
A

Dissertation

on

“Application of River Formation Dynamics

in

Search Based Software Engineering”

Submitted in Partial Fulfillment of the Requirement

For the Award of Degree of

MASTER OF TECHNOLOGY

in

Computer Science and Engineering

Delhi Technological University, Delhi

SUBMITTED BY

YOGITA KHATRI

2K14/CSE/21

Under the Guidance of

Mrs. ABHILASHA SHARMA and Dr. AKSHI KUMAR

Assistant Professor(s)

Department of Computer Science and Engineering

Delhi Technological University

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

2014-16

ii

Certificate

This is to certify that the work contained in this dissertation entitled “Application of River

Formation Dynamics in Search Based Software Engineering” submitted in the partial

fulfillment, for the award of degree of M.Tech in Computer Science and Engineering at DELHI

TECHNOLOGICAL UNIVERSITY by YOGITA KHATRI, Roll No. 2K14/CSE/21, is

carried out by her under my supervision. The matter embodied in this project work has not been

submitted earlier for the award of any degree or diploma in any university/institution to the best

of our knowledge and belief.

 (Mrs. ABHILASHA SHARMA)

 Project Guide

 Assistant Professor

 Department of Computer Science and Engineering

 Delhi Technological University

iii

Certificate

This is to certify that the work contained in this dissertation entitled “Application of River

Formation Dynamics in Search Based Software Engineering” submitted in the partial

fulfillment, for the award of degree of M.Tech in Computer Science and Engineering at DELHI

TECHNOLOGICAL UNIVERSITY by YOGITA KHATRI, Roll No. 2K14/CSE/21, is

carried out by her under my supervision. The matter embodied in this project work has not been

submitted earlier for the award of any degree or diploma in any university/institution to the best

of our knowledge and belief.

 (Dr. AKSHI KUMAR)

 Project Co-Guide

 Assistant Professor

 Department of Computer Science and Engineering

 Delhi Technological University

iv

Acknowledgement

I thank the almighty god and my parents, who are the most graceful and merciful, for their

blessing that contributed to the successful completion of this project.

I take this opportunity to express a deep sense of gratitude towards my guide Mrs.

ABHILASHA SHARMA and co-guide Dr. AKSHI KUMAR, for providing excellent

guidance, encouragement and inspiration throughout the project work. Without their invaluable

guidance, this work would never have been a successful one.

I am also grateful to Dr. O.P. Verma, HOD, Computer Science and Engineering Department,

DTU for his immense support. I would also like to acknowledge Delhi Technological University

library and staff for providing the right academic resources and environment for this work to be

carried out.

I would also like to thank all my classmates for their valuable suggestions and helpful

discussions.

 YOGITA KHATRI

(2K14/CSE/21)

v

Abstract

Search Based Software Engineering (SBSE) is an emerging field, involves applying search based

techniques to address the various problems related to different domains of software engineering.

It is specially excelled in providing an ideally balanced solution to a software engineering

problem involving several competing goals and provides optimal solution to give better

prospects over tools and techniques required to grow a productive, proficient and cohesive

approach. Software testing is the area which is benefitted the most. Although there are many

testing related problems which are solved by search based techniques, but automatic test data

generation is the prime activity, capturing researcher’s attention these days. Test path generation

and prioritization is one of the important activities to reduce test effort. But it hardly gets

importance in the existing literature as only few researchers have attempted to generate test

sequences using different search based algorithms (Ant Colony Optimization, Genetic

Algorithm, Tabu Search, Cuckoo Search, Firefly Algorithm), each having their own merits and

demerits. Ideally none of them is perfect as far as complete path coverage and redundancy is

concerned.

This dissertation aims at carrying the SWOT (strengths, weaknesses, opportunities, threats)

analysis of the area i.e. search based software engineering and improving the efficiency of

software testing process by generating the optimal test sequences in the control flow graph

(CFG) of the program under test (PUT) by using a novel swarm intelligence method called River

Formation Dynamics(RFD), inspired by a natural phenomena of how drops transformed into

river and then river into sea. It provides full path coverage with zero redundancy in transitions

vi

from one node to another. It also tries to prioritize the paths based on their strength, calculated in

terms of their traversal by the drops.

Keyword: Cyclometic Complexity, Control Flow Graph, River Formation Dynamics, Test

Sequence, Program Under Test

vii

List of Figure(s)

Figure 2.1 SBSE Scope ... 5

Figure 2.2 SBSE Application Domain Publication Rate .. 6

Figure 2.3 Yearly SBSE Publication Rate .. 7

Figure 2.4 Publication Rate in SBST .. 10

Figure 2.5 River Formation Dynamics Algorithm .. 15

Figure 3.1 Pseudo Code for Hill Climbing ... 20

Figure 3.2 Move to a Local Optimum .. 20

Figure 3.3 A Restart from a New Climb Point to a Global Optimum .. 21

Figure 3.4 Moves in Simulated Annealing ... 21

Figure 3.5 Pseudo Code for Simulated Annealing .. 22

Figure 3.6 Psedo Code for Genetic Algorithm ... 22

Figure 3.7 Moves in Genetic Algorithm ... 23

Figure 3.8 SWOT Analysis of SBSE .. 27

Figure 3.9 Control Flow Graph for a Sample Program .. 32

Figure 4.1 Flow Chart of RFD Scheme .. 35

Figure 4.2 Steps of the Proposed Approach.. 36

Figure 4.3 Flow Chart of the Proposed Approach .. 42

Figure 5.1 ‘C’ Program for Triangle Classification .. 44

Figure 5.2 CFG for Triangle Classification .. 45

Figure 5.3 ‘C++’ Program for Multiplication of two Numbers .. 50

Figure 5.4 CFG for the Program of Multiplication of two Numbers .. 51

Figure 5.5 CFG of Binary Search ... 55

Figure 5.6 Comparative Analysis of RFD, FA and ACO ... 57

Figure 5.7 Redundancy vs. Number of Nodes .. 57

file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472548
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472549
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472550
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472551
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472553
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472553
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472548
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472549
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472550
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472551
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472548
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472549
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472550
file:///C:/Users/teeja/Documents/thesis.docx%23_Toc327472551

viii

List of Table(s)

Table 2-1Year wise Publications in SBST.. 11

Table 2-2 Summary of some Previous Attempts to Test Sequence Generation 13

Table 2-3 RFD in Action .. 17

Table 5-1 Test Sequences Obtained by 1
st
 Drop in Test A ... 46

Table 5-2 Test Sequences Obtained by 2
nd

 Drop in Test A .. 46

Table 5-3 Test Sequences Obtained by 3
rd

 Drop in Test A ... 46

Table 5-4 Test Sequences Obtained by 4
th

 Drop in Test A ... 47

Table 5-5 Test Sequences Obtained by 5
th

 Drop in Test A ... 47

Table 5-6 Test Sequences Obtained by 6
th

 Drop in Test A ... 47

Table 5-7 Test Sequences Obtained by 7
th

 Drop in Test A ... 48

Table 5-8 Test Sequences Obtained by 8
th

 Drop in Test A ... 48

Table 5-9 Test Sequences Obtained by 9
th

 Drop in Test A ... 48

Table 5-10 Test Sequences Obtained by 10
th

 Drop in Test A ... 49

Table 5-11 Generated Independent Paths in Test A ... 49

Table 5-12 Test Sequences Obtained by 1
st
 Drop in Test B .. 52

Table 5-13 Test Sequences Obtained by 2
nd

 Drop in Test B .. 52

Table 5-14 Test Sequences Obtained by 3
rd

 Drop in Test B... 52

Table 5-15 Test Sequences Obtained by 4
th

 Drop in Test B .. 52

Table 5-16 Test Sequences Obtained by 5
th

 Drop in Test B .. 53

Table 5-17 Test Sequences Obtained by 6
th

 Drop in Test B .. 53

Table 5-18 Test Sequences Obtained by 7
th

 Drop in Test B .. 53

Table 5-19 Test Sequences Obtained by 8
th

 Drop in Test B ... 53

Table 5-20 Test Sequences Obtained by 9
th

 Drop in Test B .. 54

Table 5-21 Test Sequences Obtained by 10
th

 Drop in Test B .. 54

Table 5-22 Generated Independent Paths in Test B.. 54

Table 5-23 Test Sequences Generated using ACO ... 56

Table 5-24 Test Sequences Generated using RFD ... 56

Table 5-25 Test Sequences Generated using FA .. 56

Table 5-26 Test Cases for Comparison between ACO, FA and RFD .. 58

ix

List of Abbreviation(s)

ACO Ant Colony Optimization

CFG Control Flow Graph

FA Firefly Algorithm

GA Genetic Algorithm

PUT Program Under Test

RFD River Formation Dynamics

SBSE Search Based Software Engineering

SBST Search Based Software Testing

SE Software Engineering

SWOT Strengths Weaknesses Opportunities Threats

x

Content(s)

Certificate ... iii

Acknowledgement ... iv

Abstract ... v

List of Figure(s) .. vii

List of Table(s) ... viii

List of Abbreviation(s) ... ix

Content(s) .. x

Chapter 1 Introduction and Outline .. 1

1.1. Introduction .. 1

1.2. Motivation .. 2

1.3. Research Objective(s) .. 3

1.4. Proposed Framework.. 3

1.5. Organization of Thesis ... 3

1.6. Chapter Summary ... 4

Chapter 2 Literature Review ... 5

2.1. History of SBSE ... 5

2.2. Application of SBSE .. 7

2.3. Issues and Challenges in SBSE .. 8

2.4. History of SBST ... 9

2.5. River Formation Dynamics in Action .. 17

Chapter 3 Search Based Software Engineering .. 18

3.1. SBSE: An Introduction... 18

3.2. Elements of SBSE .. 19

3.3. Most Common Optimization Algorithms used in SBSE ... 19

3.4. SWOT Analysis of SBSE ... 23

3.5. Search Based Software Testing .. 30

3.6. Types of Testing Excavated in SBST .. 32

3.7. Testing Activities in SBST ... 33

Chapter 4 Proposed Work ... 34

4.1. Basics of River Formation Dynamics .. 34

4.2. Proposed Approach .. 36

4.3. Tools/Technology Required ... 36

xi

4.4. Path Generation and Prioritization using RFD ... 37

4.5. Flowchart of the Proposed Approach ... 41

Chapter 5 Experimental Results and Analysis .. 43

5.1. Testing Scenario A ... 43

5.2. Testing Scenario B ... 50

5.3. Compariosn with State -of - Art Techniques ... 55

Chapter 6 Conclusion and Future Scope ... 59

6.1 Research Summary ... 59

6.2. Conclusion and Future Research Directions ... 59

References ... 61

APPENDIX A .. I

Introduction and Outline

1

Chapter 1 Introduction and Outline

This Chapter briefly introduces the research work proposed in this thesis. Section 1.1 provides an

overview of the research undertaken. Section 1.2 clears the motivation behind the research work.

Section 1.3 sets out the research objectives. Section 1.4 illustrates the proposed approach.

Section 1.5 presents an outline of this thesis describing the organization of the remaining

chapters. Finally, Section 1.6 gives the summary of the chapter.

