describe complex system behaviour including the aging process and 

age-related diseases. Networks provide a framework for the conceptualization of the 

aging process, but can also be used to understand aging in many ways. It is therefore not 

surprising that the analysis of the phenomenon of aging can be expanded by the 

application of a network approach which will give us several novel approaches to 

understand the aging process better and to cure age-related diseases (ARDs) in entirely 

novel ways. 

We propose a computational framework to construct ARD networks that integrates 

genetic alteration (GWAS) data with standardized textual descriptions of gene functions 

and processes(GO) and their inter-relationships in order to characterize the 

mechanistic underpinnings of diseases.  We have developed a user-friendly web-based 

interface that allows visualization of various ARD networks at various –omic levels 

providing detail insight into the comorbidity of various ARDs. The goal of developing 

this interface is to allow physicians and researchers to visualize relationship between 

various ARDs by incorporating disease interactions, omics, and ontology information. 

We believe that combination of different types of data will result in a much deeper 

understanding of age related changes as well as identify the causes for variability across 

individual.   
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PART  III: MATERIALS/TOOLS USED 
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3. MATERIALS/TOOLS USED 

3.1 R 3.2.2 

R is a free software environment (publically available) used for graphics and statistical 

computing. It runs and compiles on variety of OS (UNIX platforms, MacOS and Windows. 

Before downloading R, preferred CRAN mirror was chosen (i.e. INDIA). R software is 

available at https://www.r-project.org/ . 

3.2 RStudio 

 It is a set of integrated tools designed for the user which enable them to be more 

productive with R. It includes editor for syntax-highlighting (supports direct code 

execution), tools for plotting, history, a console, as well as provides debugging and 

workspace management (Figure 1). 

 

Figure 1. Window of R studio showing different tools. Upper left corner is provided with the tools 

for writing the source codes, and there is console at the right bottom of window, left upper corner 

is for history and the left end corner is for plots, packages, help etc. 

 

https://www.r-project.org/
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3.3 Cytoscape 

Cytoscape (Figure 2) is an open source bioinformatics software platform for visualizing 

molecular interaction networks and integrating with gene expression profiles and other 

state data. Additional features are available as plugins. Plugins are available for network 

and molecular profiling analyses, new layouts, additional file format support and 

connection with databases and searching in large networks.  

 

Figure 2.  Window of Cytoscape, Different panels for different purposes viz visualization, control 

panel, table panel and result panel. 

3.4 NetBox 1.0 Software 

NetBox is a Java-based software tool for performing network analysis on human 

interaction networks. It is pre-loaded with a Human Interaction Network (HIN) derived 

from four literature curated data sources, including the Human Protein Reference 

Database (HPRD), Reactome, NCI-Nature Pathway Interaction (PID) Database, and the 

MSKCC Cancer Cell Map. Currently, NetBox provides the analyzeNet.py method that 

provides a simple command line interface for connecting genes into a network, 

identifying statistically significant "linker" genes, partitioning the network into 
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modules, and executing two random background models. Results are then made 

available to the end user as an HTML web page and a series of network and attribute 

files, which can be loaded into Cytoscape for visualization and further analysis. 

3.5  FunRich 

FunRich is a stand-alone software tool used mainly for functional enrichment and 

interaction network analysis of genes and proteins. Besides, the results of the analysis 

can be depicted graphically in the form of Venn, Bar, Column, Pie and Doughnut charts. 

Currently, FunRich tool is designed to handle variety of gene/protein data sets 

irrespective of the organism. Users can not only search against default background 

database, but can also load customized database against which functional enrichment 

analysis can be carried out. 

FunRich database option currently supports the enrichment analysis of the following 

categories: 

• Biological process 

• Cellular component 

• Molecular function 

• Protein domains 

• Site of expression (normal tissues, cancer tissues, cell types and cell lines) 

• Biological pathways 

• Transcription factors 

• Clinical synopsis phenotypic terms 
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PART  IV: METHODOLOGY 
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4. METHODOLOGY 

The workflow for the methodology is shown in Figure 3 and the detail of each step is 

described as follows.  

 

Figure 3. Workflow for the methodology adopted. 
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4.1 Data Collection and Preprocessing 

 

4.1.1 Disease-Gene-SNP associations 

The initial data for the study was obtained from the freely available comprehensive 

database – dBAARD (http://genomeinformatics.dtu.ac.in/dbAARD/) (Srivastava et. al., 

2016). dbAARD is an interactive database that contains information on human age-

related disorders and the associated human SNPs with supporting evidence from 

different sources (NHGRI GWAS Catalogue, GWAS Central, OMIM, HGMD and others). 

dbAARD catalogues information about human genetic variants associated with various 

ARDs like Alzheimers’ disease, Parkinson’s disease, Diabetes, Cardiovascular disorders 

and Cancers etc. Each entry in dbAARD contains the information on SNP, the associated 

disease, p-value assigned to the association, the odd ratio of the disease-SNP association 

and the literature reference. The database can be queried individually or in combination 

of disease class, disease name, gene and rsIDs.  

The data obtained from dbAARD comprised of 3197 SNPs across 1297 genes associated 

with 53 ARDs falling under 12 classes. Analysis of SNPs associated with ARDs depicted 

75.33% as noncoding; 1.02 % as coding –synonymous, 20.52 % SNPs as missense, and 

the rest were those SNPs whose locations were unknown in dbSNP. A total of 1762 of 

intragenic SNPs associated were included with p-values<0.05.  

Host genes of intragenic SNPs were assigned using dbSNP. In spite of the rare instances 

where a SNP could lead to two distinct genes, in dbSNP each SNP is uniquely mapped to 

a single host gene. As a result, 533 disease host genes were mapped from the 1762 

distinct disease-associated intragenic SNPs and were analysed further to construct ARD 

networks at various level of information. 

 

 

 

 

http://genomeinformatics.dtu.ac.in/dbAARD/
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Table 3: Summary of information in disease-SNP list 

 dbAARD After processing step 

Diseases 53 53 

SNPs 3197 1762 

Genes 1297 533 

Diseases Classes 12 12 

 

4.1.2 GO Annotations 

Genes are annotated with GO terms to represent their biological properties. We 

downloaded the ontology file and annotations of Homo sapiens from the Gene Ontology 

database (http://www.geneontology.org). We removed annotations with evidence code 

‘Inferred from Electronic Annotation’ (IEAs), since IEAs are computationally inferred 

annotations which have not been reviewed by curators. GO terms classified as ‘GO 

biological processes’ (GO:BP) was identified and analyzed as semantic similarity metric 

as described below.  

4.1.3 PPI Network 

To construct a human interactome, we obtained 35,021 protein-protein interactions 

(PPIs) pertaining to 9462 proteins from the Human Protein Reference Database (HPRD) 

database (release 7), as it is known to be one of the most reliable databases for PPI data. 

 

 

 



 
 
 

28 
 

4.2 Construction and Visualization of ARD Networks at different 

levels of granularity 

In recent years there has been a trend toward studying disease through network based 

analysis of various systems of connections between diseases. The linkage of a gene to 

various diseases often indicates that these diseases have a common genetic origin. 

