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1. ABSTRACT 

Oral squamous cell carcinoma is the sixth most common cancer worldwide. The increasing 

epidemiological relevance of this cancer emphasizes the need to identify predictive tumor 

markers. There are limited studies to associate the expression changes in OSCC using clinically 

relevant variables. Many studies showed inconsistent cancer biomarkers due to bioinformatics 

artifacts. In this work we use multiple data sets from microarrays in order to improve the 

reliability of cancer biomarkers. Combining a large number of gene expression datasets 

originating from different labs could be beneficial for the discovery of new biological insights 

and could increase the statistical power of gene expression analysis, but then this data should be 

combined in a consistent manner. We perform a Cross-Platform Normalization method which 

integrates and cross-annotates multiple data sets related to oral cancer. This Cross-Platform 

Normalization was done to determine differential gene expression in oral cancer using the open-

source R programming environment in conjunction with the open-source Bioconductor software. 

Cross-Platform Normalization is a powerful tool for analyzing microarray experiments by 

combining data from multiple studies. Functionalities for combining outputs from different 

methods and for data transformation are also available in the package. Moderate t-statistics is 

used to find DEG using Limma package of Bioconductor. In this microarray analysis expression 

profile of samples were used to identify DEG using 352 samples of which 69 was normal while 

283 was tumor. Total 16 genes are found to be differentially expressed, seven genes are found to 

be upregulated (MMP1, MMP12, CXCL8, SPP1, PTHLH, MMP3 and MMP10), while nine 

genes are found to be downregulated (ENDOU, MAL, CRNN, SCEL, TGM3, CLCA4, KRT4, 

CRISP3 and KRT13). All these genes are previously shown to be involved in OSCC and hence, 

can be used as the potential biomarker to detect oral cancer. 

 

Keywords: 

Oral squamous cell carcinoma, microarray, Cross-Platform Normalization, R-package, 

implementation, visualization 
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2. INTRODUCTION 

Head and neck squamous cell carcinoma (HNSCC) is the fifth most common cancer worldwide 

[1]. Oral squamous cell carcinoma (OSCC), a common subtype of HNSCC, the sixth most 

frequent cancer in the world [2].OSCC is a major cause of morbidity and mortality worldwide, 

accounting for more than 275,000 new cases and over 120,000 deaths every year [3]. Although 

there have been improvements in the therapeutic modalities, OSCC-associated morbidity and 

mortality remain high and have not changed in over three decades [4].  

In developing countries including India, controlling the devastating, widespread consequences of 

oral cancer requires interventions in persons at-risk ideally before the disease becomes invasive 

but certainly before it becomes locally advanced or metastatic [5]. Once the neoplastic process 

sets in, it is rather difficult to control and endangers the life of the host. Therefore, detection of a 

malignancy before it arises would be the best possible mode of preventing the dreaded disease in 

its earliest form or by intervening before it reaches uncontrollable proportions. Advances in the 

analysis of molecular alterations in cells undergoing malignant transformation have increasingly 

revealed the mechanisms that lead to the occurrence and progression of malignancies [6].  

Malignant cells have different histologic and biochemical behavior as compared to their normal 

counterparts. Earlier the most common determinant or marker of carcinomatous transformation 

in a tissue was the histopathologic presence or absence of epithelial dysplasia. However, the 

expanding field of oncology has revealed new and more specific markers that would help to 

determine the degree of cell alteration and enable a better understanding of the degree of 

malignant transformation of these cells. Data obtained from clinical examination and routine 

histopathologic studies are not always accurate about the potential or risk (to varying degrees) of 

the lesion in question becoming malignant [7]. 

 In recent years, there have been a number of approaches to the problem of precancerous tissue 

with the aim to establish a more fundamental biochemical basis of understanding [8]. Several 

abnormal cellular products are synthesized by the neoplastic cells and also by the body in the 

presence of such an abnormal situation. Such cellular products can be detected in the various 

body fluids and on the surface of the cancer cells either by biochemical methods or by 

immunochemistry. These products that are detected and measured are known as ‗tumor markers‘. 
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Also, the gene which shows differential expression apart from their normal/baseline expression 

in particular tissue and leads to tumor are also referred as ―tumor marker‖. These tumor markers 

can be effectively made use of for early screening and detection of cancer. Diagnosis can be 

aided by the use of these and clinical staging can be better applied in the light of the revelations 

by these markers.  

A number of published gene signatures validated using independent samples have been shown to 

serve as significant predictors of clinical outcome [9–13]. However, the development of 

prognostic signatures that are robust and stable (e.g., the same biomarkers are identified in both 

discovery and validation sets) [14] has proven challenging [15–17].  

Published prognostic gene signatures derived from internal validation often show little overlap 

with genes identified by other study groups [12]. Potential causes of small reproducibility 

include differences in sample collection methods, processing protocols, and microarray 

platforms, patient heterogeneity, and small sample sizes [27]. Due to the difficulty of acquiring 

samples, particularly from human tissue and the associated costs, microarray experiments from 

single-institution patient cohorts are often composed of small sample sizes. Predictive models 

trained on the gene signatures identified from these smaller-sized individual studies are less 

robust [12, 17]. Michiels et al. [18] re-analyzed data from nine studies predicting cancer 

prognosis and found an unstable misclassification rate for the gene signature (defined as the 50 

genes for which expression was most highly correlated with outcome) using training sets derived 

using a re-sampling approach, with performance increasing as the size of the training set 

increases. 

Integration of multiple microarray data sets has been advocated to improve gene signature 

selection [19]. Increasing sample sizes increases the statistical power to obtain a more precise 

estimate of integration of (differential) gene expression and to assess the heterogeneity of the 

overall estimate, as well as to reduce the effects of individual study-specific biases [20–23]. 

Meta-analysis is most commonly applied for the purpose of detecting differentially expressed 

(DE) genes [24] which may serve as a candidate gene signature or be used as features in 

classification models or classifiers to further refine a clinically useful gene signature [25]. 

Supervised classification techniques (also known as prediction analysis or supervised machine 

learning) are the most commonly used methods in microarray analysis that lead to the 
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identification of clinically useful biomarkers (i.e., gene signatures providing improved 

discrimination between two or more patient groups) [24]. Classification methods for gene 

signature selection are beyond the scope of this work and have been reviewed elsewhere [26]. 
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3. REVIEW OF LITERATURE 

 

3.1. Oral squamous cell carcinoma (OSCC) 

Oral squamous cell carcinomas (OSCC) are cancers originating from the squamous epithelium in 

the oral cavity. Locations include the lip, mobile tongue, and buccal mucosa, floor of the mouth, 

gingiva, hard palate and soft palate. OSCC belongs to a larger subgroup of tumors termed head 

and neck squamous cell carcinomas (HNSCC), comprising of carcinomas arising in the oral 

cavity, oropharynx, larynx, hypopharynx, nasal cavity, nasopharynx,  salivary glands and the ear 

[92], where OSCCs are the most common oral malignancy with a poor 5-year survival rate 

[92,28-30]. 