1.1. Introduction

Search Based Software Engineering is an emerging field basically involves amalgamation of

software engineering, operation research and metaheuristic techniques. Different phases of

software engineering are complex in nature and consist of numerous problems. Although, we

have many classical approaches to solve these problems like linear programming, dynamic

programming, but these approaches do not work well with NP-hard problems as they cover

maximum range of SE problems. However, it has been found by many researchers that SBSE

often gives satisfactory results when used on such problems. They may not be able to give a

global optimal solution but can provide a list of near optimal solutions. It provides an efficient

way to automate software engineering tasks by applying meta-heuristic search algorithms.

It is specially excelled in providing an ideally balanced solution to a SE problem involving

several competing goals. It caters to the problem of SE and provides optimal solution to give

better prospects over tools and techniques required to grow a productive, proficient and cohesive

approach.

After doing literature survey, it has been observed that software testing is the major area,

explored the most, in SBSE, more formally known by the phrase search based software testing

(SBST). It involves the application of various search based techniques like hill climbing,

simulated annealing, tabu search, genetic algorithm, ant colony optimization etc. to address the

testing related problems.

Introduction and Outline

2

To discover maximum faults in minimum time is the major aim in software testing. It is the most

important and a very crucial phase of software development life cycle to ensure software validity

and quality. It is a very rigorous process and by far the most costly and time consuming activity

and almost account for 50% of the total effort. Therefore, it becomes a major challenge for the

researcher to optimize the software testing process.

 Many researchers have tried automating various testing activities like test data generation, test

case selection, test case prioritization, testing effort estimation etc. to reduce the testing effort as

much as possible. Out of all testing activities, test data generation has got the highest

researcher’s attention whereas test sequence generation which is also a significant activity in

cutting down the testing effort, hardly gets importance. Only few researchers have attempted to

generate test sequences using different search based algorithms like ant colony optimization,

genetic algorithm, tabu search, cuckoo search, firefly algorithm, having their own advantages

and disadvantages. Ideally, none of them is perfect as far as coverage and redundancy is

concerned.

Therefore, this thesis summarizes in and out of the area i.e. search based software engineering

and focuses on coming up with a new approach for test sequence generation and prioritization,

that should provide complete path coverage with no redundancy, details of which is explained in

the later chapters. The remainder of this chapter clears the motivation behind carrying the

research work, sets out the research objectives, describes the main contributions of the research

work, and presents an outline of this thesis.

1.2. Motivation

Optimizing the testing effort is one of the prime concerns of the researchers working in this field.

A lot of researchers have attempted to automate different testing activities by applying search

based techniques. Test sequence generation, which is a significant activity in cutting down the

testing effort, hardly gets importance as compared to other testing activities in the existing

literature. Only few researchers have attempted to generate test sequences using different search

based algorithms like ant colony optimization, genetic algorithm, tabu search, cuckoo search,

Introduction and Outline

3

firefly algorithm, having their own merits and demerits. But none of them is ideal as far as

coverage and redundancy is concerned. This inspired us to come up with a new approach for

path generation and prioritization, which should be efficient in terms of both the parameters i.e.

coverage and redundancy.

1.3. Research Objective(s)

Statement of Research Question

“Can intelligent River Formation Dynamics algorithm be used to optimize the

process of Test Sequence Generation in Search Based Software Engineering?”

Consequently, the four main objectives of the research work taken are:

 To carry out the SWOT analysis of Search Based Software Engineering,

 To develop an efficient approach for optimizing the task of test sequence generation via

River Formation Dynamics algorithm.

 To prioritize the test paths to observe critical/error prone paths to be tested first.

 To compare and analyze the proposed approach with respect to other existing approaches

used for test sequence generation.

1.4. Proposed Framework

To reduce the testing effort, an efficient approach for test sequence generation and prioritization

is proposed via river formation dynamics. Firstly, it selects the program for test sequence

generation, followed by the calculation of adjacency matrix and cyclometic complexity. Then

after, the basic scheme of RFD is extended for optimal test sequence generation. Independent

paths are then obtained from the last test sequence generated and the paths are prioritized based

on the strength value of their respective edges.

1.5. Organization of Thesis

This thesis is structured into 6 chapters followed by references and appendix.

Introduction and Outline

4

Chapter 1 presents the research problem, research objectives, justifying the need for carrying out

the research work and outlines the main contributions arising from the work undertaken.

Chapter 2 provides the essential background and context for this thesis.

Chapter 3 provides the details of the SBSE

Chapter 4 provides the details of the proposed approach employed.

Chapter 5 describes the experimental results obtained for the programs undertaken. It also

presents the comparative analysis with other existing techniques.

Chapter 6 presents the conclusions based on the contributions made by this thesis and provides

insight in to the future work.

1.6. Chapter Summary

This chapter has laid the foundations for this thesis. It briefly introduced the research problem,

research objectives and the proposed solution framework. A justification for the research

problem is outlined, together with an explanation of the research methodology used. The next

chapter examines the pertinent literature most relevant to this research.

Literature Review

5

Chapter 2 Literature Review

The focus of this chapter is to review the prominent and relevant research that has been

undertaken related to the proposed approach. Section 2.1 discusses the history of SBSE. This is

followed by section 2.2 which elaborates the application areas of SBSE. The Issues and

challenges are presented in section 2.3. Section 2.4 briefs the history of SBST along with the

details of various earlier attempts to test sequence generation. Finally section 2.5 discusses the

various problem areas where RFD has been applied till now.

2.1. History of SBSE

Although the title SBSE (Search Based Software Engineering) was first introduced by Harman

and Jones in 2001 [1] but originally an attempt for optimization to a software engineering

problem dates back to 1976 and was reported by Miller and Spooner. They have applied it in

software testing. With the passage of time , the interest of researchers towards SBSE increased

rapidly and since then the significant work has been reported in the fields of requirement

engineering[3,4,5], management[6,7,8], testing[9,11,13,25,27,29], maintenance[10,12],

design[12,14,15] etc. thus, covering entire life cycle of software engineering as demonstrated in

Fig. 2.1.

 Fig. 2.1 SBSE Scope

Requirement
Engineering

Design

Testing Maintenance

Management

Coding

Literature Review

6

A broad range of optimization algorithms have been applied in SBSE. The most commonly

exercised are hill climbing, simulated annealing, tabu search, genetic algorithm and genetic

programming.

Proportional rate of published papers in different domains of software engineering and yearly

publication graph of SBSE has been represented in Fig. 2.2 and Fig. 2.3 respectively. It can be

observed from the figure that testing covers 54%, maintenance covers 11%, design covers 10%,

management covers 10%, verification covers 4%, requirement covers 3%, general issues covers

4% and other fields covers 4% of the SBSE’s work. Thus, so far the major exploration has been

done in software testing as reflected from Fig. 2.2. Fig. 2.3 reflects that there is a sharp increase

in the SBSE research after 2001. 2010 is the year in which maximum SBSE’s publications have

been reported.

Fig. 2.2 SBSE Application Domain Publication Rate (Source: SBSE Repository [23])

Literature Review

7

Fig. 2.3 Yearly SBSE Publication Rate (Source : SBSE Repository [23])

2.2. Applications of SBSE

SBSE has a very broad application spectrum. It has been successfully applied to solve the

problems related to almost all phases of software engineering. Following are the some of the

main application areas where SBSE has excelled.

1) Software Project Cost Estimation : Many Search based algorithms like hill climbing,

genetic algorithm etc. have been applied for predicting the software project cost and the

result obtained are accurate and close to reality.

2) Project Planning: Search based techniques have been successfully applied to handle the

problem of staff allocation to work packages. Different researchers have tried with

applying different metaheuristic algorithms like simulated annealing, genetic algorithm,

hill climbing etc. taking either real world data or synthetic data into consideration. The

results obtained are quite satisfactory and far better than other classical approaches.

3) Requirement Engineering: Numerous search based techniques like genetic algorithm,

simulated annealing, greedy algorithm etc have been applied to obtain an optimal set of

requirement that establishes equilibrium between customer expectations, resources in

hand and requirement interdependencies. Moreover some researchers have also attempted

Literature Review

8

to prioritize the set of requirements to determine the order in which customer

requirements need to be satisfied.

4) Design: Much work has been reported regarding establishing a balance between cohesion

and coupling. But more formally, this work comes under the title of reverse engineering.

A Little work has been witnessed at design stage. Lutz [14] considered the problem of

hierarchical disintegration of software. He used theoretical fact fitness and awarded more

fitness value to hierarchies that present the software design in more understandable way.

Not much work has been done in this area but there is a great scope in using the

information theory as a basis for constructing a fitness function, because in SE,

theoretical information is found in abundance.

5) Test Data Generation: This activity comes under the area of testing. Testing is the most

prominent area where search based techniques has been applied and showcased

remarkable improvements as compared to other classical approaches. For this task, the

most commonly used algorithms are genetic algorithm, tabu search and ant colony

optimization.

6) Test case Selection and Prioritization: Many researchers attempted for test case selection

and prioritization problem employing different search based techniques like hill climbing,

greedy algorithm, genetic algorithm etc. and have obtained satisfactory results.

2.3. Issues and Challenges in SBSE

Although the success rate of SBSE is very high but still there are some challenges that need to

be resolved. Following are some of the major challenges faced in SBSE.

1) Deciding the right stopping rule: Two stopping rules have been used till now to

terminate the search

a) By Budget Constraint

b) By Some Stipulated Time

These rules are not sufficient as sometimes they give poor results. However in case of

GA (since it is population based), third rule arises, which says, stop the search, when all

Literature Review

9

individuals in the population have similar chromosome. But this leads to a problem of

how to assess the similarity of individuals. This limitation is splattered as a challenge for

SBSE researchers to come out with such metrics.

2) Selection of Appropriate Optimization Algorithm for a Specific SBSE Problem: It has

been observed that the researchers are randomly choosing the optimization algorithm and

comparing their work with random search as standard. This approach is acceptable for

new domains of SE which has not yet been explored by SBSE. It is a big challenge to

characterize the complexity of SE problem and to analyze them in comparison with that

search algorithm which already produced good results for the similar problem space. This

characterization will help in selection of suitable search algorithm for the problem in

hand, so that already existing results can be improved.

3) Achieving Human Competitive Results: One of the challenge of SBSE is that the

outcomes produced by automatic computation are not human competitive. But there are

fields likes test data generation and modularization, where it would be possible to beat

the human competitors. Researchers believe that growing interest in this area will

definitely achieve human competitive results in near future.

4) Choosing Suitable Parameter Setting: Sometimes the fruitful deployment of search

algorithm on a given problem bank on discovery of relevant/desired parameter settings,

but the charge of finding such parameters setting is a big challenge as the cost of finding

them can be huge.

After analyzing the field of SBSE deeply, we realized that there is a major Scope in SBST. With

passage of time more and more researchers started focusing on automation of different testing

activities using search based techniques. The next section will provide the detail of what all has

been done in SBST and where further improvement is required.

2.4. History of SBST

Software testing is a very vast, expensive and time consuming process. Automating the software

test activities in an optimized manner is a major concern of researchers working in this domain,

thus ensuring completeness and correctness of the testing process with optimized efforts. Many

Literature Review

10

metaheuristic approaches have been used for solving the different problems of software

engineering. The application of these metaheuristic techniques in the field of software

engineering is better known by the term Search Based Software Engineering (SBSE) [1] and

when applied in the field of software testing, better known by the phrase called Search Based

Software Testing. Software testing is benefitted the most by these search techniques as stated

earlier in chapter 1.

The very first attempt of applying search based techniques in software testing dates back to 1976.