Motivated by this hypothesis, Goh et al. used the gene–disease associations that are 

collected in the OMIM database to build a network of diseases that are linked if they 

share one or more genes (Goh et al., 2007). This resulted in the Human Disease Network 

(HDN). The nodes in the HDN represented human genetic disorders and the edges 

represented shared genes between disorders. The underlying connections of the HDN 

contributed to the understanding of the basis of disorders, which in turn led to a better 

understanding of human disease. However, the study by Goh et. al., was limited in 

analysis to the genes shared by different diseases. Another study by Li et al. traced the 

SNPs connecting disease traits (Li et. al., 2011). In 2009, Barrenas et al. studied genetic 

architecture of complex diseases by doing a GWAS, and found that complex disease 

genes are less central than the essential and monogenic disease genes in the human 

interactome (Barrenas et. al., 2009). In this work we explored methods of building the 

ARD networks that go beyond previously mentioned gene-centric disease network 

approaches.  

4.2.1 Network construction using Shared Genetic Architecture Hypothesis 

In our study, we started by building bipartite networks, consisting of two disjoint sets of 

nodes. The nodes are connected in such a way that the nodes of one set will have no 

connections between them, but can only be connected to nodes of the other set. The use 

of a bipartite network is natural when dealing with two different types of data sets 

(Figure 4b), in our case diseases (e.g. the rectangles) and SNPs or genes (e.g. the circles). 

This type of network gives us three distinct degree distributions, one for each 

projection, and one for the bipartite network. Each degree distribution shows how 

many links each node has. Nodes in a projection of a bipartite network are connected if 

they share at least one node in the other group. This gives us the ability to see the 

interactions within each set. 
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Figure 4. Bipartite Network schematic. A bipartite network (b) made of 2 data sets the 
“circles”, and the “rectangles”. Projections in the “circle” space (a) and in “rectangle” space 
(c). 
 
The data from the bipartite network can be projected onto either data space (Figure 4a, 

c). In both cases, the nodes are connected to one another through a vertex of the other 

space. By ignoring the different types of data, all network properties described above 

remain valid on the bipartite network (as a single data set network) and on either 

projection.  

The following sections present our methods for building the ARD Networks based on 

different sharing elements. We start at the smallest element, the SNP, then move on to 

SNP clusters, and finally to genes. These offer varying density of the information 

contained with both the bipartite network and the projected disease networks. The 

networks were visualized using Cytoscape 3.2.1. 

a. Genetic Variations (SNP) based ARD Networks 

We started with a bipartite graph of SNP-Disease consisting of two disjoint sets of 

nodes. One set corresponded to all known genetic disorders, whereas the other set 

corresponded to all known variants in the human genome. A disorder and a SNP were 

then connected by a link if the disease-SNP association were present in data fetched 

from dbAARD.  

Linking diseases that share at least one SNP, we built SNP-ADN. The disorders were 

linked based only on shared genetic variants, i.e. overlapping SNPs. Two diseases were 
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connected if they share at least one SNP that is statistically significant dysregulated to 

the disease related gene. The resulting ARD variome will allow us to establish 

connections between diseases/traits that share blocks i.e. that have overlapping SNPs. 

b. Gene based ARD Networks 

Starting from the ARDome bipartite graph constructed of two disjoint sets of nodes in 

which one set of nodes represented ARDs and the other set represented genes, we 

generated two biologically relevant network projections – ADN (Age-related Disorders 

Network) and AGN (ARD associated Gene Network). In the ADN nodes represented 

disorders, and two disorders were connected to each other if they share at least one 

gene in which mutations were associated with both disorders. In the AGN nodes 

represented disease genes, and two genes were connected if they were associated with 

the same disorder.  

4.2.2 Network construction using Semantic Similarity Approach 

Measuring similarity between diseases plays an important role in disease-related 

molecular function research. Functional associations between disease-related genes and 

semantic associations between diseases are often used to identify pairs of similar 

diseases from different perspectives. The quantitative measurement of similarity 

between diseases based on qualitative association plays an important role in predicting 

disease-causing genes, inferring microRNA function associations and identifying novel 

drug indications (Cheng et. al., 2014).  

Several methods have been developed for calculating gene/disease similarity. The most 

commonly used are Semantic-based methods. Semantic-based methods are widely used 

for measuring similarity between terms of Gene Ontology (GO) (Ashburner et. al., 2000 ; 

Pesquita et. al., 2009) in the biomedical and bioinformatics domain. The use of semantic 

similarity between biological processes to estimate disease association could enhance 

the identification and characterization of disease association besides identifying novel 

biological processes involved in the diseases. Graph-based methods using the topology 

of GO graph structure is used to compute semantic similarity. We adapted the approach 

for computing the functional similarity of GO terms from Li et.al. (2012). To determine 



 
 
 

31 
 

functional similarity among genes, we used the Biological Process category of Gene 

Ontology classification.  

The similarity of two genes is conceptually defined by the similarity of their GO 

annotations as measured by their shared information content. Specifically, the semantic 

similarity of two terms is defined as the information content of their minimal ancestor 

in GO (common ancestor with maximal information content) divided by the average 

information content of the two terms, where the information content of a single term is 

the probability of the term and its sub-terms being selected randomly in GO (Li et. al., 

2012). There are many measures of semantic similarity and one of the popular method 

is Lin method. Thus, the calculation of gene similarity score was done using Lin metric 

as defined below. Firstly the semantic similarity between the GO terms as  

Sim(a,b)=2∗sim(ms(a,b))sim(a)+sim(b) 

ic(a)=−log(|G(a)||G(A)|) 

where ic(a) is the information content of GO term a, ms(a,b) is the minimal ancestor of 

terms a and b, G(a) is the sub-graph of GO rooted at a, A is the root term of the GO, and 

the function ‘|G(a)|’ is the cardinality of G(a) measured as the count of distinct terms in 

this sub-graph. 

The information similarity of two genes (Gene_Sim), such as two SNP host genes, was 

then measured by the average best-matching pair similarity between their annotated 

GO terms. For any GO term annotated to a gene, its best-matching term pair in another 

gene's GO annotation list is the one with the maximum term–term similarity as 

compared with all other terms from the other gene. Furthermore, only the most reliable 

subset of the best-matching term pairs across the two term sets is retained in the 

calculation, while all other term pairs are ignored because of the annotation noise in GO. 

Mathematically, the information similarity of two genes is defined as: 

Gene_Sim(α,β)=2×∑(ai,bi)∈π,ITS(ai,bi)≥t ITS(ai,bi)/ (|α|+|β|) 

where α and β are two genes being annotated to two term sets, the included best-

matching term pairs are represented as a relationship π with pairs ai and bi, and t is the 
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similarity threshold for any term pair to be included in the calculation for further 

annotation noise reduction (set as 0.7 in our implementation). The similarity of two 

genes is based on their number of shared GO terms and, if the terms were not identical, 

the term proximity in the GO graph. The information similarity of two genes is 

normalized to the range of 0 to 1, corresponding to genes with no similar annotations 

and genes with equivalent annotations,  

There are many online tools, standalone R based packages that allow the measure of 

semantic similarity between GO terms using different metrics like GOssTO, FunSim, 

GoSemSim, InteGO2 etc (Caniza et. al, 2014 ; Yu et, al., 2010 ; Schlicker et. al., 2010 ; 

Peng et. al., 2014). Since the calculation of semantic similarity score is computationally 

intensive we used GOSemSim Package (Yu et. al., 2010) in R studio to calculate the 

semantic similarity between the ARD gene pairs using Lin metric. Steps to install and 

run GOSemSim are described below: 

1. Download the latest version of R and R studio. 

2. Start R studio and type the following commands in the console window. 

>source("https://bioconductor.org/biocLite.R") 

>biocLite("org.Hs.eg.db") 

>biocLite("GOSemSim") 

>library(GOSemSim) 

#mgeneSim to calculate semantic similarity among multiple gene products. 

