Removal of Phosphorous from Wastewater in *Brachiaria*-Based Constructed Wetland

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology in Environmental Engineering

> by S. Nandakumar (2K12/ENE/10)

Research Supervisor Dr. A.K. Haritash

DEPARTMENT OF ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (FORMERLY DELHI COLLEGE OF ENGINEERING) July, 2014

DELHI TECHNOLOGICAL UNIVERSITY (FORMERLY DELHI COLLEGE OF ENGINEERING) MAIN BAWANA ROAD, NEW DELHI-110042

DEPARTMENT OF ENVIRONMENTAL ENGINEERING

CERTIFICATE

This is to certify that the research work embodied in this dissertation entitled "**Removal of Phosphorous from Wastewater in** *Brachiaria*-Based Constructed Wetland" has been carried out in the Department of Environmental Engineering, Delhi Technological University, New Delhi. This work is original and has not been submitted in part or full for any other degree or diploma to any university or institute.

> S. Nandakumar (Candidate)

Dr. A. K. Haritash (Research Supervisor)

Date: .07.2014 Place: Delhi

Acknowledgement

As I write this acknowledgment, I must clarify that this not just a formal acknowledgment but also a sincere note of thanks and regard from my side. I feel a deep sense of gratitude and affection for those who were associated with the project and without whose co-operation and guidance this project could not have been conducted properly.

I express my thanks and gratitude to Professor S. K. Singh, Head of Department, Environment Engineering Department, DTU, for according necessary permission, and providing lab facilities for the project .

Words fail me to express my regards towards Dr. A.K. Haritash, who was not only my research supervisor during the project but also a good companion from whom we learnt a number of virtues and have always encouraged, motivated and given expert guidance to me.

A special thanks to library for providing me books and materials for reference, computer centre for allowing me access to research paper, in-charge of soil lab for guiding me in sediment analysis, our lab assistants, Ms. Navita and Mr. Sunil Tirkey, for their guidance and support, my never ending gratitude to my friend Harsh Pipil for his invaluable help during the project and lastly my friends, batchmates and family members for supporting and motivating me throughout the project.

(S. Nandakumar)

Table of content

Chapter 1. Introduction		1-3
Chapter 2. Review of Literature		4-26
2.1	Types of Wetland	4-6
2.2	Wetland Vegetation	6
2.3	Removal of Pollutants	6-22
2.4	Use of wetland vegetation after treatment	22-23
2.5	About BrachiariaMutica	23-26
Chapter 3. Materials and Methods		
3.1	Study Area	27
3.2	Selection of Plants	28
3.3	Adaptation of plant	28
3.4	Design of Experiments	28-30
3.5	Analysis: Waste Water Analysis	30-39
Chapter 4. Results and Discussions		40-82
4.1	General Observation	40-41
4.2	Meteorology of Study Area	41-42
4.3	Sediment Analysis	42-43
4.4	Wastewater Analysis	44-45
4.5	Nutrient Removal Study	45-60
4.6	Effect of initial Concentration	60-80
4.8	Dissolved Iron	81-82
Chapter 5. Conclusion		83-84
Summary		
References		
ANNEXURE-I		

List of Figures

Figure no.	Caption	Page no.
2.1	Major organic transformations in FWS wetland	12
2.2	Nitrogen transformations in a FWS wetland.	16
2.3	Phosphorus transformations in a FWS wetland (EPA, 1999).	19
3.1	Unprepared bed (a); preparation of bed (b); planted <i>Brachiariamutica</i> in CW cell in initial stage (c); stabilised CW cell used during the study (d)	27
3.2	Standard curve for phosphates	32
	(Labtronics make Model LT-290 spectrophotometer)	
3.3	Micro Kjeldahl apparatus	35
3.4	Standard curve for iron	38
	(Labtronics make Model LT-290 spectrophotometer)	
4.1	Temperature profile during the study	42
4.2	Particle size analysis of soil sediment	43
4.3	Available Phosphate and Total phosphate concentration (mg/l) in influent and effluent in autumn season	50
4.4	Available Phosphate and Total phosphate concentration (mg/l) in influent and effluent in winter season	53
4.5	Available Phosphate and Total phosphate concentration (mg/l) in influent and effluent in spring season	56
4.6	Available Phosphate and Total phosphate concentration (mg/l) in influent and effluent during the summer season	59
4.7	The variation in average removal efficiency of <i>Brachiariamutica</i> in different seasons	60

- 4.8 AP and TP removal efficiency (%) and loading rate (mgP/m²-day) 62 for the influent phosphate concentration of 5 mg/l
- 4.9 AP and TP removal efficiency (%) and loading rate (mgP/m²-day) 73 for the influent phosphate concentration of 10 mg/l
- 4.10 TKN concentrations (mg/l) and its removal efficiency (%) for 73 influent concentration of 50 mg/l
- 4.11 AP and TP removal efficiency (%) and loading rate (mgP/m²-day) 80 for the influent phosphate concentration of 20 mg/l
- 4.12 TKN concentration and its removal efficiency (%) for influent 80 concentration of 100 mg/l
- 4.13 Removal efficiency (%) and average ambient temperature (°C) 82 during the study

List of Tables

S.No.	Captions	Page No.
4.1	Particle size analysis of soil substrate	43
4.2	Concentration of phosphate PO_4^{3-} -P (mg/l) and its removal efficiency (%) during autumn season	48-49
4.3	Concentration of phosphate PO_4^{3-} -P (mg/l) and its removal efficiency (%) during winter season	52-53
4.4	Concentration of phosphate PO_4^{3-} -P (mg/l) and its removal efficiency (%) during spring season	55-56
4.5	Concentration of phosphate PO_4^{3-} -P (mg/l) and its removal efficiency (%) during summer season	58
4.6	Removal efficiency (%) and removal rate (mg/m ² -day) of $PO_4^{3-}P$ by <i>B</i> . <i>mutica</i> at an influent concentration of 5mgP/l	63-66
4.7	Removal efficiency (%) and removal rate (mg/m ² -day) of $PO_4^{3-}P$ by <i>B</i> . <i>mutica</i> at an influent concentration of $10mgP/l$	68-70
4.8	Total Kjeldahl's nitrogen concentration (mg/l), its removal efficiency (%) and removal rate (mg/m ² -day) at influent concentration of 50mgN/l	71-72
4.9	Removal efficiency (%) and removal rate (mg/m ² -day) of $PO_4^{3-}P$ by <i>B</i> . <i>mutica</i> at an influent concentration of $20mgP/l$	76-77
4.10	TKN concentration (mg/l), its removal efficieny (%) and removal rate (mg/m ² -day) at influent concentration of 100 mgN/l	78-79
4.11	Concentration of various iron fractions present in bed sediments	81-82