3.1.1. Epidemiology and Etiological factors 

In 2008, more than 260.000 new cases of oral cavity cancers were predicted worldwide and over 

130.000 of these patients were estimated to die from the disease (approximately 50%). More than 

60% of these cases occur in the developing countries, where the male population by far displays 

the highest prevalence [29]. Gender, race, and age have all been associated with differences in 

OSCC incidence, mortality, site, grade, histological type and tumor stage at diagnosis [31]. As 

with many other types of cancer, OSCC most commonly occurs in the middle-aged and elderly 

population [32, 33]. The male population has traditionally had a higher incidence in OSCC, 

typically 1:2 compared to women [33]. In 2001, the highest mortality rates for OSCC were 

reported to be in France, the Indian subcontinent, Brazil and central/eastern Europe [32]. The 

lowest survival rates have been ascribed patients of African-American origin living in the United 

States [31]. Also among South-African Indians, living in Natal, the mortality rates from OSCC 

were high [32-34]. Most often, such differences in mortality rates are explained by cultural 

traditions, ethnic differences and socioeconomic circumstances [32]. Certain risk factors such as 

tobacco use, alcohol consumption, and human papillomavirus (HPV) infections, increases the 

HNSCC incidence [29, 32]. Furthermore, heavy consumption of alcohol combined with smoking 

functions synergistically, multiplying the risk of developing OSCC [29, 32, and 35]. A high 

percentage of oropharyngeal cancers are HPV positive (90% in Sweden, 60% in the USA), and 

HPV is thought to be a major cause of cancers in the oropharynx [36], though far less important 
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for the development of cancers in the oral cavity. Other risk factors believed to have an impact 

on the development of OSCC are poor oral hygiene, gastro-esophageal reflux disease, dietary 

factors, use of marijuana and environmental contaminants such as paint fumes, plastic by-

products, and gasoline fumes [37].  

3.1.2. Stage, Histopathology and Grade of Primary Tumor 

Important prognostic indicators that are known to affect regional metastasis and therefore 

outcome, include the size of the primary tumor, site, T stage, and grade, depth of invasion, 

biological tumor markers, perineural invasion and patient compliance [38-39]. 

The TNM classification of oral squamous cell carcinoma [40] provides a reliable basis for patient 

prognosis and therapeutic planning. There are a number of clinically detected or small 

undetectable primary tumors that display biological aggressiveness, with early regional 

metastasis and death. Typically, T1-T2 lesions are often associated with a risk of regional 

metastasis of 10% to 30% respectively, especially to lymph nodes, whereas several studies have 

shown a clear correlation between increasing tumor thickness and an increased risk of cervical 

metastasis [41-42]; T3-T4 lesions have a significantly higher risk of regional neck disease [37, 

43]. 

3.1.3. Diagnosis 

Efforts have been made to elucidate tumor-related factors that could influence the appearance of 

metastases in oral squamous cell carcinoma [44]. The samples are studied using hematoxylin and 

eosin staining and reviewed according to World Health Organization histological criteria [40]. 

Although a number of studies have investigated the potential of these biomarkers in oral 

squamous cell carcinoma, there is no agreement on a reliable predictor of prognosis. Various 

histopathological parameters, keratinization, mode of invasion, and lymphocyte infiltration have 

been described as being predictors of lymph node metastasis [45]. Tumor thickness is an 

important prognostic factor in carcinomas of the oral cavity. The treatment of tumors smaller 

than 3 mm might need to be less aggressive than if the tumor is larger than 5 mm [47]. 

The use of biomarkers could help to avoid the unnecessary surgical treatment of metastasis-free 

patients [46]. Although the TMN staging system is used routinely, the technique accurately 
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determines only the size and location of the tumor and does not predict their metastatic potential. 

The further clinical examination can only identify regional metastasis with an accuracy of 70%. 

Although the use of various forms of imaging can improve this percentage, the microscopic 

disease cannot be detected by these methods [46]. 

Several proteins and genes are candidates for use as predictors of metastasis due to the 

heterogeneity of the cells [46, 48]. Some studies have tried to relate the expression of proteins in 

primary tumors with the occurrence of metastasis, for this purpose, many key proteins have been 

searched with the intention of establishing more reliable prognostic factors of OSCC. 

3.1.4. Early detection and its importance 

Oral cancer patients commonly seek treatment at the advanced stage of the disease, thereby 

diminishing the chances of therapeutic success [49-50]. With advances in research, clinical 

outcomes have improved due to facilitation of early detection of lesions. Visual and cytological 

techniques that are routinely used to detect OSCC exhibit limited predictabilities. Recently, 

various staining methods have been used to evaluate oral dysplasias. Each of these methods, 

however, has its limitations. Nearly thirty percent of oral cancers do not arise from premalignant 

lesions [51], and histologically normal oral epithelium has been observed to develop into tumors 

in many instances [52]. Conversely, only a small proportion of premalignant tissues develop into 

cancer. The use of a variety of molecular and biochemical techniques provides abundant 

information regarding preneoplastic changes of the oral cavity in a laboratory setting. The 

practical applications of these strategies, however, remain to be evaluated at large scale in 

diagnosis at the clinic. Thus, the application of these biochemical and molecular methods for 

more accurate detection of potential oral lesions is of great importance. 

3.2. Microarray 

Microarray technology is a powerful tool for simultaneously evaluating the expression level of 

thousands of genes in a cell [53] and, hence, the information that is encoded in the DNA [54]. A 

microarray is a microscopic slide that contains an ordered series of DNA, RNA proteins or 

tissues. The DNA microarrays are the most common [55]. A DNA microarray is generally a 

glass slide or a silicon chip in which thousands of gene sequences are printed. One very spot 

many copies of a specified DNA sequence are chemically bonded to the surface of the slide [53]. 
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The genes immobilized onto the slide are called the DNA probe. Over this DNA probe, the target 

DNA or the target RNA (depending on the microarray platform) obtained from the cell under 

study is hybridized (hydrogen bonded). The amount of hybridization is measured and related to 

the presence and expression of certain genes in the cell. [55-58]. 

Microarrays are microscope slides that contain an ordered series of samples (DNA, RNA, 

protein, tissue). The type of microarray depends on upon the material placed onto the slide: 

DNA, DNA microarray; RNA, RNA microarray; protein, protein microarray; tissue, tissue 

microarray. Since the samples are arranged in an ordered fashion, data obtained from the 

microarray can be traced back to any of the samples. This means that genes on the microarray are 

addressable. The number of ordered samples on a microarray can number into the hundreds of 

thousands [59]. The typical microarray contains several thousands of addressable genes. The 

most commonly used microarray is the DNA microarray. The DNA printed or spotted onto the 

slides can be chemically synthesized long oligonucleotides or enzymatically generated PCR 

products. The slides contain chemically reactive groups (typically aldehydes or primary amines) 

that help to stabilize the DNA onto the slide, either by covalent bonds or electrostatic 

interactions. An alternative technology allows the DNA to be synthesized directly onto the slide 

itself by a photolithographic process. This process has been commercialized and is widely 

available. By orderly arranging samples, the microarray provides a large-scale medium for 

matching known and unknown DNA segments based on base-pairing rules. 

Figure: 1 shows the workflow process in a microarray experiment. The experimental process 

varies depending on the microarray platform that is used.  