>res<-

mgeneSim(c("28","59","105","108","202","288","308","326","341","348","354","463","472","490","4

93","501","627","629","636","638","640","717","718","775","783","841","868","923","945","965","9

94","999","1002","1012","1021","1029","1116","1136","1191","1201","1235","1277","1282","1295","

1308","1312","1378","1380","1394","1404","1488","1493","1559","1586","1594","1609","1636","174

0","1767","1778","1788","1804","1830","1952","2037","2068","2099","2104","2153","2162","2200","

2201","2212","2246","2255","2262","2263","2494","2524","2580","2646","2700","2859","2897","291

5","2917","2972","3075","3084","3092","3107","3117","3122","3482","3556","3559","3570","3575","

3606","3613","3643","3646","3655","3658","3662","3663","3684","3687","3700","3710","3753","376

7","3782","3784","3798","3827","3911","3988","4018","4041","4046","4088","4092","4137","4157","

4211","4233","4295","4354","4439","4477","4482","4485","4507","4524","4600","4609","4642","464

4","4745","4794","4811","4853","4855","4864","4905","5071","5122","5125","5314","5328","5334","

5357","5468","5607","5636","5649","5654","5789","5793","5819","5890","5894","5906","5915","593

7","6014","6125","6205","6239","6310","6366","6403","6499","6568","6581","6597","6622","6711","

6720","6774","6775","6925","6927","6928","6934","7015","7018","7074","7077","7091","7096","712

8","7132","7140","7148","7185","7187","7253","7297","7299","7332","7369","7410","7444","7466","

7472","7473","7532","7709","8000","8131","8224","8398","8477","8613","8626","8631","8638","880

7","8863","8897","8924","9031","9037","9103","9333","9373","9425","9429","9467","9497","9531","

9586","9659","9842","9948","10133","10144","10198","10217","10257","10279","10318","10347","1

0452","10466","10497","10611","10644","10665","10666","10714","10758","11046","11062","11116

","11138","11262","22808","22834","22848","22853","22891","22913","22926","22998","23025","23

043","23095","23112","23180","23263","23274","23301","23321","23534","23544","23704","23788",

"25780","25861","25902","25970","25976","26147","26191","26228","26797","27074","27185","273
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28","27347","29086","29945","29951","29994","50807","51131","51151","51196","51230","51555","

51654","53339","53942","54209","54535","54622","54749","54790","54894","54899","54901","5497

1","55016","55024","55054","55133","55553","55600","55692","55759","55819","55892","55937","5

5973","56244","56606","56776","56913","56916","56922","57111","57178","57474","57492","57608

","57628","57661","57705","58504","60468","60678","63027","63826","63892","63977","63982","64

127","64135","64167","64170","64231","64478","64710","64754","79054","79068","79083","79258",

"79660","79728","79774","79925","80003","80129","80279","80736","81037","81492","81579","818

47","84286","84446","84515","84618","84619","84624","84628","84660","84668","84700","84722","

84765","84898","84942","85415","91752","91828","94241","114134","114781","114803","114815","

114818","114876","115106","115352","116085","116113","116285","116985","120892","121260","1

22402","123624","126549","126859","127700","128869","133522","140733","140766","144406","14

4811","145781","149233","150084","150962","152189","152330","154442","159296","160777","163

059","163486","164312","164656","168620","169026","196740","201266","204010","204801","2049

62","219790","220164","220416","221692","221895","222546","253461","254428","255738","25653

6","257194","266722","284996","285362","285600","285830","341880","344148","375056","387694

","387715","388650","389170","390928","400954","414236","503835","613227","643714","644192",

"647121","728597","729967","729993","100048912","100128977","100129583","101929777","10272

3475"), ont="BP", organism="human", measure="Lin", combine="BMA") 

>write.table(res,file="result.txt”) 

 

3. The result.txt file stores the semantic similarity score for each gene pair in the 

matrix form. The file was converted into the readable network format using C 

code in which gene pairs with score > 0.7 were selected and then used for the 

construction of network using Cytoscape. 

To construct semantic similarity based ARD Networks, we measured disease-disease 

similarity by using the shared information between the host genes of the associated 

intragenic SNPs, specifically the average similarity of reciprocal best-matching host 

gene pairs from GWAS. The best-matching pair of a host gene (γ) with respect to 

another trait is the host gene (δ) of the other trait with maximum gene–gene similarity 

with the first host gene (γ). The disease-disease similarity was defined as below (Li et al, 

2012)  

DisSim(U,V)=2×∑(αi,βi)∈π'Gene_Sim(αi,βi)/(|U|+|V|) 
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where U and V are two diseases representing two sets of host genes, and the reciprocal 

best-matching host gene pairs are represented as a relationship π' with pairs αi and βi. 

The information similarity of two traits ranges from 0 (for two traits with totally 

dissimilar host genes) to 1 (for two traits with identical or equivalently annotated host 

genes). 

 

Figure 5. Overview of steps involved in disease similarity calculation. 

Since GOSemSim doesn’t have module for disease similarity calculation, the DisSim 

score was calculated by writing a code in C that took gene-gene similarity score matrix 

as input along with the the list that specifies which genes were present in a particular 

diseases. 

A disease–disease network was thus constructed from pairwise similarity scores 

directly subjected to a certain threshold, where nodes in the network represented 

complex ARDs, and links represented the significant biological similarity between two 
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ARDs. The sizes of the nodes and edges were proportional to the number of host genes 

and the strength of the diseases similarities, respectively. 

4.2.3 Network construction using Human PPI data from HPRD 

Human Protein Reference Database (HPRD) is one of the most extensively used 

database for research purposes and all the enclosed interaction are experimental, 

so it was  selected for fetching PPIs of genes of interest. The PPI information was 

utilized in our research work for construction of various required networks at 

different steps. Construction of global network was achieved by mapping ARDs 

protein on human PPI.  

4.3 Analysis of ARD Networks 

4.3.1 Functional Enrichment Analysis of the ARD associated genes 

To further explore the hypothesis that the associate SNP host genes characterize 

different pathways to ARDs, the Functional enrichment analysis was performed using 

FunRich. 

4.3.2 Module Identification  

To identify the highly enriched modules in the ARD gene network, the NetBox tools was 

used (Cerami et. al., 2010). The tool NetBox provides the method to overlay the disease 

genes on the Human Protein-Protein Interaction network and determine the functional 
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modules based on the cut-off shortest path length and p-value.   

