# Thermodynamic Analysis of Multi Evaporator Vapour Compression Refrigeration System with Individual Compressor Using Mixed Refrigerant and Comparison with Pure Refrigerant

A Major Thesis Submitted in Partial Fulfilment of the requirements for the award of the degree of

MASTER OF TECHNOLOGY

In

THERMAL ENGINEERING



Submitted by

**ABHISHEK VERMA** 

Roll No. 2K14/THE/02

Session 2014-16

*Under the Guidance of* 

Dr. Akhilesh Arora &

Prof. P.K. Jain

DEPARTMENT OF MECHANICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLGE OF ENGINEERING)

### **CANDIDATE'S DECLARATION**

I hereby declare that the work which being presented in the major thesis entitled "Thermodynamic Analysis of Multi Evaporator Vapour Compression Refrigeration System with Individual Compressor using Mixed Refrigerant and Comparison with Pure Refrigerant" in the partial fulfilment for the award of the degree of Master of Technology in "THERMAL ENGINEERING" submitted to Delhi Technological University (Formerly Delhi College of Engineering), is an authentic record of my own work carried out under the supervision of Dr. Akhilesh Arora and Prof. P.K. Jain, Department of Mechanical Engineering, Delhi Technological University (Formerly Delhi College of Engineering). I have not submitted the matter of this dissertation for the award of any other Degree or Diploma or any other purpose what so ever. I confirm that I have read and understood 'Plagiarism policy of DTU'. I have not committed plagiarism when completing the attached piece of work, similarity found after checking is 10% which is below the permitted limit of 20%.

ABHISHEK VERMA

Roll No. 2K14/THE/02

Place: Delhi

Date:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **CERTIFICATE**

This is to certify that the above statement made by ABHISHEK VERMA is true to the best of my knowledge and belief.

#### Prof. P.K. Jain

Associate Professor

Department of Mechanical Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Delhi- 110042

#### Dr. Akhilesh Arora

**Assistant Professor** 

Department of Mechanical Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Delhi- 110042

#### **ACKNOWLEDGMENT**

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to everybody who helped me throughout the project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor Dr. AKHILESH ARORA, Assistant Professor and Prof. P.K. JAIN, Associate Professor, in Mechanical Department, Delhi Technological University (Formerly Delhi College of Engineering), for their invaluable guidance, encouragement and patient review. Their continues inspiration only has made me complete this dissertation.

I would also like to take this opportunity to present my sincere regards to Dr. R S MISHRA, Head of Department, Mechanical Department, Delhi Technological University (Formerly Delhi College of Engineering), for his kind support and encouragement.

I am thankful to my friends and classmates for their unconditional support and motivation for this dissertation.

ABHISHEK VERMA Roll No. 2K14/THE/02

#### **ABSTRACT**

Thermodynamic analysis is carried out which is based on the energy and exergy analysis of multi evaporator refrigeration system with individual compressor and multiple expansion devices using flash chamber at different temperatures of both evaporator and condenser for R12, R134a, R436a (0.52R290 / 0.48R600a) and R436b (0.56R290 / 0.44R600a). The properties of blend refrigerant (R290/R600a) are calculated using Refprop and a computational model is developed using engineering equation solver. The present work has been carried out for food freezing plant (fishes, fruits, vegetables) which works on multi evaporator vapour compression refrigeration system for evaporator-1 in the range of -30°C to -15°C, evaporator-2 in the range of -6°C to 10°C and the condenser in the range of 25°C to 44°C. Performance parameters (total work input for the system, the coefficient of performance (COP), exergy destruction (ED) for whole system, exergy destruction ratio (EDR), exergetic efficiency) are calculated over these ranges of temperature and compared all these refrigerants.

After the performance evaluation of the system for different refrigerants, it is found that R436b (0.56R290 / 0.44R600a) has the highest COP and Exergetic Efficiency, it has also the least Total Work Input for the system and Exergy Destruction.

Now it is concluded that R436b is the best among all other refrigerants which are used for the system, and it has zero GWP. Thus it is recommended that it can be used for the replacement of R134a in the household refrigerator and food freezing plant.