It was reported by David Miller and Spooner, who had applied genetic algorithm for the

automatic test data generation for floating types input. With passage of time, more and more

researchers started focusing on SBST by exploring many other search based algorithms like

random search, local search (hill climbing, simulated annealing and tabu search), genetic

programming, ant colony optimization, particle swarm optimization, etc.

A huge rise has been witnessed in search based software testing in recent years. Table 2-1

provides the details of year wise publications in SBST and the corresponding Fig. 2.4 provides

an insight in to the increasing interest of researchers towards SBST.

Fig. 2.4 Publication Rate in SBST

Literature Review

11

Table 2-1 Year Wise Publication in SBST [25]

In the literature, the use of ACO in testing has been witnessed the most as compared to other

algorithms and test data generation seems the prime activity, catching the researcher’s attention

these days in software testing. For example, in [41], Ghiduk uses ACO based approach for data

flow testing and in [42], Li and Peng Lam uses ACO based approach for generating test

sequences from a state diagram for the software under test. On the other hand, C. Peng Lam [36],

Fu Bo[37] and Praveen Ranjan Srivastava et al. [39] applied ant colony optimization for test data

generation. In [38], Praveen Ranjan Srivastava et al. used a new algorithm called intelligent

water drop for test data generation. Jin-Cherng Lin & Pu-Lin Yeh [34] and Dr.Vrlur [35]

proposed two different approaches for test data generation for path testing using genetic

algorithm. Thus, the automatic test data generation is the major testing activity, the researchers

are focusing on these days using various SBSE techniques. However, optimal test sequence

generation has received less importance in the existing literature. But one needs to understand

that testing efforts can be minimized by generating optimal test sequences.

Moving in this direction, in 2003, Diaz et al. [48] attempted to produce test sequences having

high branch coverage as their objective. They applied tabu search on the control flow graph of

the software under test. It is one of the famous search technique which is based on the principle

of searching and evaluating the next K neighbor around the current solution and learning the best

one. They got success in obtaining test sequences having high branch coverage but does not

ensures complete path coverage, multiple condition coverage and loop coverage.

In 2008, Doungsa-ard et al. [49] implemented a genetic algorithm based approach for optimal

test sequence generation. They succeeded in maximizing the software coverage but still lacked in

complete edge/transition coverage.

Literature Review

12

 In 2009, Srivastava et al. [40] came up with an ACO based approach to produce optimal path

suit. They worked on the CFG of the software under test. They basically tried to imitate the ant’s

behavior i.e. how they discover their path from source to destination by depositing pheromone on

the path they visit. The selection of paths in ACO depends upon stochastic probability theory and

the probability calculation is done on the basis of pheromone level on each edge as well as some

heuristic information available on each edge. The path having the highest probability is chosen

by the ant. They also tried to prioritize the paths based on the pheromone value and heuristic

information available on it. However, they succeeded in full transition/edge coverage but faced

redundancy in edge traversal.

In 2012, Srivastava et al. [50] presented an intelligent cuckoo search based approach for

generating and prioritizing optimal test sequences. They tried to cover up all loopholes in the

previous work by generating optimized test sequences with full edge coverage. Cuckoo search

make use of very few parameters and promises that only better egg is carried on to the next

iteration, which actually avoids getting stuck in local optima. They tested their approach on real

time examples and compared their approach with other search based technique like ACO and GA

and discovered that the results obtained are more optimized in terms of coverage and edge

redundancy. But node redundancy is still a challenge to resolve.

In 2012, Srivastava et al. [51] extended the firefly algorithm for generating optimized test paths

with full coverage. They applied this algorithm on state transition diagram and control flow

graph. Their simulation results showcased that the test paths obtained are optimal and also below

the number of total independent paths. On comparison with ACO, they discovered that their

approach is better and exhibits very small redundancy in path coverage, especially when the

numbers of nodes are large and cyclometic complexity is high.

The following table 2-2 depicts the summary of some previous prominent attempts to test

sequence generation.

Literature Review

13

Table 2-2 Summary of Some Previous Attempts to Test Sequence Generation

Author Algorithms Inputs Outcomes limitations

Diaz et al.

(2003) [48]

Tabu Search CFG Achieved high branch

coverage

Does not ensure

complete path

coverage & loop

coverage.

Doungsa-ard

et al. (2008)

[49]

Genetic

Algorithm

State

Transition

Diagram

Maximized software

coverage

Lacked in

complete edge/

transition

coverage

Srivastava et

al. (2009)

[40]

ACO CFG Achieved full transition

coverage

Faced redundancy

in edge traversal

Srivastava et

al. (2012)

[50]

Cuckoo

Search

CFG Achieved full transition

coverage with no edge

redundancy

Lacked in node

redundancy

Srivastava et

al. (2012)

[51]

Firefly

Algorithm

CFG & State

Transition

Diagram

Achieved full path

coverage

Obtained small

redundancy

specially when

number of nodes

are large and

cyclometic

complexity is

high

Research Gaps

After performing literature review the following research gaps are identified.

 Many researchers working in the Domain of SBST attempted for automatic test data

generation, but the automatic generation of test data for string and pointer data types is

still to be taken care off.

Literature Review

14

 Although a few techniques for test sequence generation exist, each having their own

merits and demerits, but none of them is ideal in terms of complete path coverage and

zero redundancy. It’s still remains a challenging task.

 Asymmetry in availability of software and tools, as many of the tools are not open

source, limiting the researcher’s capabilities for further optimization.

 Lacked in standardized language for modeling CFG as different programmers can have

different CFG for one particular program, resulting in different outputs.

 Coding phase of software development life cycle is yet to be explored in SBSE.

We considered the problem of optimal test sequence generation and proposed an approach

for it by bringing a novel swarm intelligence algorithm called RFD into the picture. In the

next section we are providing the details of various complex problems that are resolved by

RFD till now.

2.5. River Formation Dynamics in Action

RFD [43] is one of the upcoming heuristic optimization technique from the swarm intelligence

group, based on a nature’s phenomena of how water drops transform into river and river in turn

in to sea by selecting the most favorable path based on the altitudes of the places through which

it flow. It constitutes of two main processes of eroding the ground and depositing the soil along

the path it traverse. When a drop move, it always move from high altitude place, let say A to a

low altitude place , let say B , eroding the place A and depositing at place B , thereby decreasing

the altitude of place A and increasing the altitude of place B. Higher the downward slope

between these two places, more will be the erosion. The entire process is propagated in the same

way, till the drop finds the shortest path to sea. New drops are placed at the origin to construct

paths and to strengthen the erosion of the propitious paths. After few iterations, favorable paths

are found between origin and the destination Fig. 2.5 represents the basic RFD scheme.

Literature Review

15

Fig. 2.5 River Formation Dynamics Algorithm

In [43], they applied RFD to solve travelling salesman problem taking 20 and 30 nodes in a

randomly generated graph and compare their results with ACO. They observed that initially

ACO provide the better solution in short duration where as the results obtained through RFD are

not good initially, but after some time, RFD surpasses ACO in terms of quality of solution

obtained. Thus convergence rate of drops is slower as compared to convergence rate of ants, but

as far as quality is concerned, RFD is much better than ACO.

Redlarski et al. [52] have used RFD in mobile Robot navigation i.e. how a mobile robot searches

the shortest path to a given destination in an environment with obstacle. They made certain

changes in the basic RFD algorithm to suit the problem in hand. They conducted several test on

different landscape using RFD and measured the computation time and compared it with

Dijkstra’s algorithm and observed that RFD is faster than it.

In [45], Rabanal et al. applied RFD to solve the problem of finding minimum spanning tree in a

variable cost graph. They considered variable cost graph in which some cost function and

transformation function assigned to each edge. They took three randomly generated graphs with

hundred, two hundred and three hundred nodes and applied RFD and ACO to find the minimum

spanning tree. RFD’s results were found to be 4 to 8 % better than ACO’s results. Thus, RFD

provides deeper exploration of the graph.

Venkateswarlu and Rao [53] extended RFD for carrying out data aggregation in wireless sensor

network (WSN). They incorporated hop count distance between the node and the base station

and residual energy as the node’s parameter. Their ultimate goal is to increase the age of the

Literature Review

16

network by saving the energy. They showed a relation between RFD and data aggregation

process. As in RFD, the drops tend to find the way to sea, similarly, here sensor nodes,

responsible for collecting the data about their environment; tend to send their data to the base

station. They search for the shortest path to the base station using hop count and the residual

energy. The entire procedure is divided in to two stages. Firstly, in the initialization stage, the

sensor nodes are deployed and hop count is calculated by sending Request/Reply packets. In the

second stage, aggregate node is selected first employing RFD mechanism and then each sensor

node sends their data to the base station using aggregate nodes. The proposed approach is

compared with other existing state of the art techniques. It is observed that RFD’s complexity of

maintenance is less than others.

Dholakiya et al. [54] employed RFD for location area management in GSM. Their goal is to cut

down the location management cost. They assumed that the number of location areas

corresponds to the number of drops, the number of cells corresponds to the number of nodes and

altitude of nodes is replaced with cell’s call-to-mobility ratio and distance between two nodes is

replaced with cost of merging two cells. With implemented their approach on a cellular network

with 7, 10 and 12 cells and compared their results with Location Area (LA) scheme and Always

Update (AU) scheme. It has been observed that as the number of cells in an area increases, the

RFD provides better results as compared to LA and AU schemes. Thus the proposed approach

employing RFD cut downs the location management cost significantly.

The following table 2-3 depicts the summary of RFD in action.

Literature Review

17

Table 2-3 RFD in Action

Author Year Problem Outcomes

P. Rabanal, I.

Rodríguez, and

F. Rubio [43]

2007 Travelling Salesman

Problem

Quality of solution obtained

is better than ACO

P. Rabanal, I.

Rodríguez, and

F. Rubio [45]

2008 Finding Minimum

Spanning Tree

Results are 4 to 8% better

than ACO’s results

Redlarski et

al.[52]

2013 Mobile Robot

Navigation

RFD is better than

Dijkstra’s algorithm in

finding the shortest path to

a given destination

Venkateswarlu

and Rao [53]

2015 Data Aggregation in

Wireless Sensor

Network

Increased network life by

saving energy

Dholakiya et al.

[54]

2015 Location Management

in GSM

Obtained reduction in

location management cost

as compared to other state

of the art techniques

Search Based Software Engineering

18

Chapter 3 Search Based Software Engineering

This chapter will provide a deep insight into the field of SBSE. Section 3.1 gives brief

introduction of SBSE. Section 3.2 presents the elements of SBSE. Section 3.2 provides a gist of

most common optimization algorithms used in SBSE. Section 3.3 presents the SWOT analysis of

SBSE beneficial to address and urge the researchers to make significant improvements in this

domain. This is followed by section 3.4 explaining about search based software testing. Section

3.5 describes the types of testing explored in SBST. Finally, Section 3.6 highlights the various

testing activities in SBST.

3.1. SBSE: An Introduction

Search Based Software Engineering basically involves amalgamation of software engineering,

operation research and metaheuristic techniques. It is specially excelled in providing an ideally

balanced solution to a SE problem involving several competing goals. It caters to the problem of

SE and provides optimal solution to give better prospects over tools and techniques required to

grow a productive, proficient and cohesive approach.

Different phases of software engineering are complex in nature and consist of numerous

problems. Following are some of the problems of SE:

 What should be the optimal set of requirements which establishes equilibrium between

software development budget and customer satisfaction?