 

Figure 6. Run of NetBox for module identification 

4.3.3 Identification of linker genes 

Netbox also helps to find the genes that are not there in the disease network but 

through PPI interaction studies seems to be closely associated with the genes in 

the disease network thus indicating the likelihood of the involvement of those 

genes in the diseases and hence helps to predict new markers of age-related 

diseases (ARDs). 

4.3.4 Hub Genes Identification 

Hubs were identified by two approaches. One of them was identifying hubs based 

on degree, betweeness centrality, bottleneck and maximum clique component 

(MCC) score. In this approach, the top 10 hubs were identified which can be  

targeted by drugs and cure more than one ARDs “polyphormacology”.  

4.4 ARDInteract: Online Platform for  ARD Interaction Networks 

Finally we integrated all the information obtained from different network studies and 

made that available as a web interface.  
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PART  V: RESULTS & DISCUSSIONS 



 
 
 

38 
 

5. RESULTS & DISCUSSION 
 

5.1 ARD Networks constructed using shared genetic architecture 

hypothesis 

5.1.1 Disease-SNP bipartite network 

Disease-SNP bipartite network was constructed such that the circular nodes 

represented ARDs and the triangular nodes represented SNPs implicated in diseases. 

Figure 7 represents disease-SNP network. As it can be clearly observed that many SNPs 

are only connected to single diseases. However, there are few SNPs which connect more 

than one disease and hence can be concluded that they have pleiotropic effects. And 

multiple SNPs associated with single disease exhibit epistatic effect on the development 

of that disease.  

As expected, high number of mutations is observed to be linked with cancer especially 

prostate and breast cancer. Myopia and Parkinson disease share many variants, which 

reflect some biological relationship leading to the co-manifestation of both the diseases.  
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Figure 7. Disease-SNP bipartite network (ARD- circles; SNPs – squares). The nodes 

representing diseases are color coded based on the disorder class. And the size of the nodes 

representing SNPs is proportional to the number of diseases to which SNP is associated. 
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5.1.2 Disease-Gene bipartite network 

Figure 8 represents disease-gene bipartite network. In order to enhance the 

visualization, the p-values of mapped genes were set < 10-7. Similar to disease-SNP 

network, this network also exhibits similar properties. Few genes are responsible for 

many diseases and many genes together are implicated for a single disease.  

a. ARD Gene Projection Network – AGN 

The AGN consisted of 522 nodes and 8265 edges. A small number of genes were 

associated with multiple diseases, most of them connecting diseases in the giant 

component. Genes such as NR, HLA-DQA1, CDKN2B, IL23 were associated with more 

than two diseases (Figure 9(a)). Most of these genes were involved in the biological 

regulation and metabolic processes. HLA-DQA1 is involved in the recognition of foreign 

pathogens (Figure 9(b) and 9(c)). 

b. ARD Disease Projection Network – ADN 

ADN network provides a broader overview of interconnectedness of various ARDs. The 

ADN consisted of 53 nodes and 120 edges; 44 of the diseases had any interactions with 

other diseases. In other words, many diseases, including many types of cancer, did not 

share any genes with other diseases. Since GWAS generally detect genetic variants with 

a high minor allele frequency and large effect size (referred to as high-profile variants), 

the number of genes associated with a given disease is indicative of the genetic 

architecture of the disease. The number of genes associated with each disease varied 

greatly; prostate cancer and breast cancer were found to be associated with 59 and 42 

genes respectively while bipolar disorder was associated with very few genes. The 

reason for variation in the number of genes associated could be biological or it could be 

due to lack of GWAS studies on the particular disease. Furthermore, some diseases of 

the same class were highly interconnected as in the case of metabolic disorders 

indicating common biological origin and some diseases belonging to the same class 

were not connected  (for  example, cardiovascular diseases).  

ADN revealed some interesting connections between diseases of different classes. For 

example, Type 2 Diabetes Mellitus and Obesity are strongly connected to cancer. 
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Crohn’s disease with highest degree is associated with 4 different classes of ARDs 

implicating the common biological mechanism or pathways in these diseases. 

Functional Clustering of HDN and DGN. To probe how the topology of the ADN and 

AGN deviates from random, we randomly shuffled the associations between disorders 

and genes, while keeping the number of links per each disorder and disease gene in the 

networks unchanged. Interestingly, the clustering coefficient of the randomized disease 

networks is 0.279+/-0.041 significantly smaller than the clustering coefficient of the 

AND (0.51.5, p-value<10-4). Similarly, the clustering coefficient of the randomized gene 

networks is 0.131+/-0.003, significantly smaller than the actual clustering cofficient of 

the AGN (0.925, p-value10-4). These differences suggest important pathophysiological 

clustering of disorders and disease genes.  
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Figure 8. Disease-Gene bipartite network. 
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Figure 9(a). ARD Gene Projection Network (AGN). Gene network constructed by overlaps of  

involvement of the genes in same ARD. Circles in the figure represent genes  whose sizes are 

proportional to their number of shared diseases. Grey lines represent shared ARDs common  

between gene nodes. Line thicknesses are proportional to number of common diseases. 

 



 
 
 

44 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9(b)GO Enrichment Analysis of the genes involved in more than 3 ARDs. (d-f) Hub gene 

analysis of AGN.  

 

(d) (e) (f) 

(b) (c) 
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Figure 10(a). ARD Disease Projection Network (ADN). Disease network constructed by overlaps of 
the host genes of ARD-associated intragenic SNPs. Circles in the figure represent diseases  whose 
sizes are proportional to their number of associated intragenic SNP host genes.  
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

Figure 10(b) and 10(c). ADN (b) Circular layout of ADN. (c) Highly connected disease cluster in ADN 

(Highlighted with pink in (a)). 
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Figure 11(a). Disease similarity network was calculated using Genome Ontology biological process 

similarity of the host genes of  ARD-associated intragenic SNPs with similarities ≥0.2 and an 

empirical p value <0.05. Therefore, this figure illustrates that information theoretic similarity 

method has found non-trivial relationships that would not have been found by conventional 

methods. Circles represent diseases or traits whose sizes are proportional to their number of 

associated intragenic SNP host genes. Blue lines represent biological process similarities that are 

≥0.2 and have a p value <0.05. Pink lines represent shared SNP host genes between diseases if their 

DisSim is ≥0.2 (in other words overlapping connections between our information theoretic method 

and conventional gene overlapping method). Line thicknesses are proportional to DisSim similarity 

values or number of shared genes.  

5.2 Comparison of ARD Networks constructed using shared gene and 

semantic similarity approaches 

Gene networks were constructed using the conventional shared gene method using 

intragenic SNP diseases shared genes and also by gene semantic similarity method 

using GO ontology (Biological Processes). The gene network created using Shared genes 

had less number of edges as compared to the network created using Gene_Sim Score. 

The networks varied in the topological and clustering parameters. Both the networks 

and their calculated parameters are shown in the Figure 9, 10 and 11. 

The projection network created using shared genes approach clearly showed distinct 

cliques being formed by diseases and hence clearly shows that the genes of a particular 

disease are associated closely. However, the interconnectivity between diseases 

belonging to different class was less evident which otherwise clearly became evident in 

the ARD disease network constructed using semantic similarity approach.  

