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Preface

In recent years, cosmology has become a precision science after many obser-

vational and experimental data coming from numerous projects such as type Ia

supernova (SNe Ia), Cosmic Microwave Background (CMB), Large Scale Struc-

ture (LSS), gravitational lensing, Wilkinson Microwave Anisotropy Probe (WMAP),

Baryon Acoustic Oscillations (BAO), Sloan Digital Sky Survey (SDSS), PLANCK,

etc. These observations indicate that the expansion of the Universe at later stage

is in an accelerated phase. The measurement of CMB and galaxy spectrum also

suggest that about two third of the critical energy density in a spatially flat isotrop-

ic Universe, seems to be stored in a form of unknown component known as ‘dark

energy’ whose properties are still mysterious. This confronts the fundamental the-

ories with great challenges and also makes the research on this problem a major

endeavour in modern astrophysics and cosmology. Many cosmological models

have been proposed to explain the accelerating Universe. The modification of

Einstein’s general theory of relativity is one of the attempt to discuss the dark en-

ergy phenomena. In the past two decades, a number of modified theories such

as higher derivative theory, Gauss-Bonnet f (G) theory, f (R) theories, f (T ) theo-

ry, f (R,T ) gravity etc. have been proposed to explain the current epoch of cosmic

acceleration.

Nowadays, the study of dark energy models are of great interest in such mod-

ified theories of gravitation. This thesis is devoted to investigate both isotropic

Friedmann-Robertson-Wlaker (FRW) and anisotropic Bianchi cosmological mod-

els in some of the modified theories of gravitation, namely, higher derivative (HD)

theory, f (R) theory and f (R,T ) gravity by taking various matter contents such as

perfect fluid, minimally coupled quintessence or phantom scalar field, and nor-

mal or phantom tachyonic fields. A theoretical approach has been followed to

understand the cosmic acceleration in the framework of these modified theories

of gravitation. Some exact solutions with perfect fluid and scalar fields for known
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history of evolution of the Universe have been found in HD theory of gravity. In

HD theory, the possibility of a singularity free model (emergent Universe) has also

been discussed with quintessence and phantom scalar fields. The reconstruction

of f (R) and f (R,T ) has also been done for some known history of evolution of the

Universe in isotropic and anisotropic space-time. In f (R,T ) gravity, we have also

proposed a non-singular power-law model with the particle creation phenomena.

The characteristics of the dynamical evolution of each cosmological model have

been performed. A number of viability criteria such as existence of exact real so-

lutions, stability criteria, compatibility with cosmological observations etc. have

been carried out for each cosmological model. It has been shown that the inclu-

sion of both types of matter (baryonic and exotic), opens an enormous dynamical

complexity of possible evolutional paths of the Universe. It leads to a new and nat-

ural possibility of an unified description of the cosmological evolutions (an infla-

tionary epoch, a radiation-dominated phase, a matter-domination era and finally

the present accelerated expansion) in some of the cases.

The thesis entitled “Study of Cosmological Models in Modified Theories of Grav-

itation” comprises nine chapters. The bibliography and the list of publications

have been given at the end of the thesis.

Chapter 1 is introductory in nature which gives a short review of the past and

present understanding about the Universe through the important equations. In

this chapter, a survey of the literature has been made and the principle problems

plagued in cosmology have been described. Some important cosmological pa-

rameters, which describe the physical and geometric properties of the Universe,

have also been introduced. The alternatives of dark energy and some modified

gravitational theories which are related to the thesis have been introduced briefly.

The purpose of this chapter is to provide the motivation of the work carried out in

the thesis.

Chapter 2 explores the dynamics of the Universe in FRW models containing a

perfect fluid and a minimally coupled scalar field with scalar potential in HD the-

ory of gravity. The exact cosmological solutions for flat, closed and open models

have been obtained by assuming the scalar potential and the scale factor as func-

tions of the scalar field. A number of evolutionary phases have been discussed

which are physically interesting for the description of the early and present-day

Universe. The result of this chapter has been published as a research paper en-

xiv



titled “FRW Models With a Perfect Fluid and a Scalar Field in Higher Derivative

Theory", Modern Physics Letter A 26, 1495 (2011).

In Chapter 3, the exact solutions have been found by assuming the power-law

expansion of the scale factor for flat FRW model. The expression for scalar field

potential has been obtained and the properties of scalar field and other physi-

cal parameters have been discussed in detail. We have noticed some new results

which are different from previous chapter. This chapter is based on a research pa-

per entitled “Power-Law Expansion and Scalar Field Cosmology in Higher Deriva-

tive Theory", published in International Journal of Theoretical Physics 51, 1889

(2012).

Chapter 4 deals with the possibility of the emergent Universe (EU) filled with a

scalar (or tachyonic) field of normal or phantom form, minimally coupled to grav-

ity in a spatially homogeneous and isotropic flat FRW model in the framework

of HD theory. The stability of the solutions and their physical behaviors have

been discussed in detail. The content of this chapter has been published as a

research paper entitled “Emergent Universe with Scalar (Or Tachyonic) Field in

Higher Derivative Theory", in Astrophysics and Space Science 339, 101 (2012).

In chapter 5, we have studied f (R) theory of gravity in a locally-rotationally-

symmetric Bianchi I anisotropic space-time model with a perfect fluid. A function-

al form of f (R) has been reconstructed by assuming the constant deceleration

parameter and the shear scalar proportional to the expansion scalar. We have

discussed the stability of the reconstructed functional form of f (R). The work p-

resented in this chapter comprises the results of a research paper entitled “Func-

tional Form of F(R) with Power-Law Expansion in Anisotropic Model", published

in Astrophysics and Space Science 346, 285 (2013).

In chapter 6, a particular form of f (R,T ) = R+2 f (T ) have been reconstructed for

de Sitter and power-law models within the framework of a flat FRW space-time.

The gravitational field equations have been considered with two fluid sources, one

is perfect fluid and other is due to the f (R,T ) gravity, the later one has been con-

sidered as an exotic fluid. The behaviour of both the models have been discussed

through the equation of state (EoS) parameters of exotic matter and effective flu-

id. Both the models exhibit a rich behaviour of the early and late-time evolution of

the Universe. This chapter is based on a research paper entitled “Reconstruction

of Modified f (R,T ) Gravity with Perfect Fluid Cosmological Models", published in
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General Relativity and Gravitation 46, 1696 (2014).

In chapter 7, we have reconstructed the f (R,T ) gravity with the normal or phan-

tom scalar field for a flat FRW model. We have first explored a model where

the potential is a constant and the Universe evolves as a de Sitter expansion.

We have also explored another model where the scalar field potential and the

scale factor evolve exponentially with the scalar field. We have also compared

our results with the recent observational data for the later model. It has been

found that some values of parameters are consistent with SNe Ia and H(z)+SNe

Ia data to describe accelerated expansion only whereas some give both decel-

erated and accelerated expansions with H(z), WMAP7 and WMAP7+BAO+H(z)

observational data. The result of this chapter has been published as a research

paper entitled “Modified f (R,T ) Gravity Theory and Scalar Field Cosmology", in

Astrophysics and Space Science 355, 2183 (2014).

Chapter 8 is devoted to study the theoretical and observational consequences

of thermodynamics of an open system in a flat FRW model which allows creation

of matter within the framework of f (R,T ) theory. The simplest model f (R,T ) =

R+ 2 f (T ) with “gamma-law" equation of state p = (γ − 1)ρ has been assumed

to obtain the exact solution. A power-law expansion model has been proposed

by considering the natural phenomenological particle creation rate ψ = 3βnH,

where β is a pure number of the order of unity, n is the particle number density

and H is the Hubble parameter. Some kinematic tests such as lookback time,

luminosity distance, proper distance, angular diameter versus redshift have been

discussed in detail to observe the role of particle creation in early and late time

evolution of the Universe. This chapter comprises the result of a research paper

entitled “Friedmann Cosmology with Matter Creation in Modified f (R,T ) Gravity",

published in International Journal of Theoretical Physics, DOI 10.1007/s10773-

015-2767-z (2015).

Finally, the summary of the results and the future perspectives of the work have

been reported in chapter 9. The bibliography and list of author’s publications have

been given at the end of the thesis.
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Chapter 1

Introduction

This introductory chapter gives a short review of the basic mathematical equations

which govern the evolution of the Universe. This chapter also describes several

issues related to gravitation and cosmology, namely, problems related to the early

inflation and the late-time cosmic acceleration. Some modified theories of gravity

are briefly introduced which explain the dark energy and dark matter phenomena.

The foundation of this chapter provides the motivation of the work carried out in

this thesis.

Cosmology is the study of the origin and evolution of the entire Universe on the

large scale of space and time. The study of cosmology depends crucially on our

understanding of the gravitational interaction. Our understanding of the Universe

has increased dramatically in recent years - both observationally and theoretical-

ly. In recent years, cosmology has become a prominent branch of science after

many astronomical observations. The most crucial observation is the accelerat-

ed expansion of the Universe. Let us begin the introduction with the concept of

space-time geometry of the Universe.

1.1 Space-time geometry

Modern cosmology began nearly 100 years ago with the development of Ein-

stein’s general theory of relativity (GTR) in 1917 [1]. General relativity is a theory

of space-time and gravitation, which is widely accepted as a fundamental theory

1
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to describe the geometrical properties of space-time. According to GTR, gravity

is the geometry of the four-dimensional curved space-time. A space-time ge-

ometry is described by a line-element giving the space-time distance between

any two nearby points. The coordinates of the four-dimensional space-time are

(x0, x1, x2, x3), where x0 = t is a time coordinate and x1, x2, x3 are space coordi-

nates. We use the Greek index to denote an arbitrary space-time coordinate, xµ ,

where µ can have any values 0, 1, 2, 3. The line-element, ds2 between the points

separated by coordinate intervals, dxµ , is given in the tensorial form as

ds2 =
3

∑
µ, ν=0

gµνdxµdxν . (1.1.1)

We use the Einstein’s summation convention rule. Here, the coefficients gµν are

the functions of space-time coordinates xµ , subject to the restriction g= | gµν |≠ 0.

The quantities gµν are the components of a covariant symmetric tensor of rank

two, called metric tensor. They have, in principle, the dimension of the distance

squared. In an orthogonal coordinate system the coordinate lines are everywhere

orthogonal to each other and the metric is then diagonal. In this thesis we use only

orthogonal coordinate systems. Here, dx0 = dt, dx1 = dx, dx2 = dy and dx3 = dz.

The line-element (1.1.1) represents the curved geometry. Thus, according to

GTR, the space is curved in a gravitational field and the geometry of space in

gravitational field is Riemannian. The contravariant metric tensor gµν is defined

as

gµν =
cofactor of gµν in g

g
. (1.1.2)

The metric tensor gµν is also symmetric tensor of rank two. This tensor is recipro-

cal of gµν , is called conjugate metric tensor. Throughout the thesis the summation

convention is used with Greek indices running from 0 to 3 and geometrized units

are used. A ‘space-like convention’ for the metric has been adopted in the thesis

such that when it is diagonalised, it has signature (−,+,+,+).

1.2 Homogeneous and isotropic metric

The simplest assumption for building the standard cosmological models in the

framework of GTR is the cosmological principle (CP). Our Universe contains grav-

itationally clustered matter in galaxies, and unclustered energy. According to CP,
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galaxies are uniformly distributed and Universe looks likes a uniform density cloud

of dust on a very large scale. The CP is related to two precise mathematical

properties of the Universe. According to CP, the Universe at a very large scale

(≫ 100 Mpc) is homogeneous and isotropic1 at each instant of cosmic time. This

means that the curvature of space-time must be same everywhere and into every

direction, but it may change along the time-axis. Then the Universe has to be

maximally symmetric as far as three dimensionally space is concern.

On the large scale the simplest example of a homogeneous and isotropic line-

element is described by

ds2 =−c2dt2 +a2(t)
[
dx2 +dy2 +dz2] , (1.2.1)

where a(t) is a function of time coordinate t, which is related to the expansion

(possible contraction) of the Universe. The time-dependent factor a(t) is called

scale factor . Here, c is the velocity of light in vacuum. The line-element (1.2.1) is

called the flat Robertson-Walker metric (RW). It is called the Friedmann-Robertson-

Walker (FRW) metric when the scale factor obeys the Einstein’s field equations

(see, section 1.4).

In spherical coordinates where x0 = ct, x1 = r sinθ cosφ, x2 = r sinθ sinφ,

x3 = r cosθ , the line-element (1.2.1) can be written as [2]

ds2 =−c2dt2 +a2(t)
[

dr2

1− kr2 + r2(dθ 2 + sin2θdφ2)

]
, (1.2.2)

where k is a constant describing the curvature of the spatial sections and hav-

ing values −1, 0 and +1 for open, flat and closed Universes, respectively, and

0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The FRW model (1.2.2) describes the time evolution

of a homogeneous and isotropic Universe that gets larger in time as a(t) increas-

es and smaller as a(t) decreases. All the information about the evolution of the

Universe is contained in this one function determined by the Einstein’s field equa-

tions. The coordinates (ct, r, θ , φ) of FRW metric are comoving coordinates 2. I

have worked with FRW line-element (1.2.2) in a large part of this thesis.

1The Universe is homogeneous means the space has same metric properties at all points and isotropic
means the space has same measures in all directions. This is said to be the Cosmological Principle (CP)
which leads to the requirement that the Universe is both homogeneous and isotropic at large scale. The
homogeneity and isotropy are symmetries of space and not of space-time.

2Comoving means that the coordinate system follows the expansion of space, so that the space
coordinates of objects which do not move remains the same.
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1.3 Homogeneous and anisotropic metric

The observational data of Cosmic Microwave Background (CMB) [3] and Wilkinson

Microwave Anisotropy Probe (WMAP) [4] admit the existence of anisotropy which

gains a lot of interest. It is supposed that the CMB anisotropies at small angular

scales are the base for the formation of discrete structures. The theoretical argu-

ments also support the existence of an anisotropic phase that approaches to an

isotropic phase in late time evolution. Amongst the various families of homoge-

neous but anisotropic3 geometries, the most well-known are the Bianchi type I–IX

space-time line elements [5]. These homogeneous and anisotropic line elements

play a significant role to describe the behavior of the early stages of the evolution

of the Universe. Unlike to isotropic FRW space-time metric, Bianchi type models

have different scale factors in each direction, which introduces the anisotropy in

the system. The simplest example of a homogeneous and anisotropic model is

the Bianchi type-I (B-I), which is more general than flat FRW line-element. The

line-element of the B-I model is described by

ds2 =−c2dt2 +A2(t)dx2 +B2(t)dy2 +C2(t)dz2, (1.3.1)

where A(t), B(t) and C(t) are the scale factors, called directional scale factors in

the direction of coordinate axes. If A = B = C, the line-element (1.3.1) reduces

to flat RW model (1.2.1), and if A ̸= B = C (or A = B ̸= C or A = C ̸= B), the line-

element (1.3.1) is said to be the locally-rotationally-symmetric (LRS) B-I model

whereas A ̸= B ̸=C gives totally anisotropic B-I model.

1.4 Gravitational action and Einstein’s field equations

The general theory of relativity is described by a gravitational action known as the

Einstein-Hilbert (EH) action. The action is assumed to be a function of the metric,

connected by Levi-Civita connection, which is of second order in its derivatives of

metric. The simplest EH action for gravity with the inclusion of matter fields, which

3spatial sections are directional dependent.
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yield the Einstein’s field equations, is given by [2]

S =
∫ ( 1

2κ
R+Lm

)√
−g d4x, (1.4.1)

where R = gµνRµν (here Rµν is Riemann curvature tensor) is the Ricci scalar cur-

vature, Lm is the matter Lagrangian density of any matter fields, and κ = 8πGc−4,

where G is Newton’s gravitational constant. The reduced Plank mass can be

defined by M−2
p = 8πG.

Varying the action (1.4.1) with respect to the metric tensor gµν , the Einstein’s

field equations which couple the geometry of the Universe with the matter content,

are given by

Rµν −
1
2

gµνR = − κ√
−g

δ (
√
−gLm)

δgµν = κTµν , (1.4.2)

where Rµν and Tµν are the Ricci tensor and the energy-momentum tensor, re-

spectively. The solution of Einstein’s field equations describes the evolution of the

Universe because it describes the whole of space-time.

In Einstein’s theory, the matter content is described by energy-momentum tensor,

also called stress-energy tensor Tµν , which carries the information of energy den-

sity, momentum density, pressure and stress. The energy-momentum tensor for

a perfect fluid (frictionless continuous matter) is given by

Tµν = (ρc2 + p)uµuν + pgµν , (1.4.3)

where ρc2 is the energy density, p is the pressure of the perfect fluid and uµ is the

four-velocity vector such that uµuν =−1. The distribution of matter content of the

Universe, i.e, Tµν , is only a function of t not of θ and φ due to spatial homogeneity.

The Universe not only has non-relativistic matter, but it also has electromagnetic

radiation, dark matter and dark energy. The fraction of energy distribution of vis-

ible galaxies and gas clouds is estimated to be about 4 to 5% in the present

Universe. About 25% contribution comes from dark matter which is suppose to

be clustered or clumped around galaxies. The Universe is suppose to have 70%

matter in the form of dark energy. In section 1.9, we shall discuss about dark

energy in more detail.
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1.5 Friedmann’s equations

In general theory of relativity, the cosmic evolution of the Universe is described by

a cosmological model which requires three ingredients:

1. The cosmological principle, which leads to the FRW line-element described

by Eq. (1.2.2).

2. Weyl’s postulate, which requires the energy-momentum tensor as defined in

Eq. (1.4.3) for perfect fluid.

3. The Einstein’s field equations (1.4.2).

In the comoving coordinate system, the above three ingredients lead to the fol-

lowing two independent equations.

ȧ2

a2 +
kc2

a2 =
8πG

3
ρ, (1.5.1)

2ä
a
+

ȧ2

a2 +
kc2

a2 = −4πG
c2 p, (1.5.2)

where a dot denotes differentiation with respect to cosmic time t. The equation-

s (1.5.1) and (1.5.2) are called the Friedmann equations, were first derived by

Alexander Friedmann in 1922 [6] which describe the evolution of the Universe.

Equation (1.5.2) can be simplified as

ä
a
=−4πG

3c2 (ρc2 +3p). (1.5.3)

From (1.5.1) and (1.5.3), we get

pd(a3) =−d(ρc2a3), (1.5.4)

which is the law of conservation of energy and analogous to the conventional

conservation equation

pdV =−dE, (1.5.5)

where V = a3 is the volume and E = ρV is the total mass-energy in volume V . The

Eq. (1.5.5) is said to be the first law of thermodynamics.
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Equation (1.5.4) or (1.5.5) tells that the work done by the pressure in any change

in volume equals loss of energy inside. Equation (1.5.4) can also be obtained

by conservation of energy-momentum tensor ∇νTµν (here, ∇ν is the covariant

derivative) which is a consequence of contracted Bianchi identities. Equation

(1.5.4) can be rewritten as

d(ρc2) =−3(ρc2 + p)
ȧ
a
. (1.5.6)

Equations (1.5.1) and (1.5.2) have three unknowns functions, namely, a(t), ρ(t)c2

and p(t). We need one more relation to solve them completely. This is provided

by equation of state (EoS), which relates energy density ρc2 to the pressure p by

an equation

p = (γ −1)ρc2, (1.5.7)

where γ is an EoS parameter. In general relativity, γ is treated as a constant and

its value lies in the range 0 ≤ γ ≤ 2.

1.6 Einstein’s modified field equations

Friedmann [6] solved the Einstein’s field equations for FRW line-element and

found a non-static solution. But, to achieve a static Universe, Einstein modified

his field equation (1.4.2) by introducing an additional term Λ which is known as

cosmological constant.

The EH action (1.4.1) including the cosmological constant term Λ is modified

to [2]

S =
∫ [ 1

2κ
(R−2Λ)+Lm

]√
−g d4x, (1.6.1)

which yields the modified Einstein’s field equations as

Rµν −
1
2

gµνR+Λgµν = κTµν . (1.6.2)

Here, Λ has dimension of inverse length squared.

In comoving coordinate system, the Friedmann equations with cosmological

constant from (1.6.2) for metric (1.2.2) and energy-momentum tensor (1.4.3) lead
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to the following equations:

ȧ2

a2 +
kc2

a2 − Λ
3

=
8πG

3
ρ, (1.6.3)

ä
a
− Λ

3
= −4πG

3c2 (ρc2 +3p). (1.6.4)

The Λ-term was abandoned by Einstein himself after Edwin Hubble’s discovery

of expanding Universe in 1929 [7]. However, it appeared again in 1998 with the

discovery of the accelerating Universe [8–12]. In section 1.9, we shall discuss this

in detail.

1.7 Some cosmological parameters

Let us introduce some theoretical and observational cosmological parameters

which are frequently used in this thesis.

1.7.1 Hubble parameter

During 1920-1930, it was discovered that the Universe was composed of a vast

collection of galaxies, each assembling our own Milky Way. When a galaxy is

observed at visible wavelengths, there is a wavelength shift of a light signal which

is the difference between the wavelength λem emitted by source and the wave

length λrec received by the observer. This change in wavelength is defined through

the redshift z, which is given by

z =
λrec −λem

λem
. (1.7.1)

For non-relativistic motion, it can be stated as

z =
△λ
λ

≈ v
c
, (1.7.2)

where v is the receding velocity between source and observer.

In 1929, Edwin Hubble [7] found that the redshift z was proportional to the dis-

tance d of the light-emitting galaxy, that is,

z =
H0

c
d, (1.7.3)
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where H0 is the Hubble constant which gives the recession speed per unit sep-

aration between the receiving and emitting galaxies. From (1.7.2) and (1.7.3), we

get

v = H0d, (1.7.4)

Equation (1.7.4) states that the speed of receding galaxies is proportional to the

separation between them which is known as Hubble’s law. In an expanding U-

niverse, H0 is taken to be positive. It also determines the expansion rate of the

Universe. The accurate value of H0 is still unknown. The current value of Hubble

constant is H0 = (69.32±0.80) km/s/Mpc which has been found by combined data

of WMAP+CMB+BAO+H(z) [13]. The subscript ‘0’ stands for the present epoch

H0 = H(t0). Although usually quoted in units of km/s/Mpc, the Hubble’s law (1.7.4)

shows that H0 has the dimension of inverse time, tH = H−1
0 which is called the

Hubble time. It is used to determine the age of the expanding Universe since the

Big-Bang occurred. The present value of Hubble time has been observed to be

tH = 13.77 GY r (1 GY r = 109 years = 1 Billion years).

Due to the presence of matter and energy in the Universe, the Hubble constant

is not expected to be a constant with respect to time. The gravitational attrac-

tion between matter and energy slows down the expansion, which leads to a de-

creasing expansion rate H(t), i.e., a decelerating Universe. Therefore, the Hubble

parameter parameterizes the expansion rate of the Universe and is defined by

H(t) =
ȧ(t)
a(t)

. (1.7.5)

The time-varying Hubble parameter (1.7.5) measures the rate of change of the

scale factor a(t) and provides a way to link the observations with a proposed

model using the scale factor. It is to be noted that we can expect the constant

expansion rate throughout its history, H(t) = H0 only in a empty space.

1.7.2 Critical density

It is useful to express the mass density in terms of Hubble constant H. The critical

density (ρc) in terms of Hubble parameter of the Universe is defined as

ρc =
3H2

8πG
. (1.7.6)
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Since the Hubble constant is a function of time, the critical density also evolves

with time. One may compute the present value of the critical density from the

known value of H0. It is to be noted that for the present Hubble constant H0 =

(69.32± 0.80) km/s/Mpc, the present critical density has the value ρc = (0.86±

0.04)×10−29gm/cm3.

1.7.3 Density parameter

The density parameter (Ω) determines the spatial geometry of our Universe. It is

the ratio of the true (actual) density of the Universe at a given time to the critical

density at that time, that is,

Ω =
ρ
ρc

. (1.7.7)

A closed, flat and open Universe correspond to Ω > 1, Ω = 1 and Ω < 1, respec-

tively. Observations have shown that the present Universe is very close to a

spatially flat geometry (Ω ≃ 1).

The total mass of the Universe is divided into two categories: baryonic4, which

may be luminous or non-luminous, and dark matter5, which has only weak inter-

action. Therefore, the density parameter for total mass is given by

Ωm = ΩB +ΩDM. (1.7.8)

The Friedmann equation (1.6.3) can be written in terms of the present values of

density parameter as

Ω ≡ Ωm +Ωk +ΩΛ = 1, (1.7.9)

where Ωm = ρm
ρc

, Ωk =− kc2

a2H2
0
, and ΩΛ = ρΛ

ρc
.

1.7.4 Deceleration parameter

An important observational quantity is the deceleration parameter (DP). It mea-

sures the rate at which the expansion of the Universe is changing with time in

4Ordinary matter made of baryons (protons, neutrons) and electrons is referred to baryonic matter. Bary-
onic matter can clump to form atoms and molecules. Luminous matter (shining star) is baryonic matter. The
inter stellar or intergalactic gas are non-luminous baryonic matter.

5Dark matter is made of exotic particles which have no electromagnetic interaction. The relativistic
particles are the hot dark matter whereas the non-relativistic particles are said to be cold dark matter. They
have different distinct effects in the formation of galaxies.
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terms of the scale factor. It is denoted by q and is defined as

q =−aä
ȧ2 . (1.7.10)

The sign of q characterizes the accelerating or decelerating nature of the Uni-

verse. The positive sign of q corresponds to decelerating model whereas the

negative sign indicates an accelerating model.

1.8 Phases of the Universe

It is assumed that the history of the Universe is divided into four main different

phases:

1. The pre-matter phase in which the matter had a density nearly equal to

planck density and pressure p =−ρ.

2. The radiation-dominated phase where the matter was at a very high tem-

perature.

3. The matter-dominated phase where matter in the galaxies is well approxi-

mated by a pressureless gas.

4. The present accelerating phase where some unknown matter with negative

pressure is dominating.

Usually the field equations are solved and analyzed separately for these different

epochs where the different kinds of matter are non-interacting. Using (1.5.7) in

(1.5.6), we find

ρ = ρ(t0)
[

a(t0)
a(t)

]−3γ
, (1.8.1)

where t0 is the present instant of time. We observe that the matter density in

different phases is determined by the scale factor which is obtained from Eqs.

(1.6.3) and (1.8.1) for a flat FRW model (k = 0) and Λ = 0 as

a(t) = a(t0)
(

t
t0

) 2
3γ
, (γ ̸= 0). (1.8.2)
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In case of γ = 0, one obtains

a(t) = a(t0)exp

[(
8πGρ(t0)

3

)1/2

t

]
. (1.8.3)

Let us discuss the early inflationary, radiation-dominated, matter-dominated and

present accelerating phases in brief.

1.8.1 Inflationary phase

The inflationary phase as proposed by Alan Guth [14] in 1981, is basically a

short period of rapid expansion in the very early Universe, at the end of which

the description of the standard Big-Bang model is applied. Inflation is the most

convincing explanation for the flatness, isotropy and homogeneity of the observed

Universe. This phase not only resolves the flatness and horizon problems, but al-

so explains a nearly flat spectrum of temperature anisotropies observed in cosmic

microwave background (CMB). The inflationary scenario actually means a peri-

od of phase transition which is controlled by a scalar field [15]. The scalar field

may contribute to the negative pressure and once the phase transition is over,

the scalar field decays away and the inflationary expansion terminates. We shall

discuss more about scalar field in section 1.10.1.

The inflationary phase of the Universe corresponds to γ = 2/3. Therefore, the

relation between the energy density and pressure in (1.5.7) for γ = 2/3 is given by

p =−ρc2/3. If p =−ρc2/3, then from (1.5.4), i.e., d(ρc2a3) =−ρc2d(a3)/3 implies

ρ ∝ a−2. (1.8.4)

From Friedmann equation (1.5.1) for k = 0, we get ȧ2 ∝ const. which gives a ∝ t.

Therefore, the expansion of the Universe is linear which is said to be the marginal

inflation. Similarly, for γ = 0 we get ρ = const. and a ∝ exp
√

H0t, which shows

exponential expansion of the scale factor.

1.8.2 Radiation-dominated phase

In the early Universe, the expansion took place mainly due to relativistic particles,

which describe the radiation-dominated era. During this period the Universe is
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filled with isotropic black body radiation due to which the rate of expansion of

the Universe slows down. Indeed, there are stringent observational bounds on

the abundances of light elements, such as deuterium, helium and lithium, which

require that Big-Bang Nucleosynthesis (BBN), the production of nuclei other than

hydrogen, takes place during radiation-domination [16].

The radiation-dominated phase of the evolution of the Universe corresponds to

γ = 4/3. Therefore, Eq. (1.5.7) gives p = ρc2/3 for diffuse radiation in thermal

equilibrium. If p = ρc2/3, then Eq. (1.5.4) implies

ρ ∝ a−4. (1.8.5)

From Friedmann equation (1.5.1) for k = 0, we get ȧ2 ∝ a−2 which gives a ∝ t1/2.

