Design, Analysis and Implementation of PID Controller Using VDTA

A Dissertation Submitted In Partial Fulfilment of

Requirements For the Award of the Degree of

MASTER OF TECHNOLOGY

(CONTROL & INSTRUMENTATION)

(2014-2016)

Submitted By AJISHEK RAJ (2K14/C&I/03)

Under the Supervision of

Mr. RAM BHAGAT Department of Electrical Engineering Delhi Technological University

Department Of Electrical Engineering Delhi Technological University New Delhi-110042 JULY 2016

Department of Electrical Engineering Delhi Technological University (DTU)

(Formerly Delhi College of Engineering, DCE)

Govt. of NCT of Delhi

Bawana Road, Delhi-110042

CERTIFICATE

This is to certify that the Mr. Ajishek Raj, Roll no. 2k14/cLi/03, student of M.Tech, Control L Instrumentation, Department of Electrical Engineering, Delhi Technological University, has submitted the dissertation entitled "Design, Analysis and Implementation of PID Controller using VDTA" under my supervision in partial fulfilment of the requirement for the award of the degree of Master of Technology in Electrical Engineering (Control L Instrumentation). This dissertation is a record of his work carried out by him under my guidance and supervision and has not been presented earlier for the award of any degree/diploma.

> Ram Bhagat Assistant Professor Department of Electrical Engineering Delhi Technological University Delhi-110042

ACKNOWLEDGEMENT

First and foremost, I express my sense of gratitude to my supervisor **Shri Ram Bhagat**, Assistant Professor, Department of Electrical Engineering, Delhi Technological University for their constant supervision and valuable suggestions for my thesis entitled "**DESIGN ANALYSIS AND IMPLEMENTATION OF PID CONTROLLER USING VDTA**".

I wish to take this opportunity to express my gratitude to **Prof. Pragati Kumar**, for his inspirational and unfailing support during the entire period of my M.tech course. I also express my gratitude to **Prof. Madhusudan Singh**, Head of Department of Electrical Engineering Department, for their constant encouragement during the conduct of the project. I express my gratitude to all faculty members of Electrical Engineering Department for their motivations time to time. My special thanks to **Mrs. Bhavnesh Jaint** for keeping the spirits high and clearing the vision to work on the project.

Finally, I wish to thanks my family members for their moral support and confidence showed in me to pursue M.Tech at advanced stage of my academic career.

Ajishek Raj

LIST OF FIGURES

Figure 2.1.1	OTA Block Diagram
Figure 2.1.2	CMOS realisation of OTA
Figure 2.2.1	Block diagram of the first generation current conveyor
Figure 2.2.2	CCII (a) Block diagram (b) Principle of Operations:
Figure 2.2.3	CCII circuit realization using CMOS
Figure 2.2.4	Block diagram of CCIII
Figure 2.2.5	CCIII circuit diagram using CMOS
Figure 2.3.1	(a) Equivalent Block Diagram of CFOA using current conveyor followed by a buffer. (b) Schematic symbol of CFOA
Figure 2.3.2	CMOS implementation of CFOA
Figure 2.4.1	(a) CDBA Block Diagram & CDBA equivalent circuit
Figure 2.4.2	CDBA CMOS Realization
Figure 2.5.1	(a) VDTA block diagram[64] (b) OTA based VDTA
Figure 2.5.2	CMOS realization of VDTA
Figure 3.1.1	PID controller using op-amps
Figure 3.1.2	Signal flow graph corresponding to the transfer function of the PID controller
Figure 3.2.1	Basic building blocks using OTAs and corresponding signal flow graphs
Figure 3.2.2	An OTA-C based PID controller realization from [2] corresponding to the signal flow graph
Figure 3.3.1	Basic building blocks using CFOAs (a) Amplifier, (b) integrator, (c) derivative circuit, (d) summer circuit.