 What should be the best way of distribution of resources to a software development

project?

 What should be the optimum alignment of test cases (test case prioritization) to be

executed for regression testing?

 What should be the minimum set of test cases that will award complete branch coverage?

Although, we have many classical approaches to solve these problems like linear programming,

dynamic programming, but these approaches do not work well with NP-hard problems as they

Search Based Software Engineering

19

cover maximum range of SE problems. However, it has been found by many researchers that

SBSE often gives satisfactory results when used on such problems. They may not be able to give

a global optimal solution but can provide a list of near optimal solutions. It provides an efficient

way to automate software engineering tasks by applying meta-heuristic search algorithms. For

applying any search algorithm to a problem, firstly, we reformulate the given problem as a

search problem and then select the appropriate fitness function for guiding the search. Since all

the above mentioned problems belong to different domain of software engineering and do not

have any thing in common but from SBSE point of view all are essentially the optimization

problems. SBSE approach has especially excelled where it is required to obtain an ideal balance

between competing factors like completion of goals vs. money spend. In case of such problems

there can’t be a single ideal solution rather there can be many near optimal solutions that contain

a perfect mix of competing factors.

3.2. Elements of SBSE

In order to apply SBSE in any domain, following four key elements [1, 2] must be satisfied.

1) Large Search Space: SBSE problem must have a big search space. If small, then no need

to apply this.

2) Low Computational Complexity: Fitness function must be easy and fast to compute, so

that overall complexity of the algorithm should be low.

3) Approximate Continuity: There must be a well defined objective for every SBSE problem

that needs to be optimized.

4) No Known Optimal Solution: No need to apply SBSE technique, if an ideal solution to a

problem is discovered previously.

3.3. Most Common Optimization Algorithms used in SBSE

A wide range of optimization algorithms are used in SBSE. But most commonly used are hill

climbing, simulated annealing, genetic algorithm, genetic programming, tabu search. Apart from

these, researchers are using nature inspired algorithms like ant colony optimization, particle

Search Based Software Engineering

20

swarm optimization, bat algorithm, etc. now days. Now we will provide the details of some of

the most common algorithms used in SBSE.

 Hill Climbing: It begins with initially randomly chosen climb point. In every iteration the

fitness of the current solution is compared with a set of neighbors. If fitness of any

neighbor exceeds the fitness of the current solution, then it climbs to that neighbor and

starts the same process again. If no neighbor has the fitness value more than the current

solution, then it means maxima has been found, so just stop the search. The maxima

obtained may be a local maxima (as can be seen in Fig. 3.2) and not the global maxima.

Therefore one can restart the search staring from the new climb point (as can be seen in

Fig. 3.3). Despite of local maxima, hill climbing is relatively fast and easy to implement

and suits to the most of the problems found in software engineering. Fig. 3.1 shows the

pseudo code for the hill climbing

Fig. 3.1 Pseudo Code for Hill Climbing

Fig. 3.2 Move to a Local Optimum

Search Based Software Engineering

21

 Fig. 3.3 A Restart from a New Climb Point to a Global Optimum

 Simulated Annealing: Simulated Annealing is also like hill climbing, but unlike in hill

climbing, it can make a move to a poor solution in the beginning to escape local maxima.

The whole algorithm is controlled by a parameter called temperature. Initially the

temperature is high, as result of it, the search can take a poor move that means it can

select a solution with less fitness value as compared to the current solution, just in hope

of achieving global optimum (as can be seen in Fig. 3.4). As temperature reduces, the

chance of making a poor move also reduces. Eventually when freezing point is reached, it

simply starts behaving like hill climbing i.e. no more poor moves. Fig. 3.5 shows the

pseudo code for the simulated annealing.

Fig. 3.4 Moves in Simulated Annealing

Search Based Software Engineering

22

 Genetic Algorithm: Hill climbing and simulated annealing are local searches as they deal

with one candidate solution at a time and makes moves on the basis of fitness of its

neighbors. Genetic algorithm are global searches as many points are explored

simultaneously (as can be seen in Fig. 3.7), thus offering more robustness to local optima.

Fig. 3.6 shows the pseudo code for the genetic algorithm. First set of candidate solutions

i.e. the population is generally taken randomly. One can also seed the first population

based on the problem in hand. After this, the fitness of all individuals is calculated and

the some individuals are selected as per the selection mechanism, to go forward in the

next stage of cross over followed by mutation.

 Fig. 3.5 Pseudo code for Simulated Annealing [24]

Fig. 3.6 Pseudo Code for Genetic Algorithm [28]

Search Based Software Engineering

23

There are many selection mechanisms like Roulette wheel selection, Rank selection, steady state

selection, elitism, etc. One can choose specific selection method based on the problem in hand.

After selection, cross over operation is performed which involves breaking and merging of

elements of individuals to form two new offspring individuals. A variety of cross over operators

can be used like one-point cross over, multi-point cross over and uniform cross over. After this

the elements of newly generated individuals are mutated with the aim of redirecting the search in

a new location of the search space. When binary representation is used for each chromosome,

then mutation simply involves flipping if bits. After mutation, new generation of population is

ready and the whole process of selection, cross over and mutation is repeated. This loop

continues until either global solution is obtained or resources are exhausted.

Fig. 3.7 Moves in Genetic Algorithm

3.4. SWOT Analysis of SBSE

SWOT analysis of SBSE represents a layout/framework to assess the internal and external

elements that can have an impact on the vitality of the project, place or person. Its four factors

are:

1) Strengths: Internal factors and resources that accelerates the success of SBSE.

2) Weaknesses: Internal factors and resources that give rise to the failure of SBSE.

Search Based Software Engineering

24

3) Opportunities: External factors that can boost the performance rate of SBSE.

4) Threats: External factors that could imperil the SBSE.

Strengths

Strengths of SBSE are its vigorous characteristics that make it more advantageous over other

approaches. These are as follows:

1) Broad Domain: SBSE has a very broad application domain. It has been implemented

almost on all phases of software development, thus covering requirement analysis,

design, testing, project management, and refactoring. This approach views every problem

related to above fields as a search based optimization problem and remarkable

improvements have been observed as compared to existing techniques.

2) Readymade Fitness Function: In order to apply the search based technique to a software

engineering problem, one of the essential element required is the exigency of fitness

function to lead the search. Many problems in software engineering have a wide variety

of software matrices associated with them which can be used as a fitness function .No

extra effort required to construct the fitness function. Undeviatingly, any one of the

associated software matrices can be used as fitness function.

3) Re-Coalescence: It bridges the gap between unrelated areas of software engineering for

example, regression testing and requirement analysis are two unrelated techniques of

software engineering. But both can be seen as similar problem species with respect to

SBSE. The task of selection and prioritization works on similar lines for requirements as

well as for test cases of regression testing. Although, the purpose of both are different,

regression testing is targeted towards selecting and prioritizing test cases to have code

coverage to attain high fitness where as requirement analysis is targeted towards selecting

and prioritizing requirements to cover customer expectation. Such relationships give rise

to new dimensions for fusion of unrelated research areas.

4) Good Provider for Solution to NP-Hard Problems: For the problems which are

characterizes by a set of competing parameters and there exist a tradeoff between them,

SBSE techniques are found to be ideal for finding out the near optimal solution

Search Based Software Engineering

25

representing an ideal balance between the competing factors. For example, the

expenditure vs. the realization of goals.

5) Fast and Efficient: Most of the SBSE problems are favored by hill climbing or simulated

annealing. Since they are fast and easy to implement and thus are very efficient.

Sometimes they may lead to a local optima, but can always be restarted multiple times.

For problems that require quick solution, HC is a good choice as it provides a palpation

of landscape structure. By applying multi-objective search algorithms we can obtain

many good solutions that show potential tradeoffs between competing targets specially

when time or resources are short.

6) Malleability through Parallelism: Malleability is a big milestone in software engineering.

But it can be achieved because of the implicit parallel nature of SBSE techniques. For

example, hill climbing can be done in parallel, each commencing with a new climb point.

Genetic Algorithms can also be operated in parallel, since it’s a population based

technique so fitness for each candidate or individual can be calculated in parallel.

Therefore, this inherent parallel nature of SBSE techniques unveils a solution to address

the issue of SE malleability.

7) Feedback and Insight: One of the root causes of failure in software engineering is poor

understanding of customer requirements, making false assumptions, thus leading to

improper specification. SBSE can handle this problem as the search is guided by

automatic fitness function in comparison to human based search, leads to exciting results

with no deviation.

Weaknesses

Weaknesses of SBSE are its fragile characteristics that place it at a competitive disadvantage.

These are as follows:

1) Unfit Stopping Rule: Two stopping rules have been used till now to terminate the search

a) By Budget Constraint

b) By Some Stipulated Time

Search Based Software Engineering

26

These rules are not sufficient as sometimes they give poor results. However in case of

GA (since it is population based), third rule arises, which says, stop the search, when all

individuals in the population have similar chromosome. But this leads to a problem of

how to assess the similarity of individuals. This limitation is splattered as a challenge for

SBSE researchers to come out with such metrics. Thus we are lacking with the right

stopping rule.

2) Opting Appropriate Optimization Algorithm for a Specific SBSE Problem: It has been

observed that the researchers are randomly choosing the optimization algorithm and

comparing their work with random search as standard. This approach is acceptable for

new domains of SE which has not yet been explored by SBSE. But the necessity is to

characterize the complexity of SE problem and comparatively analyze them with that

search algorithm which already produced good results for the similar problem space. This

characterization will help in selection of suitable search algorithm for the problem in

hand, so that already existing results can be improved.

3) Achieving Human Competitive Results: One of the weaknesses of SBSE is that the

outcomes produced by automatic computation are not human competitive. But there are

fields likes test data generation and modularization, where it would be possible to beat

the human competitors. Researchers believe that growing interest in this area will

definitely achieve human competitive results in near future.

4) Choosing Suitable Parameter Setting: Sometimes the fruitful deployment of search

algorithm on a given problem bank on discovery of relevant/desired parameter settings,

but the charge of finding such parameters can be huge. Sound experimental design can

cut-down the cost of parameter tuning in some cases [15].

Opportunities

There are certain areas under software engineering or search based approaches that are not fully

excavated but on scouting leads to astonishing future prospects [24]. Following are the favorable

conditions/situations leading towards attainment of SBSE goals:

1) Theoretical Fact Fitness: This fitness function is formulated based upon theoretical facts

and is first used by Lutz [14] for the problem of hierarchical disintegration of software. It

Search Based Software Engineering

27

gives more fitness value to hierarchies that present the software design in more

understandable way. Not much work has been done in this area but there is a great scope

in using the information theory as a basis for constructing a fitness function, because in

SE, theoretical information is found in abundance.

Fig. 3.8 SWOT Analysis of SBSE

2) Security and Protection: Although it is one of the very important areas of SBSE

application, but limited by the search of a suitable fitness function to handle a security

problem.

3) Protocols: Correctness of communication protocol can be checked in terms of its

efficiency and security using SBSE techniques as first demonstrated by Alba and Troya

[16]. They applied genetic algorithm for testing the accuracy of communication

protocols. Later in 2000 and 2001, Clark and Jacob [17, 18] used genetic algorithm and

simulated annealing for obtaining optimized tradeoffs between efficiency, security and

cost of BAN (Burrows, Abadi, and Needham) protocols. In 2008, Ferreira et al [19]

proposed particle swarm optimization technique to find network protocol errors in

Search Based Software Engineering

28

concurrent system. The research could be extended in handling the problems related to

this domain using SBSE techniques.