The comparative results also suggested that similarity network contains many potential 

connections among ARDs that have not yet been discovered by GWAS, and thus 

demonstrate that semantic similarity based method is able to capture non-trivial 

relationships that would not have been otherwise found by conventional methods. 
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5.3 ARD Protein-Protein Interaction Network  

ARD-PPI Network constructed by mapping ARD genes on human PPI exhibited 

scale-free and small world property. That is, most nodes are not neighbours of 

one another but most nodes can be reached from every other node by a small 

number of hops/steps.  ARD-PPI network formed the central part of the human 

PPI network with most of the ARD genes residing in the centre of the network.  

5.4 Analysis of ARD-PPI Network  

5.4.1 Functional enrichment analysis of ARD-PPI Network  

Functional enrichment  analysis of ARD-PPI network revealed that many genes were 

involved in the cell communication and signalling pathways.    

 

 

 

 

 

 

Figure 12. Functional Enrichment of ARD Genes 

5.4.2 Disease Gene Network Analysis for Identification of “Hub” genes  

Almost all of the protein protein interaction network consist of few dense nodes that 

exhibits high number of neighbour node directly connected. Finding out hub proteins 

and targeting them for the cure  disorders is an effective method but one should keep 

the fact in mind that these hub proteins should not any essential protein, which is highly 

significant for survival and growth of an organism. Hub proteins are potential targets 



 
 
 

50 
 

due to their location in the human PPI network. Betweenness is one of the most 

important topological properties of a network. It measures the number of shortest 

paths going through a certain node. Therefore, nodes with the highest betweenness 

control most of the information flow in the network, representing the critical points of 

the network. We thus call these nodes the ‘‘bottlenecks’’ of the network. Betweenness 

can thus be used as a measure to find the potential targets. Other parameters such as 

degree,  closeness centrality, eccentricity etc are also important topological measures 

for finding the hub proteins. Therefore, to prioritize hubs in the ARD-PPI network, we 

captured essential proteins using HUBBA. HUBBA allows to find the hub proteins based 

on various topological parameters. Figure represents the hub proteins identified in the 

AGN network and Figure represents the hub in the ARD-PPI Network. As it can be seen 

that most hubs are common in both AGN and ARD-PPI network, but few interesting 

hubs are revealed from the ARD-PPI Network which otherwise were missing in the AGN 

due to lack of GWAS studies.  

Hub Genes : HLA-DRA, ZNF315, STAT3, ZMIZ1, CCD170, SOX6, FTO,MTHFR, NF1A, 

BDNF 

 

 

Figure 13 Hub Genes Functional Enrichment Analysis. Showing the involvement in pathways 

responsible for diseases. 
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5.4.3  Identification of modules and new markers for ARDs 

The NetBox generated 52 modules. The top modules generated by the tool are listed in 

Table 3. The table also shows that in some modules there were linker genes which were 

tightly associated with other genes in the ARD network, thus establishing the possible 

involvement of these genes into the ARD. Thus, these genes can be considered as 

putative ARD associated genes (Table 4) 

Table 4 Modules Generated using NetBox.  

Module 

ID 

Number 

of 

Genes 

Genes 

0 3 TRIM2 MYO5A MLPH 

1 9 FBN2 TMPRSS6 HTRA1 MATN2* FBN1 NID1 CDYL COL1A1 COL4A1 

2 7 MAPT STUB1* APOE SNCA UBE2L3 MPP1 PARK2 

3 48 

PRKCD* IL2RA JAK1* NOS2* IL18RAP RELA* STAT4 TERT INSR IL18R1* JAK2* STAT3 

FYN* IL13* PPARG PLAU RELN GADD45G* STAT5A* NFKB1* TYK2 PIK3CA* GADD45B* 

IL23R IL18 IL12RB2* IL6R ITGA3* IL12RB1* IL23A* RIPK2* PIK3R1* ZBTB17 IL7R HLX* 

CTLA4 IL12B* IFNG* HLA-DRA MYC FOS* IL1RAP IL12A* TSHR RAF1 SMAD3 ESR1 IL2* 

4 10 CFI* CR2 C4B* CFB C4A* CFP* CR1 C2 C3 CFH 

5 4 TNIP1 EIF3E RPS11 RPL5 

6 1 SKAP1 

7 2 FCGR2A BLK 

8 5 TCF4 GRM5 CALM3* GRM7 CALM2* 

9 4 CASP8 TNFRSF1A TRAF1 TNFAIP3 

10 1 RASGRP3 

11 13 SELP FGG* ITGAM CD226 ITGAX FCER2* LPA PVRL2 IRF4 FGB* ITGB2* F13A1 KNG1 

* Linker gene was not present in the original input list, but is significantly connected to members 

of the input list. 
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Table 5 Linker Gene Details: Based on Global Network with: 9264 genes and 68111 edges 

Gene 

Symbol 

Local 

Degree 

Global 

Degree 

Unadjusted 

P-Value 

FDR 

Adjusted 

P-Value 

PIK3R1 22 202 4.32E-07 0.0004 

JAK2 17 174 3.40E-05 0.014 

NFKB1 14 126 4.14E-05 0.014 

IL18R1 6 24 8.27E-05 0.0193 

IFNG 10 75 0.0001 0.0193 

RIPK2 7 36 0.0001 0.0193 

FOS 13 128 0.0002 0.0222 

HLX 4 10 0.0002 0.0222 

IL2 12 112 0.0002 0.0222 

ERBB2IP 5 19 0.0003 0.0232 

ITGB4 7 41 0.0003 0.0232 

PRKCD 12 117 0.0003 0.0232 

YWHAH 8 55 0.0003 0.0232 

MATN2 4 12 0.0004 0.029 

PLAUR 6 32 0.0004 0.029 

PIK3CA 12 125 0.0005 0.0295 

GADD45

B 
5 22 0.0005 0.0295 

NOS2 4 13 0.0006 0.0295 

IL23A 6 34 0.0006 0.0295 
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NFYC 3 6 0.0006 0.0295 

RAPGEF

6 
3 6 0.0006 0.0295 

SMARCD

3 
4 14 0.0008 0.0312 

FGG 4 14 0.0008 0.0312 

FGB 4 14 0.0008 0.0312 

BRAF 5 24 0.0008 0.0312 

GADD45

G 
6 36 0.0008 0.0312 

JAK1 11 116 0.0009 0.0312 

CALM3 5 25 0.001 0.0312 

LAMC1 4 15 0.001 0.0312 

C4B 3 7 0.001 0.0312 

C4A 3 7 0.001 0.0312 

CFP 2 2 0.001 0.0312 

CFI 2 2 0.001 0.0312 

RELA 13 155 0.001 0.0312 

STAT5A 8 67 0.0011 0.0313 

ITGB2 8 71 0.0015 0.0429 

TNFRSF1

8 
3 8 0.0016 0.0429 

CALM2 5 28 0.0016 0.0429 

IL12RB2 7 56 0.0017 0.0433 

ITGA3 5 29 0.0019 0.0469 
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FYN 14 187 0.0019 0.0469 

IL12B 8 74 0.002 0.0469 

IL12RB1 8 74 0.002 0.0469 

GTF2I 4 18 0.0021 0.0481 

STUB1 5 30 0.0022 0.0481 

IL12A 7 59 0.0022 0.0481 

NTF3 3 9 0.0023 0.0481 

IL13 3 9 0.0023 0.0481 

FCER2 3 9 0.0023 0.0481 

 

To confirm the association of these genes with diseases or pathways involved in the 

complex diseases, the functional enrichment of the genes listed in Table was done using 

DAVID Bioinformatics Resources 6.7. The result of DAVID clearly indicated the 

involvement of these genes in ARDs (Figure 14) as well as pathways associated with 

aging and age-related diseases (Figure15). 
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Figure 14 DAVID Results (Disease Enrichment for the linker genes) 

Figure 15 DAVID Results (Pathway Enrichment for the linker genes) 

 

 



 
 
 

56 
 

5.5 ARDInteract  

The layout of the user-interface of ARDInteract is shown in the figure below: 

ARDInteract have 3 panels as shown in the Figure.  