Figure 3.3.2	A CFOA based PID controller
Figure 3.4.1	Sub-graphs and active sub-circuits involve CCCII
Figure 3.4.2	CCCII- based PID controller realisation
Figure 3.5.1	Sub-graphs for the PID controller and their corresponding CDBA based sub-circuits.
Figure 3.5.2	CDBA based PID controller
Figure 3.6.1-1	OTA –C based voltage mode second order system
Figure 3.6.1-2	Step response of uncompensated open loop system
Figure 3.6.1-3	Step response of uncompensated closed loop
Figure 3.3.1-4	Step response of second order system with PID controller for $K_P = 1$, $K_I = 1.625 * 10^4$, $K_D = 0.595$
Figure 3.3.1-5	Step response of second order system with PID controller for $K_P = 10$, $K_I = 1.625 * 10^5$, $K_D = 5.95$
Figure 3.6.2-1	Bi-Quad Filter realization using CFOA
Figure 3.6.2-2	CFOA based PID controller
Figure 3.6.2-3	output voltage along with the applied input voltage (t _r =40ns)
Figure 4.2.1	(a) VDTA block diagram (b) OTA based VDTA
Figure 4.2.2	CMOS realization of VDTA
Figure 4.3.1	Proposed Proportional controller using VDTA
Figure 4.3.1-1	Step response of Proportional controller
Figure 4.3.2-1	VDTA based second order system
Figure 4.3.2-2	Step response of uncompensated open loop system
Figure 4.3.2-3	Step response of uncompensated closed loop system
Figure 4.3.2-4	Proportional Controller with second order system
Figure 4.3.2.5	Step response of second order system with proposed proportional controller

Figure 4.3.3-1	Integral controller using VDTA
Figure 4.3.3-2	Response of integral controller with step input
Figure 4.3.4-1(a)	Inductor using VDTA
Figure 4.3.4-1(b) Figure 4.3.4-2	Derivative controller with VDTA Response of derivative controller with a ramp input
Figure 4.3.5-1	Proposed Proportional – Integral controller with VDTA
Figure 4.3.5-2	Step response of proposed Proportional Integral controller
Figure 4.3.5-3	PI controller with second order system
Figure 4.3.5-4	Step response of second order system with proposed PI controller
Figure 4.3.6-1	Second order system with PID controller
Figure 4.3.6-2	Step response of second order system with PID controller for $K_P = 1.012$, $K_I = 1.256*10^4 \text{ s}^{-1}$ and $K_D = 0.012 \mu\text{s}$
Figure 4.3.6-3	Step response of second order system with PID controller for $K_P = 2.919$, $K_I = 1.39 \times 10^4 \text{ s}^{-1}$ and $K_D = 0.329 \mu \text{s}$
Figure 4.3.6-4	Step response of second order system with PID controller for $K_P = 2.112$, $K_I = 4.6*10^4$ s ⁻¹ , and $K_D = 0.278 \mu$ s

LIST OF SYMBOLS

S. No.	Symbols	Descriptions
1	t _r	Rise Time
2	t _s	Settling Time
3	e _{ss}	Steady State Error
4	A _o	Open Loop Gain
5	α	Current Gain
6	β	Voltage Gain in Active Blocks
7	ζ	Damping Factor
8	μ _n	Mobility of NMOS
9	Wo	Cut Off Frequency
10	Т	Time Constant
11	K _P	Proportional Coefficient
12	KI	Integral Coefficient
13	K _D	Derivative Coefficient
14	g _m	Trans-conductance
15	Zi	Input Impedance
16	Zo	Output Impedance
17	V _{ss}	Source Supply Voltage
18	V _{DD}	Drain Supply Voltage
19	Io	Bias Current
20	Ib	Bias Current
21	OTA	Operational Trans- conductance Amplifier
22	CC	Current Conveyor
23	CFA	Current Feedback Amplifier

24	CFOA	Current Feedback Operational Amplifier
25	CDBA	Current Differencing Buffered Amplifier
26	CMOS	Complementary Metal Oxide Semiconductor
27	OA	Operational Amplifier
28	SFG	Signal Flow Graph
29	VLSI	Very Large Scale Integration
30	VCVS	Voltage Controlled Voltage Source
31	VCCS	Voltage Controlled Current Source
32	CCVS	Current Controlled Voltage Source
33	Р	Proportional
34	I	Integral
35	D	Derivative
36	W/L	Transistor Aspect Ratio
37	C _{OX}	Gate Oxide Capacitance Per Unit Area
38	BJT	Bipolar Junction Transistor
39	CCCII	Second Generation Current Controlled Current Conveyor
40	H _i (s)	Transfer Function For Current Mode
41	H _v (s)	Transfer Function For Voltage Mode

ABSTRACT

Proportional - Integral - Derivative (PID) controllers are the mainstay of most of the control system employed in different process industries. Traditional PID controllers have been implemented using the voltage mode operational amplifiers. Performance of these VOA based PID controller is limited by the performance of the traditional VOA.

