ANALYSIS OF DIFFERENT CONFIGURATIONS OF DOUBLY FED INDUCTION GENERATOR UNDER ISOLATED MODE OPERATION

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN
CONTROL AND
INSTRUMENTATION

Submitted by:

Sidhant Chhabra

(2K13/C&I/18)

Under the supervision of

Dr. Dheeraj Joshi

DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

2015

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, Sidhant Chhabra, Roll No. 2K13/C&I/18 student of M. Tech. (Control and

Instrumentation), hereby declare that the dissertation titled "Analysis of different

configurations of doubly fed induction generator under isolated mode operation" under

the supervision of Dr. Dheeraj Joshi, Associate Professor, Department of Electrical

Engineering, Delhi Technological University in partial fulfilment of the requirement for the

award of the degree of Master of Technology has not been submitted elsewhere for the

award of any Degree.

Place: Delhi

Date: 20.07.2015

Sidhant Chhabra

Dr. Dheeraj Joshi

Associate Professor

Department of Electrical Engineering

Delhi Technological University

i

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. Dheeraj Joshi for his guidance and

assistance in the dissertation. The technical discussions with him were always been very

insightful, and I will always be indebted to him for all the knowledge he shared with me.

His prompt responses and availability despite his constantly busy schedule were truly

appreciated. He always helped me in all the technical and non-technical issues during the

production of this dissertation. Without his consistent support, encouragement and valuable

inputs, this dissertation would not have become possible.

I would like to express my deep gratitude to Prof. Madhusudan Singh, Head, Department of

Electrical Engineering for providing his support during my project.

I would also like to thank my batch-mates and friends who encouraged and helped me in

completing the dissertation.

Finally, I express my deep sincere thanks to my Parents, without them it wouldn't have been

possible.

Sidhant Chhabra

(2K13/C&I/18)

M.Tech (Control and Instrumentation)

ii

ABSTRACT

This dissertation work deals with the modeling, operation and control of the doubly fed induction generator in isolated mode. The various wind energy generation systems along with their parallel operation have been discussed. Various configurations using DC and AC supply integrated with novel architecture of boost derived hybrid converter and solar PV panel have been made and their operation with varying wind speed and load has been seen. The corresponding MATLAB/Simulink models for the different configurations have been drawn and their closed loop operation for varying load and wind speed variation has been done under isolated mode of operation.

CONTENTS

CIRTI	FICATE	i
ACKN	OWLEDGEMENT	ii
ABST	RACT	iii
CONT	ENTS	iv
LIST (OF FIGURES	vii
LIST (OF TABLES	X
	ENCLATURE	
	TER 1. INTRODUCTION TO WIND ENERGY SYSTEMS	
1.1	BACKGROUND	1
1.2	VARIABLE SPEED WIND ENERGY SYSTEMS	3
1.	2.1 Doubly Fed Induction generator	4
1.2	2.2 Full Converter geared solution	5
1.2	2.3 Full Converter direct drive solutions	6
1.3	DOUBLY FED INDUCTION GENERATOR	7
1.4	WIND TURBINE CONTROL REQUIREMENTS	8
1.	4.1 General control requirements	9
1.5	DFIG SYSTEMS SUPPLYING ISOLATED LOADS	10
СНАР	TER 2. LITERATURE SURVEY	11
2.1	INTRODUCTION	11
2.2	GENERATOR OVERVIEW	11
2.3	COMPARISON AND PARALLEL OF INDUCTION GENERATORS	12
2.4	DFIG SYSTEMS SUPPLYING ISOLATED LOADS	13
2.5	DFIG FED WITH DC SUPPLY	13

CHA	PTER 3. MODELING OF INDUCTION GENERATOR15	
CHA	PTER 4. COMPARISON OF WIND ENERGY GENERATION17	
	SYSTEMS AND THEIR PARALLEL OPERATION	
4.1	INTRODUCTION17	
	4.1.1 SCIG BASED ON FIXED SPEED WIND TURBINE	
	4.1.2 DFIG BASED ON VARIABLE SPEED WIND CONCEPT	
4.2	COMPARISON OF CAPABILITIES OF SCIG AND DFIG20	
4.3	PARALLEL OPERATION OF TWO GENERATORS21	
	4.3.1 Parallel operation of two SCIG's	
	4.3.2 Parallel operation of a SCIG and a DFIG	
	4.3.3 Parallel operation of two DFIG's	
4.4	RESULTS AND DISCUSSIONS	
CHA	PTER 5. DIFFERENT CONFIGURATIONS OF ISOLATED MODE DFIG2	7
5.1	INTRODUCTION27	
5.2	2 ISOLATED MODE OPERATION OF DFIG FED WITH THREE PHASE27	
	SUPPLY	
5.3	ISOLATED MODE OPERATION OF DFIG FED WITH DC SUPPLY35	
	5.3.1 DFIG fed with three lead DC supply	
	5.3.2 DFIG fed with two lead DC supply	
5.4	NOVEL ARCHITECTURE FEEDING DFIG WITH PV PANEL AND BDHC4	-1
	5.4.1 Boost Derived hybrid converter (BDHC)	3