4) Scope of SBSE in Distributed Artificial Intelligence and Software Agents: The researchers

believe that there is a great scope of SBSE application in the field of distributed artificial

intelligence and software agents. A very few work has been done so far in this area. The

nature of multi-agent system resembles very closely with the nature of SBSE problem.

There is a population of individuals in an agent based system that communicates with

each other, exchange information, leading to solve a common objective. The evolutionary

algorithms like genetic algorithm, genetic programming seems a perfect choice for these

agent based system. Latest work in this area [20] visualizes how agents can be tested

using search based algorithms.

5) Scope for Intermutual Optimization: Intermutual optimization means where fitness

function is based on human judgment. Outside the domain of SBSE application, huge

amount of work on fitness function can be found based on human evaluation. In SE, we

can make use of intermutual optimization in design problem where the constraints are

subjective or not well defined. One of the possibilities is to make use of a search based

technique to delve the implicit assumption in human judgment of solutions. The only

problem with this approach is that, in the course of every iteration, human judgment for

fitness evaluation has to be considered that can be time consuming and may create fatigue

also.

6) Scope for Non-functional Optimization: There are some non-functional attributes like

temperature, heat dissipation, power consumption that never get importance as software

paradigms. But researchers have shown that these are emerging and augmented SE fields

for non functional optimization over which SBSE techniques can be applied.

7) Optimization of Source Code Analysis: One of the important future prospects for SBSE is

the optimization of source code analysis which has been an upcoming area but merely

few papers [21, 22, 47] pop up to take a hand in source code based SBSE. With the

execution of SBSE practices, it will be possible to explore for striking features and

Search Based Software Engineering

29

produce a probabilistic source code analyses resulting in a very rigid optimization model

of analysis.

8) Multi-Objective Optimization: There are some areas where problems are multi-objective

in nature , like in project planning prime concern is to complete the project well in time

and with lesser cost. Optimization is required for both. This multi-objective optimization

is called pareto optimality. Recent researches on SBSE have shifted to multi-objective

codification from single objective codification, using pareto optimality optimization

technique. There is a great scope for this new technique as many areas in SE have multi-

objective problem domains.

Threats

Threats to SBSE are potential risks that are involved in design and execution phase. These

threats may limit the ability to yield the reliable results or their generalization to a bigger

population than the sample instances taken in the experiment. Some of the validity threats are as

follows.

1) Laxness in Considering Random Variation: Search based algorithms are generally

involved with generating random number. For example, the starting point of a hill

climbing search is generally selected randomly and the first population for the genetic

algorithm is usually generated randomly. Therefore, sometimes even iteratively running

the algorithms can lead to a bad starting point selection and tend towards failure.

2) Scarcity of Good Descriptive Stats: Since we have to run the algorithms several times,

the data collected from them at the end must be accumulated and presented in a meaning

full way to interpret the conclusions. For example, one can make use of function like

standard deviation, min-max range for the outcome observed from the experiment.

However, they are not of much significance and are actually lacking in good statistical

measures and hypothesis that is based on the traits of data under evaluation.

3) Paucity of Standards for Comparison: In SBSE, whenever a new algorithm is applied to

a particular problem instance, the result of the algorithm is compared with a benchmark.

Most of the time random search is used as a baseline, but it’s an incorrect practice, rather

the standards should be the representative of best solution known so far.

Search Based Software Engineering

30

4) Poor Choice of Fitness Function: Many software matrices can be used as fitness function

directly. Searching a solution from the search space is totally directed by the fitness

function chosen as per the objective to meet. However, if not selected intelligently, can

lead to a threat to its validity.

5) Complex Environment: The environment under which the software is developed is

usually complex, because of technical and social issues involved. So when formulating a

model for software related problem by simplifying some measures or making certain

assumptions, one must account for its implication on practical application. Ignoring these

factor can lead to validity threats.

Fig. 3.8 summarizes all the points related to strengths, weaknesses, opportunities and threats of

SBSE. After analyzing the field of SBSE deeply, we realized that major work in SBSE has been

done in the area of software testing. With passage of time more and more researchers started

focusing on automating different testing activities using search based techniques. The next

section will brief about SBST.

3.5. Search Based Software Testing

Search based software testing involves the application of various search based techniques like

hill climbing, simulated annealing, tabu search, genetic algorithm , ant colony optimization etc.

to address the testing related problems. To discover maximum faults in minimum time is the

major objective in software testing. It is a significant and very crucial phase of software

development life cycle to ensure software validity and quality. It is by far the most costly and

exhaustive activity and almost accounts for 50% of the total effort [29]. Therefore, it becomes a

major challenge for the researchers to optimize the software testing process.

Software testing is broadly classified into white box testing (also known as glass testing or

structured testing) and black box testing (also known as opaque testing or functional testing).

White box testing primarily emphasizes on internal structure of the program under test (PUT)

where as black box testing ensures the functionality of the PUT i.e. it test the outputs based on

Search Based Software Engineering

31

the given set of inputs without having knowledge of internal flow/structure of the program. The

most common white box testing techniques are:

 Control Flow/ Code Coverage Testing

 Data Flow Testing

 Mutation Testing

In general, code coverage testing consists of statement coverage, branch coverage, condition

coverage, path coverage and function coverage.

 Statement coverage ensures that each statement must be executed at least once.

 Branch coverage ensures that each edge in the control flow graph (CFG) must be

traversed at least once.

 Decision coverage ensures that all edges emanating out from a decision point must be

covered.

 Functional coverage ensures that all functions in the PUT must be executed at least once.

 Condition coverage ensures that for every individual condition, both true and false part

must be executed at least once.

 Path coverage ensures that all independent paths in the CFG must be executed once.

In our research, we are focusing on code coverage testing and more specifically on path coverage

which is explained next.

Path Testing

Path testing is a kind of structural testing which ensures that all paths in the CFG of the PUT

must be executed at least once. McCabe cyclometic complexity provides the measure for the

number of independent paths that can be found in a program. Path coverage ensures 100%

statement coverage & branch coverage. Let us consider the following sample program written in

C. The corresponding CFG will be shown in the Fig. 3.9. The cyclometic complexity (CC) is

calculated as

CC = No. of predicate Nodes + 1

Search Based Software Engineering

32

Fig. 3.9 Control Flow Graph for a Sample Program

Thus, there is only one decision node in the CFG, therefore CC= 2, which means, that there are

only two independent paths in the CFG.

Path 1= 1-2-3-4-5-6-9-10

Path 2= 1-2-3-4-5-7-8-9-10

But generating control flow paths is one of the most demanding and challenging task in software

testing [30,31]. Numerous methods are known for generating the control flow paths like brute

force, symmetric matrix algorithm [32, 33], constraint based heuristics etc. But none of them is

ideal in terms of providing an optimal solution for path generation. Infact, there can be large

number of paths in a small program resulting in a large test suit to be executed. However, there

can be many paths which are not really needed, as adding no value to testing. Thus, it becomes

important to generate as well as select/prioritize the effective paths

3.6. Types of Testing Excavated in SBST

The various types of testing that have been successfully explored using search based techniques

are

 Structural Testing

 Functional Testing

 Non Functional Testing

 Mutation Testing

Search Based Software Engineering

33

 Integration Testing

 Robustness Testing

 Stress Testing

3.7. Testing Activities in SBST

Following are some of the testing activities which are explored the most using search based

techniques.

 Discovery of Faults in Software

 Test Data Generation

 Test Case Generation

 Test Case Selection

 Test Path Generation

 Test Effort Estimation

Proposed Work

34

Chapter 4 Proposed Work

This chapter illustrates the novel technique that constitutes the proposed approach to address the

problem of test sequence generation and prioritization. Section 4.1 briefs the basic RFD scheme.

Section 4.2 gives an overview of the research undertaken. Section 4.3 describes the tools and

technology required for the proposed approach. Section 4.4 illustrates the process of test

sequence generation and prioritization using RFD. Finally section 4.5 presents the detailed

flowchart of the proposed approach.

4.1. Basics of River Formation Dynamics

RFD [43] was first introduced by Pablo Rabanal, Ismael Rodriguez, and Fernando Rubio in

2007. They launched it as a novel heuristic algorithm to crack complex /NP hard problems such

as dynamic travelling sales man problem [44], minimum spanning tree [45] and optimal quality

investment tree [46] and showed improvements over some existing heuristics methods such as

ACO. It is one of the upcoming heuristic optimization technique from the swarm intelligence

group, based on a nature’s phenomena of how water drops transform into river and river in turn

in to sea by selecting the most favorable path based on the altitudes of the places through which

it flow. It constitutes of two main processes of eroding the ground and depositing the soil along

the path it traverse. When a drop move, it always move from high altitude place, let say A to a

low altitude place , let say B , eroding the place A and depositing at place B , thereby decreasing

the altitude of place A and increasing the altitude of place B. Higher the downward slope

between these two places, more will be the erosion. The entire process is propagated in the same

way, till the drop finds the shortest path to sea. New drops are placed at the origin to construct

paths and to strengthen the erosion of the propitious paths. After few iterations, favorable paths

are found between origin and the destination. Fig. 4.1 is showing the flowchart of the basic RFD

scheme.

Firstly , all nodes are initialized i.e. the altitude of all nodes are initialized to some equal positive

value, while keeping the destination node(representing sea) at zero altitude, which never

Proposed Work

35

changes during the execution of the algorithm. After this, we initialize all the drops, i.e. they all

are put at the origin. Then there is a loop which will be executed until the end condition met.

Generally, the loop will end when all drops encounter the same path or one can also end the loop

by putting a count on number of rounds/runs or by the execution time.

Fig. 4.1 Flow Chart of RFD Scheme

In the very first step of the loop, drops are allowed to move from one node to the other in a

random way using the following rule.

PM(i,j)= { (gradient(i, j) / if j ϵ AM(i)

 0 if j ¢ AM(i) }

The above rule says, drop M, which is at node ‘i’ will choose next node ‘j’, if probability is

maximum on the edge (i→j), where AM(i) is the set of adjacent nodes of node ‘i’ . Gradient

between two nodes is the difference of their altitudes divided by the distance between them.

Proposed Work

36

gradient(i,j)=(altitude(i)-altitude(j))/Distance(i, j)

Since, all nodes have same altitude in the beginning which leads to Ʃ gradient (i,k) to zero.

Therefore, to deal with flat gradient, probability of drop M, moving on a flat edge is fixed to

some non null value. Distance(i, j) denotes the cost/distance between node ‘i’ and node ‘j’. In the

next step of the loop body, erosion is carried out along the edge(i→j). As a result of it, the

altitude of node ‘i’ is decreased, based on the gradient between node ‘i’ and node ‘j’. Higher the

downward slope more will be the erosion. In case of flat edge erosion will be small. In the next

step of the loop the altitudes of all nodes are increased slightly. The reason is to avoid a situation,

where after some iteration, all nodes are left with zero altitude. If it happens, it will simply undo

all efforts done so far and would lead back to the beginning. But the altitude of destination will

never change. It will remain zero always. Lastly, all paths are analyzed and the best one is

chosen as an optimal solution.

4.2. Proposed Approach

First It will accepts a program written in either ‘C’ or ‘C++’ as input and will do the following

task in sequence as shown in Fig. 4.2 also.