# **TABLE OF CONTENT**

| Content                                                                                                                                                                                                  | Page No.                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Candidate's Declaration                                                                                                                                                                                  | ii                         |
| Certificate                                                                                                                                                                                              | ii                         |
| Acknowledgement                                                                                                                                                                                          | iii                        |
| Abstract                                                                                                                                                                                                 | iv                         |
| Table of Contents                                                                                                                                                                                        | V                          |
| Lists of Figures                                                                                                                                                                                         | vii                        |
| List of Tables                                                                                                                                                                                           | xi                         |
| Nomenclatures                                                                                                                                                                                            | xii                        |
| <ol> <li>Introduction</li> <li>1.1 Environmental Impacts</li> <li>1.2 Ozone Layer Depletion</li> <li>1.3 Global Warming Potential</li> <li>1.4 Blending</li> <li>1.5 Scope for Present Thesis</li> </ol> | 1<br>2<br>3<br>3<br>3<br>5 |
| 2. Literature Survey                                                                                                                                                                                     | 6                          |
| 2.1 Literature                                                                                                                                                                                           | 6                          |
| 2.2 Conclusions and Gap                                                                                                                                                                                  | 9                          |
| 2.3 Problem Formulation                                                                                                                                                                                  | 10                         |
| 3. Thermodynamic Analysis                                                                                                                                                                                | 11                         |
| 3.1 System Description                                                                                                                                                                                   | 11                         |
| 3.2 Energy Analysis                                                                                                                                                                                      | 13                         |
| 3.3 Exergy Analysis                                                                                                                                                                                      | 16                         |
| 3.4 Input Parameters                                                                                                                                                                                     | 19                         |
| 4. Results and Discussion                                                                                                                                                                                | 20                         |
| 4.1 Total work input for the compressor                                                                                                                                                                  | 21                         |

| 4.2 Coefficient of Performance        | 29 |
|---------------------------------------|----|
| 4.3 Exergy Destruction for the system | 37 |
| 4.4 Exergy Destruction Ratio          | 45 |
| 4.5 Exergetic Efficiency              | 53 |
| 5. Conclusion                         | 61 |
| 6. Scope for Future Work              | 62 |
| 7. Reference                          | 63 |

# **LIST OF FIGURES**

| Fig. 1: A thermodynamic cycle involving heat transfer                              | 1  |
|------------------------------------------------------------------------------------|----|
| Fig. 2: Comparison of evaporation and condensation of pure refrigerant             |    |
| (single component) and mixed refrigerant (blends)                                  | 4  |
| Fig. 3: System Diagram of Multi-evaporator system with flash chamber,              |    |
| Individual compressors and multiple expansion valves                               | 12 |
| Fig. 4: p-h diagram of the multi evaporator refrigeration system for R12           | 14 |
| Fig. 5: System diagram of evaporator-1                                             | 16 |
| Fig. 6: System diagram of evaporator-2                                             | 16 |
| Fig. 7: System diagram of compressor-1                                             | 16 |
| Fig. 8: System diagram of compressor-2                                             | 17 |
| Fig. 9: System diagram of condenser-1                                              | 17 |
| Fig. 10: System diagram of expansion valve-1                                       | 17 |
| Fig. 11: System diagram of expansion valve-2                                       | 18 |
| Fig. 12: System diagram of flash tank                                              | 18 |
| Fig. 13: Variation of total work input with Evaporator Temperature-1 using R134a   | 21 |
| Fig. 14: Variation of total work input with Evaporator Temperature-1 using R12     | 22 |
| Fig. 15: Variation of total work input with Evaporator Temperature-1 using R436a   | 22 |
| Fig. 16: Variation of total work input with Evaporator Temperature-1 using R436b   | 23 |
| Fig. 17: Comparison of Variation of total work input with Evaporator Temperature-1 | 23 |
| Fig. 18: Variation of total work input with Evaporator Temperature-2 using R134a   | 24 |
| Fig. 19: Variation of total work input with Evaporator Temperature-2 using R12     | 24 |
| Fig. 20: Variation of total work input with Evaporator Temperature-2 using R436a   | 25 |
| Fig. 21: Variation of total work input with Evaporator Temperature-2 using R436b   | 25 |
| Fig. 22: Comparison of Variation of total work input with Evaporator Temperature-2 | 26 |
| Fig. 23: Variation of total work input with Condenser Temperature using R134a      | 26 |

