Certificate

This is to certify that the dissertation title "A Hybridized Approach for Motion Vector Selection using Rough Set Theory & Particle Swarm Optimization in Video Watermarking" submitted by Ms. Richa, Roll. No. 2K11/SPD/28, in partial fulfilment for the award of degree of Master of Technology in Signal Processing & Digital Design at Delhi Technological University, Delhi, is a bonafide record of student's own work carried out by him under my supervision and guidance in the academic session 2011-14. To the best of my belief and knowledge the matter embodied in dissertation has not been submitted for the award of any other degree or certificate in this or any other university or institute.

> Mr. J. Panda Supervisor Associate Professor Dept. of ECE Delhi Technological University

Acknowledgement

I am indebted to my thesis supervisor **Mr. J. Panda, Associate Professor** Department of Electronics and Communication, for his gracious encouragement and very valued constructive criticism that has driven me to carry out the project successfully.

I am greatly thankful to **Prof. Prem R. Chadda,** Head of Department (Electronics & Communication Engineering), entire faculty and staff of Electronics & Communication Engineering and friends for their continuous support, encouragement and inspiration in the execution of this "**thesis**" work.

Finally I express my deep sense of gratitude to my parents who bestowed upon me their grace and were source of my inspiration and encouragement.

Richa

M.Tech (SPDD- Part time)

2K11/SPD/28

Table of contents

Certificate			i
Acknowled	gement		ii
List of Tables		v	
List of Figu	res		vi
Chapter 1	Intro	duction	1-8
1.1	Digita	al Watermarking	2
	1.1.1	Basic requirements of Watermarking	4
	1.1.2	Application of Watermarking	5
Chapter 2	Litera	ature Review	9-32
2.1	Water	marking Techniques	9
	2.1.1	Image Watermarking	9
	2.1.2	Audio Watermarking	14
	2.1.3	Video Watermarking	17
2.2	Swarn	n Intelligence	19
	2.2.1	Ant Colony Optimization	19
	2.2.2	Artificial Bee Colony Optimization	21
	2.2.3	Particle Swarm Optimization	22
2.3	Geneti	c Algorithm	27
2.3	Geneu		27
2.4	Orgai	nization of Thesis	31

Proposed Work	32-43
Methodology	32
Rough Set	33
Algorithm	39
Watermarking Attacks	41
	Methodology Rough Set Algorithm

Chapter 4	Experimental Setup	44-49
4.1	Experimental Environment	44
4.2	Results	44
Chapter 5	Analysis & Conclusion	50-51
	References	52-56

List of Tables

Table No.	Table Description	Refer Pg. No.
6.2.1.1	Inter Stimuli Classifictaion Accuracies	37
6.2.1.2	Inter Stimuli Classifictaion Accuracies using DVG Feature	38
6.2.2.1	Inter Subject Classifictaion Accuracies for SUBJECT1 vs SUBJECT4	39
6.2.2.2	Inter Subject Classifictaion Accuracies for SUBJECT2 vs SUBJECT4	39
6.2.2.3	Inter Subject Classifictaion Accuracies for SUBJECT3 vs SUBJECT4	39

List of Figures

Figure No.	Figure Description	Refer Pg. No.
1.1	Fields that contributed to the birth of cognitive science	1
1.2	Four Lobes of the Brain	2
1.3	Steps involved in the task of testing of Working Memory	4
2.1	Bands of EEG data	6
2.2	Decomposition of EEG data into sub bands using tree structure	7
2.3	Examples of Wavelet tresholding Methods	7
2.4	Principal Component Analysis	8
2.5	Filtered EEG signal	9
2.6 a	ICA components map of Filtered EEG data	10
2.6 b	ICA components map of Pruned EEG data	10
2.7 a	Component map related to Eye artefact	10
2.7 b	Component map related to Muscle artefact	10
3.1	ERP response	12
3.2	ERP response of Cz, Pz channels from a random subject	13
3.3	Visibility Graph	20
3.4	Horizontal Visibility Graph	21
4.1	Linear Discriminant Analysis	24
4.2	Application of LDA on a 3-class Feature data	25
4.3	Illustration of Euclidean distance	26
4.4	Perceptron	27
4.5	Hard Limiting function	27
4.6	Sigmoid function	27
4.7	Radial Basis functional Neural Network (RBFNN)	28
4.8	Flowchart for classifier	30

5.1	10-20 Positioning System	31
5.2	NeXus-10 MKII equipment	32
5.3	EXG Sensor for EEG data Acquisition	32
5.4	Stimulus Presentation For the task of Crime Investigation (Working Memory)	34
6.1	Coherence Analysis performed on Cz and Pz channel data	35
6.2 a	Matching Pursuit Analysis performed for channel Cz data	36
6.2 b	Matching Pursuit Analysis performed for channel Pz data	36

Abbrevations

EEG	ElectroEncephaloGraphy
DWT	Discrete Wavelet Transform
PCA	Principal Component Analysis
ICA	Independent Component Analysis
ERP	Event Related Potential
EMD	Emperical Mode Decomposition
DCT	Discrete Cosine Transform
IMF	Intrinsic Mode Function
VG	Visibility Graph
HVG	Horizontal Visibility Graph
DVG	Difference Visibility Graph
DD	Degree Distribution
MVDR	Minimum Variance Distortionless Response
LDA	Linear Discriminant Analysis
KNN	K Nearest Neighbor
RBFNN	Radial Basis Function Neural Network
ADHD	Attention Deficit Hyperactivity Disorder
MER-MER	Memory and Encoding Related Multifaceted Electroencephalographic Response