Control Panel: The control panel allow the user to select the diseases he/she wants to 

consider for network construction. And then user can select the type of network it 

wants to display – SNP interaction, gene interaction, disease similarity etc.  All these 

networks are displayed on the basis of the data stored in the MySQL database connected 

to the front end.  

Visualization Panel: The visualization panel display the network depending on the 

choice of the user. Display panel have features like zoom, drag etc and also when user 

select on node or edge a new window pops-up giving more description about the node 

or the edge. Also the new window have link to other databases to provide more 

comprehensive information about the node to the user. 

Table Panel: The table panel display the information about the nodes and the edges in 

the tabular format. It displays the attributes of the nodes and the edges as computed 

during the network construction earlier. 
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Figure 16: ARDInteract User Interface 
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PART  VI: CONCLUSION  
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6. CONCLUSION   

Aging is an inevitable process and is one of the major risk factors for Age-related 

diseases(ARDs). The complete biology of aging and ARDs is still known and researches 

are being carried out to understand the genetics and environmental factors that affect 

the process leading to complex diseases. Many of the ARDs have been known to share 

common genetic factors, identification of these shared genetic components and the 

underlying biological mechanism is of utmost importance in order to slow down the 

process of aging or rather for the successful aging. With the lots of data being generated 

from GWAS, there has been a need for statistical tools and methods that can combine 

the genetic variation and trait association data from different sources and determine the 

underlying common pathways. In order to facilitate this with respect to ARDs, it is 

proposed that the present work can provide deep insight into SNPs associated with 

ARDs and the underlying biological pathways.  

ARDInteract available as an online platform l allow to visualize and analyse the ARD 

networks at different ‘-omics’ levels in a user-friendly environment. ARDInteract also 

allow the construction of multi-partite network for analysis and visualization to 

uncover genetic similarities among various ARDs and also direct the users to connect to 

other relevant databases/websites to retrieve more meaningful information. 

In summary, by exploring the genes and genetic variations associated with ARDs in 

context of network and pathways, we can unravel the unknown molecular mechanisms 

associated with ARDs and can identify the novel genes and variants which are still 

unknown. The study will provide links between various age-related disorders, which 

can provide valuable perspective to physicians, counsellors and biomedical researchers. 

Moreover, the integration of this study with gene/miRNA expression profiles could 

further highlight the key players linking various ARDs. 

Our multidimensional approach using network and pathway based analysis can be 

applicable to other diseases as well. However, there are certain limitations of the 

present study. In the present approach, we are only including the intragenic SNPs 

whereas it is known that even intergenic SNPs also exert their roles on the biological 

pathways and hence the progression of the complex diseases. But the methods to take 
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into consideration those intergenic SNPs are very few. Also, by exploiting the power of 

Bayesian networks, more statistically powerful enrichment of network can be done 

which is missing from the proposed plan but may be done in the future. 
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APPENDIX 

A1. List of Age-Related Disease and the class included in the work 

ID Disease Class 

T1 Age Related Macular Degeneration Opthalmological 

T2 Alzheimers disease Neurological 

T3 Amyotrophic Lateral Sclerosis Neurological 

T4 Arthritis Bone 

T5 Atrial Fibrillation Cardiovascular 

T6 Basal cell carcinoma Cancer 

T7 Bipolar disorder Neurological 

T8 Bladder Cancer Cancer 

T9 Breast Cancer Cancer 

T10 Cardiac hypertrophy Cardiovascular 

T11 Cardiomyopathy Cardiovascular 

T12 Chronic obstructive pulmonary disease Pulmonary Disorder 

T13 Colon Cancer Cancer 

T14 Colorectal Cancer Cancer 

T15 Corneal Dystrophy Opthalmological 

T16 Coronary Artery Disease Cardiovascular 

T17 Crohns Disease Gastrointestinal 

T18 Cutaneous Melanoma Cancer 

T19 Diabetic retinopathy Metabolic 

T20 Duodenal ulcer Gastrointestinal 

T21 Gastric Cancer Cancer 

T22 Gaucher disease  Lysosomal storage 

T23 Glaucoma Opthalmological 

T24 Gout Bone 

T25 Graves disease Metabolic 

T26 Hyper lipidemia Metabolic 

T27 Hypertension Cardiovascular 

T28 Increased BMI Metabolic 

T29 Lung cancer Cancer 

T30 Melanoma Cancer 
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T31 Multiple sclerosis Neurological 

T32 Myocardial Infarction Cardiovascular 

T33 Myopia Opthalmological 

T34 Obesity Metabolic 

T35 Osteoarthritis Bone 

T36 Osteoporosis Bone 

T37 Ovarian Cancer Cancer 

T38 Paget Bone 

T39 Pancreatic cancer Cancer 

T40 Parkinsons disease Neurological 

T41 Peyronie Bone 

T42 Prostate  Cancer Cancer 

T43 PSORIATIC ARTHRITIS Bone 

T44 Restless legs syndrome Neurological 

T45 Rheumatoid Arthritis Bone 

T46 Schizophrenia Psychiatric 

T47 Skin Cancer Cancer 

T48 Stroke Cardiovascular 

T49 Systemic Lupus Erythematosus Immunological 

T50 Thyroid cancer Cancer 

T51 Type-2 Diabetes Mellitus Metabolic 

T52 Uric acid concentration Metabolic 

T53 Usher Syndrome ENT 
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A2. Detailed information about 53 disease-disease similarity connections selected 