3.2.1. Types of microarrays: 

Microarrays can be broadly classified according to at least three criteria:  

i. The length of the probes: arrays can be classified into ―cDNA) arrays‖ which use long 

probes of hundreds of base pairs, and ―oligonucleotide arrays,‖ which use short probes 

(50 bps or less).  

ii. Manufacturing methods include: ―deposition‖ of previously synthesized sequences and 

―in-situ synthesis.‖ Usually, cDNA arrays are manufactured using deposition, while 

oligonucleotide arrays are manufactured using in-situ technologies. In-situ technologies 
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include: ―photolithography‖ (eg, Affymetrix, Santa Clara, CA), ―ink-jet printing‖ (eg, 

Agilent, Palo Alto, CA), and ―electrochemical synthesis‖ (eg, Combimatrix, Mukilteo, 

WA). 

iii. The number of samples: ―Single-channel arrays‖ (Affymetrix GeneChip) analyze a single 

sample at a time, whereas ―multiple-channel arrays‖ can analyze two or more samples 

simultaneously.  

 

Figure 1: The workflow process in a microarray experiment [91]. 

 The cDNA arrays apply to glass slides (or nylon membranes) spots of complimentary DNAs 

(cDNAs), which are generated in biological labs by reverse transcription (so that they only 

include the protein-coding part of the genome) [60].  

The oligonucleotide arrays (often referred to as the Affymetrix arrays) place many thousands of 

gene-specific oligonucleotides (called probes) synthesized directly on a silicon chip. The probes 

are about 25 base pairs long, and 20 probe-pairs (one perfect fact and one mismatch) are often 

used to represent each gene (like a 20 digit barcode). In order to compare two types of cells (e.g., 

a cancer cell versus a normal cell), for example, the biologist first extracts the DNA materials 

from all the cells and labels those from one cell type (say, cancer cell) by fluorescence cy5 (red) 

and the other cell type by cy3 (green). The microarray is then exposed to the mixture of the two 

DNA samples for hybridization. When mRNA for a gene is more abundant in the cancer cell 

than in the normal cell, for example, the array spot corresponding to that gene will show a red 

color. Numerically, a vector of length G is reported, where G is the number of spots (genes) in 
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the array, and each entry of the vector records the ratios of the fluorescence intensities (cy5/cy3). 

Where each column corresponds to a cell type (e.g., lymphoma cell, leukemia cell, normal cell, 

etc.) or a treatment and each row corresponds to a gene [61]. Thus, through the use of DNA 

microarrays, one can monitor simultaneously the expression levels of thousands of genes in 

different types of cells.  

DNA microarrays can be used to determine:  

 The expression levels of genes in a sample, commonly termed expression profiling. 

 The sequence of genes in a sample commonly termed mini-sequencing for short 

nucleotide reads, and mutation or SNP analysis for single nucleotide reads. 

3.2.2. Cancer application 

Cancer is a family of primarily genetic diseases in which altered gene expression is the main 

molecular characteristic. Therapeutic efficacy and clinical prognosis are highly variable even for 

cancers that are classified under the same category based on symptomatic and conventional 

diagnosis. Currently, in an effort to account for their variable clinical behavior, apparently 

similar cancer classes are being evaluated for subtle differences in gene expression. Microarray 

technology has facilitated unforeseen advances with this approach; in fact, it has been proposed 

that genomic profiles can serve as a diagnostic tool, and microarray technology has even led to 

some refinement in tumor classification .The types and numbers of applications for microarray 

experiments are quite variable and constantly increasing. Microarrays used to monitor the 

expression level of genes in the comparison between two conditions remains one of the most 

widespread uses of microarrays.  

One of the most exciting areas of application is the diagnosis of clinically relevant diseases. The 

oncology field has been especially active and to an extent successful in using microarrays to 

differentiate between cancer cell types. The ability to identify cancer cells based on gene 

expression represents a novel methodology that has real benefits. In difficult cases where a 

morphological or an antigen marker is not available or reliable enough to distinguish cancer cell 

types, gene expression profiling using microarrays can be extremely valuable. Programs to 

predict clinical outcome and to design individual therapies based on expression profiling results 

are well underway. However, a major advantage of the microarray is the huge amount of 
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molecular information that can be extracted and integrated to find common patterns within a 

group of samples. As we will show here, microarrays could be used in combination with other 

diagnostic methods to add more information about the tumor specimen by looking at thousands 

of genes concurrently. This new method is revolutionizing cancer diagnostics because it not only 

classifies tumor samples into known and new taxonomic categories, and discovers new 

diagnostic and therapeutic markers, but it also identifies new subtypes that correlate with 

treatment outcome.  

 3.3. Bioconductor 

Bioconductor is an open source and open development software project to provide tools for the 

analysis and comprehension of genomic data. Bioconductor is built on Open Source Platform, R 

programming language, but does contain contributions in other programming languages. Most 

Bioconductor components are distributed as R packages. Technically R is an expression 

language with a very simple syntax. It is case sensitive. R provides facilities like data 

manipulation, calculation, and graphical display. The Bioconductor project was started in the fall 

of 2001 and is overseen by the Bioconductor core team, based primarily at the Fred Hutchinson  

cancer Research Center with other members coming from the various US and international 

institutions [62]. The main goal of the Bioconductor project is the creation of a durable and 

flexible software development and deployment environment that meets these new conceptual, 

computational and inferential challenges [63] Other goals of Bioconductor is to provide 

widespread access to a broad range of powerful statistical and graphical methods for the analysis 

of genomic data. To provide a common software platform that enables the rapid development 

and deployment of extensible, scalable, and interoperable software. To further scientific 

understanding by producing high-quality documentation and reproducible research. To train 

researchers on computational and statistical methods for the analysis of genomic data [64]. 

3.3.1. Features of the Bioconductor 

i) The R Project for Statistical Computing 

Bioconductor is built on R language. So R provides a broad range of advantages to the 

Bioconductor. Some advantages of R are as below. 
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 It contains a high-level interpreted language in which one can easily and quickly 

prototype new computational methods.  

 It includes a well-established system for packaging together software components and 

documentation. 

  It can address the diversity and complexity of computational biology and bioinformatics 

problems in a common object-oriented framework.  

 It provides on-line computational biology and bioinformatics data sources.  

 It supports a rich set of statistical simulation and modeling activities. It contains cutting 

edge data and model visualization capabilities. 

  It has been the basis for pathbreaking research in parallel statistical computing. 