Fig. 4.2 Steps of the Proposed Approach

4.3. Tools/Technology Required

Following tools / technologies shall be used for implementation / simulation scenarios

1
•Input the source code

2 •Determine the adjacency matrix

3 •Calculate the cyclometic complexity

4 •Generate the test Sequences

5 •Generate the independent paths

6 •Prioritize the paths

Proposed Work

37

 Java

 Net Beans

 MS Windows

4.4. Path Generation and Prioritization using RFD

Path testing ensures that all independent paths in a CFG of a program should be executed at least

once. It ensures complete statement coverage, branch coverage and path coverage. The total

number of independent paths in a program can be found by calculating McCabe cyclometic

complexity and can be prioritized using path prioritization techniques. Path prioritization

technique provides an ordering mechanism by assigning priority to each path based on test

adequacy criteria. The path with the highest priority is most fault revealing and should be tested

first because it increases the chance of detecting more errors in early stage with in limited

resources.

Our proposed approach generates and prioritizes the paths in a CFG of the PUT. CFG is a kind

of directed graph G= {V, E}, where V denotes the set of nodes in the graph and E denotes the set

of edges/paths between the nodes. It represents all paths that can be traversed through a program

under test.

Following is the description of all parameters used by drop M in the proposed approach.

 Every node ‘i’ in the CFG is assigned with some altitude value.

 alt(i) = some positive value

 Each node ‘i’ maintains its adjacency list AM(i), which contains the set of nodes which

are directly connected to it.

1. AM(i,j) = 1, means that there is a path between node ‘i’ and node ‘j’.

2. AM(i,j) =0, means that there is no path between node ‘i’ and node ‘j’. Adjacency

list AM(i), of each node ‘i’ is further divided into

three sets:

a) { VM(i,j) }, is the set of adjacent nodes with positive gradient. (altitude of node ‘i’

is higher than node ‘j’)

Proposed Work

38

b) { UM(i,j)}, is the set of adjacent nodes with negative gradient. (altitude of node ‘i’

is lower than node ‘j’)

c) { FM(i,j) }, is the set of adjacent nodes with flat gradient. (altitude of node ‘i’ and

node ‘j’ is same)

 To mark the status of a node, color attribute is used. If color(i) = 1 , means drop M has

already visited the node ‘i’, where as color(i) = 0, means node ‘i’ not yet traversed by the

drop.

 Ev, Eu, Ef are the parameters corresponding to above three sets of neighbors with positive

gradient, negative gradient, flat gradient respectively.

 str(i,j) and hv(i,j) denotes the strength and heuristic value of each edge(i→j) respectively.

As compared to basic RFD scheme, where a drop M cannot climb, an improvement has been

made, where a drop can make a move to a climbing edge(i→j) , jϵ UM(i) , but with a very low

probability, given by

PM(i,j)={C/(gradient(i j)/str(i,j))/ }

In the calculation of gradient, distance between node ‘i’ and node ‘j’ is considered as unity. And

str(i,j) denotes the strength of the edge(i→j),which is set to one initially. As drops traverse it, its

strength will increase. When there is a flat edge between node ‘i’ and node ‘j’, then the

probability is set to some fixed non null value, say pf.. In the normal case, where a drop M,

residing at node ‘i’, making a downward move to a node ‘j’, j ϵ VM(i) the probability is given by

PM(i,j)={(gradient(i , j)/str(i,j)) / }

Similarly the amount of erosion when a drop M moves through an edge (i→j) , depends on

which group of neighbors, node ‘j’ belongs.

 Ev*gradient(i , j) if j ϵ VM(i)

 erosion(i,j) = Eu/gradient(i , j) if j ϵ UM(i)

 Ef if j ϵ FM(i)

Proposed Work

39

Here, we have made a change in the basic RFD scheme, where after erosion, the altitudes of all

the nodes are increased slightly. But in our proposed approach we are adding the sediments to

only the node ‘j’ along the edge(i→j) rather than adding to all.

Now we present our proposed approach. It will be executed by drops one at a time in sequence.

1. Initialization

1.1 Set the altitude of every node(alt) : For every node in the CFG, initialize alt =

10000, except the last node, whose altitude is set to zero.

1.2 Set strength of each edge(str): Initially strength of each edge(i→j) is 1, str(i,j) = 1

1.3 Set a heuristic value for each edge(hv): Initialize hv(i,j) = 2 , for each edge(i→j)

1.4 Set probability for flat environment(pf): pf = 0.1

1.5 Set erosion constant for different environment(Ev, Eu, Ef) Ev=0.5,Eu=1000, Ef=100

1.6 Initialize the number of drops(nd): let’s take nd=10

1.7 Declare a list of source nodes(source)

1.8 Set M=1

2. While (M<=nd)

2.1 Initialize the adjacency matrix

2.2 Add first node to the source list ‘source’

2.3 Initialize the color matrix : for every node in the CFG, set color = 0 (white).

2.4 While (source list is not empty)

 2.4.1 Remove the first node from the source list and assign it to node ‘i’ .

 2.4.2 While (there is a feasible path to move)

2.4.2.1 Set color(i) = 1 (black)

2.4.2.2 Determine adjacency list of i (AM(i)) and if the out degree of

 node ‘i’ is greater than or equal to 2, then add node ‘i’ in the

 source list

Proposed Work

40

2.4.2.3 Calculate probability along each edge from current node ‘i’ to

 all nodes in the AM(i) as per the rules described above.

2.4.2.4 To make a move from current node ‘i’, drop M will use the

 following rules:

R1 Choose the path(i→j) with the maximum probability Pij. If two or more

 paths have the same probability, then go to rule 2.

R2 Choose the path(i→j) , if node j is the end node, else choose the

 path(i→j), if node j has the maximum out degree. If two or more

 adjacent nodes have the same out degree then make a random selection.

2.4.2.5 Erode path(i→j): decrease the altitude of node ‘i’.

 alt(i) = alt(i)-erosion(i,j)

 where, erosion(i,j) will be calculated as described earlier in the

same section.

 Deposit sediments: increase the altitude of node ‘j’.

alt(j)= alt(j) + erosion(i,j)

2.4.2.6 Update strength and heuristic value of the path(i→j):

 str(i,j)=str(i,j) + (1/hv(i,j))

 hv(i,j)=hv(i,j)*2

2.4.2.7 Update adjacency list of node ‘i’: remove node ‘j’ from node

 i’s adjacency list AM(i) and assign node ‘i’= node ‘j’

2.4.2.8 If(node ‘i’!= end node) , then go to step 2.4.2

 Else

 Record the path and discard it, if redundant and put the drop

 M on to step 2.4

2.5 M=M+1 , go to step 2

3. Generate independent paths and calculate the strength of each independent path by

adding the strength of their respective edges and assign the priority to each path based on

their strength.

4. End.

Proposed Work

41

In the above algorithm, a source list is maintained, which is initialized with the first node. First

of all, drop M will start traversing from the very first node in the source list and then after, it is

removed from that list. During its course of journey, it will choose the nodes on the basis of

probability, however if probability happens to be same for two or more nodes, the decision will

be taken on the basis of the rules described in the algorithm above. As the drop M moves through

the nodes, the strength and the heuristic value of the edges it traverse are updated. The process is

repeated till it encounters a dead end (means no feasible path ahead). The moment it encounters

an end node, it records the path and discard it, if found redundant. After this, the drop M, again

starts the same journey, but this time, starting from the next node in the source list. It will

continue to do so until the source list becomes empty. The entire procedure is iterated by the

drops, initialized in the beginning. The test sequences obtained, may or may not be the complete

paths i.e. starting from the source node and ending at the destination node. Therefore

independent paths are generated from these sequences and prioritized on the basis of their

strength. Here we have taken10 drops, but ideally we have to continue running in the loop until

drops produce the same test sequences in the subsequent runs

4.5. Flow Chart of the Proposed Approach

Fig. 4.3 shows the flow of the steps involved in the proposed approach in detail.

Proposed Work

42

Fig. 4.3 Flow Chart of the Proposed Approach

Experimental Results and Analysis

43

Chapter 5 Experimental Results and Analysis

This chapter describes the experimental results obtained from the examples taken into

consideration. It also presents the analysis of the proposed approach in comparison with state of

art techniques.

5.1. Testing Scenario A

We implemented our proposed approach using a testing tool called River Formation dynamics

Test sequence Generator (RFDTSG), which we have implemented in java and Net beans has

been used as IDE. It accepts a program written in either ‘C’ or ‘C++’ as input and does the

following task:

 Determine the adjacency matrix.

 Calculate the cyclometic complexity

 Generate the test sequence as described earlier in chapter 3

 Generate independent paths

 Prioritize the paths

Let us consider the following ‘C’ language program for triangle classification shown in Fig. 5.1.

The corresponding CFG is shown in Fig. 5.2. Initially we have taken a flat environment, i.e. ,

every node has the same altitude except the last node, therefore several iterations need to be

carried out to transform the flat environment into an optimal environment where a drop should

take the best path to traverse from source to the destination. Tables from 5-1 to 5-10 are

showing different moves taken by the drops. The number of paths obtained can be less than or

equal to the cyclometic complexity of the PUT. Here the cyclometic complexity for the above

program is five and each drop encounters five different paths.

Last few subsequent drops (as can be seen in table 5-7 through table 5-10) and drops ahead are

producing the same test sequences; it means more or less, further drops will follow the same

sequences. So it is not worth continuing, taking more drops. Since the test sequences generated

Experimental Results and Analysis

44

are not the complete path from source to the destination, therefore after that, independent paths

needs to be generated from the last test sequences obtained and then, paths are prioritized on the

basis of number of times , it is traversed by the drops, i.e. , the path traversed the most will have

the highest priority. Table 5-11 is showing all independents paths and their priorities, which is

assigned on the basis of their strength and their correlation with the number of predicate nodes. It

is evident from table 5-11 that, path 5 is having the highest priority as covering all the decision

nodes.