At present the fraction of radiation in the Universe is about 10−5 but Eq. (1.8.5)

shows that as the radiation density goes at a−4 it would have been dominated

when ‘a’ was small. As the Universe expanded it cooled and various light nuclei

were formed. At a later time, neutral atoms were formed. At this stage the radia-

tion became decoupled from matter and the radiation-dominated era was entered

into matter-dominated era.

1.8.3 Matter-dominated phase

After a phase transition, radiation is decoupled from the matter and the Universe

became matter-dominated as we observe today. Since the temperature of the

Universe has fallen to around 3000 K, most of the particles have non-relativistic

velocities (v ≪ c). Therefore, during this phase the Universe is assumed to be

filled with incoherent matter (dust) that uniformly occupies in the space exerting

zero pressure (p = 0).

If k = 0 and p = 0, then (1.5.4) implies

ρ ∝ a−3. (1.8.6)

From Friedmann’s equation (1.5.1) for k = 0 it follows that ȧ2 ∝ a−1 which gives

a ∝ t2/3.

The transition, from radiation-dominated phase to matter-domination Universe,

comes naturally since the matter energy density is inversely proportional to the
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volume and, therefore, proportional to a−3, whereas the radiation energy density

is directly proportional to a−4 and therefore it decreases more faster than the

matter energy density with the evolution of the Universe.

There are some intermediate phases, for example, (i) Zel’dovich or stiff-matter

phase where γ = 2, p = ρc2. This gives ρ ∝ a−6 and a ∝ t1/3. (ii) Vacuum Universe

where p = 0 and ρ = 0 for any values of γ. This gives a = const. These two phases

also describe several important phenomena of the evolution of Universe.

1.8.4 Accelerating phase

In the past two decades, cosmology has shown tremendous progress through ob-

servational/ experimental data from numerous projects and accurate theoretical

concepts. Therefore, cosmology has become a precision science to understand

the early and late-time evolution of the Universe. The rapid development in ob-

servational cosmology which started during late 1990s shows that the Universe

passes two phases of cosmic acceleration: The first cosmic accelerated phase

which is known as the inflationary phase is believed to have occurred prior to the

radiation-dominated phase as we have already discussed in section 1.8.1.

In the early 1990s, one thing was very clear about the expansion of the Uni-

verse. According to the theoretical point of view, the expansion of the Universe

after the inflationary phase had to be slow. But in 1998, the Hubble Space Tele-

scope (HST) [8] observations of very distant supernovae showed that the ex-

pansion of the Universe has not been slowing down due to gravity, as everyone

thought, it has been accelerating. This second cosmic accelerated phase which

is known as the late-time cosmic acceleration, is believed to have started after the

matter-dominated phase. This transition from decelerating phase to the accelerat-

ing phase has been confirmed by a number of observations such as the measure-

ments of SNe Ia [9], CMB [3], Large Scale Structures (LSS) [17], Wilkinson Mi-

crowave Anisotropy Probe (WMAP) [13], Baryon Acoustic Oscillations (BAO) [18]

and very recent Planck Collaboration [19].

Theorists have suggested three sorts of explanations for this acceleration: it

may be a result of cosmological constant; there may be some strange kind of

energy-fluid that filled space and the last possibility may be that there is something

wrong with Einstein’s theory of gravity and a new theory could include some kind
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of field that creates this cosmic acceleration. Theorists still don’t know which

one is correct to explain this acceleration, but they have given the name to this

unknown phenomena known as dark energy. [20]. let us discuss all the three

possibilities one by one in next sections.

1.9 The standard ΛCDM model

The quest to understand the dynamics of evolution of the Universe, the modern

cosmology requires two outstanding concepts [21]: (i) the matter which does not

interact with the electromagnetic force - known as dark matter (DM), and (ii) the

unknown form energy, tends to increase the rate of expansion of the Universe,

known as dark energy (DE). DE and DM, detectable only because of their effect

on the visible matter around them. DE makes up over roughly 70 % of all the

energy in the Universe, DM is about 25 % and rest 5 % is the visible part [4, 13,

17,19,21–23].

The DE is a hypothetical type of energy that fills most of the space which accel-

erates the expansion of the Universe. The first and simplest explanation for DE is

that it may be the property of space itself. Albert Einstein was the first person to

realize that the empty space is not empty but it may possess its own energy. Be-

cause this energy is a property of space itself, more of this energy would appear

due to the existence of more space. Due to this result, this form of energy would

cause the rapid expansion of the Universe.

The investigations on DE have shown that its properties are very close to that

of a cosmological constant [10, 24–26]. Therefore, the cosmological constant

has been reconsidered as a prime candidate to represent the unknown energy

density of space which is responsible for cosmic acceleration [11, 12, 20, 24, 27].

In fact, the concept of DE and the physics of accelerating Universe appears to

be inherent in the cosmological constant term of Einstein’s field equations. If the

Λ-term is moved to the right-hand side of the Einstein’s field equations (1.6.2)

considering the Λ as a part of the matter content then the cosmological constant

can be formulated to be equivalent to the vacuum energy [27]. Therefore, the

Einstein’s field equations (1.6.2) now can be written as

Rµν −
1
2

gµνR = κ
(

Tµν +T vac.
µν

)
, (1.9.1)
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where the additional contribution T vac.
µν is called ‘vacuum contribution’ which is

given by

T vac.
µν =−Λ

κ
gµν . (1.9.2)

The energy-momentum tensor for T vac.
µν is given by

T vac.
µν = (ρvac.c2 + pvac.)uµuν + pvac.gµν , (1.9.3)

where

ρvac.c2 =
Λ
κ
, and pvac. =−ρvac.c2. (1.9.4)

If Λ is positive, ρvac. is positive and pvac. is negative which provides the repulsion

for accelerate the expansion of the Universe.

The FRW metric with cosmological constant leads to the Lambda-cold dark

matter (ΛCDM) model which has been referred as ‘standard model’ of cosmology.

The ΛCDM model is also known as concordance model [28] which fits with the

observations of SNe Ia, CMB, LSS, WMAP etc. with a remarkable agreement.

Within the framework of the standard model the Universe starts from an initial

singularity known as the “Big-Bang". Most of the theories in modern cosmology

are based on the concept of the Big-Bang and its variants. The Big-Bang model

has been outstandingly successful in describing the evolution of the Universe.

Despite of outstanding features, the ΛCDM model faces some serious problem-

s. They are cosmological constant problem [29, 30] which is also known as the

fine-tuning problem [12,24], flatness and horizon problems [2], coincidence prob-

lem [12, 24], monopole problem [2], singularity problem etc. [2, 31, 32]. The ear-

ly inflationary phase successfully addresses the flatness and horizon problems

[2, 14, 31, 32]. But the problems of dark matter and dark energy are the most

serious and are of current interest in cosmology and astrophysics [20, 21]. The

increasing difficulties with the ΛCDM model inspired several cosmologists to com-

pel the investigation of some alternatives of cosmological constant.

1.10 Alternatives

There are basically two theoretical approaches to explain DE: (i) the dynamical

energy fluids which fill all of space, and (ii) the modification of Einstein’s GR. Let

us discuss about the dynamical dark energy and some of the modified theories of
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gravity.

1.10.1 Dynamical dark energy

Fine-tuning and coincidence problems associated with the cosmological constant

have led to the search of dynamical DE models [33]. A phenomenological solu-

tion of these problems is to consider a time dependent cosmological term [34,35].

One of the simplest and probably the most common candidate of dynamical DE is

the ‘quintessence’ [36–44]. The concept of quintessence basically uses a scalar

particle field [15, 45]. The motivation of the interest in scalar field cosmologies is

the unified characteristic of scalar fields. Historically, the scalar fields are used

as the responsible agents for inflation [46]; to seed the primordial perturbation

for the structure formation during an early inflationary epoch; and as the candi-

date for cold dark matter, responsible for the formation of the actual cosmological

structure [47]. Due to remarkable qualitative similarity between the present DE

and primordial DE that derived inflation in the early Universe, inflationary models

based on scalar fields have also been applied for the description of the late-time

cosmic acceleration [21,26,33,39–41,43,44]. Therefore, the scalar field cosmo-

logical models have acquired a great popularity in recent decades. Earlier studies

have come with a non-minimally coupled scalar field [44,48,49]. Since the energy

density of a scalar field should come to dominate over other components in the

Universe in late-time only, therefore, these models face the cosmic coincidence

problem. Later on, in order to alleviate this problem, many coupled scalar field

models [39, 40, 50–52] have been considered, in which matter and DE scale in

the same way with time.

The outcomes from different observational data [53–57] also show a possi-

bility of the existence of some strange kind of fields in the Universe such as

phantom field as proposed by Caldwell [58] having negative kinetic energy [59,

60]. Some other candidates of such dynamical DE are quintom (a combina-

tion of quintessence and phantom scalar fields) [61], tachyonic field [52, 62, 63],

k-essence [52,64,65], Chaplygin gas [66,67] etc. Nowadays, it is a common issue

to make the use of such exotic matters as the responsible agent to describe the

late-time acceleration of the Universe [33,43,52,62,67–69]. I herewith introduce

briefly those exotic matters which are related to my thesis work.

A time-dependent cosmological constant as well as the quintessence can be
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modeled as the energy of a slowly evolving cosmic scalar field ϕ with an ap-

propriate self-interacting scalar potential V (ϕ) [33, 43, 52, 69]. Formally, one get

phantom by switching the sign of kinetic energy of the Lagrangian of standard

quintessence scalar field [52, 58, 60, 70, 71]. Therefore, the matter Lagrangian of

a quintessence or phantom scalar field minimally coupled to the gravity is given

by [33,43,45]

Lϕ =
1
2

ε∇σ ϕ∇σ ϕ −V (ϕ), (1.10.1)

where ε =±1 correspond to quintessence and phantom models, respectively.

The general EH action for a minimally coupled quintessence or phantom scalar

field in the EH frame is given as

S =
∫ ( 1

2κ
R+

1
2

ε∇σ ϕ∇σ ϕ −V (ϕ)
)√

−g d4x. (1.10.2)

The energy-momentum tensor of quintessence or phantom scalar field, T (ϕ)
µν is

defined as

T (ϕ)
µν = ε∇µϕ∇νϕ −gµν

[
1
2

ε∇σ ϕ∇σ ϕ +V (ϕ)
]
. (1.10.3)

The scalar (phantom) fields obey the Klein-Gordon equation

gµνε∇µ∇νϕ +
∂V (ϕ)

∂ϕ
= 0. (1.10.4)

Assuming that the scalar (phantom) field evolve in an isotropic and homogenous

space-time and ϕ as a function of time alone, the energy density ρϕ and pressure

pϕ of scalar field are respectively given by

ρϕ =
1
2

εϕ̇ 2 +V (ϕ), (1.10.5)

pϕ =
1
2

εϕ̇ 2 −V (ϕ). (1.10.6)

The Klein-Gordon equation (1.10.4) in an isotropic and homogenous space-time

reduces to

εϕ̈ +3Hεϕ̇ +V ′(ϕ) = 0 , (1.10.7)

where a prime denotes the derivative with respect to the argument.

The pressure and energy density of these scalar fields are connected by a re-

lation pϕ = ωϕ ρϕ , known as equation of state (EoS) of scalar field. Here, ωϕ is
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known as the EoS parameter. Therefore, ωϕ for quintessence or phantom is giv-

en as

ωϕ =
pϕ

ρϕ
=

1
2εϕ̇ 2 −V (ϕ)
1
2εϕ̇ 2 +V (ϕ)

. (1.10.8)

It is well known from observational data that −1 < ωϕ <−1/3 gives the region for

quintessence, ωϕ = −1 corresponds to the cosmological constant and ωϕ < −1

represents phantom region [70]. Although, due to a number of problems related

to the phantom matter such as negative kinetic energy, violation of energy condi-

tions [72], the problem of stability (ghost) [52,73] and future curvature Big-Rip sin-

gularity [69,74], it does not seem such matter fields to be quite realistic alternative

of DE. But the studies of dynamical properties of the phantom field are still going

on to resolve these problems in alternative approaches [52, 68, 69, 71, 73–78]. It

is clear that there needs more and better data to decide between DE possibilities.

Another possibility is a tachyonic field. The gravitational Lagrangian of tachyonic

field is given by [62,63,79–81]

Lψ =−V (ψ)
√

1− ε∇µψ∇νψ, (1.10.9)

where V (ψ) is relevant tachyonic potential of tachyonic field ψ . Here, ε = ±1

correspond to normal and phantom tachyonic fields, respectively.

The EH action for a tachyonic field is given by

S =
∫ ( 1

2κ
R−V (ψ)

√
1− ε∇σ ψ∇σ ψ

)√
−gd4x. (1.10.10)

The energy-momentum tensor of tachyonic field, T (ψ
µν ) is defined as

T (ψ)
µν =V (ψ)

[
ε∇µψ∇νψ√

1− ε∇µψ∇νψ
+gµν

√
1− ε∇σ ψ∇σ ψ

]
. (1.10.11)

In a homogenous and isotropic space-time, the energy density and pressure of

tachyonic field become

ρψ =
V (ψ)√
1− εψ̇2

, (1.10.12)

pψ = −V (ψ)
√

1− εψ̇2. (1.10.13)
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Consequently, the EoS parameter ωψ for tachyonic field has the expression

ωψ =
pψ

ρψ
=−1+ εψ̇2. (1.10.14)

It can be seen that ωψ > −1 or < −1 according to normal tachyon (ε = +1) or

phantom tachyon (ε = −1). One can observe from (1.10.14) that as the kinetic

term tends to zero, the model approaches to the cosmological constant model,

i.e, ωψ =−1.

The energy conservation equation for tachyonic field for a homogenous and

isotropic space-time usually has the form

ψ̈
1− εψ̇2 +3εHψ̇ =−V ′(ψ)

V (ψ)
. (1.10.15)

where a prime denotes derivative with respect to ψ.

The exotic matter cosmologies form an interesting set of models of the Universe

which support the prediction of recent observational data [33, 41, 43, 51]. There-

fore, the mathematical and physical properties of such exotic matters deserve

further studies. Keeping in view that the scalar fields or tachyonic fields play an

important role in explaining the early and late-time cosmic acceleration, one of the

motivation of my research work in this thesis is to study FRW models with a per-

fect fluid, a quintessence scalar field, phantom scalar field and tachyonic (normal

or phantom) field.

The potential V (ϕ) is not known and one must assume the specific form as a

function of the scalar field ϕ . There has been many such proposals available

of this potential like power-law, exponential, zero, constant potentials etc [15, 38,

46, 79–88]. Hence, it is of interest to understand the early inflation and late-time

acceleration of the Universe with scalar fields along with the various form of scalar

potentials. The purpose of the work is to emphasize that the scalar (quintessence

or phantom) fields with a suitable potential, and tacyonic field may have important

cosmological consequences in explaining the early and late-time evolution of the

Universe in modified theories of gravitation (see, subsection 1.10.2).

Undoubtedly, the DE models are the most popular explanation of the current

epoch of the accelerating Universe, but they do not seem to be as well motivated

theoretically as one would desire [12, 54, 68, 70, 72–74, 80, 89]. Therefore, the
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mystery is continued with the existence and nature of such exotic matters. Also,

it is still a challenging task to construct viable scaling models which give rise to a

matter-dominated phase followed by an accelerating phase [90]. In the absence

of an evidence for the existence of DE, there leaves a space to explore other

possible ways to alleviate the most crucial problem of cosmic acceleration. The

modified theories of gravitation, which are the modification of Einstein’s GR, have

been proposed to explain such cosmic acceleration. In the next subsection let us

discuss some of the modified theories in detail.

1.10.2 Modified theories of gravity

The idea of an alternative theory to Einstein’s GR is not new. It is worth mentioning

that it took only four years after the introduction of GR to start questioning its

unique status among gravitational theories. Weyl [91] in 1919, and Eddington [92]

in 1923 extended GR to incorporate a broader and more unified theory to describe

the evolution of the Universe. During early 1970s, there were various modified

theories of GR in existence. Notable examples are Weyl’s scale independent

theory [91], Eddington’s theory of connections [92], Brans Dicke’s scalar-tensor

theory [93], the higher dimensional theories of Kaluza [94] and Klein [95], and

many others [96–98].

The attention in modified theories of gravity has increased at the end of 20th

century due to the combined motivation coming from cosmology, astrophysics

and high-energy physics [99, 100]. The possibility that the modification in GR

at galactic and cosmological scales can replace DM and/or DE, has become an

active area of research in recent years [101–110]. At present, there exist a numer-

ous proposals which are the modification in some way of EH gravitational action of

Einstein’s GR, namely, f (R) theories [100,101,103,111,112], Gauss-Bonnet f (G)

theory [113,114], Brane World gravity [115], Horava-Lifshitz gravity [116,117] and

f (T ) theory [118]. However, none of these solve the mysteries of the Universe

thoroughly [119]. The modified gravity theories have already given qualitative an-

swers to a number of fundamental questions including DE, DM and late-time cos-

mic acceleration. Therefore, there is still a resurgence of interest in these theories

to seek the answer of several cosmological problems. The attractive features of

modified theories of gravity are [100,102,103]:
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1. Modified theories of gravity provide a very promising gravitational alternative

to DE.

2. They present very natural unification of the early-time inflation and late-time

cosmic acceleration.

3. They quite naturally describe the transition from decelerated to accelerated

expansion of the Universe.

4. They naturally describe the transition from non-phantom phase to phantom

phase without introducing any exotic matter.

5. The effective DE dominance may be assisted by the modification of gravity.

Hence, the coincidence problem may be resolved.

Let us briefly introduce some of the modified gravity theories which are related to

the thesis work.

1.10.3 Higher derivative gravity

In the beginning of 1960’s, it was observed that EH action of GR was not renor-

malized and therefore it could not be conventionally quantized. In 1962, Utiya-

ma [120], and Utiyama and DeWitt [121] showed that renormalization at one-

loop demands that the EH action must be supplemented by higher order curva-

ture terms. Motivated by this result, first studies including higher order curvature

terms in the EH action came during 1969-1971 [122–124]. In 1977, Stelle [125]

showed that higher order actions are indeed renormalizable but not unitary. Fi-

nally, Starobinsky [126] in 1980, successfully constructed the first internally self-

consistent cosmological model replacing R by R+λR2 plus some small non-local

terms, emerging a (quasi-) de Sitter (latter dubbed inflationary) stage in the early

Universe and a graceful exit to the subsequent radiation-dominated phase fol-

lowed by matter-dominated epoch. Adding a squared scalar curvature term R2 in

EH action gives the modified gravitational Lagrangian (L = R+λR2, where λ > 0

is a coupling constant), known as higher derivative (HD) theory.

The EH action for HD theory by adding an additional term λR2 with matter la-

grangian Lm, is given as [126]

S =
∫ [ 1

2κ
(
R+λR2)+Lm

]√
−g d4x , (1.10.16)
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It can be observed that the standard EH action of GR (1.4.1) is recovered by taking

λ = 0.

The variation of action (1.10.16) with respect to the metric tensor, gµν yield the

following set of field equations

Rµν −
1
2

gµνR+λ
[

2R(Rµν −
1
4

gµνR)+2(∇µ∇ν −gµν �)R
]
= κTµν , (1.10.17)

where � ≡ ▽µ▽µ is the covariant differential operator which is also known as

d’Alembert operator.

The HD theory has a number of good features. Initially, the additional term

R2 in the EH action was added to regularize ultraviolet divergences [121]. Later

on, it was applied to cosmology to obtain a bouncing model of the Universe, and

consequently avoiding the singularity at the Big-Bang [126, 127]. The various

structure and attributes of HD theory were further elaborated in subsequent works

[128,129]. It is well known that Starobinsky’s [126] inflationary model of the early

Universe has been remarkably successful. An interesting feature of HD theory

is that the inflation emerges in a most direct manner without using any fictitious

exotic matter [130].

After the discovery of accelerating Universe and due to the remarkable quanti-

tative analogy between the properties of primordial DE (responsible for inflation

in the early Universe) and the present DE, it was thought that the origin of DE

might also be explained by some sub-leading gravitational terms which become

relevant as the curvature decreases at late times. In this analogy, the field equa-

tions can be recast in a way that the higher order corrections are written as an

energy-momentum tensor of the geometrical origin describing an effective source

term on the right hand side of the standard Einstein’s field equations. In this

scenario, the cosmic acceleration can be shown as a result from such a new ge-

ometrical contribution to the whole cosmic energy density budget [131,132]. The

presence of higher order terms in the gravitational sector even may be under-

stood as the introduction of an effective fluid which is not restricted to hold the

usual energy conditions [99]. Therefore, they may also lead to the cosmological

constant, quintessence or phantom at late times, without introducing the exotic

matters with strange properties (like negative kinetic energy) or with complicated

potentials [101]).
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In the first such DE model of higher order correction, Capozziello [131] pro-

posed that the cosmic speed-up can be explained simply by the fact that some

sub-dominant terms like 1/R may become essential at small curvature. But mod-

ifying gravity in such a manner was proven inconsistency with the experimental

data. The GR is a very robust and well tested theory, and it has been found that

even a slight modification often leads it to the matter instabilities [133, 134] and

the propagation of ghosts [135]. Therefore, when introducing additional terms into

the gravitational action, one must be careful to respect the success of GR in both

the low and high curvature regimes, to ensure that the new model agrees with

all known observational tests of gravity. Therefore, Nojiri and Odintsov [136] in-

troduced a model containing a particular combination of 1/R and R2 terms which

not only produces late-time cosmic acceleration but also passes the solar sys-

tem constraints successfully. Another approach with negative and positive power

terms was suggested in a ref. [137] where the positive power terms would dom-

inate on small scales while the negative power terms dominate on large cosmic

scales. Finally, it is concluded that the positive powers of R in EH action pro-

duce early inflationary epoch whereas the negative powers serve as effective DE

admitting late-time acceleration of the Universe [100,138,139].

Some authors have shown that, in Rm gravity [132,139], it is possible to have a

transient matter-dominated decelerated expansion phase, followed by a smooth

transition to a DE era which drives the cosmological acceleration. In particular,

for m = 2, the Rm gravity reduces to the HD gravity. The cosmological models with

perfect in HD theory have extensively been studied to obtain viable cosmological

scenario of the early and late-time evolution of the Universe [140–147]. Inspired

by these works, I have also discussed some FRW cosmological models in HD

theory in this thesis with the perfect fluid, quintessence, phantom and tachyonic

fields, which could explain the history of evolution of the Universe.

1.10.4 The modified f (R) theory

Among the generalization of geometrically modified gravity [102], the most suc-

cessful and widely accepted are f (R) theories [100–109,111,112]. The intention

of introducing f (R) theories was that one may obtain a gravitational alternative to

the conventional description of DE. In fact, the metric variation in EH action of f (R)

gravity introduces an additional scalar degree of freedom which leads to an ac-
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celerated expansion of the Universe at late-time, induced by the Ricci scalar. One

may call this “curvature DE" or “dark gravity" [101, 106–109]. The f (R) theories

not only describe DE but also provide a very natural unification of the sequence

of cosmological evolutionary phases [105,136,148,149].

The f (R) theory of gravity, first proposed by Buchdahl [122], is one of the gener-

alization of the higher order gravity theories in which R is replaced by an arbitrary

function f (R) of Ricci scalar curvature in EH action [100,101,111,112]. The grav-

itational action for f (R) gravity with matter Lagrangian Lm is given by [100]

S =
∫ [ 1

2κ
f (R)+Lm

]√
−g d4x. (1.10.18)

The trivial case of ΛCDM model corresponds to f (R) =R−2Λ. The field equations

by varying the action (1.10.18) with respect to metric tensor gµν are obtained as

f ′(R)Rµν −
1
2

f (R)gµν −
(
∇µ∇ν −gµν�

)
f ′(R) = κTµν , (1.10.19)

where a prime denotes the derivative with respect to the argument. The f (R) func-

tion significantly encapsulates some of the basic characteristics of higher-order

gravity theories [100,101]. Many works on f (R) theories are also available in the

literature addressing the other well-known issues such as DE, DM and accelerat-

ing Universe [101,131,132,136]. solar system test [133], stability [134], singularity

problem [150], etc. However, most of these earlier attempts remained unsuc-

cessful due to non-viability (inconsistency with the observations) [133–135, 151]

or due to practically indistinguishable from the standard ΛCDM model [90, 234].

Later on, a large number of viable f (R) gravity models have been proposed in

the literature [99–104,111,112,131,132,136,138,139,148,149,152]. Recently, it

has observed that the f (R) gravity models pass all known observational local test-

s [105,153]. However, almost of these considerations have primarily investigated

in a spatially isotropic space-time. But the theoretical studies and the outcomes

from various observational data which support the existence of anisotropic phase,

lead to consider the models of the Universe in anisotropic space-time. Therefore,

since past few years some authors have also started working to explore the fea-

tures of f (R) gravity in anisotropic background [154–162].

One of the interesting issue in cosmology is the reconstruction of modified the-

ories of gravity (see ref. [105] for recent review). The general scheme for the re-
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construction of modified gravity from any realistic FRW cosmology was proposed

by Nojiri et al. [163]. In reconstruction schemes it is assumed that the expansion

history is known exactly and one inverts the field equations to deduce what class

of modified theory gives rise to the desired model [164]. In reconstruction of f (R)

also, the proposal have come to find analytical solutions for some known function-

al form of f (R). The ordering of this approach can also be reversed, that is, for a

known scale factor, one may reconstruct functional form of f (R) which yields such

scale factors as solutions [164, 165]. Therefore, following this reverse approach,

it is of interest to reconstruct cosmological models in modified theories of gravity.

In this thesis one chapter is devoted for the reconstruction of a functional form of

f (R) with power-law expansion in a locally-rotationally-symmetric (LRS) Bianchi I

anisotropic model filled with the perfect fluid.

1.10.5 The modified f (R,T ) theory

Even though one decides that the modification of the gravitational theory is a way

to overcome the problem of DE and accelerating Universe but it is not an easy task

because there may be a numerous way to deviate from GR. In fact, the EH action

in GR has a additive structure in Ricci scalar R and matter Lagrangian Lm, both of

which have very different conceptual levels without any interaction between them.

However, there is no any fundamental guiding principle for considering the matter

and geometry to be additive. Moreover, a more generalised EH action requires a

general coupling between matter and geometry. The idea of non-minimal coupling

between matter and geometry was first considered by Goenner [166] in 1984.

In 2007, Bertolami et al. [167] proposed a maximal extension of EH action by

introducing an explicit coupling of arbitrary function of R and Lm. In 2008, Harko

[168] extended it to the case of arbitrary coupling between R and Lm. These

theories came to be known as the f (R,Lm) gravity theories [168–172].

Poplawski [173] implemented a particular application of f (R,Lm) gravity based

on the principle of least action in a relativistically covariant model of interacting

DE. They have assumed that an interaction between baryonic matter and DE may

be consider as a time-dependent cosmological constant. In addition, a variable

cosmological constant must depend only on relativistic invariants for preserving

the general covariance of the field equations. It is to be noted that the choice

Λ = Λ(R) is equivalent to the class of f (R) theories of gravity. Poplawski [173] in
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his application of f (R,Lm) proposed the cosmological constant as a function of

the trace of energy-momentum tensor, i.e., T = gµνTµν .

In 2011, following Poplawski [173], Harko et al. [174] have proposed a general

non-minimal coupling between matter and geometry in the framework of an ef-

fective gravitational Lagrangian consisting an arbitrary function of R and T , and

introduced f (R,T ) gravitational theory. The EH action for f (R,T ) gravity is given

as

S =
∫ [ 1

2κ
f (R,T )+Lm

]√
−g d4x. (1.10.20)

The field equations of f (R,T ) gravity by varying the action (1.10.20) with respect

to metric tensor have the form

fR(R,T )Rµν −
1
2

f (R,T )gµν +(gµν�−∇µ∇ν) fR(R,T ) = κTµν − fT (R,T )(Tµν +⊖µν),

(1.10.21)

where fR and fT denote the derivatives of f (R,T ) with respect to R and T , respec-

tively and ⊖µν is defined by

⊖µν ≡ gi j δTi j

δgµν , i, j = 0,1,2,3. (1.10.22)

The authors argued that the justification of choosing T as an argument for the

Lagrangian is from exotic imperfect fluids or quantum effects (conformal anoma-

ly). In addition, the new matter and time-dependent terms in the gravitational field

equations play the role of an effective cosmological constant. They also suggest-

ed that due to the coupling of matter and geometry, f (R,T ) gravity depends on a

source term representing the variation of the matter stress-energy tensor with re-

spect to the metric. They also obtained a general expression for the source term

as a function of the matter Lagrangian Lm. A strange behavior of f (R,T ) grav-

ity is that the covariant divergence of the stress-energy tensor does not vanish.