  It is under very active development by a dedicated team of researchers with a strong 

commitment to good documentation and software design [62]. 

ii)  Documentation and reproducible research  

Each Bioconductor package contains at least one vignette, which is a document that provides a 

textual, task-oriented description of the package's functionality. These vignettes come in several 

forms. Many are simple "How-to" that is designed to demonstrate how a particular task can be 

accomplished with that package's software. Others provide a more thorough overview of the 

package or might even discuss general issues related to the package [62]. 

iii) Statistical and graphical methods 

The Bioconductor project aims to provide access to a wide range of powerful statistical and 

graphical methods for the analysis of genomic data. Analysis packages are available for 

preprocessing array data, identifying differentially expressed genes; graphical analyses, plotting 

genomic data. In addition, the R package system itself provides implementations for a broad 

range of state-of-the-art statistical and graphical techniques, including cluster analysis, 

resampling, etc [62]. 

iv) Open source 

The Bioconductor project has a commitment to fully open source discipline, with distribution via 

a Source Forge-like platform. All contributions are expected to exist under an open source 
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license such as Artistic 2.0, GPL2, or BSD. There are many different reasons why open-source 

software is beneficial to the analysis of microarray data and to computational biology in general 

[62]. Reasons for deciding to release software under an open-source license are as follows 

 To encourage reproducibility, extension and general adherence to the scientific method 

 To ensure that the code is open to public scrutiny and comment 

 To provide full access to algorithms and their implementation 

 To provide to users the ability to fix bugs without waiting for the developer, and to 

extend and improve the supplied software 

 To encourage good scientific computing and statistical practice by exhibiting fully 

appropriate tools and instruction 

 To provide a workbench of tools that allow researchers to explore and expand the 

methods used to analyze biological data 

 To ensure that the international scientific community is the owner of the software tools 

needed to carry out research 

 To promote reproducible research by providing open and accessible tools with which to 

carry out that research [63] 

Bioconductor is consisting of many packages, BioC 2.5, latest version consisting of 352 

packages and designed to work with R 2.10.z, was released in 2009/10/26.  

3.4. Cross-Platform Normalization 

Cross-platform normalization (also termed ―data merging‖) [65] considers all data from 

experiments across different microarray platforms as a single data set from the same experiment. 

Direct integration of data sets performed on different microarray platforms may introduce 

undesirable batch effects due to systematic multiplicative biases [65, 67 and 71]. The level of 

difficulty present to combine multiple datasets has been termed ―dataset complexity‖ [70]. For 

example, integrating different Affymetrix platforms is less complex to analyze by meta-analysis 

or cross-platform normalization than datasets performed across very different platforms. Studies 

using low complexity datasets, mainly from the Affymetrix platform, have directly merged the 

studies to construct a gene signature [68, 72-74]. 



16 
 

Cross-platform transformation and normalization methods have been developed with an aim to 

remove the artifactual differences between data from different microarray platforms while 

preserving the underlying biological differences between conditions. This step is essential, as 

non-biological differences (―batch effects‖) in the gene signature discovery data can obscure real 

biological differences found between clinical groups. Early attempts at cross-platform merging 

applied straightforward transformation methods of location and scale (mean and variance) to 

process the gene expression data from different studies. Batch mean centering [50] is a simple 

transformative method that standardizes the expression of each gene to have the same center 

(mean expression). Probe sets can be further transformed to have the same variance or 

distributions on different platforms [5, 76]. While these methods are relatively easy and intuitive, 

the batch mean centering method has been shown to have only marginal improvement compared 

to uncorrected data for cross-platform integration of Illumina and Affymetrix data [67]. The 

probability of expression (POE), a model-based transformation that is estimated based on a 

method that adopts an underlying mixture distribution that transforms each data value into the 

range [−1,1] has been used for cross-platform merging based on a unified scale as an alternative 

to using gene-specific summaries [77-78]. While this transformation has been applied for 

identifying meta-signatures, it has been found to be difficult to compare to other normalization 

methods [66]. Over the past decade, a number of more complex cross-platform normalization 

methods have been published and their performance has been compared in several studies [64, 

67].  Four cross-platform normalization methods found to be generally effective in a comparative 

review by Rudy and Palafer [79] are:- 

3.4.1. Empirical Bayes (EB) method, known as Combat [80], 

3.4.2. Cross-Platform Normalization (XPN) method [66],  

3.4.3. Distance Weighted Discrimination (DWD) [81], 

3.4.4. Gene Quantiles (GQ) method developed as part of the WebArrayDB service [82]. 

Combat have been found to perform well in previous analysis, the user must be cautious when 

applying this method to data sets that are unbalanced (e.g., different subtypes within each of the 

batches) as these methods will not be able to distinguish batch effects from biologically relevant 

signals [69]. 
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3.5. Comparison of Meta-Analysis vs. Cross-Platform Normalization  

Directly-merged microarray data (or applying cross-platform normalization) has been argued to 

have better performance than meta-analysis for the identification of robust biomarkers on the 

premise that ―deriving separate statistics and then averaging is often less powerful than directly 

computing statistics from aggregated data‖ [87]. In a comparative study, Taminau et al. [85] 

found significantly more differentially-expressed genes using cross-platform normalization than 

meta-analysis. An additional advantage of cross-platform normalization is that it allows 

prediction models applied to a subset of studies to be applied across additional studies from other 

platforms [86]. While cross-platform normalization has been applied in multiple studies [88-90], 

it has less frequently been used in the literature compared to meta-analysis [79]. A recent 

comprehensive systematic literature review of studies applying microarray integration methods 

found that only 27% of the studies directly merged microarray data and this subset of studies 

were mostly performed on the same platform [86]. One major limitation of existing cross-

platform normalization is that they require that every treatment group or sample type be 

represented on each platform to allow differentiation of treatment effects from platform effects. 

Furthermore, cross-platform normalization methods do not guarantee the elimination of 

laboratory or batch effects across experiments and Rung and Brazma [84] have argued that 

microarray meta-analysis provides better control of between-laboratory heterogeneity, which can 

be estimated using Cochrane‘s Q statistic and be correspondingly adjusted. 

Gene signature discovery for prognostic and diagnostic purposes is improved with the 

knowledgeable selection and appropriate application of integration methods on microarray data 

performed on multiple platforms. While no consensus for the best implementation of cross-

platform integration is currently available, previous benchmarking and comparative analyses 

have established the strengths and limitations of many of the existing methods. The recent 

evidence suggesting improved performance of cross-platform normalization methods over meta-

analysis may lead to an increasing proportion of studies in the literature implementing the former 

method. Further refinement of existing methods and development of new methods for cross-

platform normalization and classification to exploit the vast quantity of microarray data currently 

available are expected. As elimination of platform-specific bias becomes well-established with 
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these methods, future studies addressing the performance of prognostic signature discovery in 

light of the existing biological heterogeneity will become a central focus. 

 

Figure 2: Outline of two microarray integration methods: (a) meta-analysis (“late integration”). Individual case-

cohort microarray studies are pre-processed and each study is used to identify ranked gene lists which are then 

combined in the final step; (b) Cross-platform merging and normalization (“early integration”). After pre-

processing of individual studies, a single unified case-cohort dataset is generated (“clustered” into cases and 

cohorts, indicating removal of batch to batch variation) [83]. 
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4. MATERIALS 

4.1. R 3.2.3 

R is a free software environment (publically available) used for graphics and statistical 

computing. It runs and compiles on variety of OS (UNIX platforms, MacOS and Windows. 

Before downloading R, preferred CRAN mirror was chosen (i.e. INDIA). R software is available 

at https://www.r-project.org/ . 

4.2. RStudio 

 It is a set of integrated tools designed for the user which enable them to be more productive with 

R. It includes an editor for syntax highlighting (supports direct code execution), tools for 

plotting, history, a console, as well as provides debugging and workspace management. 

Codes to run RStudio server on LINUX. 