In this dissertation, current mode and voltage mode analog PID controller have been studied & implemented. The current mode and voltage mode building blocks chosen for study and implementation of the PID controllers are (i) Operational Trans-conductance Amplifier (OTA), (ii) Current Feedback Operational Amplifier (CFOA) and (iii) Current Differencing Buffered Amplifier (CDBA). The PID controllers have been implemented in PSPICE and closed loop performance of some prototype second order system has been studied to establish the workability of these PID controllers.

In this dissertation a novel fully differential current mode PID controller using VDTA has also been designed and implemented, and its performance has been evaluated by implementing it with second order system.

Keywords : OTA, CFOA, CDBA, VDTA

CONTENTS

CERTIFICATE	ii
ACKNOELEDGEMENT	iii
LIST OF FIGURES	iv
LIST OF SYMBOLS	vii
ABSTRACT	viii

CHAPTER-I INTRODUCTION

1.1	Introduction	1
1.2	PID controllers using current mode active blocks	1
1.3	Different current mode active blocks	2
1.4	Dissertation Outline	3
1.5	References	3

CHAPTER-II BRIEF REVIEW OF VARIOUS ACTIVE BUILDING BLOCKS

2.1	Opera	tional Trans-conductance Amplifier (OTA)	5-8
	2.1.1	History	5
	2.1.2	Symbols and Characteristics Equations	5
	2.1.3	CMOS Implementation	6
	2.1.4	Applications	7
2.2	Curren	nt Conveyor (CC)	8-11
	2.2.1	History	8
	2.2.2	First Generation Current Conveyor	8
	2.2.3	Second Generation Current Conveyor	9
	2.2.4	Third Generation Current Conveyor	10

2.3	Curren	nt Feedback Operational Amplifier (CFOA)	11-13
	2.3.1	History	11
	2.3.2	Symbol and Characteristics Equation	11
	2.3.3	CMOS Implementation of CFOA	12
	2.3.4	Applications	13
2.4	Curren	nt Differencing Buffer Amplifier (CDBA)	13-15
	2.4.1	History	13
	2.4.2	Symbol and Characteristics Equations	13
	2.4.3	CMOS implementation	14
2.5	Voltage differencing trans-conductance Amplifier (VDTA)		15-16
	2.5.1	Symbol and Characteristics Equation	15
	2.5.2	CMOS Implementation	16
2.6	Concl	usion	17

11

2.7 References

CHAPTER-III DESIGN AND IMPLEMENTATION OF PID CONTROLLER USING DIFFERENT ACTIVE BLOCKS

3.0	Introduction	22
3.1	Traditional PID controller design based on operational – amplifier	22
3.2	OTA-C based PID controller	24
3.3	CFOA based PID controller	26
3.4	CDBA based PID Controller	27
3.5	Simulation	29
	3.5.1 Implementation of OTA-C based PID controller	29

	3.5.2 Implementation of CFOA based PID controller	32
3.6	Conclusion	34
3.7	References	35

CHAPTER IV CURRENT MODE PID CONTROLLER REALISATION USING VDTA

4.1	Introduction 30		36
4.2	Symb	ool and Characteristics Equation	36
	4.2.1 0	CMOS Implementation of VDTA	37
4.3	Synth	nesis of a PID controller	38
	4.3.1	Synthesis of P controller	39
	4.3.2	Step response of second order system with proposed proportional control	ler40
	4.3.3	Synthesis of Integral controller	43
	4.3.4	Synthesis of Derivative Controller	44
	4.3.5	PI Controller	45
	4.3.6	PID Controller	48
4.4	Conc	lusion	51
4.5	Refer	rences	52
	С	HAPTER V CONCLUSION AND FUTURE SCOPE	

5.0	Conclusion	53
5.1	Future Scope	54