As a consequence, the equations of motion show the presence of an extra-force

acting on the test particles and the motion are generally non-geodesic [167]. The

authors have applied this theory to analyse the Newtonian limit of the equations

of motion and provided a constraint on the magnitude of the extra acceleration by

investigating the perihelion precession of Mercury. Therefore, the f (R,T ) gravi-

ty also has a promising feature that an extra acceleration is always present due

to the coupling between matter and geometry. This extra acceleration in f (R,T )
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gravity results not only from geometrical contribution but also from the matter con-

tent. These interesting features of f (R,T ) gravity have attracted many theorists to

explore its various features and applications for resolving several issues of current

interest in cosmology and astrophysics.

Jamil et al. [175] have found, that the first law of black hole thermodynamics is

violated in this new gravitational theory. Sharif and Zubair [176] have discussed

a non-equilibrium thermodynamics by taking two forms of the energy-momentum

tensor of dark components, which endorses second law of thermodynamics both

in phantom and non-phantom phases. Azizi [177] has examined the possibility

of wormhole geometry in the context of f (R,T ) gravity. Alvarenga et al. [178]

have paid special attention on f (R,T ) = R+2 f (T ) assuming special function f (T )

showing energy conditions can be satisfied for suitable input parameters. Al-

varenga et al. [179] have studied the evolution of scalar cosmological perturba-

tions in the background of metric formalism in f (R,T ) theory, assuming a spe-

cific model that guarantees the standard continuity equation. They obtained the

complete set of differential equations for the matter density perturbations and

showed that for general f (R,T ) Lagrangian the quasi-static approximation leads

to very different results as compared to the ΛCDM cosmology. However, most

of the works have been carried out in an isotropic and homogenous FRW back-

ground [176–184]. Some authors have also explored f (R,T ) theory in anisotropic

space-time [185–189].

The reconstruction of cosmological models in f (R,T ) theory have been made by

several authors [175,181,184,190,191]. Thus, there is a lot of scope to investigate

a general class of f (R,T ) gravity models to describe early and late-time evolution

of the Universe. I have reconstructed f (R,T ) gravity for de Sitter and power-law

models with perfect fluid within the framework of a flat FRW space-time. I have

also reconstructed scalar field cosmological models for constant and exponential

potentials in f (R,T ) gravity in flat FRW space-time. I have also studied the the-

oretical and observational consequences of thermodynamics of an open system

which allow matter creation in f (R,T ) theory within the framework of a flat FRW

model.

In light of the discussion mentioned in sections 1.1–1.10, I have discussed some

of the modified gravity theories with perfect fluid and scalar field within the frame-

work of FRW and anisotropic models. The actual work has been presented in
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chapters 2–8 based on the motivation acknowledged so far. The abstract at the

beginning of a chapter gives a brief outlines of the work carried out in that chapter.

The sum up of the findings have been accumulated in the concluding section at

the end of each chapter. A brief summary and future scope of the research work

carried out in the thesis have been mentioned in chapter 9. The thesis ends with

the bibliography and the list of publications.





Chapter 2

FRW models in higher derivative theory

In this chapter1 we study FRW models containing a perfect fluid and a scalar

field minimally coupled to gravity with self-interacting potential in HD theory. We

assume the scalar potential and scale factor as functions of the scalar field to

obtain the exact solution of the field equations. We explore the cosmological

solutions for flat, closed and open models, which are physically interesting for the

description of the whole cosmological evolution. The objective of this chapter is

to explore the effects of higher order terms in the evolution of the Universe in the

presence of a scalar field and a perfect fluid.

2.1 Introduction

In past few decades, the scalar field cosmological models have acquired a great

popularity due to their explanation of early inflationary phase [15, 36, 45, 83, 84,

192,193], and late-time cosmic acceleration [39,41–44,48,80,88,145,194]. Some

authors have also considered some other matter sources with scalar field. Ellis

and Madsen [193] have considered a FRW model with a minimally coupled scalar

field and a perfect fluid in the form of radiation. Chimento and Jakubi [195] have

studied scalar field cosmologies with a perfect fluid in Robertson-Walker metric.

Sen and Banerjee [196] have obtained an exact cosmological solution for (FRW)

metric with a scalar field along with a potential in the presence of a causal viscous
1The result of this chapter has been published in a research paper entitled “FRW models with a perfect

fluid and a scalar field in higher derivative theory", in Modern Physics Letter A 26 1495–1507 (2011).

31
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fluid. Coley and Goliath [197] have investigated self-similar spherically symmetric

cosmological solutions with a perfect fluid and a scalar field. In many cosmolog-

ical models based on scalar field ϕ , the potential function V (ϕ) is related to the

evolution of the Universe [15, 38, 46, 79, 82–88]. Barrow and Saich [15] assumed

that the kinetic and potential terms for the scalar field are proportional to each

other. A common functional form for the self-interacting potential is Liouville for-

m (an exponentially dependence upon the scalar field) [38, 46, 83, 84, 86]. The

possible cosmological role of exponential potential as a means of driving a period

of cosmological inflation and late-time acceleration has been investigated in the

literature [38, 46, 82–88, 145]. Models with an exponential scalar field potential

also arise naturally in alternative theories of gravity [85].

The dynamics of HD cosmology is also directly related to inflationary models of

scalar field with scalar potential. Kofman et al. [198] claimed that the combined

action of the R2 term and the scalar field ϕ might lead to double inflation, i.e.,

two consecutive inflationary stages separated by a power-law expansion. There

has been considerable interest in scalar fields with the exponential potential in

HD gravity. Several authors have discussed the viable cosmological models with

a variety of energy contents in HD theory [141–147]. It is therefore worthwhile

to explore HD gravity models containing a scalar field with exponential scalar

potential and a perfect fluid, which exhibit the evolution of the Universe from an

inflationary scenario at early time followed by radiation- and matter-dominated

eras, respectively to the present accelerated phase.

The motivation of this chapter is to examine the dynamics of the expansion of

the Universe in FRW models with a scalar field and a perfect fluid in HD theory.

We investigate the exact cosmological solutions for the flat, closed and open FR-

W models by considering the scalar potential and the scale factor exponentially

varying with scalar field. In particular, we focus to examine whether the HD the-

ory could be responsible for deriving the late-time accelerated expansion of the

Universe.

2.2 Gravitational action and the field equations

The EH action (1.10.16) of HD theory of gravity constituting a perfect fluid de-

scribed by the matter Lagrangian Lm and a scalar field ϕ with scalar potential
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V (ϕ), minimally coupled to gravity in the units κ = 1 = c modifies as [141,146]

S =
∫ [1

2
(
R+λR2)+Lm +

1
2

∇σ ϕ ∇σ ϕ −V (ϕ)
]√

−g d4x . (2.2.1)

The variation of action (2.2.1) with respect to the metric tensor, gµν yields the

following set of field equations

Rµν −
1
2

gµνR+λ
[

2R(Rµν −
1
4

gµνR)+2(∇µ∇ν −gµν �)R
]
= Tµν , (2.2.2)

where Tµν is the effective energy-momentum tensor of a perfect fluid and a scalar

field, given as

Tµν = T (m)
µν +T (ϕ)

µν , (2.2.3)

where T (m)
µν is the energy-momentum tensor of the perfect fluid, which is given by

T (m)
µν = (ρm + pm)uµuν + pmgµν , (2.2.4)

where ρm and pm are the energy density and pressure of the perfect fluid. The

energy-momentum tensor (1.10.3) for a minimally coupled quintessence (ε = 1)

scalar field ϕ with self interacting potential V (ϕ), takes the form

T (ϕ)
µν = ∇µϕ∇νϕ −gµν

[
1
2

∇σ ϕ∇σ ϕ +V (ϕ)
]
. (2.2.5)

We assume that the perfect fluid and the scalar field are non-interacting which

leads to the following separate energy-conservation laws

∇νT (m)
µν = 0 = ∇νT (ϕ)

µν . (2.2.6)

Consequently, ∇νT (m)
µν = 0 leads to the conservation equation (1.5.6), which can

be written as

ρ̇m +3H(ρm + pm) = 0, (2.2.7)

and ∇νT (ϕ)
µν = 0 yields the Klein-Gordon equation (1.10.7), which becomes

ϕ̈ +3Hϕ̇ +V ′(ϕ) = 0. (2.2.8)
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We consider FRW models whose metric is given by Eq. (1.2.2). The Ricci scalar

curvature for this metric becomes

R =−6
[

Ḣ +2H2 +
k
a2

]
. (2.2.9)

With the energy-momentum tensor (2.2.3) and for FRW metric (1.2.2), the field

equations (2.2.2) yield

3H2 +3
k
a2 −18λ

[
2ḦH − Ḣ2 +6ḢH2 − 2kH2

a2 +
k2

a4

]
= ρm +ρϕ , (2.2.10)

2Ḣ +3H2 +
k
a2 − 6λ

[
2

...
H +12ḦH +18ḢH2 +9Ḣ2]

+ 6λ
k
a2

[
4Ḣ +2H2 +

k
a2

]
=−pm − pϕ , (2.2.11)

where ρϕ and pϕ are given by (1.10.5) and (1.10.6) which can be obtained from

(2.2.5).

2.3 Solution of the field equations

We observe from Eqs. (2.2.7), (2.2.8), (2.2.10) and (2.2.11) that three of these

four equations are independent. So we have three equations with five unknowns,

namely, a, ρm, pm, ϕ and V . It follows that one needs to provide two more relations

in order to construct a definite cosmological scenario. We make two assumptions,

one is for the scalar field potential and another is for the scale factor to find the

exact solution of the field equations.

The models with an exponential scalar field potential arise naturally in alterna-

tive theories of gravity (such as scalar-tensor theories) [85] and are of particular

interest since such theories occur as the low-energy limit in supergravity theories.

A number of authors have studied scalar field cosmologies with an exponential

potential within GR [38, 82, 84, 86, 196]. Therefore, we assume the exponential

potential of the form [46,196]

V (ϕ) =V0 e−βϕ , (2.3.1)

where V0 and β (> 0) are constants. The parameter β has the dimension of inverse
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of mass as ϕ has the dimension of mass.

In our second assumption, we consider the scale factor which evolves exponen-

tially with the scalar field [196,197], that is,

a = a0 eαϕ , (2.3.2)

where α is a constant and a0 is the proportionality constant representing the

present value of the scale factor.

Using (2.3.1) and (2.3.2), the conservation equation of scalar field, i.e., (2.2.8)

can be rewritten as
d
dt

(
ϕ̇ 2e6αϕ

)
= K1

d
dt

(
eϕ(6α−β )

)
, (2.3.3)

where K1 =
2V0β

6α−β .

Integrating (2.3.3), we get

ϕ̇ 2 = K1e−αϕ , (2.3.4)

where the integration constant is taken to be zero for simplicity. The real solution

exists provided K1 > 0, i.e., β < 6α.

Further integration of (2.3.4), gives

ϕ =
2
β

log

(
ϕ0β

2
± β

√
K1

2
t

)
, (2.3.5)

where ϕ0 is a constant of integration.

Using (2.3.5) into (2.3.2), one gets

a = a0

(
ϕ0β

2
± β

√
K1

2
t

) 2α
β

. (2.3.6)

Since we are living in an expanding Universe, therefore, we consider the positive

sign within the bracket and by suitable choice of origin, we take ϕ0 = 0, therefore,

Eqs. (2.3.5) and (2.3.6) take the form

ϕ(t) =
2
β

log

(
β
√

K1

2
t

)
, (2.3.7)

and

a(t) = a⋆ t
2α
β , (2.3.8)



36

where a⋆ = a0
(
β
√

K1/2
) 2α

β .

Equation (2.3.8) shows the power-law expansion of the scale factor with time.

Thus, the two assumptions made in Eqs. (2.3.1) and (2.3.2) with the conservation

equation of scalar field naturally lead to the power-law expansion of the Universe.

Now, the scalar potential (2.3.1) takes the form

V =
4V0

β 2K1

1
t2 . (2.3.9)
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t
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Figure 2.1: ϕ(t) vs. t with β = 2, α = 1/2 and V0 = 1.

From (2.3.7) we observe that the scalar field ϕ increases with time, which is shown

in fig. 2.1, whereas the scalar potential V (ϕ) obtained in Eq. (2.3.9) is a decreas-

ing function of time and tends to zero as t → ∞.

The energy density and pressure of quintessence (ε = 1) scalar field defined in

Eqs. (1.10.5) and (1.10.6), respectively give

ρϕ =
12α
β 3t2 , (2.3.10)

pϕ =
4(β −3α)

β 3t2 . (2.3.11)

Consequently, the EoS parameter corresponding to scalar field which is defined

in Eq. (1.10.8), gives

ωϕ =
β

3α
−1, (2.3.12)

which is constant. Thus, the value of ωϕ depends on α and β .

The Hubble and deceleration parameters which are defined in Eqs. (1.7.5) and
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(1.7.10), respectively give

H =
2α
β

1
t
, (2.3.13)

q =
β

2α
−1. (2.3.14)

Equation (2.3.14) shows that the deceleration parameter is constant which tells

that the Universe decelerates for β/2α > 1, inflates marginally for β/2α = 1 and

accelerates for β/2α < 1.

Now we seek the cosmological solutions for flat, closed and open models, re-

spectively, in the upcoming sections.

2.3.1 Solution for flat model (k = 0)

Using (2.3.7), (2.3.8) and (2.3.9) into (2.2.10) and (2.2.11), we obtain

ρm = 12

[(
α
β

)2

− 1
β 2

(
α
β

)]
1
t2 +216 λ

[
4
(

α
β

)3

−
(

α
β

)2
]

1
t4 , (2.3.15)

pm = −12
(

1− β
3α

)[(
α
β

)2

− 1
β 2

(
α
β

)]
1
t2

−72 λ

[
2
(

α
β

)
−11

(
α
β

)2

+12
(

α
β

)3
]

1
t4 . (2.3.16)

It can be seen from the above expressions that the energy density and pressure

are determined by a coupling parameter λ of HD theory. The Universe starts

with higher energy density as compare to standard cosmology based on GR. The

additional terms due to HD theory decrease faster than other terms in these two

physical quantities.

The total cosmological density parameter (ΩT ) of effective matter is

ΩT = Ωm +Ωϕ =
ρm +ρϕ

3H2 , (2.3.17)

where, Ωm = ρm/3H2 is the density parameter for the perfect fluid and Ωϕ =

ρϕ/3H2 is the density parameter for the scalar field. Inserting the values of ρm, ρϕ

and H in Eq. (2.3.17), we get the expression for effective density parameter as

ΩT = 1+18λ
(

4α
β

−1
)

1
t2 , (2.3.18)
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which shows that the Universe was curved during early stages of its evolution and

becomes flat as t → ∞ in HD theory of gravity. In absence of HD theory (λ = 0) the

Universe becomes flat (ΩT = 1) throughout its evolution. If 4α < β the Universe

becomes open (ΩT < 1) whereas it is closed (ΩT > 1) for 4α > β . In case of

4α = β , the Universe becomes flat even in HD theory of gravity.

Now, keeping in view the standard cosmological evolutionary phases, which

have been discussed in section 1.8, we assume different relations between the

constants α and β to study these phases.

Case (i) Solution for α = β/2:

In this case, the scale factor evolves as a(t) ∼ t, which is similar to the

standard inflationary phase. The energy density ρm and pressure pm of the

perfect fluid become

ρm = 3
(

1− 2
β 2

)
1
t2 +54λ

1
t4 , (β >

√
2), (2.3.19)

pm = −
(

1− 2
β 2

)
1
t2 +18λ

1
t4 . (2.3.20)

The energy density and pressure are determined by a coupling parameter

λ of HD theory. The deceleration parameter gives q = 0 which shows the

coasting cosmology, that is, the marginal inflation. From Eq. (2.3.18), the

density parameter has the value ΩT =(1+18λ/t2) showing that the Universe

was curved during early stages of its evolution and becomes flat, i.e., ΩT = 1

at late times. For λ = 0, we get pm =−ρm/3, which is the EoS of the standard

inflationary phase in GR. Thus, the model asymptotically tends to the usual

inflationary Universe in late-time where the slow-roll approximation is not

valid at the beginning.

Case (ii) Solution for α = β/4:

In this case, the scale factor evolves as a(t)∼ t1/2 which shows the behavior

of the radiation-dominated phase. The energy density and pressure of the

perfect fluid are given by

ρm =
3
4

(
1− 4

β 2

)
1
t2 , (β > 2) , (2.3.21)

pm =
1
4

(
1− 4

β 2

)
1
t2 . (2.3.22)
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From (2.3.21) and (2.3.22), we get pm = ρm/3, which is the EoS of the stan-

dard radiation-dominated phase in GR. The energy density and pressure

are independent of HD term. From Eq. (2.3.18) we get (ΩT = 1), which

shows that the Universe remains flat throughout the evolution during this

phase. The deceleration parameter is q = 1 and hence the Universe ex-

pands with decelerated rate. Thus, we find that the solution in this case is

similar to the usual radiation-dominated phase of GR, which we get even if

λ ̸= 0. Therefore, it is evident that the presence of HD term does not affect

the cosmological evolution in radiation-dominated phase and remains same

as that obtained in GR.

Case (iii) Solution for α = β/3:

In this case, the scale factor evolves as a(t) ∼ t2/3, which is similar to the

standard matter-dominated era of GR. The solutions of ρm and pm are given

by

ρm =
4
3

(
1− 3

β 2

)
1
t2 +8λ

1
t4 , (β >

√
3) , (2.3.23)

pm = λ
8
t4 . (2.3.24)

In this case, both ρm and pm are determined by coupling parameter of HD

gravity, which are higher in the early evolution of the Universe and tend to

zero as t → ∞. From Eq. (2.3.18), ΩT = (1+ 6λ/t2), which shows that the

Universe was curved during early stages of its evolution. The Universe be-

comes flat, i.e., ΩT = 1 at late-time of evolution. The deceleration parameter

has the value q = 0.5, which shows that the Universe expands with deceler-

ated rate. The physical behavior of the model in this case is similar to the

standard matter-dominated phase of GR. In the absence of HD theory, the

solution reduces exactly similar to the matter-dominated phase (pm = 0) of

Einstein’s GR.

Case (iv) Solution for α = 2β/3:

In this case, the scale factor evolves as a(t) ∼ t4/3, which is a rapid power-
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law expansion. The energy and pressure have the expressions

ρm =
8
3

(
2− 3

β 2

)
1
t2 +160λ

1
t4 , (β >

√
3/2) , (2.3.25)

pm = −4
3

(
2− 3

β 2

)
1
t2 . (2.3.26)

In this case, the energy density depends on the coupling parameter of HD

gravity. However, the pressure is independent of HD term and is negative.

The density parameter has the value ΩT = (1+ 30λ/t2), which shows the

curved Universe in its early stages of evolution and flat, i.e., ΩT = 1 at late-

time. It is also observed that q =−0.25, hence, the solution obtained in this

case describes an accelerating Universe which is compatible with the recent

observations. In the absence of λ -term, the solutions (2.3.25) and (2.3.26)

give a relation pm = −ρm/2, which reveals the case of quintessence phase

(ωm < −1/3) of the accelerating Universe. It is pointed out that the higher

order correction disappears at late-time and it is only the hypothetical fluid

having negative pressure, which is responsible for giving rise to the acceler-

ated expansion of the Universe in this case.
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Figure 2.2: ρm vs. t with β = 2
√

3 and λ = 2.

Fig. 2.2 plots energy density (ρm) verses cosmic time (t) for various relation be-

tween α and β . We observe that the energy density decreases gradually with time

for α = β/2 (case(i): inflation), α = β/3 (case(iii): matter) and α = 2β/3 (case(iv):

acceleration) as compared to α = β/4 (case(ii): radiation). The energy density

is determined by the extent of coupling parameter of HD theory. It decreases
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fast in case of α = β/4 (case(ii): radiation) as compared to other three cases. In

radiation-dominated era, HD theory does not affect the behavior of the energy

density and it remains same as in Einstein gravity. In all cases the energy density

tends to zero in late times. We find that the conservation equation (2.2.7) is iden-

tically satisfied in each case. The model has a singularity at t = 0 in all phases.

Fig. 2.3 plots density parameter ΩT verses cosmic time t. We observe that
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Α=Β�2

Figure 2.3: ΩT vs. t with λ = 2.

the Universe shows curve during its early stages of evolution during inflationary

(α = β/2), matter-dominated (α = β/3) and accelerated (α = 2β/3) phases of the

Universe in HD theory. The Universe becomes flat at late-time in all phases. How-

ever, in radiation-dominated phase (α = β/4) we find a flat Universe throughout

its evolution. The HD theory does not affect the behavior of density parameter in

this case and it remains same (ΩT = 1) as in Einstein’s GR.

2.3.2 Solution for closed and open models (k =±1)

In this case, the conservation equation of the perfect fluid (2.2.7) and the wave

equation of the scalar field (2.2.8) remain unaltered. We take the same assump-

tions given in Eqs. (2.3.1) and (2.3.2) to solve the field equations (2.2.10) and

(2.2.11) along with Eq. (2.2.8). The solutions for the scalar field, scale factor and

scalar potential remain same as given by Eqs. (2.3.7), (2.3.8) and (2.3.9), respec-

tively but the energy density and pressure of the perfect fluid have the following
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expressions.

ρm = 12

[(
α
β

)2

− 1
β 2

(
α
β

)]
1
t2 +216 λ

[
4
(

α
β

)3

−
(

α
β

)2
]

1
t4

+
3k

a2
⋆t4 α/β +18 λ

[
8k
a2
⋆

(
α
β

)2 1
t2 −

(
k
a2
⋆

)2 1
t 4α/β

]
1

t4α/β , (2.3.27)

pm = − 12
(

1− β
3α

)[(
α
β

)2

− 1
β 2

(
α
β

)]
1
t2 −

k
a2
⋆

1
t 4α/β

− 72 λ

[
2
(

α
β

)
−11

(
α
β

)2

+12
(

α
β

)3
]

1
t4

+ 6 λ

[
8k
a2
⋆

{
α
β
−
(

α
β

)2
}

1
t2 −

(
k
a2
⋆

)2 1
t 4α/β

]
1

t 4α/β . (2.3.28)

The energy density and pressure are determined by a coupling parameter λ of

HD theory. The energy density tends to infinity at t = 0 and becomes zero as

t → ∞. The model has a singularity at t = 0.

It is very difficult to find the conditions for positivity of energy density for general

values of constants. For a very special case where α = β/2, a simple analysis

has been observed. In this case, we get a(t) ∼ t and q = 0, which shows the

coasting cosmology or marginal inflation. The energy density and pressure are

respectively, given by

ρm = 3
[

1− 2
β 2 +

k
a2
⋆

]
1
t2 +18λ

[
3+

2k
a2
⋆
−
(

k
a2
⋆

)2
]

1
t4 , (2.3.29)

and

pm =−
[

1− 2
β 2 +

k
a2
⋆

]
1
t2 +6λ

[
3+

2k
a2
⋆
−
(

k
a2
⋆

)2
]

1
t4 . (2.3.30)

The above solutions identically satisfy the conservation equation (2.2.7). In the

absence of HD term (λ = 0), we get pm =−ρm/3, which is the standard inflationary

phase of GR. Thus, we observe that this particular solution shows the behavior of

the inflationary phase of the Universe.

One may observe that the solutions in other cases as discussed in Sec. 2.3.1

admit the similar behavior of the radiation-dominated, matter-dominated and ac-

celerating phases of the Universe.
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2.4 Conclusion

In this chapter, we have investigated flat, open and closed FRW cosmological

models with a perfect fluid and a minimally coupled scalar field with scalar poten-

tial in HD theory of gravitation. We have assumed the scalar potential and scale

factor as exponential functions of scalar field to find the exact solutions of the

field equations. We have explored some interesting solutions exclusively for var-

ious phases of the Universe, viz., inflationary phase, radiation-dominated phase,

matter-dominated phase and accelerating phase of the Universe. The physical

relevance of each model has been discussed through some physical quantities

and cosmological parameters under certain constraints of constants.

We have found that the assumptions of V (ϕ) and a as exponential functions of

ϕ give power-law expansion. The scaler field increases with time whereas the

scalar potential decreases and tends to zero at late-time. The power-law scale

factor gives constant values of deceleration parameter and EoS parameter. We

have first explored a flat FRW model in HD theory. It has been observed that the

solution in radiation-dominated phase in HD theory is similar to GR. Thus, the

presence of HD theory does not affect the behavior of the Universe in radiation-

dominated phase. However, in inflationary, matter-dominated and accelerated

phases, the physical parameters are determined by a coupling parameter λ . We

have observed that the higher gravity correction disappears at late-time and the

solution tend asymptotically to the usual inflationary, matter-dominated and accel-

erating phases in GR. The physical behavior of energy density versus time has

been shown in fig. 2.2 for all these phases. In each case the energy-density is

decreasing function of t and it becomes infinite at t = 0 but tends to zero as t → ∞.

Therefore, each model has singularity at t = 0.

We have also noted an interesting new solution, which admits an accelerating

quintessence Universe with pm = −ρm/2 and q = −0.25. Hence, it is consistent

with the recent observations. It has been noted that the acceleration is caused by

the scalar field only which provides negative pressure to give rise to the acceler-

ated expansion of the Universe at late-time. The pressure, in this case, does not

involve higher order correction. Therefore, we conclude that the late-time cosmic

acceleration is caused by the hypothetical fluid (scalar field) in our model. The

HD theory is not responsible for late-time acceleration.
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We have also discussed the density parameter in each phase. Its behavior has

shown in fig. 2.3 It has been observed that the Universe was curved during early

times and becomes flat at late-time evolution. However, in radiation-dominated

phase, the Universe remains flat throughout its evolution.

We have also presented the solution for closed and open FRW models in HD

theory and discussed the solution for a very special case which shows the coast-

ing cosmology. The conservation Eq. is identically satisfied in all phases of evolu-

tion of the Universe which supports the consistency of the solution in HD theory.

The parameter λ when set equal to zero, the results obtained by Sen and Baner-

jee [196] for perfect fluid and scalar field may be recovered.



Chapter 3

Scalar field cosmology in higher

derivative theory

In this chapter1 we examine the dynamics of expansion of the Universe in a flat

FRW model containing a perfect fluid and a scalar field with scalar potential in

HD theory of gravity. We reconstruct the scalar field potential by assuming a

power-law expansion of the scale factor. A number of evolutionary phases of the

Universe including the present accelerating phase are studied. The properties

of scalar field and the other physical parameters are discussed in detail. It is

observed that HD term could hardly be a candidate to describe the observed

accelerated expansion of the Universe. It is only the hypothetical fluid, which

provides the late-time acceleration. It is also noted that HD theory does not affect

the evolution in radiation-dominated phase of scalar field cosmology.

3.1 Introduction

In scalar field cosmology, the usual approach to build a dynamical cosmological

model is to solve the Einstein’s equations for a given potential V (ϕ) of the scalar

field ϕ . However, a convincing and unambiguous expression for V (ϕ) is still lack-

ing [85,87]. It is due to the fact that there is no underlying principle which uniquely

1The result of this chapter is based on a research paper entitled “Power-law expansion and scalar field
cosmology in higher derivative theory", published in International Journal of Theoretical Physics 51 1889–
1900 (2012).

45



46

specifies the potential for the scalar field. The technique for reconstruction of the

potentials for scalar fields reproducing a given cosmological scenario has attract-

ed the attention of many researchers for a long time [32,46,85,87,88,193]. Some

of these were based on a new particle physics and gravitational theories [32]. Oth-

ers were postulated ad hoc to obtain the desired evolution of the scale factor [193].

For instance, one can have power-law or exponential inflation consistent with the

model with an arbitrary potential which may drive inflation and late-time acceler-

ation of the Universe [38, 46, 82–88, 145, 199]. In previous chapter we have also

considered this usual approach by assuming scalar field potential and scale factor

varying exponentially with scalar field which lead to the power-law expansion of

the scalar factor with time [196].

Using a technique different from the usual approach, Ellis and Madsen [193]

introduced a new scheme to obtain the expressions for the scalar potential for a

given evolution of the Universe in the framework of Einstein gravity. The authors

considered a FRW model containing a minimally coupled classical scalar field and

a perfect fluid in the form of non-interacting radiation to find suitable potentials for

different inflationary models in an elegant way. They solved the field equations

for the scalar field ϕ for a variety of given scale factors of the Universe for which

the required potentials were then derived. Following the similar technique of Ellis

and Madsen [193], Paul [146] have obtained some new and interesting scalar

potentials for interacting scalar field in HD theory for some known behaviours of

the Universe such as de Sitter expansion and power-law inflation.