$ wget https://download2.rstudio.org/rstudio-server-rhel-0.99.902-x86_64.rpm 

$ sudo yum install --nogpgcheck rstudio-server-rhel-0.99.902-x86_64.rpm 

 

Figure 3: Window of R studio showing different tools. Upper left corner is provided with the tools for writing 

the source codes, and there is a console at the right bottom of the window, left upper corner is for history and 

the left end corner is for plots, packages, help etc. 

https://www.r-project.org/
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4.3. Bioconductor 

 Open development and open source software; provides tools for the comprehension and analysis 

of high-throughput genomic data. This software uses the R language (statistical programming). 

Working directory (the path where all data was stored and fetched) was set. 

After installing the latest release of R Studio (version-3.2.2), the latest version of Bioconductor 

was also installed by using R Studio. 

 

Figure 4: Homepage of biconductor. It consists of packages for various analyses with instructions of loading and 

using that package. 

4.3. System Requirement: RStudio Server v0.99 requires RedHat or CentOS version 5.4 (or 

higher) as well as an installation of R. You can install R for RedHat and CentOS using the 

instructions on CRAN: https://cran.rstudio.com/bin/linux/redhat/README. 

  

https://cran.rstudio.com/bin/linux/redhat/README
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METHODOLOGY 

WORKFLOW

 

5.1. Data collection   

The microarray data (supplementary file i.e. raw data) was retrieved from GEO database (NCBI). 

5.1.1. Accession number: GSE2280 (27 samples), GSE30784 (229 samples) and GSE31056 

(96samples). 

5.1.2. Platform: GPL96; Affymetrix Human Genome U133A Array [HG-U133A], GPL570; 

Affymetrix Human Genome U133 Plus 2.0 Array [HG-U133_Plus_2] and GPL10526; 

Affymetrix GeneChip Human Genome HG-U133 Plus 2 Array [HG-U133_Plus_2, Brainarray 

Version 12]. 

5.1.3. Experiment type: Expression profiling by array 
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5.1.4. Organism: Homo sapiens 

5.1.5. Supplementary file: GSE_RAW.tar 

5.1.6. Phenotypic data: Define sample or label sample with its characteristics. 

5.2. Loading and Extracting Data 

Package requires extracting the data from supplementary files (GSE2280_RAW.tar) information    

is ―GEOquery‖.  

A.   GEOquery package was downloaded from Bioconductor- biocLite ("GEOquery"). 

B.   GEOquery library was loaded- library (GEOquery). 

C.  The raw data (supplementary files) was also downloaded directly by R.  

D.  Data was extracted from TAR zip files to a new folder 

E. .CEL files were listed 

F.  Pasting .CEL files in new folder                                                         

                                                           OR 

Download manually to working directory of R Studio from GEO database. 

 

5.3. Reading Affymetrix data 

#Reading data 

> library(simpleaffy) 

> setwd("/home/…….") 

> raw.data2280 <- read.affy(covdesc="GSE2280.txt", path = "/home/ramu/project/GSE2280/dat

a2280") 

#info in raw.data2280: 

AffyBatch object 

size of arrays=712x712 features (19 kb) 

cdf=HG-U133A (22283 affyids) 

number of samples=27 

number of genes=22283 

annotation=hgu133a 
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5.4. Removal of extended, diffuse and compact blemishes 

―Harshlight‖ package is used to detect extended, diffuse and compact blemishes on microarray 

chips. Harshlight automatically marks the areas in a collection of chips (affybatch objects) and a 

corrected AffyBatch object is returned, in which the defected areas are substituted with NAs or 

the median of the values of the same probe in the other chips in the collection. The new version 

handles the substitute value as the whole matrix to solve the memory problem. 

> abatch.harshlight <- Harshlight(affy.object= raw.data2280, my.ErrorImage = NULL, 

extended.radius = 10, compact.pval = 0.01, diffuse.bright = 40, diffuse.dark = 35, diffuse.pval = 

0.001, diffuse.connect = 8,percent.contiguity = 50, report.name = 'R.report.ps', na.sub = FALSE) 

5.5. Data Normalization 

Normalization was done using robust multi-array average (RMA) method, which transformed the 

raw data (having probe intensity value) into expression value of each gene.  

5.5.1. This involves three steps 

5.5.1.1. Background adjustment:  It reduces noise and observed intensities require adjustment for 

accurate measurements of specific hybridization. 

5.5.1.2. Normalization: Without this, it is not possible to compare measurements of 

hybridizations from different array due to many obscuring sources of variation i.e. different 

efficiencies of transcription (reverse), labeling, reagent batch effects, physical problems of the 

arrays and laboratory conditions.  

5.5.1.3. Summarization: It is needed because all transcripts are represented by multiple probes. 

For each gene, the normalized probe intensities and background adjusted, need to be summarized 

into expression set with one value. 

5.5.2. Extracting expression values 

For Affymetrix data, the expression values are already log2-tranformed which could be extracted 

as follow- 
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> eset2280<-rma(raw.data2280) 

>Eset2280=exprs(eset2280, normalize=T) 

> write.exprs(Eset,file="Eset2280.xls") 

 

5.6. Quality control  

Quality control of Affymetrix uses simple graphical exploration methods for quality assessment, 

before and after the normalization. This is performed for raw data (.CEL files).  

5.6.1. Examining the expression 

This is used to examine the expression of the control samples (control genes), see figure: 5. 

# OC plot 

> library(simpleaffy) 

> aqc<-qc(raw.data2280) 

> plot(aqc) 

 

 

 

Figure 5: QC plot- Different chips are separated by vertical grey lines, the red numbers on the left 

report the number of probesets , and the average background on the chip. The blue region in the 

middle denotes the area where scaling factors are less than 3-fold of the mean scale factors of all chips. 

Bars that end with a point denote scaling factors for the chips. 

GSE2280                                             GSE30784                                                    GSE31056 
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Here, all the scaling factors lie within acceptable range. However, all of the chips which are 

showing very deviant control gene expression are samples of cancerous tissue. It represents the 

large gene expression changes displayed by the cancer tissue.  

5.6.2. RNA degradation plot 

This is to cheek wheatear there are big differences or no differences or slight difference in RNA 

degradation between different sample arrays.  The slope of the lines which shows the amount of 

degradation is not that important, but if one or more lines showing very different slopes than the 

others, then there are expression manifestation. 

# RNA degradation Plot 

> RNAdeg<-AffyRNAdeg(raw.data2280) 

> cols<-sample(colors(), nrow(pData(raw.data2280))) 

> plotAffyRNAdeg(RNAdeg, col=cols) 

> legend(legend=sampleNames(raw.data2280), x="topleft",lty=1, cex=0.5, col=cols) 

 

There is no clear guideline of knowing how large a slope (degradation) must be to decide a bad 

chip. The slope of samples appears to be reasonably parallel (figure: 6).  

 

 

Figure 6: RNA Degradation Plots. 

GSE2280                                             GSE30784                                                    GSE31056 
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5.6.3. Density plot 

For better comparison density plots of the distribution of all arrays are superposed in a single 

graph, which allows identification of arrays having weird distribution. The distributions of raw 

PM log-intensities must not identical but still totally different. The distributions of normalized 

log-intensities are identical, normalization makes the distributions be even. This density plot 

allows the checking of normalization step. 