| Fig. 24: Variation of total work input with Condenser Temperature using R12          | 27 |
|--------------------------------------------------------------------------------------|----|
| Fig. 25: Variation of total work input with Condenser Temperature using R436a        | 27 |
| Fig. 26: Variation of total work input with Condenser Temperature using R436b        | 28 |
| Fig. 27: Comparison of Variation of total work input with Condenser Temperature      | 28 |
| Fig. 28: Variation of COP with Evaporator-I Temperature using R134a                  | 29 |
| Fig. 29: Variation of COP with Evaporator-I Temperature using R12                    | 30 |
| Fig. 30: Variation of COP with Evaporator-I Temperature using R436a                  | 30 |
| Fig. 31: Variation of COP with Evaporator-I Temperature using R436b                  | 31 |
| Fig. 32: Comparison of Variation of COP with Evaporator-I Temperature                | 31 |
| Fig. 33: Variation of COP with Evaporator Temperature-2 using R134a                  | 32 |
| Fig. 34: Variation of COP with Evaporator Temperature-2 using R12                    | 32 |
| Fig. 35: Variation of COP with Evaporator Temperature-2 using R436a                  | 33 |
| Fig. 36: Variation of COP with Evaporator Temperature-2 using R436b                  | 33 |
| Fig. 37: Comparison of Variation of COP with Evaporator Temperature-2                | 34 |
| Fig. 38: Variation of COP with Condenser Temperature using R134a                     | 34 |
| Fig. 39: Variation of COP with Condenser Temperature using R12                       | 35 |
| Fig. 40: Variation of COP with Condenser Temperature using R436a                     | 35 |
| Fig. 41: Variation of COP with Condenser Temperature using R436b                     | 36 |
| Fig. 42: Comparison of Variation of COP with Condenser Temperature                   | 36 |
| Fig. 43: Variation of Exergy Destruction with Evaporator temperature-1 using R134a   | 37 |
| Fig. 44: Variation of Exergy Destruction with evaporator temperature-1 using R12     | 38 |
| Fig. 45: Variation of Exergy Destruction with evaporator temperature-1 using R436a   | 38 |
| Fig. 46: Variation of Exergy Destruction with evaporator temperature-1 using R436b   | 39 |
| Fig. 47: Comparison of Variation of Exergy Destruction with evaporator temperature-1 | 39 |
| Fig. 48: Variation of Exergy Destruction with evaporator temperature-2 using R134a   | 40 |
| Fig. 49: Variation of Exergy Destruction with evaporator temperature-2 using R12     | 40 |
| Fig. 50: Variation of Exergy Destruction with evaporator temperature-2 using R436a   | 41 |