In the present chapter, we study a flat FRW model filled with a minimally coupled

scalar field and a perfect fluid in HD theory. Following a technique to determine

potential similar to that used by Ellis and Madsen [193] in Einstein gravity and

Paul [146] in HD gravity, we also explore a specific expression for the scalar field

and the corresponding scalar potential by assuming a power-law expansion of the

scale factor. We study the behaviour of the scalar field and the corresponding po-

tential in the early and late-time evolution of the Universe through EoS parameter

of the scalar field.
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3.2 Model and the field equations

We consider the case of a spatially flat (k = 0) FRW Universe, described by the

line-element (1.2.2)

ds2 =−dt2 +a2(t)
[
dr2 + r2 (dθ 2 + sin2 θ dφ2)] . (3.2.1)

The Ricci scalar for (3.2.1), is given by

R =−6
[
Ḣ +2H2] . (3.2.2)

For the metric (3.2.1) and the energy-momentum tensor (2.2.3), the field equa-

tions of HD gravity (2.2.2) for (k = 0), yield

3H2 −18λ
[
2ḦH − Ḣ2 +6ḢH2] = ρm +ρϕ , (3.2.3)

2Ḣ +3H2 −6λ
[
2

...
H +12ḦH +18ḢH2 +9Ḣ2] = −pm − pϕ . (3.2.4)

In present study, we again assume that both the matters (perfect fluid and scalar

field) do not interact each other. Therefore, we use separate energy-conservation

laws as defined in Eqs. (2.2.7) and (2.2.8), respectively.

3.3 Solution of the field equations

In chapter 2, we have assumed that the scalar field potential and the scale factor

evolve exponentially with the scalar field. In this chapter, we are interested to find

the form of the scalar field potential in HD theory. In reconstruction scheme of

scalar field cosmologies, the scalar field potential is required a known evolution

of the Universe in the framework of the concerned theory. We have seen that the

two assumptions made in chapter 2, naturally lead to the power-law expansion

of the scale factor with time [196]. The considerable importance of exact power-

law solution is the representation of all possible cosmological evolutions [200].

Therefore, in first assumption, we consider the power-law expansion of the scale

factor in its usual form, i.e.,

a = a0

(
t
t0

)n

, (3.3.1)
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where a0 is a positive constant and n ≥ 0, which determines the expansion of the

scale factor in the different phases of evolution of the Universe. Eq. (3.3.1) gives

accelerated expansion when n > 1. The speed is ȧ = na/t and acceleration is

ä = n(n−1)a/t2. Here a0 and t0 are the present values of a and t.

The deceleration parameter (1.7.10) for (3.3.1) gives

q =
1−n

n
, (3.3.2)

with 0 < n < 1 for decelerated expansion, n > 1 for accelerated expansion and

n = 1 corresponds to the marginal inflation of the Universe.

The Hubble parameter (1.7.5) for power-law expansion (3.3.1), is given by

H =
n
t
. (3.3.3)

Using (3.3.3) in (3.2.2), we have R ∝ t−2, and consequently, R2 ∝ t−4.

In the second assumption, we consider the perfect fluid EoS (1.5.7), which can

be taken as

pm = ωmρm, where ωm = γ −1. (3.3.4)

Using Eqs. (3.3.4) and (3.3.3), the conservation equation of the perfect fluid, i.e.,

Eq. (2.2.7) readily integrates to obtain

ρm = ρm0 t−3n(1+ωm) , (3.3.5)

where, ρm0 = c0(tn
o/ao)

3(1+ωm) and c0 is a constant of integration. For ρm0 > 0 we

must have c0 > 0.

Now, Eq. (3.2.3) can be rewritten as

ρϕ = 3H2 −18 λ [2HḦ − Ḣ2 +6ḢH2]−ρm . (3.3.6)

Using of (3.3.3) and (3.3.5), (3.3.6) gives

ρϕ =
3n2

t2 − ρm0

t3n(1+ωm)
+

54 λ n2(2n−1)
t4 . (3.3.7)
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The energy conservation equation of the scalar field (2.2.8) can be written as

ρ̇ϕ +3H(ρϕ + pϕ ) = 0, (3.3.8)

which gives

ϕ̇ 2 =− 1
3H

dρϕ

dt
. (3.3.9)

Using Eqs. (3.3.3) and (3.3.7) into the above equation, we obtain the kinetic term

in terms of t

ϕ̇ 2 =
2n
t2 − (1+ωm)ρm0

t3n(1+ωm)
+

72 λ n (2n−1)
t4 , (3.3.10)

which should not be negative for the model to be consistent, and therefore, it must

has the restriction

2n
t2 − (1+ωm)ρm0

t2n(1+ωm)
+

72λn(2n−1)
t4 ≥ 0 . (3.3.11)

Using (3.3.7) and (3.3.10) into (1.10.5), the scalar field potential is given by

V (t) =
n(3n−1)

t2 +
[(1+ωm)−2]ρm0

2 t 3n(1+ωm)
+

18 λ n (2n−1)(3n−2)
t4 , (3.3.12)

which represents the potential as a function of time t. We observe that the ki-

netic term and the scalar potential have the term of 1/t4 due to HD gravity. The

Einstein’s solutions may be recovered for n = 1/2 or λ = 0.

On integrating Eq. (3.3.10), one can find the scalar field as a function of time. In-

verting the time parameter as a function of ϕ and substituting the obtained relation

into Eq. (3.3.12), one arrives to the uniquely reconstructed potential V (ϕ).

Using (3.3.10) and (3.3.12), the time-dependent pressure of the scalar field is

extracted from (1.10.6), as

pϕ =
n(2−3n)

t2 +
18 λ n(2n−1)(4−3n)

t4 − ((1+ωm)−1)ρm0

t3n(1+ωm)
. (3.3.13)

Thus, we straight forward reach to the time evolution of EoS parameter corre-

sponding to the scalar field

ωϕ =
pϕ

ρϕ
=

n(2−3n)
t2 +

18 λ n(2n−1)(4−3n)
t4 − [(1+ωm)−1]ρm0

t3n(1+ωm)

3n2

t2 − ρm0

t3n(1+ωm)
+

54 λ n2(2n−1)
t4

. (3.3.14)
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3.4 Evolution of the Universe

It is very difficult to integrate Eq. (3.3.10) for ϕ(t), in general. Since the evolution

of the Universe is usually divided in several phases, during each of them some

kind of assumptions are made to simplify the system of equations. Therefore, it is

reasonable to explore the above solutions for the standard values of EoS param-

eter ωm of the perfect fluid and corresponding value of parameter n in power-law.

Let us find some solutions and discuss their consistency in different phases of the

Universe in the following subsections.

3.4.1 Solution with ωm =−1/3 and n = 1

In this case, we get pm =−ρm/3 and the scale factor varies as a linear expansion,

i.e., a ∼ t, which is the case of inflationary phase. The energy density varies as

inverse of cosmic time t, i.e., ρm ∼ 1/t2. The deceleration parameter has the value

q = 0, which implies the ‘coasting cosmology or marginal inflationary phase’ of the

early Universe.

In this case, Eq. (3.3.10) becomes

ϕ̇ 2(t) = 2
(

1− ρm0

3

) 1
t2 +

72 λ
t4 , (ρm0 ≤ 3) (3.4.1)

which, on integration, it gives

ϕ(t)−ϕ1 =
√

D1

log

2D1t

1+

√
1+

72 λ
D1t2

−
√

1+
72 λ
Bt2

 , (3.4.2)

where ϕ1 is a constant of integration and D1 = 2(1−ρm0/3). We consider here and

thereafter only positive sign without loss of generality.

From Eq. (3.3.12), the scalar potential takes the form

V (t) = 2
(

1− ρm0

3

) 1
t2 +

18 λ
t4 . (3.4.3)

From (3.4.2) and (3.4.3), we observe that the kinetic term ϕ̇ 2(t) and the poten-

tial function V (t) decrease from large values to zero during the evolution of the

Universe. The kinetic term and the scalar potential have the same expression

(V = ϕ̇ 2) in the absence of HD theory (λ = 0).
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Equations (3.3.7) and (3.3.13) give the scalar field energy density and pressure,

respectively as

ρϕ = 3
(

1− ρm0

3

) 1
t2 +

54 λ
t4 , (3.4.4)

pϕ =−
(

1− ρm0

3

) 1
t2 +

18 λ
t4 , (3.4.5)

which show that both ρϕ and pϕ decrease with time.

Equation (3.3.14) gives

ωϕ =
−
(

1− ρm0

3

) 1
t2 +

18 λ
t4

3
(

1− ρm0

3

) 1
t2 +

54 λ
t4

. (3.4.6)

It is observed that ωϕ = 1/3 when t → 0 or ρmo = 3 and if t → ∞ or λ = 0 we have

ωϕ = −1/3. We also observe that ωϕ makes smooth transition from ωϕ = 1/3 to

ωϕ =−1/3, which is shown in fig 3.4. Thus, ωm = ωϕ at late-time expansion of the

Universe.

3.4.2 Solution with ωm = 1/3 and n = 1/2

In this case, we have pm = ρm/3 and a∼ t1/2, which is the usual radiation-dominated

phase. The behavior of energy density of perfect fluid is similar to that of a

radiation-dominated phase and varies as ρm ∼ 1/t2. The deceleration parameter

q = 1 and hence the Universe expands with decelerated rate.

In this case, Eq. (3.3.10) becomes

ϕ̇ 2(t) =
(

1− 4ρm0

3

)
1
t2 ,

(
ρm0 <

3
4

)
, (3.4.7)

which on integration, we get

ϕ(t)−ϕ2 =

√
1− 4ρm0

3
log t . (3.4.8)

where ϕ2 is a constant of integration.

The scalar potential has the form

V (t) =
1
4

(
1− 4ρm0

3

)
1
t2 . (3.4.9)
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It is to be noted that both the scalar field and the scalar potential are independent

of HD term, hence it is evident that the presence of HD term does not affect the

behavior of the model in radiation-dominated phase. Therefore, the cosmological

evolution remains same as in radiation-dominated phase of Einstein’s gravity.

Inverting Eq. (3.4.8), we find

t(ϕ) = exp

 1√
1− 4ρm0

3

(ϕ(t)−ϕ2)

 . (3.4.10)

Hence, Eq. (3.4.9) becomes

V (ϕ) =
3
4

(
1− 4ρm0

3

)
exp

[
−2

√
3

3−4ρm0

(
ϕ(t)−ϕ2

)]
. (3.4.11)

The above expression shows that the scalar potential decreases exponentially

with the scalar field as shown in fig. 3.1.
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Figure 3.1: Scalar potential V (ϕ) vs. scalar field ϕ with ϕ2 = 0, and ρm0 = 2/3.

If 3(1− 4ρm0/3)/4 = V0, 1/
√

V0 = β and ϕ2 = 0 then V (ϕ) = V0e−βϕ , thus, the

exponential potential (2.3.1) considered in chapter 2 is recovered. Similarly, the

scale factor assumed in (2.3.2) of the form a = a0eαϕ may be recovered.

From Eqs. (3.3.7) and (3.3.13), the scalar field density and pressure are respec-

tively become

ρϕ =

(
3
4
−ρm0

)
1
t2 , (3.4.12)

pϕ =
1
3

(
3
4
−ρm0

)
1
t2 . (3.4.13)
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From these equations the EoS parameter of scalar field and perfect fluid have the

same constant value, i.e., ωϕ = 1/3 = ωm at all times during the radiation epoch,

hence the behavior of scalar field density and pressure are similar to radiation

era as observed in GR. The Universe decelerates throughout the evolution during

radiation-dominated phase even if λ ̸= 0 in HD theory. For ρm0 = 3/4, the scalar

field cosmology vanishes and the solutions reduce to the perfect fluid model in

this case.

3.4.3 Solution with ωm = 0 and n = 2/3

For these values of ωm and n, we get pm = 0 and a ∼ t2/3 respectively, which

corresponds to the matter-dominated phase. The deceleration parameter has the

value q = 0.5, which shows that the Universe expands with decelerated rate. The

energy density varies as ρm ∼ 1/t2.

The kinetic term is given by

ϕ̇ 2(t) =
(

4
3
−ρm0

)
1
t2 +

16 λ
t4 ,

(
ρm0 <

4
3

)
. (3.4.14)

Integrating Eq. (3.4.14), we obtain

ϕ(t)−ϕ3 =
√

D2

log

2D2t

1+

√
1+

16 λ
D2t2

−

√
1+

16 λ
D2t2

 , (3.4.15)

where ϕ3 is a constant of integration and D2 = (4−3ρm0)/3.

The scalar potential becomes

V (t) =
(

4−3ρm0

6

)
1
t2 . (3.4.16)

It is to be noted that the scalar field ϕ contains the coupling parameter λ but the

scalar potential V (t) is independent of HD term. Therefore, the scalar potential is

similar to the Einstein’s gravity during the matter-dominated era.

In this case, the scalar field density and pressure are respectively given as

ρϕ =

(
4
3
−ρm0

)
1
t2 +

8 λ
t4 , (3.4.17)

pϕ =
8 λ
t4 . (3.4.18)
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Both the quantities, ρϕ and pϕ are decreasing function of time.

The EoS parameter of scalar field is given by

ωϕ =

8 λ
t4(

4
3
−ρm0

)
1
t2 +

8 λ
t4

. (3.4.19)

As t → 0 or ρmo = 4/3, we get ωϕ = 1, i.e., the scalar field represents the stiff matter

(pϕ = ρϕ ). As t → ∞ or λ = 0 we have ωϕ = 0, which is equivalent to the EoS of

matter-dominated phase. This shows that the scalar field acts like stiff matter at

early time but in late-time it behaves as pressureless dust in matter-dominated

phase. The scalar field does not inflate the Universe during the matter-dominated

era even in HD theory.

3.4.4 Solution with ωm =−1/2 and n = 4/3

In this case, we get pm =−ρm/2, a ∼ t4/3 and ρm ∼ 1/t2. The deceleration param-

eter q = −0.25 which reveals the case of quintessence phase of the accelerating

Universe.

Eq. (3.3.10) gives

ϕ̇ 2(t) =
(

8
3
− ρm0

2

)
1
t2 +

160 λ
t4 ,

(
ρm0 <

16
3

)
, (3.4.20)

which on integration, we get

ϕ(t)−ϕ4 =
√

D3

log

2D3t

1+

√
1+

160 λ
D3t2

−

√
1+

160 λ
D3t2

 , (3.4.21)

where ϕ4 is the integration constant and D3 = (16−3ρm0)/6.

From Eq. (3.3.12), we obtain

V (t) =
(

4− 3ρm0

4

)
1
t2 +

80 λ
t4 . (3.4.22)

From Eqs. (3.4.21) and (3.4.22), it is evident that the scalar field and the scalar

potential depend on the coupling parameter associated with the HD term. The

solutions obtained here describe an accelerating Universe which is compatible

with the recent observations.
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Eqs. (3.3.7) and (3.3.13) give

ρϕ =

(
16
3
−ρm0

)
1
t2 +

160 λ
t4 , (3.4.23)

pϕ = −1
2

(
16
3
−ρmo

)
1
t2 . (3.4.24)

Therefore, the EoS parameter of scalar field evolves as

ωϕ =

−1
2

(
16
3
−ρmo

)
1
t2(

16
3
−ρm0

)
1
t2 +

160 λ
t4

. (3.4.25)

If t → 0 or ρm0 = 16/3 we get ωϕ = 0, and if t → ∞ or λ = 0, we get ωϕ = −1/2,

i.e., the quintessence model. The Universe is matter-dominated at early time and

quintessence-dominated at late-time. The scalar field and the perfect fluid have

the same behavior at late-time. The pressure is negative and does not contain

HD term which provides the repulsion to accelerate the Universe in late times.

Since R2 correction tends to zero as t → ∞, therefore, it is only the scalar field

contribution that causes the accelerated expansion of the Universe. Thus, HD

theory is not responsible for late-time acceleration in th present model.

Figs. 3.2 and 3.3 plot scalar field ϕ(t) verses time and scalar potential V (t)

verses time, respectively, for above discussed different phases of the Universe for

some particular values of parameters.
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Figure 3.2: ϕ(t) vs. t with ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0, λ = 2 and ρm0 = 2/3.

In fig. 3.2, we observe that the scalar field increases with decelerated rate

during all phases. However, it grows faster in radiation-dominated phase due to
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the absence of HD term.
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Figure 3.3: V (t) vs. t with λ = 2 and ρm0 = 2/3.

In fig. 3.3, the scalar field potential decreases slowly with time in inflationary,

matter-dominated and accelerated phases in compare to the radiation-dominated

phase where it shows the graph same as in GR. It decreases fast in radiation-

dominated phase due to the absence of HD term.
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Figure 3.4: ωϕ (t) vs. t with λ = 2 and ρm0 = 2/3.

Fig. 3.4 plots ωϕ (t) verses t for certain values of the arbitrary constants for

different phases of the Universe. It is clear that ωϕ = ωm as t → ∞ in all cases as

discussed above since the R2 → 0 at late-time.

3.5 Conclusion

In this chapter, we have studied a flat FRW model containing R2 terms in the cur-

vature, a self-interacting scalar field and a perfect fluid. Exact solutions for scalar
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field density, scalar potential and some other physical parameters have been de-

termined under the assumptions of power-law expansion of the scale factor. We

have observed that the power-law cosmology is compatible with the observations

since it gives a constant deceleration parameter to describe the decelerated and

accelerated phases of the Universe.

The field equations have been solved exactly for specific values of EoS pa-

rameter of perfect fluid in different phases of evolution of the Universe. We have

noted that the physical quantities contain higher order terms in inflationary, matter-

dominated and accelerated phases whereas HD theory does not affect the behav-

ior of radiation-dominated era. In radiation phase we have obtained the solution

similar to Einstein’s gravity. In radiation era, it has been possible to reconstruct

the scalar field potential V (ϕ) as a function of ϕ of the form V (ϕ) =V0e−β0ϕ which

is similar to that we have assumed in chapter 2. The scale factor of the form

a = a0eαϕ , which we have assumed in chapter 2 may also be recovered in radia-

tion phase. The model has Big-Bang singularity at t = 0.

The Universe decelerates (q < 0) during radiation- and matter-dominated phas-

es even in the presence of HD terms. In case of ωm = 1/2 and n = 4/3, it has

been observed that HD theory is not responsible for late-time acceleration of the

Universe. It is only the hypothetical fluid (scalar field), which gives rise to the ac-

celerated expansion at late-time where the higher gravity correction disappears.

The scalar field acts as quintessence at late-time of evolution of the Universe.

Thus, HD theory is useful to study the Universe in early time of its evolution.

It is to be noted that if the HD term is removed, i.e., λ = 0, the solutions obtained

here are similar to that studied by Ellis and Madsen [193] in the Einstein’s gravity.

In the absence of the perfect fluid, the solutions reduces to the solutions that

obtained by Paul [146] in HD theory.





Chapter 4

Emergent Universe with exotic matter

in higher derivative theory

In this chapter1 we explore the possibility of the emergent Universe filled with a

scalar or tachyonic field (quintessence and phantom) minimally coupled to gravity

in HD theory within the framework of a spatially homogeneous and isotropic flat

FRW space-time. We obtain the exact solution of gravitational field equations

and observe that the emergent Universe is not possible with quintessence scalar

and tachyonic fields but it exists with phantom scalar and tachyonic fields in HD

gravity. The models have no time-like singularity and admits an ever accelerating

Universe.

4.1 Introduction

It is well known that the standard cosmological model is plagued Big-Bang singu-

larity that lurks at the origin of the cosmic expansion. This undigestible feature of

an initial singularity is a state of infinite energy density and pressure where the

laws of physics break down. So a fundamental cosmological shortcoming arises

naturally: what was there before the stage of classical expansion of the “Big-

Bang" ? To elude this serious problem several solutions have been proposed.

1The content of this chapter in the form of research paper entitled “Emergent Universe with scalar (or
tachyonic) field in higher derivative theory", has been published in Astrophysics and Space Science 339
101–109 (2012).
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Some arguments were put forward for several inflationary cosmologies that were

past-eternal. An alternative is the possibility of a fetus Universe which existed as

an eternal “seed" before sprouting into the macroscopic Universe. Harrison [201]

found an exact solution of a radiation-dominated closed Universe with a positive

cosmological constant having similar properties. In Harrison’s mechanism, the

Universe originates from an Einstein static state with a radius determined by the

value of Λ, before entering into a endless period of de Sitter expansion.

Later on, an interesting model of this scenario was presented by Ellis and

Maartens [202] for a spatially closed space-time filled with ordinary matter and

minimally coupled scalar field, which was also past asymptotic to an Einstein

static Universe with a radius determined by kinetic energy of scalar field. Ellis et

al. [203] proposed a closed Universe in which there was no beginning of time,

and therefore, no time-like singularity, which also effectively avoids any quantum

regime by staying large enough at all times. Their model also relies on a minimal-

ly coupled scalar field ϕ with a special form of interacting potential V (ϕ) which is

asymptotically flat as ϕ →−∞, but reaches at maximum as ϕ → 0, signaling the

beginning of de Sitter inflationary phase. The de Sitter inflation naturally comes

to an end as the scalar field starts oscillating around the minimum of its potential,

before entering into the next phases of standard hot Big-Bang expansion. In this

way the search of singularity free Universe in the context of classical GR led to

the development of so called “Emergent Universe (EU)".

The salient features of EU are summarized in refs. [204] as follows.

1. The most recognizable description of EU is that this scenario replaces the

Big-Bang singularity by an Einstein static phase occurring over an infinite

time in the past.

2. Consequently, it is ever existing and hance there is no Big-Bang singularity.

3. There is no quantum era because the initial static state can be chosen to

have a radius larger than the Planck scale.

4. There is no horizon problem since the Universe is always large enough so

that the classical description of isotropy and homogeneity may be adequate.

5. The Universe may contain exotic matter so that the energy conditions may

be violated.
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6. The Universe may accommodate late-time acceleration as well.

A viable cosmological model should exhibit an inflationary phase in the early time

and an accelerating phase at late-time, the EU scenario is also promising from this

perspective of offering early and late-time dynamics of the Universe in an unified

manner. It is to be noted that the focal point of such unification lies in the choice

of either the EoS for matter or on the scalar field dynamics through the different

choices of scalar field potentials [88, 205]. A general framework of EU scenario,

containing a polytropic fluid with a non-linear EoS of the form p = γ1ρ − γ2
√ρ,

where γ1 and γ2 are constants, has been proposed by Mukherjee et al. [206] for

a flat model in GR. Paul et al. [207, 208] have found the range of the permissible

values for the parameters γ1 and γ2 needed for EU, using observational data from

H(z) and BAO. Recently, Marra et al. [209] have imposed tight bounds on these

constraints from Planck 2013 observational data.

Most of the EU scenarios are expected to be dominated by some energy com-

ponent that violates strong energy condition (SEC) to attain the transition from

the static phase to inflationary phase. Therefore, the Universe must include some

exotic matter sources. It has also been shown that the matter which violates the

SEC, allows the cyclic (oscillating and non-singular) Universe [210]. One way

to get a transition from a decelerating phase to an accelerating phase in a flat

Universe is to violate the weak energy condition (WEC). It seems that similar

solutions should also appear for the phantom matter which violates WEC and

SEC [58,68,68,71,74,75,152,211,212]. Debnath [213] has studied the behavior

of different stages of the evolution of EU filled with normal matter and a phantom

field (or tachyonic field) in GR.

Phantom matter may also arise in higher order theories of gravity [214]. There-

fore, many authors have been realized the EU scenario in modified theories of

gravitation. Campo et al. [215] have studied EU in the context of a self-interacting

Jordan-Brans-Dicke theory. Banerjee et al. [216,217] have discussed EU models

in Brane-World scenario. Beesham et al. have studied nonlinear sigma model of

EU with (exact global phantonical solution) [218], and with dark sector fields (a

chiral cosmological model) [219]. Mukerji and Chakraborty [220], and Paul and

Ghose [221] independently developed EU scenario in Einstein-Gauss-Bonnet the-

ory. Mukerji and Chakraborty [222] have considered the FRW cosmological model

of EU in Horaṽa gravity. Debnath and Chakraborty [223], in Brane World scenario
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and Chakraborty and Debnath [224] in anisotropic Universe have examined EU

and found that this scenario could be realized fairly well. Recently, Chervon et

al. [225] have analysed chiral cosmological fields in Einstein-Gauss-Bonnet grav-

ity.

Murlryne et al. [226] have pointed out that the scalar potential for scalar field

chosen by Ellis et al. [203] is similar to what one obtains from a modified gravita-

tional action with a polynomial Lagrangian, R+λR2 [126,227–231]. This concept

motivates us to examine EU in R+ λR2 gravity by taking scalar and tachyonic

fields with their corresponding potentials.

In the present chapter, we seek the possibility of EU scenario in HD theory for

a flat FRW model with quintessence or phantom scalar field or tachoynic field

(normal or phantom) minimally coupled to gravity with corresponding potentials.

4.2 Quintessence and phantom scalar fields models

4.2.1 Gravitational action and the field equations

The gravitational action for HD theory of gravity with quintessence or phantom

scalar field ϕ , minimally coupled to gravity in the units of 8πG = 1 = c, is given by

S =
∫ [1

2
(
R+λR2)+ 1

2
εϕ ,µ ϕ ,µ +V (ϕ)

]√
−g d4x , (4.2.1)

where ε =±1 correspond to normal and phantom scalar field, respectively.

Variation of action (4.2.1) with respect to the metric tensor, gµν leads to the

following field equations

Rµν −
1
2

gµνR+λ
[

2R(Rµν −
1
4

gµνR)+2
(
∇µ∇ν −gµν�

)
R
]
= T (ϕ)

µν , (4.2.2)

where T (ϕ)
µν is the energy-momentum tensor of quintessence or phantom scalar

field, given in Eq. (1.10.3).

We consider a homogeneous and isotropic flat FRW model which is given by the

metric (3.2.1). The field equations (4.2.2) with energy-momentum tensor (1.10.3)
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for the line-element (3.2.1), yield

3H2 −18λ
[
2ḦH − Ḣ2 +6ḢH2] =

1
2

εϕ̇ 2 +V (ϕ) , (4.2.3)

2Ḣ +3H2 −6λ
[
2

...
H +12ḦH +18ḢH2 +9Ḣ2] = −

[
1
2

εϕ̇ 2 −V (ϕ)
]
. (4.2.4)

We also consider the Klein-Gordon equation (1.10.7) for scalar field and the EoS

parameter ωϕ for scalar field which is given by Eq. (1.10.8).

Now, we confine our attention towards EU. Mathematically, the scale factor of

FRW metric does not vanish in EU models and usually has the form [202,213,215]

a = a0
(
β1 + eα1t)n

, (4.2.5)

where a0, β1, α1 and n are positive constants. Accordingly, the energy density,

pressure and other physical quantities do not diverge at any stage of evolution of

the Universe. For the above form of scale factor, the Hubble parameter (1.7.5) and

its derivatives are obtained as

H =
nα1eα1t

β1 + eα1t ,

Ḣ =
nβ1α2

1 eα1t

(β1 + eα1t)2 ,

Ḧ =
nβ1α3

1 eα1t(β1 − eα1t)

(β1 + eα1t)3 ,

...
H = −

nβ1α4
1 (5e3α1t −2β1e2α1t −β 2

1 eα1t)

(β1 + eα1t)4 . (4.2.6)

Here, H and Ḣ are positive definite but Ḧ and
...
H change their sign at t =(logβ1)/α1

and t =
[
logβ1(1+

√
6)/5

]
/α1, respectively. All the four tend to zero as t → −∞

whereas the model becomes a de Sitter Universe as t → ∞.

The above specific form of Hubble parameter satisfies a first order differential

equation given by

Ḣ = α1H − 1
n

H2. (4.2.7)

The deceleration parameter q defined in (1.7.10), gives

q =−1− β1

neα1 t , (4.2.8)

which shows that q is a function of t. As t →−∞, q→−∞ and as t →∞, q asymptot-
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ically tends to -1. Thus, q < 0 throughout the evolution of the Universe and hence

the scale factor of the form (4.2.5) always exhibits an ever accelerating Universe.

On solving (4.2.3) and (4.2.4) by use of (4.2.6), we obtain

εϕ̇ 2 =−
2nβ1α2

1 eα1t

(β1 + eα1t)2 −
12nλβ1α4

1
(β1 + eα1t)4

[
(3n−1)e3α1t − (9n−4)β1e2α1t −β 2

1 eα1t] , (4.2.9)

and

V (t) =
nα2

1 (3ne2α1t +β1eα1t)

(β1 + eα1t)2 −
6nλβ1α4

1
(β1 + eα1t)4

×
[
(18n2 −9n+1)e3α1t +4(3n−1)β1e2α1t +β 2

1 eα1t] . (4.2.10)

These are the expressions of kinetic energy of quintessence or phantom scalar

field and scalar potential, respectively. It is very difficult to analyse the behav-

iors of these physical quantities due to complicated expressions. Therefore, we

examine the possibility of existence of EU scenario through some graphical repre-

sentation for quintessence and phantom scalar fields, respectively, in the following

subsections.