# Density plot before normalization 

> hist(raw.data2280,col=brewer.cols,lty=1, 

+ xlab='Log(base2) 

+ intensities',lwd=2, main="Before Normalization") 

> legend(legend=sampleNames(raw.data2280), x="topright", 

+ lty=1, cex=0.5, col=brewer.cols, lwd=2) 

 

# Density plot after normalization 

> plotDensity(Eset, 

+ col=brewer.cols,lty=1, 

+ xlab='Log(base2) 

+ intensities',lwd=2, main="After Normalization") 

> legend(legend=sampleNames(raw.data2280), x="topright", 

+ lty=1, cex=0.5, col=brewer.cols, lwd=2) 

 

 

[A] GSE2280                                     GSE30784                                      GSE31056 
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Figure 7: Density plot: - (A) Plot of raw data i.e. before normalization and (B) plot of expression data 

set after normalization. 

5.6.4. Box plot 

Boxplots of distribution (log-intensity) are plotted for comparison. The distributions of raw PM 

log-intensities must not identical but also not totally different. The distributions of normalized 

probeset log-intensities must be comparable if they are not identical, normalization makes the 

distributions be even. These boxplots allow the checking of normalization step. 

# Box plots before normalization 

> library(RColorBrewer) 

> library(made4) 

> brewer.cols <-brewer.pal(8,"Set2") 

> boxplot(raw.data2280, main="Before Normalizaion",col=brewer.cols, 

+ ylab="unprocessed log(base2) scale probe intensity", 

+ xlab="array names") 

# Box plots after normalization 

> brewer.cols <-brewer.pal(8,"Set2") 

> boxplot(, main="Before Normalizaion",col=brewer.cols, 

+ ylab="unprocessed log(base2) scale probe intensity", xlab="array names") 

[B] GSE2280                                     GSE30784                                      GSE31056 
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Figure 8: Boxplot - (A) Plot of raw data i.e. before normalization and (B) plot of expression data set 

after normalization. 

5.6.5. Hierarchical clustering 

Hierarchical clustering produces a dendrogram to see whether the samples of the same group are 

clustered together or not. 

# Dendrogram of expression set 

> dat.dist<-dist(t(Eset)) 

> plot(hclust(dat.dist)) 

[A] GSE2280                                     GSE30784                                      GSE31056 

[B] GSE2280                                     GSE30784                                      GSE31056 
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Figure 9:  Dendrogram showing hierarchical clustering of samples (GSE31056) 

Now, all the samples (normal and cancer) group nicely (biological grouping), indicating that the 

data is clean. Hence, ready for the further analyses. There are few exception in this clustering, 

non-tumor sample no 52 is clustered with tumors while non-tumor sample no 214, 225 and 235 

are clustered with tumor samples, which should be removed from the analysis.  
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5.7. Cross-Platform Normalization 

Combining a large number of gene expression datasets originating from different labs could be 

beneficial for the discovery of new biological insights and could increase the statistical power of 

gene expression analysis, but then this data should be combined in a consistent manner. 

―inSilicoMerging‖ package was used, this package provides different methods for data merging 

from which we have used Combat method (eBayes method) which removes Batch effect. 

Accessing uniformly represented data is only the first step when combining and integrating gene 

expression data sets since the use of different experimentation plans, platforms, and 

methodologies by different research groups introduce undesired batch effects in the gene 

expression measurements thus severely hindering downstream analysis. 

5.7.1. Data preparation before merging: Before merging the datasets, there is preparation of 

datasets. In this the phenotypic information of samples are incorporated with their expression 

data.  

## Data preparation (for individual datasets) 

#Incorporating phenotypic data with expression data 

> pData2280 <-read.AnnotatedDataFrame("GSE2280.txt",header=T) 

> colnames(eset2280) <- row.names(pData2280) 

> ALLSet2280 <- new("ExpressionSet", exprs = exprs(eset2280), phenoData = pData2280,  ann

otation = "hgu133a") 

> pData(ALLSet2280) 

 

5.7.2. Dataset Merging: Different datasets each from different platforms are then merged. Due to 

differences in their platforms there are batcheffects which should be removed. 

##Dataset merging 

> library(inSilicoMerging) 

> esets = list(ALLSet2280, ALLSet30784, ALLSet31056); 

#MERGING WITHOUT BATCH CORRECTION 

> eset_NONE = merge(esets, method="NONE"); 
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#MERGING WITH  BATCH CORRECTION 

> eset_COMBAT = merge(esets, method="COMBAT") 

#EXPRESSIONSET 

> Esets<- exprs(eset_COMBAT) 

 

5.7.3. Validation of batch correction: Validation should be done to check the removal of 

batcheffect. There are several validation tools enabling the inspection of the integration process, 

these packages enable researchers to fully explore the potential of combining gene expression 

data for downstream analysis. 

For the visual inspection of merging results, five qualitative validation methods are provided. In 

additionl. These quantitative indices provide a more accurate evaluation of the batch effect 

removal and they are very effective tools for comparing the results of different methods. 

plotMDS 

creates a double-labeled Multidimensional Scaling (MDS) plot. 

# MDS plot before batch correction 

> plotMDS(eset_NONE, 

       + colLabel = "characteristics", 

       + symLabel = "Study", 

       + main = "NONE (No Transformation)") 

# MDS plot after batch correction 

> plotMDS(eset_COMBAT, 

       + colLabel = "characteristics", 

       + symLabel = "Study", 

       + main = "COMBAT") 

 

It is intuitively clear from the MDS plots that samples cluster by study without any 

transformation and by disease after performing COMBAT. 
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Figure 10: In these MDS plots samples are labeled by color based on the target biological variable of 

interest and are labeled by symbol based on the study they originate from. On the left the two data sets 

are merged without any transformation and on the right the two data sets are merged by using the 

COMBAT method.  

 

plotRLE 

creates a relative log expression (RLE) plot, initially proposed to measure the overall quality of a 

data set [24] but also useful in this context. 

# RLE plot before batch correction 

> plotRLE(eset_NONE, 

       + colLabel = "characteristics", 

       + symLabel = "Study", 

       + main = "NONE (No Transformation)") 

# RLE plot after batch correction 

> plotRLE(eset_COMBAT, 

       + colLabel = "characteristics", 

       + symLabel = "Study", 

       + main = "COMBAT") 

http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-335#CR24
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Figure 11: In these relative log expression plots samples are colored by study. On the left the two data 

sets are merged without any transformation and on the right the two data sets are merged by using the 

COMBAT method. After applying COMBAT the mean of the RLE is approximately 0 for all genes 

which indicates a good batch effect removal. 

 

plotGeneWiseBoxPlots 

provides a local visualization by looking at the box plots of a specific gene across all samples. 