with ITS_Score > 0.2 

Disease1 Disease2 
No. of genes in 

Disease1 
No. of genes in 

Disease2 

No. of 
overlapping 

genes 
ITS_Score_BP 

T14 T21 16 8 7 0.583333 

T9 T37 36 21 19 0.521719 

T26 T38 2 4 1 0.519 

T7 T52 1 1 0 0.51 

T15 T38 2 4 1 0.496333 

T28 T53 1 1 0 0.492 

T35 T38 4 4 0 0.4845 

T18 T30 6 15 6 0.47619 

T18 T47 6 6 2 0.468833 

T16 T32 22 15 9 0.439568 

T12 T19 5 8 0 0.436308 

T10 T15 4 2 0 0.433333 

T26 T50 2 3 0 0.4216 

T1 T29 11 11 1 0.418364 

T13 T38 3 4 0 0.415143 

T13 T50 3 3 0 0.407333 

T10 T12 4 5 0 0.404889 

T19 T38 8 4 0 0.3975 

T4 T15 1 2 0 0.392 

T12 T35 5 4 0 0.391333 

T12 T38 5 4 0 0.386444 

T7 T28 1 1 0 0.384 

T14 T34 16 16 2 0.379562 

T11 T50 3 3 0 0.375333 

T6 T10 2 4 0 0.374 

T13 T26 3 2 0 0.3676 

T26 T52 2 1 0 0.367333 

T7 T26 1 2 0 0.366667 

T10 T38 4 4 0 0.3665 

T21 T38 8 4 0 0.3635 

T13 T19 3 8 0 0.360909 

T24 T52 3 1 0 0.36 

T4 T28 1 1 0 0.355 

T10 T13 4 3 0 0.352857 

T35 T48 4 4 0 0.34975 

T38 T50 4 3 0 0.344857 

T24 T27 3 7 1 0.3436 

T6 T38 2 4 0 0.343333 

T11 T28 3 1 0 0.3425 

T28 T43 1 3 0 0.3425 

T6 T35 2 4 0 0.339333 

T30 T47 15 6 3 0.338857 

T22 T35 3 4 0 0.338286 
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T9 T14 36 16 7 0.336077 

T38 T47 4 6 0 0.3354 

T38 T44 4 7 0 0.334545 

T44 T47 7 6 0 0.334 

T11 T43 3 3 1 0.333333 

T4 T53 1 1 0 0.331 

T26 T35 2 4 0 0.330333 

T11 T15 3 2 0 0.322 

T33 T34 28 16 0 0.321273 

T10 T41 4 4 0 0.321 

T7 T50 1 3 0 0.3205 

T40 T46 29 25 1 0.318943 

T27 T48 7 4 0 0.316182 

T10 T33 4 28 4 0.312562 

T3 T47 9 6 0 0.308933 

T35 T44 4 7 0 0.308909 

T3 T50 9 3 0 0.305667 

T7 T24 1 3 0 0.3055 

T7 T53 1 1 0 0.305 

T14 T30 16 15 0 0.304452 

T6 T28 2 1 0 0.304 

T11 T35 3 4 0 0.304 

T5 T12 6 5 0 0.302909 

T6 T26 2 2 0 0.3025 

T5 T38 6 4 0 0.3022 

T11 T13 3 3 0 0.300667 

T22 T26 3 2 0 0.3 

T1 T2 11 18 0 0.29531 

T1 T38 11 4 0 0.293067 

T14 T49 16 21 0 0.292108 

T45 T49 21 21 3 0.292048 

T1 T14 11 16 0 0.291407 

T4 T26 1 2 0 0.290667 

T28 T50 1 3 0 0.2905 

T1 T36 11 10 0 0.289619 

T3 T14 9 16 0 0.28896 

T43 T53 3 1 0 0.2885 

T21 T47 8 6 0 0.288143 

T21 T29 8 11 0 0.287368 

T27 T38 7 4 0 0.285818 

T12 T44 5 7 0 0.285333 

T15 T43 2 3 0 0.2852 

T11 T41 3 4 0 0.284857 

T1 T49 11 21 0 0.282438 

T14 T38 16 4 0 0.2823 

T11 T44 3 7 0 0.281 

T11 T47 3 6 0 0.279333 

T15 T26 2 2 0 0.2785 

T13 T35 3 4 0 0.278 
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T26 T28 2 1 0 0.278 

T13 T41 3 4 0 0.277429 

T1 T47 11 6 0 0.277059 

T18 T35 6 4 0 0.277 

T50 T52 3 1 0 0.277 

T1 T46 11 25 0 0.276444 

T11 T19 3 8 0 0.276 

T15 T22 2 3 0 0.276 

T1 T21 11 8 0 0.274842 

T24 T26 3 2 0 0.2748 

T25 T38 6 4 0 0.2748 

T15 T35 2 4 0 0.274667 

T15 T48 2 4 0 0.274333 

T3 T12 9 5 0 0.273143 

T9 T21 36 8 7 0.272727 

T15 T28 2 1 0 0.272667 

T32 T38 15 4 0 0.272526 

T5 T21 6 8 0 0.271429 

T27 T35 7 4 0 0.270727 

T11 T53 3 1 0 0.2695 

T11 T38 3 4 0 0.268571 

T6 T15 2 2 0 0.2685 

T1 T10 11 4 0 0.268133 

T14 T29 16 11 1 0.267926 

T14 T45 16 21 0 0.267892 

T3 T27 9 7 0 0.267625 

T42 T51 54 32 9 0.267326 

T38 T43 4 3 0 0.266286 

T45 T46 21 25 1 0.266 

T13 T36 3 10 0 0.265846 

T38 T53 4 1 0 0.2652 

T26 T27 2 7 0 0.264222 

T4 T7 1 1 0 0.264 

T5 T47 6 6 0 0.2635 

T12 T26 5 2 0 0.263429 

T1 T45 11 21 0 0.263375 

T4 T6 1 2 0 0.262 

T48 T50 4 3 0 0.262 

T13 T44 3 7 0 0.2618 

T10 T19 4 8 0 0.2615 

T10 T36 4 10 0 0.260714 

T14 T33 16 28 0 0.260591 

T3 T21 9 8 0 0.259882 

T1 T34 11 16 0 0.259852 

T5 T48 6 4 1 0.2598 

T9 T49 36 21 2 0.259649 

T3 T30 9 15 0 0.258583 

T21 T48 8 4 0 0.2585 

T14 T51 16 32 1 0.258167 



 
 
 

68 
 

T5 T15 6 2 0 0.25725 

T12 T15 5 2 0 0.256857 

T18 T48 6 4 0 0.2566 

T1 T3 11 9 0 0.2563 

T12 T13 5 3 0 0.25625 

T12 T50 5 3 0 0.25525 

T16 T49 22 21 0 0.254977 

T15 T21 2 8 0 0.254 

T43 T47 3 6 0 0.253556 

T19 T47 8 6 0 0.253286 

T5 T13 6 3 0 0.252889 

T6 T7 2 1 0 0.25 

T18 T38 6 4 0 0.25 

T26 T47 2 6 0 0.25 

T33 T40 28 29 5 0.25 

T10 T44 4 7 0 0.248545 

T10 T22 4 3 0 0.248286 

T44 T50 7 3 0 0.2482 

T10 T30 4 15 0 0.247895 

T17 T49 36 21 2 0.247714 

T10 T28 4 1 0 0.2476 

T1 T33 11 28 0 0.247077 

T6 T50 2 3 0 0.2468 

T1 T13 11 3 0 0.246 

T19 T26 8 2 0 0.246 

T14 T50 16 3 0 0.245789 

T6 T13 2 3 0 0.2448 

T9 T33 36 28 1 0.244344 

T1 T18 11 6 0 0.243882 

T19 T32 8 15 0 0.243391 

T5 T50 6 3 0 0.243333 

T26 T53 2 1 0 0.242667 

T21 T50 8 3 0 0.241818 

T14 T44 16 7 0 0.241652 

T38 T41 4 4 0 0.241 

T29 T30 11 15 0 0.240923 

T25 T44 6 7 0 0.240308 

T3 T5 9 6 0 0.24 

T13 T28 3 1 0 0.24 

T15 T53 2 1 0 0.24 

T5 T19 6 8 0 0.239857 

T21 T26 8 2 0 0.2392 

T29 T38 11 4 0 0.2388 

T33 T45 28 21 0 0.238571 

T30 T49 15 21 0 0.2385 

T19 T27 8 7 0 0.238267 

T1 T30 11 15 0 0.238231 

T39 T46 19 25 0 0.237864 

T30 T39 15 19 0 0.236706 
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T2 T46 18 25 2 0.235767 