4.2.2 Quintessence scalar field model

For quintessence scalar field (ε =+1), Eq. (4.2.9) can be read as

ϕ̇ 2 =−
2nβ1α2

1 eα1t

(β1 + eα1t)2 −
12nλβ1α4

1
(β1 + eα1t)4

[
(3n−1)e3α1t − (9n−4)β1e2α1t −β 2

1 eα1t] . (4.2.11)

We observe that ϕ̇ 2 is negative for some particular values of parameters during
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Figure 4.1: ϕ̇ 2(t) versus t for β1 = 1, α1 = 1, n = 4/3, and λ = 1/12.
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the evolution of the Universe as shown in fig. 4.1. One may observe this behav-

ior of kinetic energy term for any set of parameters. Hence, ϕ is imaginary for

quintessence scalar field. Since the kinetic term (ϕ̇ 2/2) is negative, therefore, EU

is not possible for flat Universe with quintessence scalar field in HD theory as the

energy density of any matter can not be negative.

4.2.3 Phantom scalar field model

In case of phantom scalar field (ε =−1), Eq. (4.2.9) takes the form

ϕ̇ 2 =
2nβ1α2

1 eα1t

(β1 + eα1t)2 +
12nλβ1α4

1
(β1 + eα1t)4

[
(3n−1)e3α1t − (9n−4)β1e2α1t −β 2

1 eα1t] . (4.2.12)
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Figure 4.2: ϕ̇ 2(t) versus t for β1 = 1, α1 = 1 and n = 4/3.

The variation of ϕ̇ 2 with t for different values of λ and some particular values

of other parameters is shown in fig. 4.2. It is observed that ϕ̇ 2 is positive for

small values of λ at any time t starting with zero at infinite past. It increases to

a maximum value during the early time, goes to maximum finite value and then

starts decreasing and tends to zero at late-time. We find that ϕ̇ 2 increases or

decreases sharply in GR (λ = 0) whereas it increases or decreases gradually for

some values of λ = 1/20 and λ = 1/12. It is to be noted that the solutions are

stable for small values of λ for any time t. However, the solution is unstable for

λ = 1/10, i.e., large values of λ as shown in fig. 4.2. It is not possible to find out

the range of instability of cosmic time due to the complicated expression in Eq.

(4.2.12).
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Figure 4.3: V (t) versus t for β1 = 1, α1 = 1 and n = 4/3.

The scalar potential V (t), given in (4.2.10) is independent of ε, therefore, it re-

mains same for quintessence and phantom scalar field. Now, it is very difficult

to express the phantom field ϕ in closed form, so the potential V can not be ex-

pressed in terms of ϕ explicitly. In fig. 4.3 the graph of scalar potential with time for

some particular values of parameters shows that V (t) grows from zero at infinite

past for different values of λ and becomes flat as t → ∞. Therefore, the phantom

field rolls to the maximum of its potential and then settles to a constant value in

late-time of evolution of the Universe. It is to be noted that V (t) grows slowly with

the evolution of the Universe due to HD term as compare to GR (λ = 0). We have

also observed that the scalar field density is zero at infinite past which increases

with time and attains a maximum value in late-time of the evolution. The model
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Figure 4.4: ωϕ versus t for β1 = 1, α1 = 1 and n = 4/3.

has no time-like singularity at infinite past. It eventually evolves into an inflationary
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phase and accelerates throughout the evolution of the Universe.

From fig. 4.4 we can see that EoS parameter starts from phantom phase and

it approaches to -1 in late-time. We observe that the stability of the solutions

depend on the coupling parameter λ , i.e., the solutions are stable for small values

of λ whereas unstable for large values of λ . We conclude that EU is possible with

phantom scalar field for a flat FRW model in HD theory.

4.2.4 Particular solution

Since the field equations in HD theory permit the emergent solution (4.2.5) where

the Hubble parameter satisfies a first order differential equation (4.2.7). Let us con-

sider a particular solution by taking the particular values α1 = 1/
√

6λ and n = 2/3

in Eq. (4.2.7). For these particular values, Eq. (4.2.7) becomes [144]

Ḣ =
1√
6λ

H − 3
2

H2 . (4.2.13)

The scale factor (4.2.5) now has the form

a = a0

[
β1 + e

1√
6λ

t
] 2

3

. (4.2.14)

The field equations (4.2.3) and (4.2.4) yield

εϕ̇ 2 =−4β1

9λ
e3
√

1
6λ t(

β1 + e
1√
6λ

t
)4 , (4.2.15)

and

V (t) =
2

9λ
e3
√

1
6λ t(

β1 + e
1√
6λ

t
)3 . (4.2.16)

In case of quintessence scalar field (ε = 1), it is clear from (4.2.15) that ϕ̇ 2 is

negative throughout the evolution of the Universe for any positive values of λ ,

hence ϕ becomes imaginary. But for phantom scalar field (ε =−1), ϕ̇ 2 is positive

throughout the evolution with negative kinetic term as expected. Taking ε = −1



68

and considering the positive sign of ϕ̇ , we integrate Eq. (4.2.15) to get

ϕ(t) = 2 e−
3
2

√
1

6λ t
(

β1 + e
1√
6λ

t
)√√√√√√ 2λe3

√
1

6λ t

3β1

(
β1 + e

1√
6λ

t
)

×

(β1 + e
1√
6λ

t
)

tan−1

e
1

2
√

6λ
t√

β1

−
√

β1 e
1

2
√

6λ
t

 , (4.2.17)

where the integration constant is taken to be zero for simplicity. It is very difficult

to express the phantom potential V in terms of ϕ explicitly. Therefore, we plot
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Figure 4.5: V versus ϕ for β1 = 1 and λ = 1/12.

V against ϕ for some particulars values of λ and β1 as shown in fig. 4.5. From

figure, it is to be seen that V always increases as ϕ increases from zero at infinite

past to a flat potential at late-time.

The energy density ρϕ and pressure pϕ for phantom scalar field given in (1.10.5)

and (1.10.6), respectively, gives

ρϕ =
2

9λ
e

4√
6λ

t(
β1 + e

1√
6λ

t
)4 , (4.2.18)

pϕ = − 2
9λ

e3
√

1
6λ t
(

2β1 + e
1√
6λ

t
)

(
β1 + e

1√
6λ

t
)4 . (4.2.19)
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We observe that all the physical parameters contain only HD terms in this particu-

lar model. We observe that ρϕ grows with time whereas pϕ stays negative during

the evolution of the Universe. The dominance energy condition (DEC), ρ ≥ |p|,

violates in late times. The model has no time-like singularity at any stage of its

evolution.

The value of EoS parameter is given by

ωϕ =−1−2β1e−
1√
6λ

t
, (4.2.20)

which remains less than -1 for any values of t but attains to -1 as t → ∞. The

Universe expands exponentially and accelerates throughout its evolution. It is

to be noted that this particular model is stable for any value of λ for any time t.

Hence, EU is possible with phantom scalar field for any positive value of λ in this

particular model.

4.3 Tachyonic (normal and phantom) field models

4.3.1 Action and the field equations

The gravitational action for HD theory of gravity with a tachyonic field ψ, minimally

coupled to gravity in the units 8πG = 1 = c, is given as

S =
∫ [1

2
(
R+λR2)+V (ψ)

√
1− ε∇σ ψ∇σ ψ

]√
−g d4x , (4.3.1)

where V (ψ) is relevant tachyonic potential of tachyonic field. Here, ε =±1 corre-

spond to normal and phantom tachyonic fields, respectively.

The energy-momentum tensor T (ψ)
µν for tachyonic field is given by Eq. (1.10.11).

The field equations (1.10.17) of HD gravity with energy-momentum tensor (1.10.11)

for a flat FRW line-element (3.2.1) in HD theory, yield

3H2 −18λ
[
2ḦH − Ḣ2 +6ḢH2] =

V (ψ)√
1− εψ̇2

, (4.3.2)

2Ḣ +3H2 −6λ
[
2

...
H +12ḦH +18ḢH2 +9Ḣ2] = V (ψ)

√
1− εψ̇2. (4.3.3)
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Solving (4.3.2) and (4.3.3), we get

εψ̇2 =
−2Ḣ +12λ

[...
H +3ḦH +6Ḣ2][

3H2 −18λ{2ḦH +6ḢH2 − Ḣ2}
] , (4.3.4)

and

V (ψ) =
√

3H2 −18λ
(
2ḦH +6ḢH2 − Ḣ2

)
×
√

2Ḣ +3H2 −6λ
(
2

...
H +12ḦH +18ḢH2 +9Ḣ2

)
. (4.3.5)

Now, we examine the possibility of EU for normal and phantom tachyonic fields,

respectively, in the following subsections.

4.3.2 Normal tachyonic field model

From Eqs. (4.3.4) and (4.3.5), by use of (4.2.6), we get the following expressions

for kinetic term of normal tachyonic field (ε =+1) and tachyonic potential, respec-

tively

ψ̇2 =

−2nβ1α2
1 eα1t

(β1 + eα1t)2 −
12nλβ1α4

1
(β1 + eα1t)4

[
(3n−1)e3α1t − (9n−4)e2α1t −β 2

1 eα1t]
3n2α2

1 e2α1t

(β1 + eα1t)2 −
18n2λβ1α4

1
(β1 + eα1t)4

[
2(3n−1)e3α1t +β1e2α1t] , (4.3.6)

V (t) =
[

3n2α2
1 e2α1t

(β1 + eα1t)2 −
18n2λβ1α4

1
(β1 + eα1t)4{2(3n−1)e3α1t +β1e2α1t}

] 1
2

×
[

nα2
1 (3ne2α1t +2β1eα1t)

(β1 + eα1t)2 −
6nλβ1α4

1
(β1 + eα1t)4{n0e3α1t +(21n−8)β1e2α1t +2β 2

1 eα1t}
] 1

2

.

(4.3.7)

where n0 = 2(9n2−6n+1). Again, it is very difficult to draw conclusion from above

complicated expressions. Therefore, we observe from graphical representation

that ψ̇2 is negative for any set of values of parameters, therefore, ψ becomes

imaginary. Hence, EU does not exist with normal tachyonic field in HD theory.
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4.3.3 Phantom tachyonic field model

In case of phantom tachyonic field (ε =−1), the kinetic term of tachyonic field (ψ̇2)

takes the form

ψ̇2 =

−2nβ1α2
1 eα1t

(β1 + eα1t)2 −
12nλβ1α4

1
(β1 + eα1t)4

[
(3n−1)e3α1t − (9n−4)e2α1t −β 2

1 eα1t]
−3n2α2

1 e2α1t

(β1 + eα1t)2 +
18n2λβ1α4

1
(β1 + eα1t)4

[
2(3n−1)e3α1t +β1e2α1t] . (4.3.8)

Fig. 4.6 shows that ψ̇2 is positive throughout the evolution of the Universe for
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Figure 4.6: ψ̇2(t) versus t for β1 = 1, α1 = 1 and n = 4/3.

small values of λ . It is infinite at infinite past, which decreases with time and

tends to zero at late-time. The kinetic term ψ̇2 decreases sharply in Einstein

gravity (λ = 0) as compared to HD theory.

The tachyonic potential has the same expression (4.3.7) since it is independent
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Figure 4.7: V (t) versus t for β1 = 1, α1 = 1 and n = 4/3.

of ε. It increases from zero at infinite past to a maximum constant value in late
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times as we can see in fig. 4.7.

We have also observed that the energy density for tachyonic field is positive

throughout the evolution. It is zero at infinite past, which increases with time and

finally attains a finite maximum value at late-time. The model has no time-like

singularity at any time. Therefore, EU can be described with phantom tachyonic

field in HD theory for small values of λ .

The variation of EoS parameter ωψ with time is shown in fig. 4.8. It is to be
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Figure 4.8: ωψ versus t for β1 = 1, α1 = 1 and n = 4/3.

seen that ωψ <−1 during the evolution of the Universe and settles into a state of

ωψ = −1 at late-time. The solutions are stable only for small values of coupling

parameter λ of HD theory. We conclude that the stability of the solution depends

on the coupling parameter λ , i.e., the solutions are stable for small values of λ

whereas unstable for large values of λ . We conclude that EU is possible with

phantom tachyonic field for a flat FRW model in HD theory for small values of λ .

The Universe accelerates throughout its evolution.

4.3.4 Particular solution

We solve the field equations (4.3.2) and (4.3.3) again for the same particular values

of α1 and n, i.e., α1 = 1/
√

6λ and n = 2/3 as described in Sec. 4.2.4. Considering

(4.2.13) and (4.2.14), the field equations (4.3.2) and (4.3.3) yield

εψ̇2 =−2β1 e−
1√
6λ

t
, (4.3.9)
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and

V (t) =
2

9λ

√
e

7√
6λ

t
(

2β1 + e
1√
6λ

t
)

(
β1 + e

1√
6λ

t
)4 . (4.3.10)

We see that ψ̇2 is negative for normal tachyonic field (ε = 1) for any positive value

of λ , but it is positive for phantom tachyonic field (ε =−1). Therefore, we find the

solution for phantom tachyonic field. For ε =−1 and considering the positive sign

of ψ̇ we integrate (4.3.9) to get

ψ(t) =−
√

48λβ1 e−
1√
6λ

t
, (4.3.11)

where the integration constant is taken to be zero for simplicity.

The potential function V can be expressed in terms of ψ as

V (ψ) =
2

√(
48λβ1

ψ2

)7(
2β1 +

48λβ1
ψ2

)
9λ
(

β1 +
48λβ1

ψ2

) . (4.3.12)

Fig. 4.9 plots the graph between V and ψ which shows that V increases with ψ .
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Figure 4.9: V versus ψ for β1 = 1 and λ = 1/12.

The energy density ρψ and pressure pψ for phantom (ε =−1) tachyonic field given

in (1.10.12) (1.10.13), respectively give

ρψ =
V (ψ)√
1+ ψ̇2

=
2

9λ

√
e

7√
6λ

t
(

2β1 + e
1√
6λ

t
)

(
β1 + e

1√
6λ

t
)4
√(

1+2β1e−
1√
6λ

t
) , (4.3.13)
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pψ =−V (ψ)
√

1+ ψ̇2 =− 2
9λ

√
e

7√
6λ

t
(

β1 + e
1√
6λ

t
)(

1+2β1e−
1√
6λ

t
)

(
β1 + e

1√
6λ

t
)4 . (4.3.14)

We find that ρψ grows with time and becomes constant in late times whereas the

pressure is always negative. The model has no time-like singularity.

From Eqs. (1.10.14) and (4.3.9), the EoS parameter takes the form

ωψ =−1−2β1e−
1√
6λ

t
, (4.3.15)

which always stays less than -1 during the evolution of the Universe but attains

to -1 at late-time. The solutions are stable for any value of λ for any time t. We

can say that EU is possible with phantom tachyonic field for flat FRW model in HD

theory for any positive values of λ in this particular case.

4.4 Conclusion

In this chapter, we have examined the possibility of EU scenario with scalar field

(quintessence and phantom) and tachyonic field (normal or phantom) for a flat

FRW model in HD theory of gravity. It is well known that the kinetic term must be

positive in case of quintessence scalar or normal tachyonic field in most conven-

tional models. We have found that EU is not possible for quintessence scalar and

normal tachyonic field in HD theory due to the negative kinetic term. However,

EU is possible with phantom scalar and phantom tachyonic fields. The summary

of each phantom model is as follows:

In phantom scalar field model, we have observed that ϕ̇ 2 increases from zero at

infinite past, attains a finite maximum value at some finite time and then decreases

to zero in late times. We have obtained the scalar potential which increases with

time and attains a maximum finite value at late-time evolution of the Universe.

Thus, a phantom field rolls to the maximum of its potential with positive potential

energy where ωϕ < −1 during the evolution, but settles into a state with ωϕ = −1

at late-time. In general, the stability of the solution depends on the constraints

of the arbitrary parameters. The solutions are stable for small values of coupling

parameter λ of HD theory whereas unstable for large values of λ . We have also

discussed a particular solution in subsection 4.2.4 where the model is stable for
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all positive values of λ .

In phantom tachyonic field model, the ψ̇2-term decreases from infinity at infinite

past to zero as t →∞. It remains positive during the evolution for small values of λ .

The tachyonic potential increases from zero at infinite past to a flat potential in late

times. The stability of the solution can be described in same manner as discussed

in the case of phantom scalar field. We have also discussed a particular solution

in subsection 4.3.4 which is stable for any positive value of λ . We have observed

that ωψ < −1 during the evolution of the Universe which settles into a state with

ωψ =−1 at late-time.

We have also noticed the behavior of the energy densities in each model which

are zero at infinite past and grow with time and attain a maximum finite value at

late-time. The models eventually evolve from a finite size in the infinite past into

an inflationary stage and accelerate throughout the evolution. The models have

no time-like singularity at any time. The coupling parameter λ of HD theory affects

the evolution of EU.

In concluding remark, we would like to mention that EU scenario with phantom

models arising from scalar and tachyon fields can successfully implemented in

HD theory.





Chapter 5

The modified f(R) gravity in anisotropic

model

In this chapter1, we study the generalization of HD theory, i.e., f (R) theory of grav-

ity in a locally-rotationally-symmetric anisotropic Bianchi I space-time model in the

presence of perfect fluid. A functional form of f (R) is reconstructed from the field

equations by assuming the constant deceleration parameter and the shear scalar

proportional to the expansion scalar. Exact cosmological solutions of the modi-

fied Einstein field equations are obtained by using reconstructed functional form

of f (R), which shows the decelerated phase of the Universe. We also discuss the

stability of the solution that holds good for decelerated model.

5.1 Introduction

As we have mentioned in section 1.10.4 that the functional form of f (R) accommo-

dating transition from deceleration to acceleration can be reconstructed using the

realistic expansion history of the Universe. However, the weak point of so devel-

oped reconstruction schemes is that the final function of f (R) usually possesses

some polynomial in the positive and negative powers of scalar curvature. On the

same time the viable models on f (R) theories have strongly non-linear structure.

1The work presented in this chapter comprises the results of a research paper entitled “Functional form
of f (R) with power-law expansion in anisotropic model", published in Astrophysics and Space Science 346
285–289 (2013).
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Despite the success of cosmology based on f (R) gravity, there is no general crite-

ria in the literature to gauge its viability (consistency with the experimental data).

The reconstruction of viable cosmological models of f (R) theories has become a

debate during the past few years. This debate began from ref. [90] in which the

author suggested that f (R) theories that behave as a power of R at large or small

R, are not cosmologically viable because they lead to the wrong expansion his-

tory of the Universe, viz., a ∼ t1/2 instead of a ∼ t2/3 during the matter-dominated

era. This result was challenged in refs. [163, 232, 233], which demonstrate that

a wide class of f (R) gravity models describing matter-dominated and present ac-

celerating phases can be reconstructed by means of observational data. The

debate was continued in ref. [234] in which a detailed phenomenological analysis

of the cosmic evolution of f (R) theories was presented. Finally, a numerous sim-

ple conditions for a phenomenological f (R) gravity to be viable were accumulated

in refs. [235–237].

A rather narrow class of f (R) has been found in an inverse-power-law in ref-

s. [238, 239] and in an exponential-law in ref. [236] which can satisfy the first

four viability conditions and even partially the fifth one listed in refs. [235, 236].

Thus, the debate ended with the conclusion that some specific functional forms

of f (R) may be perfectly viable in different contexts. A huge class of such viable

functional forms of f (R) gravity has been reconstructed in many dynamical DE

models during past decade [136, 164, 165, 232, 233, 240–243], being compatible

with cosmological or astrophysical test [244,245] and local gravity (solar system)

constraints [237,246–251]. Recently, some f (R) gravity models have been recon-

structed which pass all known observational local test [153].

In reconstruction schemes of cosmological models, the proposal have usually

come to find analytical solutions for some known functional form of f (R). The

ordering of this approach can also be reversed. In the reverse process, it is as-

sumed that the expansion history of the Universe is known exactly and one may

invert the field equations to deduce what class of modified theory gives rise to a

desired model [164]. Moreover, for a known scale factor one may construct func-

tional form of f (R) which yields such scale factors as solutions [165, 252]. In this

chapter, we have also reconstructed a functional form of f (R) by following this

reverse approach.

On the other hand, most of the considerations in f (R) gravity have mainly in-
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vestigated in a spatially flat homogeneous and isotropic space-time described by

FRW metric. The theoretical studies and the observational data which support the

existence of an anisotropic phase, lead to consider the models of the Universe in

anisotropic background. Many authors have explored the features of f (R) gravity

for anisotropic models [154–162]. The studies of the possible effects of anisotrop-

ic Universe in the early time make the Bianchi type I model as a prime alternative.

In this chapter, we reconstruct a functional form of f (R) for a known scale factor

in a locally-rotationally-symmetric Bianchi-I space-time with a perfect fluid. We

obtain the exact cosmological solutions using the reconstructed functional form of

f (R) and discuss the viability of the model. We take the viability constraints that

exist in the literature to analyze the stability of the obtained functional form.

5.2 The LRS Bianchi I model

Let us consider a homogenous and anisotropic locally-rotationally-symmetric (LRS)

Bianchi type-I line-element which is given by

ds2 =−dt2 +A2dx2 +B2(dy2 +dz2), (5.2.1)

where the metric coefficients A and B are the directional scale factors in an

anisotropic background and are functions of cosmic time t only.

The average scale factor is defined as

a= (AB2)
1
3 . (5.2.2)

The rates of the expansion along x, y, and z-axes are given by

Hx =
Ȧ
A
, Hy = Hz =

Ḃ
B
, (5.2.3)

where an over dot denotes ordinary derivative with respect to cosmic time t. The

average Hubble parameter (average expansion rate), which is the generalization

of the Hubble parameter in an isotropic case, H is given as

H =
1
3
(Hx +Hy +Hz) =

1
3

(
Ȧ
A
+2

Ḃ
B

)
. (5.2.4)
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The anisotropy parameter A , the expansion scalar ϑ , and the shear scalar σ are

respectively defined as

A =
1
3

3

∑
i=1

(
Hi −H

H

)2

. (5.2.5)

ϑ = 3H = ui
;i =

Ȧ
A
+2

Ḃ
B
, (5.2.6)

σ2 =
1
2

σi jσ i j =
1
3

(
Ȧ
A
− Ḃ

B

)2

, (5.2.7)

where

σ1
1 =

2
3

(
Ȧ
A
− Ḃ

B

)
,

σ2
2 = σ3

3 =−1
3

(
Ȧ
A
− Ḃ

B

)
, σ4

4 = 0, (5.2.8)

The scalar curvature for the metric (5.2.1) has the form

R =−2
(

Ä
A
+2

B̈
B
+2

ȦḂ
AB

+
Ḃ2

B2

)
. (5.2.9)

5.3 The action and the field equations in f (R) gravity

The gravitational action for f (R) theory of gravity (1.10.18) coupled with matter

Lagrangian in the units 16πG = 1 = c, reduces to the following form [100,103,165]

S =
∫

[ f (R)+Lm]
√
−g d4x, (5.3.1)

where Lm is the Lagrangian density.

The field equations are obtained by varying the action (5.3.1) with respect to

metric tensor gµν , which are given by

F(R)Rµν −
1
2

f (R)gµν −
(
∇µ∇ν −gµν�

)
F(R) = Tµν , (5.3.2)

where F(R) = f ′(R). A prime denotes derivative with respect to argument and Tµν

is the energy-momentum tensor of perfect fluid defined in (2.2.4). Hence, we take

ρm ∼ ρ and pm ∼ p for the energy density and pressure of the perfect fluid.

Using metric (5.2.1) and energy-momentum tensor (2.2.4) into the field equations
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(5.3.2), we obtain the following system of equations(
Ä
A
+2

B̈
B

)
F +

1
2

f −
(

Ȧ
A
+2

Ḃ
B

)
Ḟ = −ρ , (5.3.3)(

Ä
A
+2

ȦḂ
AB

)
F +

1
2

f − F̈ −2
Ḃ
B

Ḟ = p, (5.3.4)(
B̈
B
+

ȦḂ
AB

+
Ḃ2

B2

)
F +

1
2

f − F̈ −
(

Ȧ
A
+

Ḃ
B

)
Ḟ = p. (5.3.5)

From (5.3.4) and (5.3.5), we get

Ḟ
F

=−

(
Ä
A − B̈

B +2 ȦḂ
AB − Ḃ2

B2

)
(

Ȧ
A + Ḃ

B

) . (5.3.6)

On integration of (5.3.6), we obtain

F =
F0

B(ȦB− ḂA)
, provided A ̸= bB, (5.3.7)

where F0 is a constant of integration and b is a positive real number.

5.4 Reconstruction of f (R)

For any physically relevant model, the Hubble parameter and the deceleration pa-

rameter are the most important observational quantities in cosmology. Berman

[253]; and Berman and Gomide [254] proposed a law of variation for Hubble pa-

rameter in FRW model that yields a constant value of deceleration parameter and

a power-law and exponential forms of scale factor. In recent references [255–260]

this assumption has been generalized in anisotropic models. According to this as-

sumption let us consider a constant deceleration parameter, that is,

q = m−1, (5.4.1)

where m(≥ 0) is a constant. It is to be noted that this form of deceleration pa-

rameter is same as given in Eq. (3.3.2) for m = 1/n. The Universe decelerates for

m > 1, accelerates for m < 1 and m = 1 gives marginal inflation.

In the present anisotropic model, the assumption (5.4.1) yields

a= (AB2)
1
3 = (a0 +a1t)

1
m , m ̸= 0, (5.4.2)
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where a0 and a1 are positive constants of integration. For a power-law expansion

(5.4.2), we must have m > 0.

In view of anisotropy of the space-time, we assume that shear scalar (σ ) is pro-

portional to the expansion scalar (ϑ ), which lead to the following relation between

the metric coefficients [261]

A = Bτ , (5.4.3)

where τ > 1 is a constant. For sake of simplicity, we take the proportionally con-

stant as unity.

Using (5.4.2) and (5.4.3), we get the metric coefficients as

A = (a0 +a1t)
3τ

m(τ+2) , (5.4.4)

B = (a0 +a1t)
3

m(τ+2) . (5.4.5)

Using (5.4.4) and (5.4.5) in (5.2.9), the expression for the Ricci scalar becomes

R(t) =−2R0t−2, (5.4.6)

where R0 =
9{(τ+2)+3}−3m(τ+2)2

m2(τ+2)2 .

Using the above solutions into (5.3.7), we find f ′(R) in terms of R as

F(R) = f ′(R) =
2

m−3
2m F0(τ +2)
3(τ −1)

[
m

√
−R0

R

]m−3
m

. (5.4.7)

We observe that for a real valued solution of f (R), R and R0 must be of opposite

sign. On integration of (5.4.7), we get

f (R) =
2

3(m−1)
2m F0(τ +2)mR

3(τ −1)(m+3)

[
m

√
−R0

R

]m−3
m

+ f0, (5.4.8)

where f0 is a constant of integration. On imposing f (0) = 0 [236], we find f0 = 0,

therefore, Eq. (5.4.8) gives the required functional form of f (R)

f (R) =
2

3(m−1)
2m F0(τ +2)mR

3(τ −1)(m+3)

[
m

√
−R0

R

]m−3
m

, (5.4.9)

which is basically of the form f (R) ∝ Rδ , where δ = m+3
2m > 0 as m > 0. For m = 1,
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f (R) ∝ R2 and q = 0 which corresponds to the marginal inflationary model. For

m = 3, we have f (R) ∝ R and q = 2 which shows the decelerated phase of GR. It

is also clear that the power of R, i.e., δ contains only m and is independent of τ.

The energy density and pressure in terms of cosmic time t are given as

ρ = 6
[

m(τ +2)2 −3{τ(τ +2)+3}
(τ +2)(τ −1)(m+3)

]
1

(mt)
m+3

m
, (5.4.10)

p = 2
[

m(τ +2)2 −3{τ(τ +2)+3}
(τ +2)(τ −1)(m+3)

]
m

(mt)
m+3

m
. (5.4.11)

For reality of the model, the energy density must be positive. Therefore, we have

m(τ + 2)2 − 3{τ(τ + 2)+ 3} > 0, as τ > 1. The energy density and pressure de-

crease with time and tend to zero for large t.

Equations (5.4.10) and (5.4.11) give

ρ + p = 2
[

m(τ +2)2 −3{τ(τ +2)+3}
(τ +2)(τ −1)

]
1

(mt)
n+3

m
, (5.4.12)

which shows that null energy condition (NEC) is satisfied for τ > 1.

The EoS parameter ω = p/ρ, gives

ω =
m
3
, (5.4.13)

which is positive throughout the evolution of the Universe as m > 0.

From (5.4.1) and (5.4.13), we have the following linear relation between q and ω

q = 3ω −1, (5.4.14)

which is constant. This shows that the functional form of f (R) constructed in

(5.4.9) may describe decelerated phases of the Universe for ω > 1/3 and accel-

erated phase for ω < 1/3. But we observe that the constraints does not support

for an accelerating Universe as the energy density is negative for those values of

parameters. The positive EoS parameter also evidences that the functional form

of f (R), obtained in (5.4.9) is not suitable to describe an accelerated expansion

of the Universe. Therefore, keeping in view of the positivity of energy density we
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find the following constraints under which the model decelerates.