CHAP	TER 6. CONTROLLED OPERATION OF DFIG	49
6.1	INTRODUCTION	49
6.2	WIND TURBINE AND PITCH CONTROL	49
6.3	CLOSED LOOP OPERATION WITH THREE LEAD DC SUPPLY	50
6.4	CLOSED LOOP OPERATION WITH TWO LEAD DC SUPPLY	51
6.5	RESULTS AND DISCUSSIONS	52
СНАР	TER 7. CONCLUSION AND FUTURE SCOPE	56
7.1	CONCLUSION	56
7.2	FUTURE SCOPE	56
APPEN	NDIX	57
REFERENCES59		

LIST OF FIGURES

Figure No.	Name	Page No
Fig 1.1	World Total Installed Capacity of Wind Energy	1
Fig 1.2	State wise Installed Capacity in India	2
Fig 1.3	Doubly Fed Induction Machine based wind turbine	4
	system	
Fig 1.4	Induction Machine (SCIG) based wind turbine	5
Fig 1.5	Synchronous Machine (PMSG) based wind turbine	6
Fig 1.6	Synchronous Machine Direct Drive based wind turbine	7
Fig 1.7	DFIG operation under sub-synchronous condition	8
Fig 1.8	DFIG operation under super-synchronous condition	8
Fig 3.1	Equivalent circuit in Q - axis	15
Fig. 3.2	Equivalent circuit in D - axis	15
Fig 4.1	SCIG system connected to the grid	18
Fig 4.2	DFIG system connected to the grid	19
Fig 4.3	Variation of stator voltage with load for SCIG and DFIG	20
Fig 4.4	Variation of stator frequency with load for SCIG and	21
	DFIG	
Fig 4.5	Variation of voltage and frequency for two SCIG's	22
	operated in parallel	
Fig 4.6	Parallel operation of SCIG and DFIG	23
Fig 4.7	Variation of active power supplied by SCIG and DFIG	24
	with load	
Fig 4.8	Variation of voltage and frequency with load for parallel	24

operation of SCIG and DFIG

Fig 4.9	Variation of voltage and frequency with load for two	25
	DFIG's operated in parallel	
Fig 5.1	MATLAB model showing DFIG fed with 3 phase supply	28
Fig 5.2	Variation of rotor voltage for variable wind speed at rated	29
	output for fixed load	
Fig. 5.3	Variation of rotor frequency for variable wind speed at	29
	rated output for fixed load	
Fig. 5.4	Variation of rotor voltage and frequency for variable	30
	wind speed for inductive load of 0.9 power factor	
Fig. 5.5	Variation of rotor voltage and frequency for variable load	31
	ate constant speed	
Fig. 5.6	Variation of rotor voltage and frequency for variable	32
	wind speed at rated load	
Fig. 5.7	Variation of stator voltage and frequency with varying	33
	load for a given wind speed and rotor excitation	
Fig. 5.8	MATLAB model showing showing DFIG fed from DC	35
	supply with three lead connection	
Fig. 5.9	Variation of load voltage with shunt capacitance for	36
	different values of applied DC voltages	
Fig. 5.10	MATLAB model showing DFIG fed from DC supply	39
	with two lead connection	
Fig. 5.11	Practical model of PV cell	42
Fig. 5.12	MATLAB model showing DFIG fed from integrated PV	42

panel and BDHC

Fig. 5.13	Boost Derived Hybrid Converter with single phase	43
	inverter bridge network	
Fig. 5.14	Simulink Model showing the boost derived hybrid	44
	converter	
Fig. 5.15	Circuit to generate unipolar sine PWM	45
Fig. 5.16	Switching pulses for Q1-Q4	45
Fig. 5.17	DFIG fed with single phase AC supply and series	46
	compensation	
Fig. 5.18	Variation of voltage unbalance with series capacitance	47
Fig. 5.19	Variation of voltage unbalance with load	48
Fig. 6.1	Closed Loop Operation of DFIG fed with three lead	50
	connection	
Fig. 6.2	Closed Loop Operation of DFIG fed with two lead	51
	connection	
Fig. 6.3	Load voltage for open loop operation with varying load	52
Fig. 6.4	Load voltage for closed loop variation with varying load	52
Fig. 6.5	Variation of load with time	53
Fig. 6.6	Control of voltage with varying load	54
Fig. 6.7	Variation of wind speed with time	55
Fig. 6.8	Control of frequency of with varying speed	55

LIST OF TABLES

Table No.	Name	Page No
Table 5.1	Comparative study of experimental and simulated results	34
Table 5.2	Variation of input DC voltage with load, wind speed and	37
	capacitance for three lead connection	
Table 5.3	Variation of input DC voltage with load, wind speed and	39
	capacitance for two lead connection	

NOMENCLATURE

DFIG Doubly Fed Induction Generator

PMSG Permanent Magnet Synchronous Generator

SCIG Squirrel Cage Induction Generator

PWM Pulse Width Modulation

MPMG Multipole Permanent magnet Generator

WRSG Wound Rotor Synchronous Generator

P_m Mechanical power

P_s Stator active power

P_r Rotor active power

WECS Wind Energy Conversion Systems

f_s Stator frequency

R₁ Load resistance

X₁ Load inductive reactance

V_r Rotor voltage

V_s Stator voltage

f_r Rotor frequency

pu Per unit