Fig. 5.1 ‘C’ Program for Triangle Classification

Experimental Results and Analysis

45

Fig. 5.2 CFG for Triangle Classification

Experimental Results and Analysis

46

Table 5-1 Test Sequences Obtained by 1
st
 Drop in Test A

 Paths Nodes

Path 1 1-2-3-4-5-6-26-27-28-29-30

 Path 2 6-7-8-9-10-11-21-25-29

 Path 3 8-22-23-24-25

 Path 4 9-12-13-14-17-18-19-20-21

 Path 5 14-15-16-20

Table 5-2 Test Sequences Obtained by 2

nd
 Drop in Test A

 Table 5-3 Test Sequences Obtained by 3
rd

 Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-26-27-28-29-30

Path 2 6-7-8-22-23-24-25-29

Path 3 8-9-10-11-21-25

Path 4 9-12-13-14-15-16-20-21

Path 5 14-17-18-19-20

 Paths Nodes

 Path 1 1-2-3-4-5-6-7-8-9-12-13-14-15-16-20-21-25-

29-30

 Path 2 6-26-27-28-29

 Path 3 8-22-23-24-25

 Path 4 9-10-11-21

 Path 5 14-17-18-19-20

Experimental Results and Analysis

47

Table 5-4 Test Sequence Obtained by 4
th

Drop in Test A

Table 5-5 Test Sequence Obtained by 5th Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-26-27-28-29-30

Path 2 6-7-8-22-23-24-25-29

Path 3 8-9-10-11-21-25

Path 4 9-12-13-14-15-16-20-21

Path 5 14-17-18-19-20

Table 5-6 Test Sequence Obtained by 6
th

 Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-7-8-22-23-24-25-29-30

Path 2 6-26-27-28-29

Path 3 8-9-12-13-14-15-16-20-21-25

Path 4 9-10-11-21

Path 5 14-17-18-19-20

Paths Nodes

Path 1 1-2-3-4-5-6-7-8-22-23-24-25-29-

30

Path 2 6-26-27-28-29

Path 3 8-9-12-13-14-1516-20-21-25

Path 4 9-10-11-21

Path 5 14-17-18-19-20

Experimental Results and Analysis

48

Table 5-7 Test Sequence Obtained by 7
th

 Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-7-8-9-12-13-14-15-16-20-21-25-

29-30

Path 2 6-26-27-28-29

Path 3 8-22-23-24-25

Path 4 9-10-11-21

Path 5 14-17-18-19-20

Table 5-8 Test Sequence Obtained by 8
th

 Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-7-8-9-12-13-14-15-16-20-21-25-

29-30

Path 2 6-26-27-28-29

Path 3 8-22-23-24-25

Path 4 9-10-11-21

Path 5 14-17-18-19-20

Table 5-9 Test Sequence Obtained by 9
th

 Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-7-8-9-12-13-14-15-16-20-21-

25-29-30

Path 2 6-26-27-28-29

Path 3 8-22-23-24-25

Path 4 9-10-11-21

Path 5 14-17-18-19-20

Experimental Results and Analysis

49

Table 5-10 Test Sequence Obtained by 10
th

 Drop in Test A

Paths Nodes

Path 1 1-2-3-4-5-6-7-8-9-12-13-14-15-16-20-21-

25-29-30

Path 2 6-26-27-28-29

Path 3 8-22-23-24-25

Path 4 9-10-11-21

Path 5 14-17-18-19-20

Table 5-11 Generated Independent Paths in Test A

Paths Nodes Strength Priority Number

of

Predicate

Nodes

Path 1 1-2-3-4-5-6-7-8-9-10-11-21-

25-29-30

27.986328125000

00

3 3

Path 2 1-2-3-4-5-6-26-27-28-29-30 19.990234375000

00

 5 1

Path 3 1-2-3-4-5-6-7-8-22-23-24-25-

29-30

25.987304687500

00

 4 2

Path 4 1-2-3-4-5-6-7-8-9-12-13-14-

15-16-20-21-25-29-30

35.982421875000

00

 2 4

Path 5 1-2-3-4-5-6-7-8-9-12-13-14-

17-18-19-20-21-25-29-30

37.981445312500

00

 1 4

Experimental Results and Analysis

50

5.2. Testing Scenario B

Let us consider the following ‘C++’ language program for multiplication of two numbers that

contains loop and self loop as shown in Fig. 5.3. The corresponding CFG is shown in Fig. 5.4.

Fig. 5.3 C++ Program for Multiplication of Two Numbers

Again we have taken a flat environment in the beginning, i.e. , every node has the same altitude

except the last node, therefore several iterations need to be carried out to transform the flat

environment into an optimal environment where a drop should take the best path to traverse from

source to the destination. Tables from 5-12 to 5-21 are showing different moves taken by the

drops. The number of paths obtained can be less than or equal to the cyclometic complexity of

the PUT. Here the cyclometic complexity for the above program is three and each drop

encounters three different paths.

Experimental Results and Analysis

51

Fig 5.4 CFG for the Program of Multiplication of Two Numbers

Last few subsequent drops (as can be seen in table 5-18 through table 5-21) and drops ahead are

producing the same test sequences; it means more or less, further drops will follow the same

sequences. So it is not worth continuing, taking more drops. Since the test sequences generated

are not the complete path from source to the destination, therefore after that, independent paths

needs to be generated from the last test sequences obtained and then, paths are prioritized on the

basis of number of times , it is traversed by the drops, i.e. , the path traversed the most will have

the highest priority. Table 5-22 is showing all independents paths and their priorities, which is

assigned on the basis of their strength and their correlation with the number of predicate nodes. It

is evident from table 5-22 that, path 3 is having the highest priority as covering all the decision

nodes.

Experimental Results and Analysis

52

Table 5-12 Test Sequences Generated by 1
st
 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-13 Test Sequences Generated by 2
nd

 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-14 Test Sequences Generated by 3
rd

Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-15 Test Sequences Generated by 4
th

Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Experimental Results and Analysis

53

Table 5-16 Test Sequences Generated by 5
th

Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table5-17 Test Sequences Generated by 6
th

 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-18 Test Sequences Generated by 7
th

 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-19 Test Sequences Generated by 8
th

 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Experimental Results and Analysis

54

Table 5-20 Test Sequences Generated by 9
th

 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-21 Test Sequences Generated by 10
th

 Drop in Test B

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Table 5-22 Generated Independent Paths in Test B

Paths Nodes Strength Priority Number

of

Predicate

Nodes

Path 1 1-2-3-4-5-6-7-8-9-9-10-11-

15-16

25.9996337881

3117
 1 2

Path 2 1-2-3-4-5-6-12-13-14-15-16 19.9996948242

1875
3 1

Path 3 1-2-3-4-5-6-7-8-9-10-11-

15-16

23.9996337890

6250
2 2

Experimental Results and Analysis

55

5.3. Comparison with State-of-Art Techniques

Since RFD is a gradient version of ACO, therefore first we have compared our proposed

approach with ACO [40] and then with firefly algorithm (FA) [51]. Table 5-23 lists the paths

generated for the CFG in Fig. 5.5, using ACO. The paths generated in approach [40] has a lot of

redundancy, because the path segment 0-1-2-3-4 has been repeated in all the paths as visible in

table 5-23, where as in our approach and FA, each transition/edge has been traversed exactly

once as can be seen in table 5-24 and 5-25 respectively. Fig. 5.6 shows the comparison of ACO,

RFD and FA. This illustrates that RFD is at par with FA and produces better test sequences as

compared to ACO with no redundancy.

Fig. 5.7 is demonstrating the effect of increase in number of nodes in CFG on redundancy in path

coverage. It is evident that, in case of ACO as number of nodes in the CFG increases, so is the

redundancy. FA seems better than ACO but still encountering small amount of redundancy as

the number of nodes increases. The situation in RFD is quite different and much better than ACO

and FA. The increase in the number of nodes has no effect on the redundancy in test paths

 Fig. 5.5 CFG of Binary Search [40]

Experimental Results and Analysis

56

Table 5-23 Test Sequence Generated Using ACO [40]

Paths Nodes

Path 1 1-2-3-4-13

Path 2 1-2-3-4-5-6-7-8-9-13

Path 3 1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Path 4 1-2-3-4-5-6-10-12-4-5-6-7-8-9-13

Table 5-24 Test Sequence Generated Using RFD

Table 5-25 Test Sequence Generated Using FA [51]

Paths Nodes

Path 1 1-2-3-4-5-6-10-11-4-13

Path 2 6-7-8-9-13

Path 3 10-12-4

Paths Nodes

Path 1 1-2-3-4-5-6-10-12-4-13

Path 2 6-7-8-9-13

Path 3 10-11-4

Experimental Results and Analysis

57

Fig. 5.6 Comparative Analysis of RFD, FA and ACO

Fig. 5.7 Redundancy vs. Number of Nodes

0

1

2

3

4

5

6

RFD FA ACO

R
e

p
it

it
io

 in
 T

ra
n

si
ti

o
n

Transitions

Experimental Results and Analysis

58

since each edge is traversed only once. Table 5-26 is showcasing some test cases highlighting the

% of redundancy in ACO, FA and RFD with respect to the number of nodes in the CFG. The

results of ACO and FA have been taken from [51]. Thus our proposed approach is more efficient

as compared to ACO and FA.

Table 5-26 Test Cases for Comparison between ACO [40], FA [51] and RFD

S. No No. of

Nodes

Cylometic

Complexity

%

Redundancy

in path

coverage

ACO

%

Redundancy

in path

coverage FA

%

Redundancy

in path

coverage

RFD

1 16 4 5 0 0

2 23 3 8 0 0

3 40 5 13 0.8 0

4 48 12 24 1.32 0

Conclusion and Future Scope

59

Chapter 6 Conclusion and Future Scope

This chapter draws conclusions based on the contributions made by this thesis.

6.1. Research Summary

This thesis summarizes the SWOT analysis of SBSE to understand the alphas and omegas of this

area and in particular focused on optimization of test sequence generation in the area of SBST

via RFD to reduce the test effort It began with discussion of motivations, theoretical framework

and research question, importance of the research, aims and outcomes. Vast literature of search

based software engineering, search based software testing and river formation dynamics was

reviewed and different approaches for test sequence generation were studied resulting in

identification of research gaps.

We then proposed a novel approach for test sequence generation using river formation dynamics

algorithm. Also, priorities have been assigned to different paths for identification of critical/error

prone paths to be tested first. Finally, a comparative analysis of proposed approach with other

existing approaches of test sequence generation has been done and significant improvement in

minimizing testing effort is observed.

The major contributions of this research are:

i. We carried out SWOT analysis of search based software engineering to urge

academicians and researchers to make the significant improvement in this domain.

ii. We proposed a novel approach for test sequence generation and prioritization via a

swarm intelligent method called river formation dynamics for reducing the testing effort.

6.2. Conclusion and Future Research Directions

Search Based Software Engineering is an emerging field basically involves amalgamation of

software engineering, operation research and metaheuristic techniques. It is specially excelled in

providing an ideally balanced solution to a SE problem involving several competing goals. It

Conclusion and Future Scope

60

caters to the problem of SE and provides optimal solution to give better prospects over tools and

techniques required to grow a productive, proficient and cohesive approach. We carried out

SWOT analysis of SBSE to illustrates all the bane’s & boon’s within and outside the areas that

impact the development and coerce for a universal and proactive approach to SBSE, which will

minimizes the inaccuracies and enhance the results.

Software testing is the major area, explored the most, by search based techniques. But test

sequence generation which is a significant activity in cutting down the testing effort, hardly gets

importance as compared to other testing activities such as automatic test data generation. Only

few researchers have attempted to generate test sequences using different search based

algorithms like ant colony optimization, genetic algorithm, tabu search, cuckoo search, firefly

algorithm, each having their own advantages and disadvantages. Ideally none of them is perfect

as far as Coverage and redundancy is concerned. Therefore, as a step forward, we have proposed

a new technique for path generation and prioritization, inspired by a swarm intelligence method

called River Formation Dynamics.

We have extended the basic RFD scheme for the generation of optimal test sequences for path

testing. The proposed technique not only minimizes the redundancy in test sequences, but also

successful in finding the error prone/critical paths to be tested first. Experimental results

demonstrate that our approach has shown a remarkable improvement over other approaches in

[40] and [51] thus, leading to a significant reduction in testing effort. Furthermore the success of

our approach depends on various RFD parameters and constants. The optimization of these

parameters can be taken up as the future work to fine tune the algorithm to provide better

convergence rate and to apply in many other domains.

References

61

References

[1] M. Harman and B.F. Jones, “Search-based software engineering”, Journal of Information

and Software Technology, Vol. 43, pp. 833- 839, December 2001.

[2] M Harman and J. Clark, “Metrics are fitness functions too”, International Software

Metrics Symposium (METRICS 2004), pp. 58-69, 2004.

