CERTIFICATE

This is to certify that the dissertation entitled "Characterization of effects of formulated plant extracts (Clove and Cardamom) on hyphal morphogenesis in *C.albicans*" (DTU/14/M.TECH/108) in the partial fulfillment of the requirements for the reward of the degree of Master of Technology, Delhi Technological University (Formerly Delhi College of Engineering, University of Delhi), is an authentic record of the candidate's own work carried out by her under my guidance. The information and data enclosed in this thesis is original and has not been submitted elsewhere for honoring of any other degree.

Prof. D KumarHOD
Department of Biotechnology

Delhi Technological University

Dr. Asmita DasAssistant professor
Department of Biotechnology
Delhi Technological university

Dr. Tulika PrasadAssistant Professor
AIRF
Jawaharlal Nehru University

ACKNOWLEDGEMENT

I feel ecstasy to explicit my profound sense of gratitude and heard felt devotion to my project

supervisior Dr. Asmita Das, Assistant Professor, Department of Biotechnology, Delhi Technological University, Delhi whose invaluable expert guidance helped us in preparation of

this project report.

I would like to acknowledge my approbation and humility to **Dr Tulika Prasad**, Assistant

Professor, School of Advanced Instrumentation Research Facility, JNU for her constant

counseling and proper guidance during project work.

I express my gratitude to Mr. V.S. Radhakrishnan who have always been there as a support and

helped me out in all aspects of my work. He always kept a keen eye on all my experimental procedures as well as outcome. I have learnt lot of practical and theoretical knowledge from him

during the course of this dissertation.

I owe sincere and earnest thankfulness to Ms. Richa Singh for her constant motivation and

support. I would like to give a deep thanks to my brother for his love and care which encourage

me to complete my project successfully.

I also thank Mr. Dinesh Kumar for helping with the media preparation and autoclaving. I thank

all my colleagues in the lab and all others who have helped in completion of this project.

To my **Father**, I feel the gift of your love and strength; I believe that everything in my life has

been made possible because of you. To my Mother, when I see you, I see someone who has dedicated heart and soul to ensure a good life for the family. I pledge to always love and take

care of both of you.

Finally, I offer my thanks to other sources of contribution that might inadvertently have been left

out.

Riya Agarwal

(2K14/BME/10)

M.Tech (Biomedical Engineering)

Department of Biotechnology

Delhi Technological University, Delhi

Date: 30/06/2016

Place: Delhi

Page | ii

DECLARATION

I hereby declare that the work which is being presented in this thesis entitled "Characterization of effects of formulated plant extracts (Clove and Cardamom) on hyphal morphogenesis in *C.albicans*" is my own work carried out under the guidance of Dr. Asmita Das, Department of Biotechnology, Delhi Technological University, Delhi.

I further declare that the matter embodied in this thesis has not been submitted for the award of any other degree or diploma.

Date: Riya Agarwal

Place: New Delhi Roll No. 2K14/BME/10

List of Figures

Serial No.	Figure Name	Page No.
Fig 1	Candida albicans	3
Fig 2	Distinct morphological forms of <i>C. albicans</i>	7
Fig 3	An overview of selected <i>C. albicans</i> pathogenicity mechanisms	8
Fig 4	Targets of current antifungal drugs in C. albicans	11
Fig 5	Mechanisms of resistance to antifungal drugs in <i>C. albicans</i>	13
Fig 6	Growth pattern of Candida albicans	24
Fig 7	Spot assay of <i>Candida albicans</i> showing growth in the absence (control)	25
	and in the presence of Cardamom and Clove	
Fig 8	Hyphal morphogenesis on spider media with presence of cardamom and	26
	clove. Untreated (control) cells were maintained separately. The images	
	were captured by confocal microscope $FluoView^{TM}$ $FV1000$.	
Fig 9	Hyphal morphogenesis on N-acetyl glucosamine supplemented media	27
	with presence of cardamom and clove. Untreated (control) cells were	
	maintained separately. The images were captured by confocal	
	microscope $FluoView^{TM}$ $FV1000$.	
Fig 10	Graph showing the sterol estimation of Candida albicans by using	28
	spider media in the absence (control) and presence of plant extracts (
	Clove and Cardamom)	
Fig 11	Graph showing the sterol estimation of Candida albicans by using n-	29
	acetyl glucosamine media in the absence (control) and presence of plant	
	extracts (Clove and Cardamom)	

List of Tables

Serial No.	Table name	Page no.
Table 1	Conventional antifungal drugs	10
Table 2	YEPD Media	17
Table 3	Spider Media	17
Table 4	N-acetyl glucosamine media	18
Table 5	Chemicals used	18

CONTENTS

Title	Page No.
Certificate	i
Acknowledgement	ii
Declaration	iii
List of figures	iv
List of tables	V
1. Introduction	1-15
1.1. Candida albicans	2
1.1.1. Taxonomy	2
1.1.2. Description	3
1.2. Epidemiology	4
1.3. Pathogenesis	5
1.3.1. Transmission	5
1.3.2. Distinct morphological forms of Candida albicans	s 5
1.4. Pathogenecity mechanism of Candida albicans	7
1.5. Conventional antifungal drugs	10
1.6. Treatment	10
1.7. Antifungal drug targets in <i>C.albicans</i>	11
1.8. Mechanism of azole resistance	12
1.9. Prevention	13
1.10. Functional relevance of lipids in Candida	14
1.11. Why plant extracts used as antifungal drugs	14
Material	16-18
2.1. Strains and growth media	17
2.2. YEPD Media	17

2.

	2.3.	Spider Media	17
	2.4.	N-acetyl glucosamine media	18
	2.5.	Chemicals used	18
3.	Met	hods	19-22
	3.1.	Extract preparation and analysis of phyto-constituents	20
	3.2.	Growth curve of Candida albicans	20
	3.3.	Drug susceptibility assay	20
		3.3.1. Spot assay	20
		3.3.2. Sterol estimation by using Spider and NAG media	20
		3.3.3. Morphogenic studies of <i>Candida albicans</i>	21
		3.3.3.1. On Spider Media	21
		3.3.3.2. On N-acetyl glucosamine media	21
4.	Result and Discussion		
	4.1.	Candida albicans cells showed sigmoid growth pattern	24
	4.2.	Spot assay helped to determine the minimum inhibitory	24
		Concentration of plant extracts	
	4.3.	Plant extracts on spider media showed inhibition on	25
		hyphal morphogenesis	
	4.4.	Plant extracts on N-acetyl glucosamine supplemented	26
		media showed inhibition on hyphal morphogenesis.	
	4.5.	Marked reduction in levels of ergosterol was observed in	27
		cells after treated with plant extracts.	
	4.6.	Marked reduction in levels of ergosterol was observed in	28
		cells after treated with plant extracts	
5.	Con	clusion	30-31
6	References		32-37