# GeneWiseBoxPlot before batch correction 

> gene = sample(rownames(exprs(eset_NONE)), 100) 

>plotGeneWiseBoxPlot(eset_NONE,  

                    + batchLabel = "Study",  

                    + colLabel = "characteristics",  

                    + gene = gene,  

                    + main = "NONE (No Transformation)"); 

# GeneWiseBoxPlot after batch correction 
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>  plotGeneWiseBoxPlot(eset_COMBAT, 

                    + batchLabel = "Study", 

                    + colLabel = "characteristics", 

                    + gene = gene, 

                    + main = "COMBAT") 

 

 

Figure 12: GeneWiseBoxplots of the randomly selected gene are grouped by study and colored by the 

target biological variable of interest. On the left the two data sets are merged without any 

transformation and on the right the two data sets are merged by using the COMBAT method. After 

batch effect removal the distribution of the gene is much more similar between studies than without. 

5.8. Filtering Data 

Uninformative data was removed such as control probesets and other internal controls as well as 

removing genes with low variance, which will be unlikely to pass statistical tests for differential 

expression, or are expressed uniformly close to background detection levels. 
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# Data filtering 

> filtereddata<- nsFilter(eset_COMBAT, require.entrez = FALSE, remove.dupEntrez = FALSE) 

# What got removed 

>filtereddata$filter.log 

$numLowVar  

[1] 11108 

$feature.exclude  

 [1] 62 

>filteredEset<- exprs(filtereddata$eset) 

   

5.9. Statistical analysis for differential expression 

Statistical analysis microarray data is still under development. There are no strict guidelines/rules of 

thumb when to apply or not to apply some tests and certain other tests. Limma is one of the widely used 

tools (package limma) for the statistical analysis, which implements linear models (analyzing very 

complicated datasets). The samples were coded with "T" and "N", the tumor i.e. cancer samples are coded 

as "T" and control samples as "NT‖. 

# extract information about the samples: 

>samples <- c(eset2280$characteristics, eset30784$characteristics, eset31056$characteristics) 

 # convert into factors 

> samples <- as.factor(samples) 

# set up the experimental design  

> design <- model.matrix(~0 + samples)  

> colnames(design) <- c(―TUMOR‖, ―NORMAL) 

# inspect the experiment design 

> design 

design 

    TUMOR NORMAL 

1       0      1 

2       0      1 

. 

. 
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. 

 

344     1      0 

. 

. 

350     0      1 

351     1      0 

352     0      1 

attr(,"assign") 

[1] 1 1 

attr(,"contrasts") 

attr(,"contrasts")$samples 

[1] "contr.treatment" 

 

5.9.1. Differential gene expression analysis: 

The analysis was done by using the lmFit()command followed by eBayes(). The lmFit() get the design 

matrix, and a data matrix. The analysis was carried out using the filtered data. 

# library(limma) 

# fit the linear model to the filtered expression set 

>fit <- lmFit(filteredEset, design) 

>contrast.matrix <- makeContrasts("TUMOR-NORMAL", levels = colnames(design)) 

 # Now the contrast matrix is combined with the per-probeset linear model fit  

>fit_model <- contrasts.fit(fit, contrast.matrix) 

 

Now the differential expression was calculated by empirical Bayes shrinkage of the standard 

errors towards a common value, by computing the moderated t-statistics, moderated F-statistic, 

and log-odds. 
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>ebayes_fit <- eBayes(fit_model) 

 #  return the top results for given contrast 

>probeset.list <- topTable(ebayes_fit,   coef=1, p.value=0.05, lfc=1) 

>probeset.list2 <- probeset.list1[(probeset.list1$adj.P.Val <= 0.05) & (abs(probeset.list1$logFC) 

>= 3), ] 

>dim(probeset.list2) 

[1] 16   6 

 

 

Figure 13: Screenshot of list of differentially expressed probes with log-fold change and p-value. 

The list of Differentially Expressed probes with adj.P.Val ≤ 0.05 and fold change ≥ 3 was 

created, and then a heat map of the expression was made. 

# Heat map of Differentially expressed genes 

>final_probes = rownames(probeset.list2) 

> exp_value = Esets[final_probes,] 

> test123 = read.delim("annotations1.txt") 

> gene_sym = test123[,2] 

> diff_exp_value = exp_value 

>rownames(diff_exp_value) = gene_sym 

>heatmap.2((diff_exp_value),col=redgreen(10),scale="row", density.info="none", trace="none") 
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Figure 14: Heat map of DEG showing sample relationship by column dendrogram. 

5.10. Annotating the results with associated gene symbols 

Bioconductor have annotation packages for many types of chip, and can be used directly for 

annotation. As an input, it takes gene names as a vector, which could be extracted from matrix. 

Output is an HTML or a text file containing the annotations. 

# library(hgu133a.db) #library(annaffy) 

>genes<-rownames(probeset.list2) 

> test123 = read.delim("annotations1.txt") 

> annot.cols<-aaf.handler() 
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>annot.table<-aafTableAnn(genes, "hgu133a.db", annot.cols) 

>saveHTML(annot.table1, "annotations1.html") 

 

 

Figure 15: List of DEG with annotation. 
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. 6. RESULTS 

Differentially expressed genes from linear model analysis 

Top sixteen genes were identified by statistical testing of filtered expression set (Table: 1). The 

first column of the table is the probe set I.D., The next column (logFC) shows a fold (log2-based) 

change between the groups. Down-regulated genes are shown with positive sign, and negative 

values are indicating up-regulation. The t is the moderated t-statistics and the B is the log-odds 

showing that the gene is differentially expressed. The p-value columns contain the p-value 

corrected for multiple comparisons (adj.P.Val) and raw p-value (P.Value) using false discovery 

rate. 

 logFC t P.Value adj.P.Val B 

206605_at 3.136642 7.007989 14.40918 2.31E-37 2.13E-34 

204777_s_at 4.090923 9.740338 12.3236 2.78E-29 3.63E-27 

204475_at -4.83466 8.945692 -12.0541 2.86E-28 2.95E-26 

204580_at -3.63323 8.828346 -11.7384 4.26E-27 3.22E-25 

220090_at 4.370781 9.522771 11.54485 2.20E-26 1.52E-24 

206884_s_at 3.119697 9.366338 11.2825 1.99E-25 1.24E-23 

206004_at 3.57463 9.720079 10.97813 2.50E-24 1.20E-22 

220026_at 3.367255 8.011276 10.83141 8.36E-24 3.63E-22 

213240_s_at 4.314265 10.41289 10.64071 3.97E-23 1.50E-21 

202859_x_at -3.08216 9.098558 -10.5723 6.92E-23 2.50E-21 

207802_at 4.286134 6.63631 10.47631 1.50E-22 5.12E-21 

209875_s_at -3.13834 8.22097 -10.4012 2.75E-22 8.89E-21 

211756_at -3.13545 7.144302 -10.2204 1.17E-21 3.37E-20 

205828_at -3.35283 8.052793 -9.81981 2.75E-20 6.07E-19 

205680_at -3.27414 6.964798 -9.3747 8.45E-19 1.49E-17 

207935_s_at 3.291211 11.53424 8.24633 3.24E-15 3.27E-14 

Table 1: Output of statistical testing of filtered data based on slandered deviation. 