2 < m < 3 and 1 < τ <
3−2m
m−3

+3

√
m−2

(m−3)2 , (5.4.15)

or m ≥ 3 and τ > 1. (5.4.16)

5.5 Stability analysis

In this section, we study the stability of the foresaid model. The conditions for the

cosmological viability of f (R) models have been derived in ref. [235,236]. Among

the consistency requirements listed in refs. [237], an acceptable functional form

of f (R) must satisfy following classical and quantum stability in the region of R.

f ′(R)> 0, (5.5.1)

f ′′(R)> 0. (5.5.2)

The first condition requires that gravity is attractive and the graviton is not a ghost.

It was found that its violation during the evolution of a FRW background, results

in the immediate loss of homogeneity and isotropy and render a strong space-

like anisotropic curvature singularity [227, 262]. However, we have considered

anisotropic model sustaining preservation of homogeneity.

Starobinsky [228,229] followed the above viability criteria when he constructed

his inflationary models. However, in the case of f (R) gravity models of present

DE, the necessity to keep it valid for all values of R during the matter- and radiation-

dominated stages in order to avoid the Ostrogradski instability [151] and Dolgov-

Kawasaki instability [134] which have been realized rather recently [234,237]. The

requirement of the above two stability criteria are particularly important to give rise

to a saddle matter era followed by a late-time cosmic acceleration. The cosmo-

logically viable f (R) models need to be close to the ΛCDM model in the deep

matter era, but the deviation from it becomes important around the late stage of

the matter era. In addition, a weak (“sudden") curvature singularity forms generi-

cally if f ′′(R) = 0 for a finite value R. Some examples of such viable models were

presented in refs. [263].

One may observe that the stability condition (5.5.1) always holds as τ > 1. To
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obtain the constraints which satisfy (5.5.2), we differentiate second order (5.4.7)

with respect to R, to get

f ′′(R) =
2−

(m+3)
2m F0(τ +2)m(m−3)R0

3(τ −1)R2

[
m

√
−R0

R

]−m+3
m

. (5.5.3)

Hence, f ′′(R)> 0 gives

m > 3 and τ > 1. (5.5.4)

Thus, we find that out of two constraints obtained in (5.4.15) and (5.4.16), only the

constraint (5.4.16) favors the stability of the solution and it is feasible to describe

the decelerated phase of evolution of the Universe. Hence, the functional form of

f (R), reconstructed in (5.4.9) is only suitable to describe the decelerated Universe.

It may be noted that the anisotropic Bianchi models represent cosmos in its early

stages of evolution of the Universe.

5.6 Conclusion

In this chapter, we have studied f (R) theory of gravity in LRS Bianchi-I anisotropic

space-time. We have assumed a constant deceleration parameter and a propor-

tionality relation between shear scalar and scalar expansion to reconstruct an

exact form of f (R). Using the reconstructed functional form of f (R), the corre-

sponding various cosmological parameters have been obtained. The EoS param-

eter has a constant value, i.e., ω = m/3, which is positive as m > 0. This allows to

describe the decelerated phases of the Universe. The deceleration parameter, q

and EoS parameter, ω have a linear relation, i.e., q = 3ω − 1. We have obtained

some specific constraints on parameters which also permits to describe only the

decelerated phases of evolution the Universe.

We have also analyzed the stability of the reconstructed functional form of f (R)

in section 5.5. It has been observed that it is completely stable but only for the

decelerated phases of the Universe. It may be noted that even though the f (R)

gravity describes an early-time inflation and late-time acceleration, but the results

obtained in this chapter shows that the f (R) theory gravity in anisotropic models

is also suitable to describe the evolution of the Universe in decelerated phases.





Chapter 6

Reconstruction of f(R,T) gravity with

perfect fluid

In present chapter1, we present the cosmological viability of reconstruction of

the modified f (R,T ) gravity in a flat FRW model. A functional form of f (R,T ) =

R+2 f (T ) is chosen for the reconstruction. The gravitational field equations con-

tain two non-interacting fluid sources, one is perfect fluid and other is due to mod-

ified f (R,T ) gravity which is to be considered as an exotic fluid. Two known forms

of scale factor (de Sitter and power-law) are considered for the explicit and suc-

cessful reconstruction. In de Sitter solution, the f (R,T ) fluid behaves as phantom

dark energy when the usual matter (perfect fluid) shows the behavior between de-

celerated phase to accelerated phase. In the absence of usual matter it behaves

as a cosmological constant. In case of power-law cosmology two different cas-

es are discussed and analyzed the behavior of different phases of the Universe

accordingly through the equation of state and density parameters.

6.1 Introduction

As discussed in section 1.10.5, f (R,T ) gravity theory, proposed by Harko et

al. [174], is a new class of modified theory which includes an arbitrary function

1This chapter is based on a published research paper entitled “Reconstruction of modified f (R,T ) gravity
with perfect fluid cosmological models", in General Relativity and Gravitation 46 1696 (2014).
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of Ricci scalar R and trace of energy-momentum tensor Tµν in the EH action. The

justification of choosing T as an argument for the Lagrangian is from exotic im-

perfect fluids or quantum effects. Harko et al. [174] have argued that due to the

coupling of matter and geometry, this gravity model depends on a source term,

representing the variation of the matter-stress energy with respect to the metric. In

modified f (R,T ) theory, the cosmic acceleration is not only derived from geomet-

ric contribution but also from matter content. The corresponding field equations in

f (R,T ) gravity have been derived in metric formalism for several particular cases.

Jamil et al. [175] have reconstructed cosmological models in the framework of

f (R,T ) gravity, which reproduce dust fluid ΛCDM model, Einstein static Universe,

de Sitter Universe and phantom-non-phantom era. They have also reconstructed

different models by including Chaplygin gas and minimally coupled scalar field

with some specific forms of f (R,T ), which are compatible with the recent obser-

vational data of BAO for low redshifts z < 2. Chakraborty [181] has shown that a

part of an arbitrary function of f (R,T ) can be determined by taking into account of

the conservation of stress-energy tensor. Houndjo [190] has developed the cos-

mological reconstruction of the form f (R,T ) = f1(R)+ f2(T ) using auxiliary scalar

field with two known examples of scale factor corresponding to an accelerating

Universe, describing a transition from matter-dominated phase to late-time accel-

erated phase. Houndjo and Piatella [191] have numerically reconstructed f (R,T )

holographic DE and DM models which are able to reproduce the same expansion

history generated in GR. Houndjo et al. [182] have investigated f (R,T ) gravi-

ty models which reproduce four types of future finite-time singularities. Pasqua

et al. [184] have considered modified holographic Ricci dark energy (MHRDE)

model with a particular form of f (R,T ) = λ1R+λ2T , for which EoS parameter ω

approaches from quintessence to cosmological constant. The deceleration pa-

rameter q passes from decelerated to accelerated phase at a red-shift z ≈ 0.2.

Therefore, these works on f (R,T ) theory of gravity have motivated us to develop

different schemes for the reconstruction of f (R,T ).

In this chapter, we have explored various general forms of the function f (T ) for a

particular form f (R,T ) =R+2 f (T ) and examined their contribution in the evolution

of the Universe. A flat FRW space-time cosmological model with the perfect fluid

has been assumed for the reconstruction of f (R,T ). We have derived the explicit

forms of f (R,T ) by considering two known forms (de Sitter and power-law) of
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expansion history of the Universe. It has been observed that the reconstructed

f (R,T ) gravity is capable to reproduce accelerated Universe.

6.2 Fundamental formalism of f(R,T) gravity

Let us start with the gravitational action of f (R,T ) theory [174] given in (1.10.20).

In the units of 8πG = 1 = c, it can be written as

S =
∫ [1

2
f (R,T )+Lm

]√
−g d4x, (6.2.1)

where Lm corresponds to the matter Lagrangian density.

As usual the energy-momentum tensor T (m)
µν is defined by

T (m)
µν =− 2√

−g
δ (

√
−gLm)

δgµν , (6.2.2)

and its trace T = gµνT (m)
µν .

The field equations of f (R,T ) gravity by varying the action (6.2.1) with respect

to metric tensor have the form

fR(R,T )Rµν −
1
2

f (R,T )gµν +(gµν�−∇µ∇ν) fR(R,T ) = T (m)
µν − fT (R,T )(T

(m)
µν +⊖µν),

(6.2.3)

where the symbols have their usual meanings. Here ⊖µν is defined in Eq. (1.10.22).

Since the field equations of f (R,T ) theory depend on ⊖µν , i.e., on the physi-

cal nature of the matter source. Therefore, a number of models corresponding

to various forms of f (R,T ) may be generated depending on the nature of the

matter source. We consider that the matter Lagrangian density Lm depends on

the metric tensor components gµν , not on its derivatives. Therefore, the energy-

momentum tensor of matter given by Eq. (6.2.2), simplifies to

T (m)
µν = gµνLm −2

∂Lm

∂gµν . (6.2.4)

Using (7.2.3) into (1.10.22), one gets

⊖µν =−2T (m)
µν +gµνLm −2gi j ∂ 2Lm

∂gµν∂gi j . (6.2.5)
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Now, the equations in f (R,T ) gravity are much complicated even for FRW metric

as compared to GR. Therefore, it is very difficult to reconstruct a general form of

f (R,T ) or to solve the field equations, in general. Therefore, most of the works

in f (R,T ) gravity have been carried out by assuming a number of suitable forms

of f (R,T ), such as f (R,T ) = R+λ f (T ), f (R,T ) = R+ 2 f (T ), f (R,T ) = λ3 f1(R)+

λ4 f2(T ), where f1(R) and f2(T ) are arbitrary functions of R and T , and λ3 and

λ4 are real constants, f (R,T ) = R f (T ), etc., [174, 175, 181, 182, 190, 191]. In

the present work we are interested to reconstruct the following particular form

[174,178].

f (R,T ) = R+2 f (T ). (6.2.6)

This assumption is particularly interesting choice which modifies the EH action of

GR by adding a function of T . The term 2 f (T ) in the gravitational action modifies

the gravitational interaction between matter and curvature. It is to be noted that

the above form of f (R,T ) has also been discussed by Jamil et al. [175] by as-

suming R as a constant. But we consider R as an arbitrary function in the present

work.

Using (6.2.6), one can re-write (6.2.3) as

Rµν −
1
2

Rgµν = T (m)
µν −2(T (m)

µν +⊖µν) f ′(T )+ f (T )gµν , (6.2.7)

where a prime stands for derivative of f (T ) with respect to T . On comparing

(6.2.7) with Einstein’s field equations, we find that the gravitational field equations

(6.2.7) can be recast in such a form that the higher order corrections coming both

from the geometry and from matter-geometry coupling. It provides an energy-

momentum tensor of geometrical and matter origin, describing an effective source

term on right hand side of (6.2.7) .

The main issue now arises of the matter content in the Universe through the

assumption of energy-momentum tensor, and consequently on the matter La-

grangian Lm and the trace of the energy-momentum tensor. In the following sec-

tion, we consider the perfect fluid as the only matter content in a flat FRW model

for the reconstruction of f (R,T ) from known expansion history of Universe using

the field equation (6.2.7).
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6.3 Reconstruction of f(R,T) in perfect fluid cosmology

We consider a spatially isotropic and homogenous flat FRW model described by

metric (3.2.1). We assume the matter content as a perfect fluid with the energy-

momentum tensor given by Eq. (2.2.4). The trace T of (2.2.4) gives

T = ρm −3pm. (6.3.1)

The definition of the matter Lagrangian for a perfect fluid is not unique. In order

to be consistent with the variation of the energy-momentum tensor (2.2.4) with re-

spect to metric, Lm =−pm is assumed [178]. Consequently, the second variation

of the matter Lagrangian in (6.2.5) becomes zero. Thus, with this assumption the

tensor ⊖µν , defined in (6.2.5), gives

⊖µν =−2T (m)
µν − pmgµν . (6.3.2)

Using (2.2.4) and (6.3.2), the field equations (6.2.7) for the line-element (3.2.1),

yield

3H2 = ρm +2(ρm + pm) f ′(T )+ f (T ), (6.3.3)

2Ḣ +3H2 = −pm + f (T ), (6.3.4)

which are the Friedmann equations for the present model.

We consider that Eqs. (6.3.3) and (6.3.4) consist of a non-interacting two fluids

system. One is usual perfect fluid matter whose energy-momentum tensor is

given by (2.2.4) and the other is due to modified f (R,T ) gravity which considered

as an exotic matter having energy density and pressure

ρd = 2(ρm + pm) f ′(T )+ f (T ), (6.3.5)

pd = − f (T ), (6.3.6)

respectively, which are related by EoS pd = ωdρd, where ωd is the EoS parameter

corresponds to exotic matter.
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Using EoS (3.3.4) into (6.3.1), we get

ρm =
T

1−3ωm
, ωm ̸= 1

3
. (6.3.7)

The classical known history of expansion of the Universe (some form of scale

factor) can be used for explicit and successful reconstruction of some versions

of f (R) theories [264]. The existence of such solutions is particulary relevant

because they represent all possible cosmological evolution. In what follows we

consider two known scale factors of the expansion history of the Universe for

explicit and successful reconstruction of f (R,T ) gravity.

6.3.1 Solution with de Sitter expansion

As well known that de Sitter solution is one of the most important cosmological

solution which describes the late-time accelerated phase as well as the inflation-

ary expansion epoch of the Universe. The expansion history in de Sitter Universe

is governed by exponential expansion of the scale factor

a(t) = a0eH0t , (6.3.8)

where a0 and H0 are positive constants. The Hubble parameter for exponential

expansion of the scale factor (6.3.8) has a constant value, i.e.,

H(t) = H0. (6.3.9)

Using (6.3.7) and (6.3.9) into (6.3.3) and (6.3.4), and simplifying, we obtain

(1+ωm)
[
2 f ′(T )+1

]
T = 0, (6.3.10)

where ωm ̸=−1. The solution of (6.3.10) is

f (T ) = T0 −
T
2
, (6.3.11)

where T0 is a constant of integration. Hence, the functional form of f (R,T ) as

assumed in (6.2.6), has the form

f (R,T ) = R+2T0 −T. (6.3.12)
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Thus, in principle, any cosmology expressed as (6.3.8) can be reconstructed by

the specific form of f (R,T ) gravity given by (6.3.12). Let us discuss some physical

significance of this form of f (R,T ).

Using (6.3.11) into (6.3.3) and (6.3.4), we obtain the energy density and pressure

of the perfect fluid in terms of T as

ρm = 3(T0 −3H2
0 )−

T
2
, (6.3.13)

pm = T0 −3H2
0 −

T
2
. (6.3.14)

From (6.3.7) and (6.3.13), we get

T =
2(T0 −3H2

0 )(1−3ωm)

1−ωm
. (6.3.15)

By use of (6.3.15), the energy density (6.3.13) and pressure (6.3.14), become

ρm =
2(T0 −3H2

0 )

1−ωm
, (6.3.16)

pm =
2(T0 −3H2

0 )ωm

1−ωm
, (6.3.17)

which are constants. For a realistic model the energy density must be positive,

therefore, we have T0 ≥ 3H2
0 as −1 < ωm < 1.

The energy density and pressure of the exotic matter defined in (6.3.5) and

(6.3.6), respectively, give

ρd =
2T0 +3(ωm −3)H2

0
ωm −1

, (6.3.18)

pd =
2T0ωm +3(1−3ωm)H2

0
ωm −1

, (6.3.19)

which are also constants. In this case, for a positive energy density, we must have

T0 ≤ 3
2(3−ωm)H2

0 .

The EoS parameter ωd is given by

ωd =
2T0ωm +3(1−3ωm)H2

0

2T0 +3(ωm −3)H2
0

. (6.3.20)

One may observe that ωd < −1 whenever −1 < ωm < 1, which shows that the

matter contribution due to f (R,T ) gravity behaves as phantom DE.
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The density parameter corresponding to exotic matter (Ωd = ρd/3H2), is given

by

Ωd =
2T0 +3(ωm −3)H2

0

3H2
0 (ωm −1)

, (6.3.21)

which shows that Ωd < 1, i.e., an open model in phantom DE (ωd <−1) whereas

it becomes flat (Ωd = 1) when the exotic matter behaves like a cosmological con-

stant (ωd = −1) in the absence of the perfect fluid. It is also to be noted that the

closed model of the Universe is not possible throughout its evolution in present

study.

The effective energy density (the sum of energy densities of perfect fluid and

exotic matter) and its effective pressure have the same constant values

ρe f f = 3H2
0 = pe f f , (6.3.22)

which gives the effective EoS parameter ωe f f = 1. Hence, the effective fluid be-

haves as stiff matter in this model. We also find that Ωe f f = 1, i.e., the model

becomes flat due to the effect of both matter sources.

In a particular case, when 3H2
0 = T0 where ρm and pm both vanish, we get T = 0

and hence f (T ) = 3H2
0 , which is constant. The EoS parameter has the value ωd =

−1, which shows that the matter due to f (R,T ) gravity behaves like a cosmological

constant in the absence of perfect fluid.

6.3.2 Solution with Power-law expansion

The power-law expansion is widely accepted model to explain the expansion his-

tory of evolution of the Universe. We consider the power-law expansion of the

scale factor which is assumed in Eq. (3.3.1) with t0 = 1. The deceleration parame-

ter in this scenario is given by Eq. (3.3.2), that is, q = 1/n−1. As n ≥ 0 is required

in power-law cosmology, hence q ≥ −1. The Hubble parameter for this form of

scale factor is given by Eq. (3.3.3). Using (6.3.7) and (3.3.3) into (6.3.3) and (6.3.4),

we get

2(3n−2)(1+ωm)T f ′(T )−2(1−3ωm) f (T )+ [3n(1+ωm)−2]T = 0. (6.3.23)

In what follows, we discuss the possible solutions of the above Eq. (6.3.23) for

ωm ̸=−1.
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Case (i) When n ̸= 2/3:

In this case, the solution of (6.3.23) is obtained as

f (T ) = β2T +T1T α2. (6.3.24)

Here, T1 is a constant of integration, α2 =
1−3ωm

(3n−2)(1+ωm)
and

β2 =
2−3n(1+ωm)

2[(3n(1+ωm)+(ωm−3))] , where n ̸= 3−ωm
3(1+ωm)

.

The function f (R,T ) takes the form

f (R,T ) = R+2(β2T +T1T α2). (6.3.25)

Using (6.3.24) the energy density and pressure of exotic matter in terms of T are

respectively given by

ρd =

(
β2(3−ωm)

1−3ωm

)
T +

(
3n

3n−2

)
T1T α2, (6.3.26)

pd = −(β2T +T1T α2). (6.3.27)

From (6.3.26) and (6.3.27), the EoS parameter in terms of T may be written as

ωd =− (β2T +T1T α2)(
β2(3−ωm)

1−3ωm

)
T +

( 3n
3n−2

)
T1T α2

. (6.3.28)

One can observe that it is too difficult to express ωd in terms of t, in general.

However, it can be seen the behavior of ωd for some particular values of ωm and

n, lying in between −1 < ωm < 1, for examples, when ωm =−1/3 and n = 1 (q = 0),

we get ωd =−1/3, and ωd =−1/2 for ωm =−1/2 and n = 4/3 (q =−0.25). Hence,

ωd of exotic matter in these two cases are equal to ωm of perfect fluid.

In case of dust matter (ωm = 0), ωd in (6.3.28) for a particular choice of n = 5/6,

reduces to

ωd =−
(

1+2T1T
3+10T1T

)
. (6.3.29)

Let us consider the energy density and pressure of the effective matter for the

solution of (6.3.25), which in terms of T are respectively, given by

ρe f f =

[
1+β2(3−ωm)

1−3ωm

]
T +

(
3n

3n−2

)
T1T α2, (6.3.30)

pe f f = −
(

β2 −
ωm

1−3ωm

)
T −T1T α2. (6.3.31)
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Substituting the values of β2 and α2 in the above Eqs. (6.3.30) and (6.3.31) and

simplifying, we get the effective EoS parameter as

ωe f f =
(2−3n)

3n
, (6.3.32)

which is constant and depends only on n. This relation between ωe f f and n de-

scribes the evolution of the Universe.

Also, using (6.3.24) into (6.3.4) for these particular values ωm = 0 and n = 5/6,

we get an equation of T in terms of t as

12T1T 2 +6T = 5t−2. (6.3.33)

Therefore, for a suitable physical solution of T in terms of t where ρm and ρd must

be positive, we can express ωd in terms t. A graph between ωd and t is shown in

fig. 6.1, which shows that ωd starts from −0.20 and approaches to −0.33.

5 10 15 20
t

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
Ωd

Figure 6.1: ωd versus t with T1 = 1, ωm = 0 and n = 5/6.

The density parameter corresponding to the exotic matter for ωm = 0 and n = 5/6

is given by

Ωd =
(3+10T1T )T

6H2 . (6.3.34)

Using (6.3.33), a graph between Ωd and t is plotted in fig. 6.2, which shows that

Ωd < 1, i.e., an open model.

The effective density parameter for ωm = 0 and n = 5/6 can be obtained as

Ωe f f =
5
6
(1+2T1T )T

H2 . (6.3.35)
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Figure 6.2: Ωd (solid line) and Ωe f f (dashed line) versus t with T1 = 1, ωm = 0 and
n = 5/6.

Using (6.3.33), we find that Ωe f f = 1 as shown in fig. 6.2 and hence this particular

dust model is effectively flat.

The solution obtained in (6.3.24) is valid only for n ̸= 3−ωm
3(1+ωm)

. Let us consider the

case when n = 3−ωm
3(1+ωm)

. In this case, the solution of (6.3.23) is given by

f (T ) =
ωm −1

2(1−3ωm)
T lnT +T2T, (6.3.36)

where T2 is a constant of integration. The function f (R,T ) becomes

f (R,T ) = R+
ωm −1

(1−3ωm)
T lnT +2T2T. (6.3.37)

Case (ii) When n = 2/3:

In this case, the solution of (6.3.23) is

f (T ) =
ωm

1−3ωm
T, (6.3.38)

and hence

f (R,T ) = R+
2ωm

1−3ωm
T. (6.3.39)

The energy density and pressure of exotic matter in terms of T are given by

ρd =
ωm(3−ωm)T
(1−3ω)2 , (6.3.40)

pd = − ωmT
1−3ωm

. (6.3.41)
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The EoS parameter corresponding to exotic matter gives

ωd =
(1−3ωm)

ωm −3
. (6.3.42)

We observe that −1 < ωd < 1 as −1 < ωm < 1, therefore, the exotic matter also

behaves similar to perfect fluid.

We also find

ρe f f =
1−ω2

m
(1−3ωm)2 , (6.3.43)

pe f f = 0. (6.3.44)

Consequently, the effective EoS parameter ωe f f = 0. Thus, the effective matter

behaves as dust.

It is to be noted that for dust matter (ωm = 0), ρd = 0= pd and hence the modified

f (R,T ) theory reduces to Einstein’s GR.

6.4 Conclusion

In this chapter, we have reconstructed the modified f (R,T ) gravity with the perfect

fluid in a flat FRW model. The gravitational field equations have been reconstruct-

ed for a particular form of f (R,T ) = R+ 2 f (T ). It has been found that the field

equations are equivalent to Einstein’s field equations with the effective energy-

momentum tensor containing a sum of the usual matter and the exotic matter due

to f (R,T ) gravity. Using two known forms of the scale factor (de Sitter and power-

law) of cosmic history, we have obtained the exact form of f (R,T ) in terms of T .

We have examined the features of the solutions for the reconstructed functions

f (R,T ) in both models. The reconstructed functional form of f (R,T ) gives the DE

epoch in both models which have been analyzed through EoS parameters.

In de Sitter model we have found that the exotic fluid due to modified gravity

shows the character of phantom DE (ωd < −1) when the usual matter behaves

between decelerated phase to accelerated phase (−1 < ωm < 1). In the absence

of perfect fluid (ρm = 0 = pm), the exotic matter behaves like a cosmological con-

stant (ωd =−1). We have also found that the model becomes open (Ωd < 1) when

exotic matter shows the characteristic of phantom DE and becomes flat (Ωd = 1)
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when it behaves like a cosmological constant. The effective matter shows the

behavior of stiff matter in this model which is effectively flat Ωe f f = 1.

In power-law cosmological model we have reconstructed the form of f (R,T ) for

ωm ̸=−1 when n ̸= 2/3 and n = 2/3, and have obtained the physical quantities. In

case of n ̸= 2/3, the EoS parameters of exotic matter have the same values for

some particular EoS parameters of usual perfect fluid. We have found a relation

ωe f f = (2− 3n)/3n, which describes the expansion history of the Universe. In

case of dust matter (ωm = 0) with n = 5/6, the EoS parameter of exotic matter

lies between −0.33 < ωd < 0.20, and the model is open (Ωd < 1). In this particular

case, the effective density parameter shows a flat model. In case of n = 2/3, we

have observed that −1 < ωd < 1 as −1 < ωm < 1, therefore, the exotic matter also

behaves similar to perfect fluid. It is to be noted that for dust matter (ωm = 0), ρd =

0 = pd and hence the modified f (R,T ) theory reduces to Einstein’s GR. We have

also found that ρe f f = (1−ω2
m)/(1− 3ωm)

2 and pe f f = 0, which implies ωe f f = 0.

Hence, the effective matter also behaves as dust.

In summary, we have reconstructed the model with a suitable choice of the form

f (R,T ) = R+2 f (T ), where R is considered as variable and have analyzed that it is

possible to explain the DE phenomena through the reconstructed forms of f (R,T )

for de Sitter and power-law models with the perfect fluid in a flat FRW space-time.





Chapter 7

Scalar field cosmology in f(R,T) gravity

In this chapter1, we reconstruct the functional form of f (R,T ) = R+2 f (T ) in scalar

field cosmology with two known history of expansion of the Universe for a flat FR-

W model. The Universe is assumed to be filled with two non-interacting matter

sources, one is quintessence or phantom scalar field minimally coupled to gravity

with self interacting scalar potential and other is the matter contribution due to

f (R,T ) gravity. We first explore a model where the potential is constant and the

Universe evolves as a de Sitter expansion. This model is found to be compatible

with phantom scalar field only. In second model, we consider the same forms of

scalar potential and scale factor assumed in chapter 2, i.e., both evolving expo-

nentially with scalar field. This model is found to be compatible with quintessence

scalar field only. We also compare our results for this model with the recent ob-

servational data and find that some values of parameters are consistent with SNe

Ia and H(z)+SNe Ia data to describe accelerated expansion only whereas some

give both decelerated and accelerated expansions consistent with H(z), WMAP7

and WMAP7+BAO+H(z) observational data.

7.1 Introduction

The scalar fields drive rapid expansion during inflationary scenario in the early

Universe [15, 36, 45, 46, 83, 84, 192, 193] whereas they could be responsible for
1The results of this chapter have been published in a research paper entitled “Modified f (R,T ) gravity

theory and scalar field cosmology", in Astrophysics and Space Science 355 2183–2192 (2014).
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present accelerating Universe in various models of DE [21, 33, 39–44, 48, 50, 51,

68,71,80,88,145,146]. Recently, Harko et al. [194] have presented several exact

cosmological solutions with scalar field. Therefore, the theoretical and observa-

tional investigation of scalar field models is an essential task in cosmology.

The purpose of the present chapter is to study the scalar field cosmological

models in f (R,T ) theory within the framework of a flat FRW metric. We have

assumed that the Universe contains two matter sources, one is quintessence

or phantom scalar field minimally coupled to gravity with self interacting scalar

potential and another one is the matter contribution due to f (R,T ) gravity. We

have reconstructed the same particular form of f (R,T ) = R+2 f (T ) in scalar field

cosmology which has been reconstructed in previous chapter with the perfect

fluid. We have considered same assumptions of previous chapter, namely, de

Sitter and power-law cosmological model to describe the expansion history of the

Universe. However, in de Sitter model we have consider a flat potential whereas

the power-law model is obtained by the assumptions of the scale factor and scalar

potential as assumed in chapter 2, i.e., both evolving exponentially with scalar

field.

The recent results from Planck Collaboration [19] and first Panoramic Survey

Telescope and Rapid Response System [265] motivate to concentrate specially

on the value of EoS parameter. The principle tool to find the most precise value of

EoS parameter at present is the combination of the most mature, well-studied and

robust probes of DE: SNe Ia, BAO and CMB. We have obtained the exact value of

the parameters in the exponential potential model using the constraints of power-

law cosmology from the existing observational data of H(z), SNe Ia, H(z)+SNe

Ia [266], WMAP7 and WMAP7+BAO+H(z) [267].