[3] A. Bagnall, V. Rayward-Smith, and I. Whittley , “The next release problem” , Information

and Software Technology, Vol. 43, No.14, December 2001.

[4] A. Ngo-The and G. Ruhe, “Optimized resource allocation for software release planning”,

IEEE Transactions on Software Engineering, Vol. 35, No. 1, pp. 109-123, Jan.-Feb. 2009.

[5] Y. Zhang, M. Harman, and S.A. Mansouri, “The multi-objective next release problem”,

Genetic and Evolutionary Computation Conference (GECCO 2007), ACM, page 1129-

1137, 2007.

[6] C. Burgess and M. Leey, “Can genetic programming improve software effort estimation?

a comparative Evaluation”, Information and Software Technology, Vol. 43, No. 14, pp.

863-873, 2001.

[7] J. Dolado, “ On the problem of the software cost function”, Information and Software

Technology, Vol. 43, No. 1, pp. 61-72, 2001.

[8] C. Kirsopp, M. Shepperd, and J. Hart, “Search heuristics, case-based reasoning and

software project effort prediction”, Proceedings of the 4th Annual conference on Genetic

and evolutionary computation, (GECCO '02), pp. 1367-1374, 2002.

[9] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function design to improve evolutionary

structural testing”, Proceedings of the 4
th

 Annual conference on Genetic and evolutionary

computation, (GECCO '02), pp. 1329-1336, 2002.

[10] B. S. Mitchell and S. Mancoridis, “Using heuristic search techniques to extract design

abstractions from source code”, Proceedings of the 4th Annual conference on Genetic and

evolutionary computation, (GECCO '02), pp. 1375-1382, 2002.

References

62

[11] S.L. Rhys, S. Poulding, and J.A. Clark, “Using automated search to generate test data for

matlab”, Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, (GECCO '09), pp. 1697-1704, 2009.

[12] M. Harman, R. Hierons, and M. Proctor, “A new representation and crossover operator for

search-based optimization of software modularization”, Proceedings of the Genetic and

Evolutionary Computation (GECCO 2002), pp. 1351-1358, July 2002.

[13] M. Claudia Figueiredo, P. Emer, and S. Regina Vergilio, “GPTesT: A testing tool based

on genetic Programming”, Proceedings of the 4th Annual conference on Genetic and

evolutionary Computation, (GECCO '02), pp. 1343-1350, 2002.

[14] R. Lutz, “Evolving Good Hierarchical Decompositions of Complex Systems”, Journal of

Systems Architecture, Vol. 47, No. 7, pp. 613– 634, 2001.

[15] S. Poulding, P. Emberson, I.Bate, and J A. Clark, “An efficient experimental methodology

for configuring search-based design algorithms”, Proceedings of 10th IEEE High

Assurance System Engineering Symposium (HASE’2007), pp. 53–62, 2007.

[16] E. Alba, and J. M. Troya, “ Genetic Algorithms for Protocol Validation”, Proceedings of

the 4th International Conference on Parallel Problem Solving from Nature (PPSN ’96),

Springer, pp. 870–879,1996.

[17] J. A. Clark and L. Jacob, “Searching for a Solution: Engineering Tradeoffs and the

Evolution of Provably Secure Protocols”, Proceedings of the 2000 IEEE Symposium on

Security and Privacy (S&P ’00), IEEE, pp.82–95, 2000.

[18] A. Clark and J. L. Jacob, “Protocols are Programs too: the Meta-Heuristic Search for

Security Protocols”, Information and Software Technology, Vol. 43, No. 14, pp. 891–904,

2001.

[19] M. Ferreira, F. Chicano, E. Alba, and J. A. Gomezpulido, “Detecting Protocol Errors

using Particle Swarm Optimization with Java Pathfinder”, Proceedings of the High

Performance Computing & Simulation Conference (HPCS ’08), Cyprus, pp. 319–325,

2008.

References

63

[20] C. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and M. Luck, “Evolutionary

Testing Autonomous Software Agents”, Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS ’09), International Foundation

for Autonomous Agents and Multiagent Systems, pp. 521–528.

[21] T. Jiang, N. Gold, M. Harman and Z. Li, “Locating Dependence Structures using Search-

based Slicing”, Information and Software Technology, Vol. 50, No. 12, pp. 1189–1209,

2007.

[22] T. Jiang, M. Harman and Y. Hassoun, “Analysis of Procedure Splitability”, Proceedings

of the 15th Working Conference on Reverse Engineering (WCRE ’08). IEEE, pp. 247-

256, 2008.

[23] Y. Zhang, M. Harman, and A. Mansouri, “The SBSE repository: A repository and analysis

of authors and research articles on search based software engineering”,

crestweb.cs.ucl.ac.uk/resources/sbse repository.

[24] M. Harman, A. Mansouri, and Y. Zhang, “Search based software engineering: A

comprehensive analysis and review of trends techniques and applications”, Technical

Report TR-09-03, April 2009.

[25] R. Roshan, R. Porwal, C. M. Sharma, “Review of Search based Techniques in Software

Testing”, IJCA, Vol. 51, No. 6, 2012.

[26] J. Bedi, K. Kaur, “Search Based Software Engineering”, IJERA, Vol. 4, No. 4, 2014.

[27] P. Maragathavalli, “Search Based Software Test Data Generation Using Evolutionary

Computation”, IJCSIT, Vol. 3, No. 1, 2011.

[28] M. Harman, “The Current State and Future of Search Based Software Engineering”,

Future of Software Engineering (FOSE'07) 0-7695-2829-5/07, IEEE, 2007.

[29] J. J. Li, “Prioritize code for testing to improve code coverage of complex software”,

Proceedings of the 16th IEEE International Symposium on Software Reliability

Engineering, ISSRE, Chicago, pp.84-93, 2005.

[30] A. P. Mathur, “Foundation of software Testing”, First Edition, Pearson Education, 2007.

[31] W.E. Howden, “Functional Program Testing and Analysis”, McGraw-Hill, 1987.

References

64

[32] V. Bhattacherjee, Suri, P.Mahanti, “Application of Regular Matrix Theory to Software

Testing”, European Journal of scientific Research, Vol. 12, No. 1, pp. 60-70, 2005.

[33] R. Sedgewick, “Algorithms in java”, Third Edition, Part 5, Graph algorithms, Addison

Wesley, 2003.

[34] Jin-Cherng Lin, Pu-Lin Yeh, “Using Genetic Algorithms for Test Case Generation in Path

Testing”, Proceedings of the Ninth Asian Test Symposium (ATS'00), pp.241-246,2000.

[35] Dr. V. Rajappa, A. Biradar, and S. Panda, “Efficient Software Test Case Generation Using

Genetic Algorithm Based Graph Theory”, First International Conference on Emerging

Trends in Engineering and Technology, pp.298-303, 2008.

[36] H. Li, C. Peng Lam. “Software Test Data Generation using Ant Colony Optimization”,

Proceedings Of World Academy Of Science, Engineering And Technology, Vol. 1, pp.1-

4, 2005.

[37] FU Bo, “Automated software test data generation based on ant colony algorithm”,

Computer Engineering and Applications, Vol. 43. No. 12, pp. 97-99, 2007.

[38] P. R Srivastava , A. K. Patel ,K. Patel and P. Vijaywargiya, “Test data generations based

on Test path Discovery using intelligent Water Drop” , International journal of applied

Metaheuristic computing, Vol. 3, No. 2, pp. 56-74, 2012.

[39] P.R. Srivastava & K. Baby ,“Automated Software testing using metaheuristics techniques

based on Ant colony Optimization” ,International Symposium on Electronic System

Design (ISED), 2010.

[40] P. R. Srivastava, K. Baby, and G. Raghurama, “An approach of optimal path generation

using ant colony optimization,” in Proceedings of TENCON 2009, IEEE Press, pp. 1-6,

2009.

[41] A. S. Ghiduk, “A new software data-flow testing approach via ant colony algorithms,”

Universal Journal of Computer Science and Engineering Technology, pp. 64-72, 2010.

[42] H. Li and C. Peng LAM , “An Ant Colony Optimization Approach to Test Sequence

Generation for State based Software Testing”, Proceedings of the Fifth International

Conference on Quality Software (QSIC‘05), pp 255 – 264, 2005.

References

65

[43] P. Rabanal, I. Rodríguez, and F. Rubio, “Using river formation dynamics to design

heuristic algorithms”, Unconventional Computation, LNCS 4618, pages 163–177.

Springer, 2007.

[44] P. Rabanal, I. Rodríguez, and F. Rubio,” Solving Dynamic TSP by using River Formation

Dynamics”, Fourth International Conference on Natural Computation, pp.246-250.

[45] P. Rabanal, I. Rodríguez, and F. Rubio, “ Finding Minimum Spanning /Distance Trees by

using River Formation Dynamics”, Ant colony Optimization and Swarm Intelligence ,

ANTS’08, LNCS 5217, Springer, pp. 60-71, 2009.

[46] P. Rabanal, I.Rodríguez, and F. Rubio, “Applying RFD to Construct Optimal Quality

Investment Trees”, Journal of Universal Computer Science, Vol. 16, No. 14, 2010.

[47] K.D. Cooper, P.J. Schielke, and D. Subramanian, “Optimizing for reduced code space

using genetic algorithms”, in Proceedings of LCTES, Vol. 34, No. 7. 1999.

[48] E. Díaz, J. Tuya, and R. Blanco, “Automated software testing using a metaheuristic

technique based on tabu search”, in Proceedings of the 18th IEEE International

Conference on Automated Software Engineering (ASE ‘03), pp.310–313, IEEE, Montreal,

Canada, 2003.

[49] C. Doungsa-ard, K. Dahal, M.A. Hossain, and T. Suwannasart, “GA-based for automatic

test data generation for UML state diagrams with parallel paths”, Proceedings of the

International Conference on Advanced Design and Manufacture (ICADAM), Springer

Verlag, China, 2008.

[50] P.R. Srivastava, C. Sravya, Ashima, S. Kamisetti and M. lakshmi, “Test sequence

optimization: an intelligent approach via cuckoo search”, IJBIC, Vol. 4, No. 3, 2012.

[51] P.R Srivastava, B. Mallikarjun, Xin-She-Yang, “Optimal test sequence generation using

firefly algorithm”, Swarm and Evolutionary Computation, Vol. 8, pp 44-53, 2013.

[52] G. Redlarski, A. Palkowski, M. Dabkowski, “Using River Formation Dynamics Algorithm

in Mobile Robot Navigation”, Solid State Phenomena, 2013.

[53] K. Venkateswarlu, T.V. Rao, “River Formation Dynamics Based Data Aggregation in

Wireless Sensor Network”, IJETER, Vol.3, No. 6, pp. 100-105, 2015.

References

66

[54] D. Dholakiya, T. Doshi, S. Ghiya and P. Patel, “Advanced River Formation Dynamics for

Location Management in GSM”, IJERT, Vol. 4, No. 9, 2015.

Appendix

I

APPENDIX A

List of Publication(s)

Published

1. A. Sharma & Y. Khatri, “SWOT Analysis of Search Based Software Engineering”,

Proceedings of International Conference on Computing for Sustainable Global

Development, INDIACom-2016.

Communicated

1. Y. Khatri & A. Sharma, “Optimal Test Sequence Generation using River Formation

Dynamics”, International Journal of Engineering and Technology (IJET), (2016).

Appendix

II