 

Annotation table (Table: 2) have gene names, its description, chromosome number on which that 

gene is present, GenBank accession number and UniGene I.D. 
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Probe Symbol Description Chromosome GenBank UniGene 

206605_at ENDOU 

endonuclease, poly(U) 

specific 12 NM_006025 Hs.997 

204777_s_at MAL 

mal T-cell differentiation 

protein 2 NM_002371 Hs.80395 

204475_at MMP1 matrix metallopeptidase 1 11 NM_002421 Hs.83169 

204580_at MMP12 matrix metallopeptidase 12 11 NM_002426 

Hs.1695, 

Hs.709832 

220090_at CRNN cornulin 1 NM_016190 Hs.242057 

206884_s_at SCEL sciellin 13 NM_003843 Hs.534699 

206004_at TGM3 transglutaminase 3 20 NM_003245 Hs.2022 

220026_at CLCA4 

chloride channel accessory 

4 1 NM_012128 Hs.567422 

213240_s_at KRT4 keratin 4 12 X07695 

Hs.654610, 

Hs.731814 

202859_x_at CXCL8 

C-X-C motif chemokine 

ligand 8 4 NM_000584 Hs.624 

207802_at CRISP3 

cysteine rich secretory 

protein 3 6 NM_006061 Hs.404466 

209875_s_at SPP1 secreted phosphoprotein 1 4 M83248 Hs.313 

211756_at PTHLH 

parathyroid hormone-like 

hormone 12 BC005961 Hs.591159 

205828_at MMP3 matrix metallopeptidase 3 11 NM_002422 Hs.375129 

205680_at MMP10 matrix metallopeptidase 10 11 NM_002425 Hs.2258 

207935_s_at KRT13 keratin 13 17 NM_002274 Hs.654550 

Table 2: The annotation of probe I.D. for differentially expressed genes. 

The values obtain from table 1; the negative sign shows the up-regulation of genes (MMP1, 

MMP12, CXCL8, SPP1, PTHLH, MMP3 and MMP10), while positive sign indicates the down-

regulation of genes (ENDOU, MAL, CRNN, SCEL, TGM3, CLCA4, KRT4, CRISP3 and 

KRT13).  
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7. DISCUSSION AND CONCLUSION 

OSCC is often associated with loss of eating and speech function, disfigurement and 

psychological distress. The development of OSCC is strongly associated with smoking and 

excessive alcohol consumption [93]. The prevention and management of this disease is likely to 

benefit from the identification of molecular markers and targets [94-95]. 

ENDOU gene encodes a protein with protease activity and is expressed in the placenta. The 

protein may be useful as a tumor marker. Karagoz K et. al.  report ENDOU downregulation to be 

associated with esophageal cancer for the first time [96]. 

The protein encoded by MAL gene is a highly hydrophobic integral membrane protein belonging 

to the MAL family of proteolipids. The protein plays a role in the formation, stabilization and 

maintenance of glycosphingolipid-enriched membrane microdomains. Downregulation of MAL 

causes membrane to destabilized [97]. 

MMP1/3/10/12 genes encode a member of the peptidase M10 family of matrix 

metalloproteinases (MMPs). Matrix metalloproteases (matrix metalloproteinase, MMPs), also 

called matrixins, are zinc-dependent endopeptidases and the major proteases in ECM 

degradation. MMPs are capable of degrading several extracellular molecules and a number of 

bioactive molecules. These genes found to be highly overexpressed in OSCC [98-110].  

According to yen et. al. MMP10 displayed the best sensitivity for oral cancer detection with any 

controls. MMP1 and MMP10 were suitable markers for cancer detection with gingiva and 

margin as controls. Using neck tissue as the control, only MMP10 was suitable for cancer 

detection. With margin and neck controls, there were no significant differences for MMP1, 

MMP10 and MMP12 in different stages, invasion and locations or different habits. Therefore, 

MMP1 and MMP10 but not MMP12 are potential oral cancer markers [111].  

CRNN gene encodes a member of the "fused gene" family of proteins, which contain N-terminus 

EF-hand domains and multiple tandem peptide repeats. This gene, also known as squamous 

epithelial heat shock protein 53, may play a role in the mucosal/epithelial immune response and 

epidermal differentiation. Survival factor that participates in the clonogenicity of squamous 

esophageal epithelium cell lines attenuates deoxycholic acid (DCA)-induced apoptotic cell death 
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and release of calcium. When overexpressed in oral squamous carcinom cell lines, regulates 

negatively cell proliferation by the induction of G1 arrest [112, 113]. 

TGM3; Transglutaminases are enzymes that catalyze the crosslinking of proteins by epsilon-

gamma glutamyl lysine isopeptide bonds. This is a candidate tumor suppressor gene whose 

downregulation result in HNCC [115]. 

The protein encoded by CLCA4 gene belongs to the calcium sensitive chloride conductance 

protein family and was found to be downregulated in OSCC. [97,116] 

KRT4, The protein encoded by this gene is a member of the keratin gene family. 

Downregulation of this gene is associated with morphological changes in the affected oral 

epithelium. [117] 

The protein encoded by CXCL8 gene is a member of the CXC chemokine family. This 

chemokine is one of the major mediators of the inflammatory response. This gene is associated 

with GO term ―negative regulation of keratinocyte proliferation‖ which is related to processes 

associated with multiplication or reproduction of keratinocytes; these processes ultimately 

increase the cell population. Malignant oral keratinocytes express 5–50 times more EGFR than 

do their healthy counterparts [118]; therefore, activation of EGFR enhances proliferation and the 

metastatic potential of keratinocytes [119]. 

The human cysteine-rich secretory protein (CRISP) family is a group of glycoproteins. Wen-

Chang Ko et. al. suggest that the CRISP3 gene is a novel tumor suppressor gene  particular to 

OSCC, and inactivation of the CRISP3 gene may play one or more roles in the carcinogenesis of 

OSCCs [120].  

SPP1, which codes for osteopontin. This secreted glycoprotein has an important role in 

determining the oncogenic potential of many cancers and its increased expression is reported to 

correlate with tumor progression and metastasis [121, 122] 

The protein encoded by PTHLH gene is a member of the parathyroid hormone family, PTHLH is 

up-regulated in OSCCs. Therefore, it could play a role in the pathogenesis of OSCC by affecting 

cell proliferation and cell cycle, and the protein levels of PTHLH might serve as a prognostic 

indicator for evaluating patients with HNSCCs. [123].  

https://en.wikipedia.org/wiki/Glycoprotein
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The protein encoded by KRT13 gene is a member of the keratin gene family. Although the loss 

of keratin 13 (KRT13) is reportedly linked to malignant transformation of oral epithelial cells, 

the molecular mechanisms through which KRT13 is repressed in oral squamous cell carcinoma 

(OSCC) remain unclear. [117,124]. 

All genes that are differentially expressed are previously shown to play role in oral cancer except 

ENDOU and SCEL, which are related to esophageal cancer. 
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8. FUTURE PERSPECTIVES 

Due to small sample size the results cannot be proved significant so the analysis should be done 

using large sample size and using more raw data from different studies would provide significant 

information of DEG in OSCC. The results obtained till now using the large sample size from our 

current analysis combined with resent studies reveal that finding DEG using R and Bioconductor 

gives quite good results. The resulting genes can be experimentally verified using RT-PCR. 

These DEG which are potential biomarker of OSCC would allow to detect oral cancer early and 

can be used as drug target for the treatment of oral cancer.  
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