7.2 Scalar field cosmology in f(R,T) theory of gravity

We consider a minimally coupled scalar field ϕ in f (R,T ) gravity which is given by

S =
∫ [1

2
f (R,T )+Lϕ

]√
−g d4x, (7.2.1)

where Lϕ corresponds to the matter Lagrangian of scalar field (1.10.1).
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The energy-momentum tensor of matter source is given by

T (ϕ)
µν =− 2√

−g
δ (

√
−gLϕ )

δgµν , (7.2.2)

where the trace is defined by T = gµνT (ϕ)
µν . Equation (7.2.2) gives

T (ϕ)
µν = gµνLϕ −2

∂Lϕ

∂gµν . (7.2.3)

Variation of action (7.2.1) with respect to metric tensor gµν results the field e-

quations of f (R,T ) gravity (6.2.3). Using the simplest particular form f (R,T ) =

R+2 f (T ), Eq. (6.2.3) gives

Rµν −
1
2

Rgµν = T (ϕ)
µν −2(T (ϕ)

µν +⊖µν) f ′(T )+ f (T )gµν , (7.2.4)

where

⊖µν =−2T (ϕ)
µν +gµνLϕ −2gi j ∂ 2Lϕ

∂gµν∂gi j . (7.2.5)

We consider a spatially isotropic and homogenous flat FRW line-element (3.2.1)

and the energy-momentum tensor (1.10.3). The trace of T (ϕ)
µν is given by

T =−εϕ̇ 2 +4V (ϕ). (7.2.6)

In an isotropic and homogenous space-time the matter Lagrangian of scalar field

has the form

Lϕ =−
(

1
2

εϕ̇ 2 −V (ϕ)
)
. (7.2.7)

Using (7.2.7) into (7.2.5), the tensor ⊖µν becomes

⊖µν =−2T (ϕ)
µν −gµν

(
1
2

εϕ̇ 2 −V (ϕ)
)
. (7.2.8)

Jamil et al. [175] have reconstructed the form of f (R,T ) = R+2 f (T ) by treating

R as a constant. In the present work, we consider R as a function of cosmic time

t and try to find a general form of f (T ) for known scale factors.

With the energy-momentum tensor (1.10.3) and using (7.2.8), the field equations
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(7.2.4) for flat FRW metric (3.2.1), yield

3H2 = ρϕ +ρ f , (7.2.9)

2Ḣ +3H2 = −
(

pϕ + p f
)
, (7.2.10)

where ρϕ and pϕ are the energy density and pressure of quintessence or phantom

scalar field given by Eqs. (1.10.5) and (1.10.6), respectively. The EoS parameter

for quintessence or phantom scalar field is defined in Eq. (1.10.8). Here, ρ f and p f

are the energy density and pressure of the matter contribution due to the modified

gravity, given by

ρ f = 2εϕ̇ 2 f ′(T )+ f (T ), (7.2.11)

p f = − f (T ). (7.2.12)

We consider that the scalar field and matter contribution due to f (R,T ) are non-

interacting and together represent an effective matter. The EoS parameter of the

matter due to f (R,T ) is defined by ω f = p f /ρ f . We also consider that the scalar

field (quintessence or phantom) obeys the Klein-Gordon equation which is given

by Eq. (1.10.7).

Now, we reconstruct the functional form of f (R,T ) considered in (6.2.6) in the

following subsections, for two known history of evolution of the Universe.

7.2.1 Model with constant potential

Let us explore a model with constant potential, i.e., V (ϕ) = V0, and the Universe

behaves like a de Sitter model with an exponential expansion given by Eq. (6.3.8),

which gives a constant value of Hubble parameter, i.e., (6.3.9)

Using (7.2.6), (1.10.5), (7.2.11), and (6.3.9) into (7.2.9), we obtain

2(4V0 −T ) f ′(T )+ f (T )+
1
2
(4V0 −T )+V0 −3H2

0 = 0, (7.2.13)

which gives

f (T ) = 3H2
0 +V0 −

T
2
+T2

√
2(T −4V0), (7.2.14)

where T2 is a constant of integration. For real solution we must have T −4V0 > 0

and one may observe from (7.2.6) that T −4V0 > 0 if ε =−1. Therefore, this model
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is compatible with phantom scalar field only. Hence, we shall use ε = −1 in the

further discussion of the present model.

The functional form of f (R,T ) assumed in (6.2.6) takes the form

f (R,T ) = R+2(3H2
0 +V0)−T +2T2

√
2(T −4V0). (7.2.15)

Now, let us discuss the behaviors of some physical quantities and cosmological

parameters of the present model.

By use of (6.3.9), the Klein-Gordon equation (1.10.7), gives

ϕ(t) = ϕ1 −
ϕ0e−3H0t

3H0
, (7.2.16)

where ϕ0 and ϕ1 are constants of integration. We observe that the scalar field ϕ

increases with time and becomes constant as t →∞. Therefore, the kinetic term of

phantom scalar field −ϕ̇ 2/2 also increases with time which dominates over scalar

field potential and generates negative pressure for late-time acceleration.

The energy density and pressure of phantom scalar field are respectively given

by

ρϕ = V0 −
1
2

ϕ 2
0 e−6H0t , (7.2.17)

pϕ = −
(

V0 +
1
2

ϕ 2
0 e−6H0t

)
. (7.2.18)

For reality of any cosmological model where the energy density must be positive,

i.e., ρϕ > 0, we must have ϕ0 <
√

2V0. We observe that ρϕ starts with a finite value

V0 − (ϕ 2
0 /2) at t = 0, which shows that the model avoids the initial singularity. It

increases with time and approaches to a constant value V0 as t → ∞. We also

observe that the pressure is always negative, which increases during the evolu-

tion and becomes constant (−V0) at late-time. Thus, we can say that the potential

dominates over the kinetic energy of phantom scalar field at late-time. The EoS

parameter ωϕ starts from ωϕ < −1 and approaches to ωϕ = −1 as t → ∞. There-

fore, we conclude that the model describes the behavior of a phantom scalar field

cosmology during the evolution of the Universe and of a cosmological constant at

late-time.

The energy density and pressure of matter due to f (R,T ) gravity are respec-
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tively given by

ρ f = 3H2
0 −V0 +

1
2

ϕ 2
0 e−6H0t , (7.2.19)

p f = −(3H2
0 −V0)+

1
2

ϕ 2
0 e−6H0t −

√
2ϕ 2

0 T2e−3H0t . (7.2.20)

Again, we must have V0 ≤ 3H2
0 for reality of the model. We observe that ρ f starts

from a finite constant value 3H2
0 −V0+(ϕ 2

0 /2), which also asserts that the model is

non-singular. It decreases with time and approaches to a positive constant value

3H2
0 −V0 as t → ∞. The pressure p f remains always negative and increases with

time.

Fig. 7.1 plots the graph of ω f versus time t for a negative value of T2 and dif-

ferent values of potential. From this figure we see that the matter due to f (R,T )

0.5 1.0 1.5 2.0
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Figure 7.1: ω f versus t with T2 =−1, H0 = 1 and ϕ0 = 0.5

gravity exhibits a wide variety of early time behaviors with different set of param-

eters which are consistent with the constraint V0 < 3H2
0 . One may see that ω f

changes its sign from positive to negative for large values of potential whereas

it remains negative for small values of potential and even for zero potential. It

means that the matter due to f (R,T ) gravity exhibits the transition from ordinary

matter to a normal scalar field (quintessence) for some set of parameters during

the evolution of the Universe and like a cosmological constant at late-time. There-

fore, the matter due to f (R,T ) provides transition from decelerated to accelerated

phase for some set of parameters. However, the Universe accelerates throughout

the evolution for some other set of parameters as we can see in the figure for

small values of potential.
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The behavior of ω f for a positive value of T2 with different values of potential

under the constraint V0 < 3H2
0 is shown in fig. 7.2.
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Figure 7.2: ω f versus t with T2 = 1, H0 = 1 and ϕ0 = 0.5

The figure shows that the matter due to f (R,T ) gravity always behaves like phan-

tom matter (ω f <−1) during the evolution of the Universe and cosmological con-

stant at late-time. Therefore, we can say that the functional form of f (R,T ) ob-

tained in (7.2.15) with a positive coefficient T2 accelerates the Universe throughout

its evolution. Let us consider a particular case where V0 = 3H2
0 . The EoS param-

2 4 6 8
t

-4

-3

-2

-1

0

1
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Figure 7.3: ω f versus t with T2 = 1 and H0 = 0.1

eter ω f for this particular case reduces to

ω f = 1− 2
√

2T2

ϕ0
e3H0t , (7.2.21)

which is free from scalar field potential but depends on ϕ0. From the above ex-

pression it is clear that ω f ≤ 1 for T2 ≥ 0 and ω f > 1 for T2 < 0. The behavior of ω f



108

in this particular case with a positive value of T2 and for some different values of

ϕ0 is shown in fig. 7.3.

The EoS parameter shows a transition from a positive to negative value for s-

mall values of ϕ0 whereas it gives negative value for sufficiently large values of

ϕ0. Hence, the matter due to f (R,T ) for some sets of parameters give the tran-

sition from ordinary matter to phantom matter crossing the phantom dividing line

whereas it always behaves like phantom matter for some other set of parameters.

Note that instead of ω f if we consider the effective EoS parameter ωe f f in this

particular model, then

we f f =
pϕ + p f

ρϕ +ρ f
=−1−

√
2ϕ 2

0 T2e−3H0t

3H2
0

, (7.2.22)

which is also independent of scalar field potential. Fig. 7.4 plots ωe f f versus time t

for some negative values of T1 with a particular set of H0 and ϕ0. The effective EoS
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Figure 7.4: ωe f f versus t with H0 = 1, ϕ0 = 1 and with some negative values of T2

parameter ωe f f makes transition from some positive to negative values for some

particular set of parameters. However, it remains negative (−1 < ωe f f < 0) for

some other set of parameters but behaves like a cosmological constant at late-

time always. Therefore, we conclude that this model describes transition from

decelerated to accelerated phase for some set of parameters whereas it exhibits

acceleration throughout the evolution for some other set of parameters.

The behavior of ωe f f for some positive values of T2 and a particular set of values

of H0 and ϕ0 is shown in fig 7.5. It is clear that the effective matter behaves as

phantom matter during the evolution of the Universe and cosmological constant at
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Figure 7.5: ωe f f versus t with H0 = 1, ϕ0 = 1 and with some positive values of T2

late-time for positive coefficients T2 in (7.2.15). It is also to be noted that ωe f f =−1

for T2 = 0.

We also observe that the effective matter for different choices of T2 behaves

similar to matter due to f (R,T ) gravity for different choices of V0 (compare figs. 7.2

versus 7.4, and versus 7.5). The large or small potential and the large negative or

small positive values of T2 affect the evolution of the Universe in similar manner.

7.2.2 Model with exponential potential

In chapter 2, we have assumed that the scalar potential and scale factor evolve

exponentially with scalar field. We reconsider both these assumptions for the

present model which are given by Eqs. (2.3.1) and (2.3.2), respectively. The

Klein-Gordon equation (1.10.7) of normal or phantom scalar field for these two

assumptions can be rewritten as

d
dt

(
ϕ̇ 2e6αϕ

)
= K2

d
dt

(
eϕ(6α−β )

)
, (7.2.23)

where K2 =
2V0β

(6α−β )ε . This equation on integration gives

ϕ̇ 2 = K2e−βϕ , (7.2.24)

where the integration constant is taken zero for the sake of simplicity. On integra-

tion (7.2.24), one obtains

ϕ(t) =
2
β

ln

(
ϕ0β

2
± β

√
K2

2
t

)
, β ̸= 0, (7.2.25)
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where ϕ0 is a constant of integration. The real solution exists for K2 > 0, i.e., if

(6α − β ) > 0 for ε = 1 (quintessence scalar field) and if (6α − β ) < 0 for ε = −1

(phantom scalar field).

The scale factor (2.3.2) takes the form

a(t) = a0

(
ϕ0β

2
± β

√
K2

2
t

) 2α
β

. (7.2.26)

Let us assume that the Universe originates as a(0) = 0, which implies ϕ0 = 0.

Therefore, Eqs. (7.2.25) and (7.2.26) for an expanding Universe respectively be-

come

ϕ(t) =
2
β

ln

(
β
√

K2

2
t

)
, (7.2.27)

a(t) = a⋆t
2α
β , (7.2.28)

where a⋆ = a0
(
β
√

K2/2
)2α/β . Equation (7.2.27) shows that the scalar field ϕ(t)

increases with time. The later expression of scale factor describes the power-law

expansion of the Universe.

The scalar potential V (ϕ) and the trace T , respectively, take the form

V (t) =
2ε(6α −β )

β 3
1
t2 , (7.2.29)

T =
12ε(4α −β )

β 3
1
t2 . (7.2.30)

Equation (7.2.29) shows that the scalar potential V (t) decreases with time and

tends to zero as t → ∞.

The energy density (1.10.5) and pressure (1.10.6) of scalar field (quintessence

or phantom) are respectively given by

ρϕ =
12εα
β 3t2 , (7.2.31)

pϕ =
4ε(β −3α)

β 3t2 . (7.2.32)

For reality of the model the energy density must be positive, i.e., ρϕ > 0, which

is possible if ε = 1. Therefore, the assumptions (2.3.1) and (2.3.2) are suitable

to describe quintessence model only. The EoS parameter ωϕ , Hubble param-
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eter H, and deceleration parameter q, come out with the same values as giv-

en by Eqs. (2.3.12), (2.3.13), and (2.3.14), respectively. It is to noted that all the

three parameters are free from ε, therefore, these cosmological parameter remain

same for quintessence and phantom scalar field for both assumptions (2.3.1) and

(2.3.2). The EoS parameter (2.3.12) shows that the scalar field has the behav-

ior of quintessence for β > 3α and phantom for β < 3α. However, for reality of

the model we shall discuss the solution for quintessence field only in rest of our

discussion.

From (2.3.12) and (2.3.14), we have

q =
1+3ωϕ

2
, (7.2.33)

which is the well known relation between deceleration parameter and EoS param-

eter for a standard flat FRW cosmological model.

From (2.3.13) and (2.3.14), we get

H(t) =
1

(1+q)t
. (7.2.34)

To analyse the behavior of the model, let us express the scale factor in terms of

redshift z which is given by

a(z) =
a0

1+ z
. (7.2.35)

From (7.2.26) and (7.2.35), one obtains

t =
t0

(1+ z)
β

2α
, (7.2.36)

where t0 = 2/β
√

K2. Using the above relation we can expect the z-dependence of

all the relevant quantities of the scenario at hand, which can then be confronted

by the data.

In particular, the Hubble parameter in terms of z can be written as

H(z) = H0(1+ z)1+q, (7.2.37)

where H0 = α2
√

K2/β . The above equation shows that the evolution of the Uni-

verse governs by the parameters H0 and q.

Some authors have constrained on parameters H0 and q for the power-law cos-
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Table 7.1: Values of β/2α and corresponding evolution of Universe
Data q 1

1+q
β

2α Nature of β
2α Expansion

with error bars of Universe
H(z) −0.04+0.05

−0.05 −0.96+0.05
−0.05 > 1 (with +ve error) Decelerated

< 1 (with -ve error) Accelerated
SNe Ia −0.36+0.05

−0.05 −0.64+0.05
−0.05 < 1 (with +ve error) Accelerated

< 1 (with -ve error) Accelerated
H(z)+SNe Ia −0.21+0.04

−0.04 −0.79+0.04
−0.04 < 1 (with +ve error) Accelerated

< 1 (with -ve error) Accelerated
WMAP7 −0.99+0.04

−0.04 1.01−0.04
+0.04 < 1 (with -ve error) Accelerated

> 1 (with +ve error) Decelerated
BAO+H(z) −0.99+0.02

−0.02 1.01−0.02
+0.02 < 1 (with -ve error) Accelerated

+WMAP7 > 1 (with +ve error) Decelerated

mology. Kumar [268] has constrained the parameters H0 and q using 14 points

of H(z) data and 557 data points of SNe Ia observations. Gumjudpai [266] has

constrained on parameters H0 and 1/1+ q for WMAP7 and WMAP7+BAO+H(z)

data sets. Recently, Rani et al. [267] have also re-constrained the parameters

of ref. [268] for the latest 29 points of H(z) data and 580 data points from Union

2.1 SNe Ia observations. Since in the present model we have three parameters,

namely α, β , and H0, therefore, it is not possible to constraint these parameters

separately. However, using the values of q [267] and 1/1+ q [266], we find the

values of β/2α and analyze the corresponding evolution (decelerated or deceler-

ated) of the Universe through the theoretical prediction of deceleration parameter

q = β/2α − 1, i.e., β/2α > 1 or < 1 as given in Table 7.1. We observe that our

model is best fitted with SNe Ia and H(z)+SNe Ia for accelerated Universe includ-

ing error bars whereas decelerated and accelerated models are well agreed with

others observational data. We shall use these constraints in finding the nature of

EoS parameters of matter contribution due to f (R,T ) gravity and effective matter

of scalar field and matter due to f (R,T ) gravity in the forthcoming discussion.

Using (1.10.5), (7.2.11), (7.2.27), (7.2.28), (7.2.29) and (7.2.30), Eq. (7.2.9) for

quintessence scalar field (ε = 1) can be written as

2βT f ′(T )+3(4α −β ) f (T )−3α(αβ −1)T = 0, (7.2.38)

which is integrated to give

f (T ) =
3α(αβ −1)

12α −β
T +T3T− 3(4α−β )

2β , (7.2.39)
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where T3 is a constant of integration.

The function f (R,T ) considered in (6.2.6) takes the form

f (R,T ) = R+
6α(αβ −1)

12α −β
T +2T3T− 3(4α−β )

2β . (7.2.40)

The energy density and pressure of the matter due to f (R,T ) gravity respectively

have expressions

ρ f =
12α(αβ −1)

β 3
1
t2 , (7.2.41)

p f =−36α(4α −β )(αβ −1)
β 3(12α −β )

1
t2 −T3

[
12(4α −β )

β 3
1
t2

]− 3(4α−β )
2β

. (7.2.42)

For ρ f ≥ 0, i.e., for real model we must have (αβ − 1) ≥ 0. We observe that the

EoS parameter of matter due to f (R,T ) fluid is compatible to describe decelerat-

ed model for negative values of T3 whereas positive values of T3 are feasible to

describe accelerating Universe.

Let us examine the behavior of EoS parameter ω f under the constraints for

which our model fits with the observations without including error bars. Fig. 7.6

plots the graph between EoS parameter ω f and t for decelerated (T3 > 0) mod-

el for some values of α and β which satisfy the constraint from WMAP7 and

WMAP7+BAO+H(z) given in Table 7.1. The figure shows that the EoS parameter
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Figure 7.6: ω f versus t for T3 =−1 and some consistent values of α and β with WMAP7
and WMAP7+BAO+H(z) observations

starts from ω f = −0.6 irrespective of sets of parameters and approaches to the

positive values, which shows that the model transits from early inflationary phase
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to decelerated phase.
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Figure 7.7: ω f versus t for T3 = 1, α = 1, and some consistent values β = 1.92 (H(z)),
β = 1.28 (SNe Ia) and β = 1.58 (H(z)+SNe Ia)

Fig. 7.7 plots ω f versus t for accelerated (T3 < 0) model with α = 1 and different

values of β which satisfy the constraints from H(z) (β = 1.92), SNe Ia (β = 1.28)

and joint H(z)+SNe Ia (β = 1.58). The graph clearly indicate that ω f varies from

−1 < ω f < 0 to ω f <−1. Hence, the model enters from quintessence to phantom

phase in this case.

The effective energy density and pressure are respectively given by

ρe f f =
12α2

β 2
1
t2 , (7.2.43)

pe f f =−4(3α −β )
β 3

1
t2 −

36α(4α −β )(αβ −1)
β 3(12α −β )

1
t2 −T2

[
12(4α −β )

β 3
1
t2

]− 3(4α−β )
2β

.(7.2.44)

One may observe that the effective EoS parameter exhibits the same behavior

as ω f . Thus, the model successfully describes the transition from early inflation-

ary phase to matter-dominated era as well as the late-time acceleration of the

Universe exhibiting transition from quintessence to phantom phase.

7.3 Conclusion

In this chapter, we have studied modified f (R,T ) gravity with quintessence and

phantom scalar field in a flat FRW model. We have considered a particular form

f (R,T ) = R+2 f (T ), which leads to the field equations equivalent to the Einstein’s



115

field equations with an effective energy-momentum tensor containing a sum of

quintessence or phantom scalar field and the matter contribution due to f (R,T )

gravity. We have reconstructed this form of f (R,T ) with two well-known scale

factors along with the constant and exponential scalar potentials, respectively.

First we have explored a model where the potential of the scalar field is con-

stant and the Universe evolves as de Sitter exponential expansion. In the second

model, we have considered the scalar field potential and scale factor evolve expo-

nentially with the scalar field (quintessence or phantom), which lead to the power-

law expansion of the Universe. The behavior of each model has been examined

through the deceleration parameter, the EoS parameters of matter contribution of

f (R,T ) gravity (ω f ) and the effective EoS parameter (ωe f f ) of matter due to f (R,T )

and scalar field. We have compared the later model with the observational results

of H(z), SNe Ia, H(z)+SNe Ia, WMAP7 and H(z)+BAO+WMAP7. The summary

of the results of both the models are as follows.

In the first model where we have considered de Sitter expansion and a flat

potential, it has been found that the solutions are compatible with the phantom

scalar field only. The model is free from Big-Bang singularity and exhibits a wide

variety of early time behaviors of evolution of the Universe with different sets of

parameters. The model ultimately describes the behaviour of cosmological con-

stant at late-time as expected. We have noted from fig. 7.1 that for negative value

of T2, ω f changes its sign from positive to negative for large values of potential

whereas it remains negative for small values of potential even for zero potential.

It means that the model exhibits transition from ordinary matter to quintessence

during early times and ultimately a cosmological constant at late-time. Therefore,

the matter due to f (R,T ) describes the evolution from decelerated to accelerated

phase for some set of parameters. However, the Universe accelerates throughout

the evolution for some other set of parameters. In fig. 7.2 for positive values of

T1, we have observed that the matter due to f (R,T ) gravity always behaves like a

phantom matter (ω f <−1) during the evolution of the Universe and becomes cos-

mological constant at late-time. Therefore, the Universe accelerates throughout

the evolution for any set of parameters with positive values of T1. The effective

matter also behaves in a similar manner as the matter due to f (R,T ) as shown in

figures 7.4 and 7.5.

In the second model, where we have assumed scalar potential and scale fac-



116

tor evolve exponentially with the scalar field, it has been found that the model

is compatible with the quintessence scalar field only. We have already seen in

chapter 2 that these two assumptions lead to the power-law expansion of the Uni-

verse which encounters a Big-Bang singularity at t = 0. The scalar field increases

whereas the scalar potential decreases with time and tends to zero as t → ∞. We

have also computed the value of β/2α with error bars using existing observational

data from H(z), SNe Ia, H(z)+SNe Ia, WMAP7 and WMAP7+BAO+H(z) available

on power-law cosmology as given in Table 7.1. The behavior of the model has

been shown by EoS parameter due to f (R,T ) matter for the parameters which

satisfy the observational constraints. The model exhibits decelerated as well as

accelerated Universe. The decelerated model describes the early Universe and

shows transition from inflationary to decelerated phase as shown in fig. 7.6. The

model shows acceleration at late-time and transits from quintessence to phantom

phase (see fig. 7.7). It is to be noted that these figures have been plotted ex-

cluding the error bars. One may observe that the effective EoS parameter shows

the same behavior as ω f . The values of β/2α from SNe Ia and H(z)+SNe Ia ob-

servations are well agreed for accelerating Universe including error bars whereas

decelerated and accelerated nature of the Universe have been observed with oth-

ers observational data.

In concluding remark we can say that both the models are suitable to describe

a wide variety of early and late-time evolution of the Universe in f (R,T ) theory,

some of which give inflation, quintessence or phantom phase in their respective

EoS.



Chapter 8

Matter creation in modified f(R,T)

gravity

This chapter1 deals with the theoretical and observational consequences of ther-

modynamics of open systems which allow matter creation in modified f (R,T )

gravity within the framework of a flat FRW model. The simplest functional form of

f (R,T ) = R+ 2 f (T ) and the ‘gamma-law’ EoS, i.e., p = (γ − 1)ρ are assumed to

obtain the exact solution. A power-law expansion model has proposed by consid-

ering the natural phenomenological particle creation rate Γ = 3β0ηH, where β0 is

a pure number of the order of unity and η is the particle number density. A Big-

Rip singularity is observed for γ < 0 which describes the phantom cosmology. We

observe that the accelerated expansion of the Universe is driven by the particle

creation. Some kinematic tests such as lookback time, luminosity distance, proper

distance, angular diameter versus redshift have discussed in detail to observe the

role of particle creation in early and late-time evolution of the Universe.

8.1 Introduction

In the context of early Universe, the standard ΛCDM model presents several

theoretical and observational difficulties, such as the singularity problem [2, 31,

1This chapter comprises the results of a paper entitled “Friedmann cosmology with matter creation in
modified f (R,T ) gravity", International Journal of Theoretical Physics, DOI 10.1007/s10773-015-2767-z
(2015).
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32, 269], reheating during the inflationary epoch [270], confliction between the

age of the Universe and the age of the oldest stars in globular clusters (age

problem) [271], the entropy problem [272] etc. The introduction of an inflation-

ary phase derived by a scalar field or by HD theory (R+ λR2) resolves the flat-

ness and horizon problems together with the entropy problem [2, 14, 31, 32]. The

emergent Universe scenario resolves the issue of singularity problem [202]. But

the age confliction [273] is not an isolated complication, it comes with another se-

rious trouble that is structure formation through gravitational amplification of small

primeval density perturbation. The issues related to the early Universe open the

door of investigations of many alternative theories [91–93,96–98].

Among the ways to resolve the problems of early Universe, Dirac’s large number

hypothesis [274] inspired a class of new cosmology named particle creation [275].

The steady state model introduced by Bondi and Gold [276] on the foundation of

perfect cosmological principle (PCP) also asserts the continuous generation of

matter in the Universe. Hoyle [277] and Narlikar [278] have independently pro-

posed a creation field theory and studied the matter creation during the evolution

of the Universe. Tryon [279] and Fomin [280] in their individual work have pro-

posed a theoretical concept of the creation of the Universe as a vacuum fluctu-

ation. Brout et al. [281, 282] have builded a strong foundation of simultaneous

creation of matter and curvature from a quantum fluctuation of the Minkowskian

space-time vacuum.

Later on, Gunzig et al. [283] and Prigogine et al. [284] have established the the-

oretical scenario of matter creation in the framework of cosmology. They showed

that the second law of thermodynamics might be modified to accommodate the

flow of energy from gravitational field to the matter field, resulting in the creation

of particles and consequently entropy. Their work might suggest that at the ex-

pense of the gravitational field, particle creation takes place as an irreversible

process constrained by the usual requirements of the non-equilibrium thermo-

dynamics, however, the reverse process (matter destruction) thermodynamically

forbidden. Calváo et al. [285] have extended this new theoretical concept of mat-

ter creation under adiabatic conditions. The further results were generalized by

Lima and Germano [286] through a contravariant formulation allowing specific

entropy variation as usually expected for non-equilibrium process in fluids. Lima

and Alcaniz [287], and Alcaniz and Lima [288] have investigated observational
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consequences of FRW models driven by adiabatic matter creation through some

kinematic tests. Singh and Beesham [289,290], and Singh [291,292] have studied

early Universe in FRW cosmology with particle creation through some kinematic

tests.

After the discovery of accelerating Universe the particle creation theory has

reconsidered to explain it and favourable results have been obtained. Zimdahl et

al. [293] and Qiang et al. [294] have tested some models with adiabatic particle

creation which are consistent with SNe Ia data. The theoretical formulation of

continuous creation of matter in the Universe may reinterpret several predictions

of the standard Big-Bang cosmology.

On the other hand, a number of pioneer concepts of modifying GR have been

proposed to reconcile the problems related to late-time Universe particularly cos-

mic acceleration [102]. As mentioned in chapter 6 that the interesting features

of f (R,T ) gravity have attracted many researchers for resolving several issues of

current interest in cosmology and astrophysics [175–191]. Since the cosmic ac-

celeration in f (R,T ) gravity results not only from geometrical effect but also from

the matter contribution. The negative pressure due to particle creation also might

play the role of exotic matter component being responsible for late-time cosmic

acceleration. Therefore, these two similar concepts motivate us to study how

the particle creation phenomena and f (R,T ) gravity together affect the early and

late-time evolution of the Universe.

In this chapter, we investigate the theoretical and observational implication of

particle creation in modified f (R,T ) theory in a flat FRW model. Exact cosmolog-

ical solutions are obtained by assuming the suitable form of f (R,T ) = R+ 2 f (T ),

EoS of perfect fluid, and particle creation rate. We also study some kinemat-

ic tests to explain the physical significance of particle creation during early and

late-time evolution of the Universe.