| Fig. 51: Variation of Exergy Destruction with evaporator temperature-2 using R436b    | 41   |
|---------------------------------------------------------------------------------------|------|
| Fig. 52: Comparison of Variation of Exergy Destruction with evaporator temperature-2  | 42   |
| Fig. 53: Variation of Exergy Destruction with condenser temperature using R134a       | 42   |
| Fig. 54: Variation of Exergy Destruction with condenser temperature using R12         | 43   |
| Fig. 55: Variation of Exergy Destruction with condenser temperature using R436a       | 43   |
| Fig. 56: Variation of Exergy Destruction with condenser temperature using R436b       | 44   |
| Fig. 57: Comparison of Variation of Exergy Destruction with condenser temperature     | 44   |
| Fig. 58: Variation of EDR with Evaporator Temperature-1 using R134a                   | 45   |
| Fig. 59: Variation of EDR with Evaporator Temperature-1 using R12                     | 46   |
| Fig. 60: Variation of EDR with Evaporator Temperature-1 using R436a                   | 46   |
| Fig. 61: Variation of EDR with Evaporator Temperature-1 using R436b                   | 47   |
| Fig. 62: Comparison of Variation of EDR with Evaporator Temperature-1                 | 47   |
| Fig. 63: Variation of EDR with Evaporator Temperature-2 using R134a                   | 48   |
| Fig. 64: Variation of EDR with Evaporator Temperature-2 using R12                     | 48   |
| Fig. 65: Variation of EDR with Evaporator Temperature-2 using R436a                   | 49   |
| Fig. 66: Variation of EDR with Evaporator Temperature-2 using R436b                   | 49   |
| Fig. 67: Comparison of Variation of EDR with Evaporator Temperature-2                 | 50   |
| Fig. 68: Variation of EDR with condenser temperature using R134a                      | 50   |
| Fig. 69: Variation of EDR with condenser temperature using R12                        | 51   |
| Fig. 70: Variation of EDR with condenser temperature using R436a                      | 51   |
| Fig. 71: Variation of EDR with condenser temperature using R436b                      | 52   |
| Fig. 72: Comparison of Variation of EDR with condenser temperature                    | 52   |
| Fig. 73: Variation of Exergetic Efficiency with Evaporator Temperature-1 using R134a  | 53   |
| Fig. 74: Variation of Exergetic Efficiency with Evaporator Temperature-1 using R12    | 54   |
| Fig. 75: Variation of Exergetic Efficiency with Evaporator Temperature-1 using R436a  | 54   |
| Fig. 76: Variation of Exergetic Efficiency with Evaporator Temperature-1 using R436b  | 55   |
| Fig. 77: Comparison of Variation of Exergetic Efficiency with Evaporator Temperature- | 1 55 |

| Fig. 78: Variation of Exergetic Efficiency with Evaporator Temperature-2 using R134a   | 56   |
|----------------------------------------------------------------------------------------|------|
| Fig. 79: Variation of Exergetic Efficiency with Evaporator Temperature-2 using R12     | 56   |
| Fig. 80: Variation of Exergetic Efficiency with Evaporator Temperature-2 using R436a   | 57   |
| Fig. 81: Variation of Exergetic Efficiency with Evaporator Temperature-2 using R436b   | 57   |
| Fig. 82: Comparison of Variation of Exergetic Efficiency with Evaporator Temperature-2 | 2 58 |
| Fig. 83: Variation of Exergetic Efficiency with Condenser Temperature using R134a      | 58   |
| Fig. 84: Variation of Exergetic Efficiency with Condenser Temperature using R12        | 59   |
| Fig. 85: Variation of Exergetic Efficiency with Condenser Temperature using R436a      | 59   |
| Fig. 86: Variation of Exergetic Efficiency with Condenser Temperature using R436b      | 60   |
| Fig. 87: Comparison of Variation of Exergetic Efficiency with Condenser Temperature    | 60   |

# **LIST OF TABLES**

| Table 1: Properties of Refrigerants                                    | 9  |
|------------------------------------------------------------------------|----|
| Table 2: comparison of different proportion of blend of R290 and R600a | 20 |

## **NOMENCLATURE**

COP Coefficient of Performance (non-dimensional)

ED Exergy Destruction (kW)

EDR Exergy Destruction Ratio (non-dimensional)

Eta or η Efficiency (non-dimensional)

h Specific Enthalpy (kJ / kg)

m Mass flow rate (kg / s)

P Pressure (kPa)

Q Refrigerant capacity (kW)

s Specific Entropy (kJ / kg-K)

T Temperature (<sup>0</sup>C)

TR Tonne of Refrigeration

W Specific Work (kJ/kg)

## **Subscript/Superscript**

c1 Compressor-1

c2 Compressor-2

cond or c Condenser

e1 Evaporator-1

e2 Evaporator-2

ex Exergetic

flash Flash tank

o Dead state

r1 Refrigerated space at low temperature (evaporator-1)

r2 Refrigerated space at high temperature (evaporator-2)

t1 Expansion device-1

t2 Expansion device-2