T30 T35 15 4 0 0.235579 

T4 T38 1 4 0 0.2352 

T14 T19 16 8 0 0.235167 

T3 T32 9 15 0 0.234917 

T9 T45 36 21 2 0.234421 

T30 T36 15 10 0 0.23424 

T12 T49 5 21 0 0.234231 

T15 T19 2 8 0 0.2338 

T29 T35 11 4 0 0.233733 

T30 T32 15 15 1 0.233733 

T1 T19 11 8 0 0.233579 

T2 T44 18 7 0 0.23352 

T2 T3 18 9 1 0.233481 

T17 T31 36 37 3 0.233278 

T3 T24 9 3 0 0.233167 

T30 T45 15 21 0 0.233111 

T2 T38 18 4 0 0.232727 

T10 T18 4 6 0 0.2324 

T1 T5 11 6 0 0.231529 

T1 T9 11 36 0 0.231021 

T4 T11 1 3 0 0.231 

T37 T49 21 21 0 0.231 

T24 T48 3 4 0 0.230857 

T18 T36 6 10 0 0.23025 

T6 T53 2 1 0 0.23 

T40 T49 29 21 0 0.229796 

T13 T18 3 6 0 0.229778 

T10 T29 4 11 0 0.2288 

T1 T32 11 15 0 0.228385 

T31 T46 37 25 2 0.227935 

T3 T44 9 7 0 0.227875 

T19 T33 8 28 0 0.227444 

T34 T44 16 7 0 0.227391 

T1 T37 11 21 0 0.227375 

T19 T21 8 8 0 0.227375 

T2 T27 18 7 0 0.22712 

T4 T13 1 3 0 0.2265 

T44 T51 7 32 1 0.225846 

T7 T13 1 3 0 0.2255 

T10 T34 4 16 0 0.2255 

T3 T34 9 16 0 0.22504 

T36 T44 10 7 0 0.224706 

T7 T15 1 2 0 0.224667 

T17 T45 36 21 0 0.224536 

T21 T27 8 7 0 0.224133 

T10 T32 4 15 0 0.224105 

T7 T35 1 4 0 0.224 

T27 T50 7 3 0 0.2238 
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T1 T27 11 7 0 0.223778 

T10 T50 4 3 0 0.223714 

T19 T29 8 11 0 0.223368 

T12 T21 5 8 0 0.222769 

T11 T25 3 6 1 0.222222 

T25 T43 6 3 1 0.222222 

T2 T32 18 15 0 0.221333 

T12 T14 5 16 0 0.221333 

T6 T11 2 3 0 0.2212 

T33 T39 28 19 0 0.220894 

T16 T44 22 7 0 0.22069 

T34 T37 16 21 0 0.220432 

T38 T52 4 1 0 0.2204 

T33 T46 28 25 0 0.220113 

T7 T11 1 3 0 0.22 

T7 T38 1 4 0 0.22 

T29 T31 11 37 1 0.219667 

T32 T50 15 3 0 0.219556 

T6 T21 2 8 0 0.219 

T14 T27 16 7 0 0.21887 

T19 T43 8 3 0 0.218364 

T19 T34 8 16 0 0.21825 

T18 T29 6 11 0 0.218118 

T27 T46 7 25 1 0.218063 

T3 T39 9 19 1 0.217 

T50 T53 3 1 0 0.217 

T34 T39 16 19 0 0.216629 

T15 T18 2 6 0 0.2165 

T14 T35 16 4 0 0.2159 

T11 T29 3 11 0 0.215857 

T26 T44 2 7 0 0.215778 

T37 T45 21 21 0 0.215524 

T6 T47 2 6 0 0.2155 

T15 T47 2 6 0 0.2155 

T33 T51 28 32 0 0.2155 

T12 T52 5 1 0 0.215 

T5 T36 6 10 0 0.214875 

T14 T18 16 6 0 0.214455 

T4 T35 1 4 0 0.2132 

T18 T43 6 3 0 0.213111 

T21 T49 8 21 0 0.212966 

T2 T45 18 21 0 0.212718 

T14 T16 16 22 0 0.212632 

T9 T30 36 15 1 0.212471 

T22 T38 3 4 0 0.212 

T22 T48 3 4 0 0.212 

T14 T37 16 21 0 0.211892 

T11 T18 3 6 0 0.211556 

T3 T35 9 4 0 0.211385 
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T3 T38 9 4 0 0.211077 

T19 T44 8 7 0 0.210933 

T12 T33 5 28 0 0.210788 

T13 T14 3 16 2 0.210526 

T13 T21 3 8 0 0.21 

T19 T35 8 4 0 0.21 

T27 T49 7 21 0 0.209643 

T21 T30 8 15 0 0.209391 

T7 T12 1 5 0 0.208667 

T32 T33 15 28 0 0.208651 

T22 T52 3 1 0 0.2085 

T12 T29 5 11 0 0.208375 

T10 T25 4 6 0 0.208 

T33 T49 28 21 0 0.207755 

T1 T51 11 32 0 0.207535 

T27 T36 7 10 0 0.207294 

T11 T30 3 15 0 0.207111 

T10 T21 4 8 0 0.206833 

T10 T27 4 7 0 0.206727 

T5 T22 6 3 0 0.206222 

T13 T47 3 6 0 0.206222 

T3 T16 9 22 0 0.206194 

T14 T47 16 6 0 0.206 

T46 T51 25 32 1 0.205895 

T18 T41 6 4 0 0.2058 

T38 T39 4 19 0 0.205739 

T5 T29 6 11 0 0.205647 

T19 T22 8 3 0 0.205636 

T32 T48 15 4 0 0.205579 

T14 T31 16 37 0 0.204377 

T16 T38 22 4 0 0.203769 

T44 T49 7 21 0 0.203714 

T3 T51 9 32 0 0.20361 

T2 T34 18 16 0 0.203412 

T11 T26 3 2 0 0.2028 

T21 T36 8 10 0 0.202333 

T17 T19 36 8 0 0.202093 

T5 T24 6 3 0 0.202 

T21 T39 8 19 0 0.202 

T35 T41 4 4 0 0.2015 

T12 T41 5 4 0 0.200889 

T10 T53 4 1 0 0.2008 

T25 T47 6 6 0 0.2005 

T14 T42 16 54 2 0.200171 

T16 T45 22 21 0 0.200047 

T10 T14 4 16 0 0.2 

T10 T47 4 6 0 0.2 

 