8.2 Theory of particle creation

If we regard the whole Universe as a closed thermodynamical system in which

the number of the particles in a given volume is constant then the laws of thermo-

dynamics have the form

d(ρmV ) = dQ− pmdV, (8.2.1)
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and

TdS = d(ρmV )+ pmdV, (8.2.2)

where ρm, pm, V , T and S are the energy density, thermodynamical pressure,

volume, temperature and entropy, respectively. Here, dQ is the heat received by

the system during time dt. From (8.2.1) and (8.2.2), the entropy production is given

by

TdS = dQ. (8.2.3)

Eq. (8.2.3) shows that for a closed adiabatic system (dQ = 0) the entropy re-

mains stationary, i.e., dS = 0. However, if we treat the Universe as an open ther-

modynamic system allowing irreversible matter creation from the energy of the

gravitational field, we can account for entropy production right from the beginning,

and the second law of thermodynamics is also incorporated into the evolutionary

equations in a more meaningful way. In such situation the number of particles N

in a given volume V is not to be a constant but is time dependent. Therefore, Eq.

(8.2.1) modifies as

d(ρmV ) = dQ− pmdV +(h/η) d(ηV ), (8.2.4)

where N = ηV , η is the particle number density and h = (ρm + pm) is the enthalpy

per unit volume of the system. In case of adiabatic system, i.e., dQ= 0, Eq. (8.2.4)

for an open system reduces to

d(ρmV )+ pmdV = (h/η) d(ηV ). (8.2.5)

We see that in such a system the thermal energy is received due to the change

of the number of particles. In cosmology, this change may be considered as a

transformation of energy from gravitational field to the matter.

In the context of an open system, Eq. (8.2.5) can be rewritten as

d(ρmV ) =−(pm + pc)dV, (8.2.6)

where

pc =−(h/η)(dN/dV ). (8.2.7)

Equation (8.2.6) suggests that the creation of matter in an open thermodynamic
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system corresponds to a supplementary pressure pc, which must be considered

as a part of the cosmological pressure entering into the Einstein field equations

(decaying of matter leads to a positive decay pressure) and is equivalent to adding

the term pc given by (8.2.7) to the thermodynamic pressure pm. It is to be noted

that pc is negative or zero depending on the presence or absence of particle

creation, respectively.

Since the increment in entropy for an adiabatic system is only caused by cre-

ation of matter, therefore, the entropy is an extensive property of the system. In

present scenario, S is proportional to the number of particles included in the sys-

tem. Therefore, the entropy change dS from (8.2.2) and (8.2.5) for an open system

becomes

TdS = (h/η) d(nV )−ϒ d(ηV ) = (TS/N)dN ⇒ dS
S

=
dN
N

, (8.2.8)

where ϒ is the chemical potential given by ϒ = (h−Ts)/η , here s = S/V is entropy

per unit volume. Since the second law of thermodynamics is a fundamental law

in physics, the presence or absence of particle creation can not affect it. This law

basically requires dS ≥ 0, consequently, Eq. (8.2.8) gives

dN ≥ 0. (8.2.9)

The above inequality implies that the space-time can produce matter whereas the

reverse process is thermodynamically not admissible.

The purpose of this entire formulation is to modify the usual energy-momentum

conservation law in an open thermodynamical system, which leads to the explic-

it use of a balance equation for the number density of the particles created, in

addition to Einstein’s field equations.

The particle flux vector is given by

Nυ = ηuυ , (8.2.10)

and Nυ is assumed to satisfy the balance equation [285,295]

Nυ
;υ = Γ, (8.2.11)
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where the function Γ denotes a source term of particle creation which is positive

or negative depending on whether there is production or annihilation of particles.

In standard cosmology Γ is usually assumed to be zero.

In the presence of a gravitational particle source, the balance equation (8.2.11)

for the particle flux becomes

η̇ +3ηH = Γ. (8.2.12)

Thus, the creation pressure pc depends on the particle creation rate, and for

adiabatic matter creation, (8.2.7) takes the form [285]

pc =−(ρm + pm)

3ηH
Γ. (8.2.13)

Therefore, Eq. (8.2.13) shows that pc is negative for Γ > 0, which can help to

derive the era of accelerated cosmic expansion.

8.3 Model and the field equations

We consider the gravitational action for f (R,T ) modified theory of gravity [48] in

the units G = 1 = c

I =
1

8π

∫ [ f (R,T )
2

+Lm

]√
−g d4x, (8.3.1)

where the other symbols have their usual meaning.

The equations of motion by varying the action (8.3.1) with respect to metric

tensor become

fR(R,T )Rµν −
1
2

f (R,T )gµν + (gµν�−∇µ∇ν) fR(R,T )

= 8πTµν − fT (R,T )Tµν − fT (R,T )⊖µν , (8.3.2)

where ⊖µν is given by (6.2.5).

We assume a functional form of f (R,T ) = R+2 f (T ). Consequently, the gravita-

tional field equations (8.3.3) become

Rµν −
1
2

Rgµν = 8πTµν −2(Tµν +⊖µν) f ′(T )+ f (T )gµν . (8.3.3)

In the formalism of particle creation, the second law of thermodynamics naturally

leads to the modification of energy-momentum tensor with an additional creation
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pressure depending on the creation rate of the particles. In the presence of parti-

cle creation, the energy-momentum tensor of perfect fluid (2.2.4) modifies as

T (m)
µν = (ρm + pm + pc)uµuν − (pm + pc)gµν . (8.3.4)

The trace of energy-momentum tensor (8.3.4), gives

T = ρm −3(pm + pc). (8.3.5)

We treat the scalar invariant Lm as the effective pressure of the perfect fluid matter

and pressure originated by creation of particles. Therefore, the matter Lagrangian

may be assumed as Lm =−(pm + pc). Therefore, Eq. (6.2.5) becomes

⊖µν =−2T (m)
µν − (pm + pc)gµν . (8.3.6)

In view of (8.3.6), the field equations (8.3.3) give

Rµν −
1
2

gµνR = 8πT (m)
µν +2

[
T (m)

µν +gµν(pm + pc)
]

f ′(T )+gµν f (T ). (8.3.7)

We consider a homogenous and isotropic flat FRW model as given in Eq. (3.2.1).

The field equations (8.3.7) for a fluid endowed with matter creation (8.3.4) in the

background of a flat FRW metric (3.2.1), yield

3H2 = 8πρm +2(ρm + pm + pc) f ′(T )+ f (T ), (8.3.8)

2Ḣ +3H2 = −8π(pm + pc)+ f (T ). (8.3.9)

8.4 Solution of the field equations

The field equations (8.3.8) and (8.3.9) have five unknowns, namely, H, ρm, pm,

pc and f (T ). Therefore, one needs three more relations in order to construct a

definite cosmological scenario.

In first choice, we consider a particular function f (T ) in (6.2.6) [174]

f (T ) = λT, (8.4.1)

where λ is a constant. With this assumption, the field equations (8.3.8) and (8.3.9),
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respectively, reduce to the form

3H2 = (8π +3λ )ρm −λ (pm + pc), (8.4.2)

2Ḣ +3H2 = −(8π +3λ )(pm + pc)+λρm. (8.4.3)

In order to obtain the exact solution of these field equations, we assume two

more additional relations: the equation of state of the perfect fluid and the matter

creation rate Γ(t). In the cosmological domain, the former usually has the form

pm = (γ −1)ρm as given in Eq. (3.3.4).

Using (3.3.4) into (8.4.2) and (8.4.3), and simplifying, we get a single evolution

equation for H:

2Ḣ +(8π +2λ )(γρm + pc) = 0. (8.4.4)

For the last assumption, we confine our attention to the simple phenomenological

expression for the matter creation rate [272]

Γ(t) = 3β0ηH, (8.4.5)

where the parameter β0 lies in the interval (0,1) and is assumed to be a constant.

Using (3.3.4) and (8.4.5) into (8.2.13), we have

pc =−β0γρm, (8.4.6)

Putting (3.3.4) and (8.4.6) into (8.4.2), we obtain

ρm =
3H2

8π +4λ − γλ (1−β0)
. (8.4.7)

Substituting (8.4.6) and (8.4.7) into (8.4.4), we get

Ḣ +
3
2

γ(8π +2λ )(1−β0)

[8π +4λ − γλ (1−β0)]
H2 = 0. (8.4.8)

The solution of (8.4.8) for γ ̸= 0 is given by

H(t) =
(

C1 +
3
2

γ(8π +2λ )(1−β0)

[8π +4λ − (1−β0)γλ ]
t
)−1

, (8.4.9)

where C1 is an integration constant. For γ = 0, the well known de Sitter scale
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factor a(t) = a0 eH0t is obtained.

From Eq. (8.4.9) we find the following expression for the scale factor

a(t) =C2

(
C1 +

3
2

K3γ t
) 2

3K3γ
, (8.4.10)

where C2 is a new integration constant and K3 =
(8π+2λ )(1−β0)

8π+4λ−γλ (1−β0)
.

The above scale factor may be rewritten as

a(t) = a0

(
1+

3
2

K3γH0(t − t0)
) 2

3K3γ
, (8.4.11)

where H = H0 > 0 at t = t0. The subscript ‘0’ refers to the present values of param-

eters. Since 0 ≤ γ ≤ 2, we must have K3 > 0 for expansion of the Universe. Also,

K3 > 0 implies λ > 0 as 0 ≤ β0 < 1.

The model avoids the initial singularity but encounters a Big-Rip singularity at a

finite value of cosmic time tbr = t − t0 =−2/3H0K3γ for γ < 0. Thus, the model may

describe the phantom cosmology for γ < 0. If one choose t0 = 2H−1
0 /3K3γ then

(8.4.11) takes the familiar form of power-law expansion of the Universe, i.e.,

a(t) = a0

(
3
2

K3γH0 t
) 2

3K3γ
. (8.4.12)

If λ = 0 = β0, (8.4.10) and (8.4.12) reduce to the well-known expressions of power-

law expansion of scale factor for a flat FRW model in GR.

By the use of (8.4.11) we obtain the energy density of matter, particle creation

pressure and the particle number density as functions of the scale factor a, which

respectively, have the following forms

ρm = ρ0

(a0

a

)3K3γ
, (8.4.13)

pc = −β0γρ0

(a0

a

)3K3γ
, (8.4.14)

η = η0

(a0

a

)3(1−β0)
, (8.4.15)

where ρ0 = 3H2
0/[8π+4λ −γλ (1−β0)] is the present value of energy density. Here,

n0 is the present value of particle number density for any values of β0. The above

results show that the transition from one phase to other phase, in the course of

expansion, happens exactly as in the standard cosmological model.
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The number of particles N in a given volume V is given by

N = N0

(
a
a0

)3β0

, (8.4.16)

which shows that N increases with time. If β0 = 0, N would remain constant

throughout the evolution of the Universe and we would recover the standard FRW

model of the Universe in f (R,T ) theory. Again, from Eq. (8.2.8), S = S0(N/N0), the

entropy in terms of scale factor is

S = S0

(
a
a0

)3β0

. (8.4.17)

The deceleration parameter (1.7.10), gives

q =−1+
3γK3

2
=

[
3γ
2

(8π +2λ )(1−β0)

[8π +4λ − (1−β0)γλ ]
−1
]
. (8.4.18)

which shows that q is independent of cosmic time t. Therefore, q may be positive

or negative for a given set of values of β0 and λ . We know that the Universe accel-

erates for q < 0, therefore, the value of A must be 0 < K < 2/3γ for an accelerated

Universe. As expected, the above solutions reduce to the standard FRW model

of GR for β0 = 0 and λ = 0 and for all values of γ.

In what follows, we study the role of f (R,T ) gravity and particle creation in the

early and late-time evolution of the Universe.

Case (i) γ = 2
3 :

0 2 4 6 8
t0

10

20

30

40
aHtL

Λ=0,Β0=0

Λ=0,Β0=2�3

Λ=1,Β0=0

Λ=1,Β0=1�2

Figure 8.1: Scale factor as a function of time for γ = 2
3 and some selected values of λ and

β0

Fig. 8.1 plots the scale factor versus time for γ = 2/3 and some selected values
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of λ and β0. We observe that if β0 = 0, q < 0 for all λ > 0, therefore, we find that

the Universe accelerates in f (R,T ) gravity without particle creation. Similarly, if

λ = 0, i.e., in the absence of f (T ), q = −β0 < 0 for any values of β0 > 0. Thus,

the acceleration occurs due to particle creation. The rate of expansion increases

more rapidly for non-zero values of β0 and λ . It is to be noted that if λ = 0 = β0

then the marginal inflationary phase of GR is recovered, i.e., a ∼ t and q = 0.

Case (ii) γ = 4
3 :

In this case, if β0 = 0 and λ > 0, we have q > 0. This shows that the Universe

decelerates in the absence of particle creation. If λ = 0 then q ≥ 0 for 0 < β0 ≤

1/2, and q < 0 for 1/2 < β0 < 1. Therefore, in the absence of f (R,T ) gravity, the

Universe decelerates or accelerates due to particle creation depending on the

rate of creation. However, if λ ̸= 0 and β0 ̸= 0, the deceleration or acceleration of

the Universe depend on the following constrains, respectively:

0 < β0 ≤
1
4
, λ > 0 or

1
4
< β0 <

1
2
, 0 < λ <

6π −12πβ0

−1+4β0
, (8.4.19)

1
4
< β0 ≤

1
2
, λ >

6π −12πβ0

−1+4β0
or

1
2
< β0 < 1, λ > 0. (8.4.20)

The behavior of scale factor versus time is shown in fig. 8.2 for some selected

0 1 2 3 4
t0

2
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12
aHtL

Λ=0,Β0=1�4

Λ=0,Β0=0

Λ=0,Β0=2�3

Λ=1,Β0=0

Λ=1,Β0=1�2

Figure 8.2: Scale factor as a function of time for γ = 4
3 and some selected values of λ and

β0

values of λ and β0. The figure shows that the Universe accelerates faster due to

higher particle creation rate. For λ = 0 = β0, we have a ∼ t1/2 and q = 1, which is

the radiation-dominated phase of GR.
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Case (iii) γ = 1:

In this case, the Universe expands with decelerated rate as q > 0 for β0 = 0 and

λ > 0. Fig. 8.3 plots graph between scale factor and time for some selected values

0 1 2 3 4
t0

2

4

6

8

10

12
aHtL

Λ=0,Β0=1�4

Λ=0,Β0=0

Λ=0,Β0=2�3

Λ=1,Β0=0

Λ=1,Β0=1�2

Figure 8.3: Scale factor as a function of time for γ = 1 and some selected values of λ and
β0

of λ and β0. For λ = 0, we have q > 0 for 0 < β0 < 1/3, and q < 0 for 1/3 < β0 < 1.

The critical case (β0 = 1/3, q = 0), describes the coasting cosmology. For λ ̸= 0

and β0 ̸= 0, the model decelerates or accelerates under the following constraints:

0 < β0 <
1
3
, 0 < λ <

π −3πβ0

β0
, (8.4.21)

0 < β0 ≤
1
3
, λ >

π −3πβ0

β0
or

1
3
< β0 < 1, λ > 0, (8.4.22)

respectively. For λ = 0 = β0, we have a ∼ t2/3 and q = 1/2, as expected, i.e., the

model reduces to standard the matter-dominated era of GR.

Case (iv) γ = 1
2 :

In this case, if λ = 0 = β0, a ∼ t4/3 and q = −1/4, which corresponds to the

present accelerated phase of the Universe of the standard FRW Universe in GR.

Since the Universe accelerates even in absence of both f (T ) and particle cre-

ation, therefore, the contribution of f (R,T ) gravity or particle creation just enhance

the rate of acceleration of the Universe. Fig. 8.4 plots the dynamics of scale factor

versus t, which is similar to case (i).



129

0 2 4 6 8
t0

10

20

30

40

50

60
aHtL

Λ=0,Β0=0

Λ=0,Β0=2�3

Λ=1,Β0=0

Λ=1,Β0=1�2

Figure 8.4: Scale factor as a function of time for γ = 1
2 and some selected values of λ and

β0

8.5 Kinematic tests

Now, we derive some kinematic relations for the model.

8.5.1 The density parameter

The density parameter (1.7.7) gives

Ωm =
8π

8π +4λ − (1−β0)γλ
. (8.5.1)

Therefore, it is clear that Ωm < 1 for all values of 0 ≤ γ ≤ 2, 0 < β0 < 1 and λ > 0.

Hence the Universe is negatively curved. In the absence of both λ and β0, we

have Ωm = 1 for all γ, i.e., the flat model of GR is recovered.

8.5.2 Lookback time-redshift

The lookback time ∆t = t0− t(z), is the difference between the age of the Universe

at the present time z = 0 and the age of the Universe when a particular light ray

at redshift z was emitted.

For a given redshift z, the scale factor a(z) is related to a0 by Eq. (7.2.35). From

(8.4.12) and (7.2.35), the cosmic time in terms of redshift is given by

t(z) =
2H−1

0
3γK3

(1+ z)−
3γK3

2 . (8.5.2)
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Consequently, we have

t0 − t(z) =
2H−1

0
3γK3

[
1− (1+ z)−

3γK3
2

]
. (8.5.3)

Fig. 8.5 plots lookback time versus redshift for γ = 1 and some selected values

0 1 2 3 4
z0.000
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Λ = 0, Β0 = 0

Λ=0, Β0=2�3

Λ = 10, Β0 = 0

Λ=1, Β0=1�2

Figure 8.5: Lookback time versus redshift for γ = 1, H0 = 60 and some selected values of
λ and β0

of λ and β0. All models coincide for lower redshift since they follow the same

behavior. The graph shows that the lookback time increases for higher values of

β0. Thus, the Universe with larger matter creation rate is older.

For small values of redshift, (8.5.3) becomes

H0 (t0 − t(z)) = z−
(

1+
3γK3

2

)
z2 + · · · . (8.5.4)

Taking lim z → ∞ in (8.5.3), the present age of the Universe is

t0 =
2H−1

0
3γK3

=
H−1

0
1+q

. (8.5.5)

Thus, the age of the Universe depends on both parameters β0 and λ .

8.5.3 Proper distance-redshift

The proper distance between the source and observer is defined as d(z) = a0r(z),

where r(z) is the radial distance of the object at the time of light emission, given
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as

r(z) =
∫ t0

t

dt
a(t)

=
H−1

0

a0

(
3γK3

2 −1
) [1− (1+ z)−

(
3γK3

2 −1
)]

. (8.5.6)

Consequently, the proper distance becomes

d(z) =
H−1

0(
3γK3

2 −1
) [1− (1+ z)−

(
3γK3

2 −1
)]

. (8.5.7)

The proper distance as a function of redshift for some selected values of β0 and

λ is displayed in fig. 8.6. We observe that the f (T ) contribution in f (R,T ) and

0 2 4 6 8 10
z0.00
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0.04
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0.08
dHzL
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Λ=0,Β0=2�3

Λ=10,Β0=0

Λ=1,Β0=1�2

Figure 8.6: Proper distance versus redshift for γ = 1, H0 = 60 and some selected values
of λ and β0

particle creation give rise to proper distance.

Equation (8.5.7) can be rewritten as

H0d(z) = z− 3γK3

4
z2 + · · · . (8.5.8)

From (8.5.7), it is observed that the distance dz is maximum at z → ∞. Hence,

H0d(z → ∞) =
1

3γK3
2 −1

=
1
q
. (8.5.9)

8.5.4 Luminosity distance-redshift

The best-known way to trace the evolution of the Universe observationally is to

look into the redshift-luminosity distance relation. The luminosity distance dl is

defined by the relation d2
l =

l
4πL , where l is the luminosity of the object and L is the
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measured flux from the object. In standard FRW cosmology it is defined in terms

of redshift as

dl = a0(1+ z)r(z) = (1+ z)d(z). (8.5.10)

From (8.5.7) and (8.5.10), we get

dlH0 =
1(

3γK3
2 −1

) [(1+ z)− (1+ z)−
(

3γK3
2 −2

)]
. (8.5.11)

The graph between Luminosity distance and redshift for some selected values

of β0 and λ is plotted in fig. 8.7. One may observe that the luminosity distance

0 2 4 6 8 10 12
z0.0

0.2

0.4

0.6

0.8

1.0
dl

Λ=0,Β0=0

Λ=0,Β0=2�3

Λ=10,Β0=0

Λ=1,Β0=1�2

Figure 8.7: Luminosity distance versus redshift for γ = 1, H0 = 60 and some selected
values of λ and β0

corresponding to any specific value of redshift rises due to f (R,T ) gravity and

particle creation.

Expanding (8.5.11) for small z, we find

H0dl = z− 1
2

(
3γK3

2
−2
)

z2 + · · · . (8.5.12)

As expected, we find the same behavior for different models at z ≪ 1 and the

possible difference in behaviors for different models come at large redshift (z≫ 1).

In fig. 8.7 we observe that all curves start with the linear Hubble’s law (z = dlH0)

for small z, but only the curve for q = 1, i.e., β0 = 0 = λ stays linear all the way.

We also note that for the small redshift the luminosity distance is larger for small

values of q.
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8.5.5 Angular diameter distance-redshift

The angular diameter distance dA is the ratio of physical transverse size of an

object to its angular size (in radians). In terms of z, it is given by

dA =
d(z)
1+ z

=
dl

(1+ z)2 . (8.5.13)

Using (8.5.7), we have

H0dA =
1(

3γK3
2 −1

) [(1+ z)−1 − (1+ z)−
3γK3

2

]
. (8.5.14)

In fig. 8.8 we plot the angular diameter distance versus redshift for some selected
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Figure 8.8: Angular diameter distance versus redshift for γ = 1, H0 = 60 and some select-
ed values of λ and β0

values of β0 and λ . The graph shows that the f (R,T ) gravity and particle creation

enhance the angular distance. The angular diameter distance initially increases

with increasing z and eventually begins to decrease.

On expanding (8.5.14), we get

H0dA = z+

1−

(
3γK3

2 +1
)(

3γK3
2 +2

)
2
(

3γK3
2 −1

)
z2 + · · · . (8.5.15)

Thus, the angular diameter shows linear behavior up to first approximation where-

as it has quadratic up to second approximation.
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8.6 Conclusion

In this chapter, we have studied a flat FRW cosmological model described by an

open thermodynamic system including particle creation at the expense of grav-

itational field in f (R,T ) theory of gravity. We have obtained exact solutions for

the scale factor and various physical quantities by assuming a suitable form of

f (R,T ) = R+2 f (T ) and ‘gamma-law’ equation of state. The model exhibits non-

singular power-law expansion of the Universe for 0 ≤ γ ≤ 2. The model exhibits

Big-Rip singularity at some finite time for γ < 0 (phantom matter). The dynamics of

the scale factor and other physical quantities have been examined through some

graphical representations in various phases of evolution of the Universe.

It has been observed that the scale factor evolves with decelerated and accel-

erated rate depending upon the contribution of particle creation and the coupling

parameter λ of f (R,T ) theory. The Universe accelerates in early inflationary and

late-time accelerated phase even in the absence of f (R,T ) gravity and without

creation of particles. The presence of f (R,T ) contribution and the creation of par-

ticles just enhance the expansion rate in these two phases. The Universe decel-

erates in radiation- and matter-dominated phases even in f (R,T ) gravity without

of particle creation. However, in GR (absence of f (R,T ) gravity) the Universe may

accelerates in these two phases for higher creation rate of particles.

The energy density and effective pressure always decrease with time and both

tend to zero in late-time for 0 ≤ γ ≤ 2. The number of particles increase with time

in all the phases. The number of particles in the absence of particle production

remain constant throughout the evolution of the Universe, which is quit obvious.

The deceleration parameter has been found having a constant value, which also

describes both decelerated and accelerated Universe under some constraints on

other parameters. The density parameter shows that the model becomes open in

the presence of particle creation.

We have also discussed some observational consequences of the model through

some kinematic tests such as lookback time, proper distance, luminosity distance

and angular diameter distance with respect to redshift. The results for the cos-

mological tests have been found to be compatible with the recent observations.

These tests have been found to be affected by λ and β0. The Universe with parti-

cle creation is always older than the standard cosmological model. The model of
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Lima et al. [16] may be recovered for λ = 0.

In summary, we have studied a cosmological model with particle creation in

f (R,T ) gravity theory to understand early behavior of the Universe and the present

accelerating phase. We have found that the negative pressure due to the matter

creation may play the role of DE to derive the accelerated expansion of the Uni-

verse in f (R,T ) theory. We may expect that the process of particle creation is also

an ingredient which accounts the sudden change in the evolution of the Universe

from deceleration to acceleration. The changes introduced by the particle cre-

ation process, provide reasonable observational results. The new fact justifying

the present work is that we have considered the thermodynamics approach for

which particle creation is at the expense of the gravitational field. One may find

that the particle creation changes the predictions of standard cosmology, thereby

alleviating the problem of reconciling observations with the inflating scenario.





Chapter 9

Summary and future scope of the work

In this thesis we have analyzed some alternatives to the standard cosmological

model to explain the evolution of the Universe specially late-time cosmic acceler-

ation. We have studied cosmological models in R+λR2 +Lm theory with perfect

fluid and exotic matter in FRW and anisotropic space-times. It has been noted

that the cosmological evolution could be fairly explain in HD theory. However the

late-time cosmic acceleration is caused by the exotic matter. We have observed

that HD theory is not responsible for the late-time acceleration. These models

have been encountered Big-Bang singularity. Therefore, we have also explored

the emergent Universe with some exotic matters in the framework of HD theory.

It has been found that the emergent Universe is not possible with quintessence

scalar and normal tachyonic fields but it exists with phantom scalar and phantom

tachyonic fields in HD gravity. The models have no time-like singularity at infinite

past and admits an ever accelerating Universe. We have also extended our work

to f (R) theory of gravity in the presence of perfect fluid. A functional form of f (R)

has been reconstructed in LRS Bianchi I space-time which shows the decelerated

phase of the Universe.

Theoretically, the R+λR2+Lm theory and f (R)+Lm theory have additive struc-

ture of geometry and matter in EH action. Therefore, we have studied another

modified gravity theory, i.e., f (R,T ) theory, which has a non-minimal coupling be-

tween matter and geometry. We have reconstructed a functional form of f (R,T ) =

R+ 2 f (T ) with a perfect fluid for de Sitter and power-law models in a flat FRW

model. It has been observed that the reconstructed forms of f (R,T ) successfully

explain the candidates of DE, i.e., quintessence, phantom and cosmological con-
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stant. We have also reconstructed this form of f (R,T ) = R+ 2 f (T ) gravity with

quintessence and phantom scalar field for constant and exponential scalar poten-

tial. The constant potential model has been found compatible with the phantom

scalar field only whereas exponential potential model has been found compatible

with quintessence scalar field. Both the models successfully address the various

decelerated and accelerated phases of evolution of the Universe. The exponen-

tial potential model leads to the power-law expansion of the Universe. We have

also compared our results for this model with some observational constraints. It

has been observed that this model is compatible with H(z), SNe Ia, H(z)+SNe Ia,

WMAP7 and WMAP7+BAO+H(z) observational constraints available on power-

law cosmology.

We have also studied a cosmological model with particle creation in f (R,T )

theory to understand early behavior of the Universe and its present accelerating

expansion. It has been found that the process of particle creation is also an

ingredient which accounts the sudden change in the evolution of the Universe

from decelerated phase to accelerated phase. Thus, the higher order gravity

theories, f (R) theory and f (R,T ) theory of gravitation have their own significance

to understand the evolution of the Universe.

The predictions of the f (R,T ) gravity could lead to some major differences in

several problems of current interest in cosmology and astrophysics. The study of

these phenomena may also provide some specific signatures and effects, which

could distinguish and discriminate between various gravitational models. So far,

a serious shortcoming of f (R,T ) theory is the non-conservation of the energy-

momentum tensor. An interesting question is the possibility of the conservation

of the energy-momentum tensor in this theory. This feature has first undertaken

by Chakraborty [181]. The author has shown that a part of an arbitrary function

of f (R,T ) can be determined by taking into account the conservation of stress-

energy tensor. Later on, Alvarenga and collaborators [179] have constructed

f (R,T ) gravity models where they consistently ensured the conservation of the

energy-momentum tensor. The authors have investigated the dynamics of scalar

perturbation within the obtained model and have shown that their results are very

different from the concordance ΛCDM model. The result obtained in that paper is

quite reasonable due to the choice of the ordinary matter content and the determi-

nation of the integration constant. Thus, there is a need to explore f (R,T ) gravity
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taking into the consideration of conservation equation. Also, there has not been

paid the full attention to study the density contrast evolution in f (R,T ) theories.

One may expect more encouraging work in future on f (R,T ) theory to understand

the mysterious dark side of our Universe.

Considerable knowledge can be gained from the theoretical point of view, as the

study of alternatives helps to understand and clarify the properties of the standard

paradigm. Therefore, various more generalised modified theories of gravity are

being developed to explain the accelerated expansion of the Universe and other

phenomena. However it is very far from clear which class of modified theories will

finally prevail. Studying the phenomenological implications of alternative mod-

els and comparing them with the observational data is a decent way to work in

cosmology. Therefore, the validity and viability of these theories have still to be

subjected to many theoretical and experimental tests. Hence, very serious recon-

sideration as well as more precise and complete observational data are requested

in order to have the answer to the fundamental question: what is the gravitation

theory which governs the expansion of our Universe ?
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