
Role Based Access Control with SELinux

1 | P a g e

Chapter 1

Introduction

1.1 Context and Motivation

Information is very sensitive in healthcare sector. A lot of documentation is

done to record all encounter and treatment which a patient undergoes. Data is

collected through many types of equipments and persons, and then shared with

and analysed by healthcare professionals. A lot of time is being spent by

doctors, researchers in collecting and then analyzing this data.

There is lot of effort worldwide to automate the healthcare so that it is reached

out to remote corners of the world where healthcare is not available. This would

require standardization of healthcare standards and online decision support for

healthcare. This would be cost effective that anyone with its health parameters

and basic health test results can search for right treatment without human

intervention. But to realize such system, medical information of a person have

to be shared with many people ranging from a local nurse , to doctors and

patients themselves.

Medical Information about a person must be secured so that confidentiality and

correctness is maintained. Legally, laws and morals of healthcare protects the

information. However as the system widespreads by use of IT, the risk of

malicious activities also increase. Due to heightened risks, IT should take

responsibility in managing the security .

Role Based Access Control with SELinux

2 | P a g e

In this project, we are exploring use of role based access system with SELinux

to manage the information stored in a healthcare information system and secure

the access of sensitive information to required role only, instead of providing

access to everyone.

1.2 Role based access control in Healthcare Information System

Since healthcare information is very sensitive and should be confidential, IT-

based solutions should take care of this aspect that what information is shared

with whom. IT system should control and monitor access for updating,

viewing, transmitting and analyzing that sensitive information.

In healthcare information system, therefore it becomes important that access

should be regulated with roles rather than person, organization or professionals.

These roles should be used to monitor and access control of all information

maintained and stored by the system.

1.3 Report outline

The first chapter gives background about access control methods and research

work done in this area. The following chapters will talk about RBAC standards

written down by NIST, SELinux MAC control system and Hierarichal RBAC

based implementation of a healthcare system and how the sensistive information

is protected by SELinux policy file even when the prototype healthcare

application is rigged by unauthorized access. The last chapter will talk about

conclusion and future work to be done in this area.

Role Based Access Control with SELinux

3 | P a g e

Chapter 2

Background

2.1 Introduction

Access control in computer systems is a fundamental security mechanism that

protects the security and privacy of the information. Access control originated

in the early 1960s, when investigations were carried out in order to control the

accesses made in multi-user and resource-sharing computer environments. The

aim was to create an access control model which could protect the

confidentiality and integrity of information at different levels of sensitivity. . In

the early 1990s RBAC and TE were introduced into the arena of access control

models, providing flexibility and simplicity while implementing security

policies.

Along with access control models, considerable effort has been spent in the

creation of trusted OSs. One of the first results of these efforts was seen

timesharing OS called Multics. Multics provided the basis for the development

of current OSs such as UNIX-based OSs. In the last decade, the commercial

availability of OSs which enforces a MAC security policy has made an

important change in the arena of Trusted OSs. Systems like Trusted Solaris,

Trusted BSD and SELinux were released to the public, to be implemented for

commercial purposes. However, SELinux is one of the most promising options

to provide MAC at the OS layer in future computer systems.

 The chapter is composed of sections which define and describe the main terms,

technologies and concepts related with access control.

Role Based Access Control with SELinux

4 | P a g e

2.2 Access Control

Access control, is the process which determines whether a user has permission

to conduct a specific action over resources in a system.

Normally, in a computer system, users first have to log in using some type of

authentication mechanism. Once the user has logged in, the access control

mechanisms restrict the operations users are able to perform with the resources.

Usually this is done comparing the user identifier against an access control

database. The access control database reflects the company's security policies

and the permission level assigned to users and groups.

Access control can be considered as one of the most fundamental security

mechanisms used in computer systems today. In current OSs a type of access

control mechanism always exists in order to restrict the way in which users have

access to the resources. In a business perspective, almost all organizations

implement a type of access control to restrict access to facilities or information.

2.2.1 Authentication and Authorization

Both, authentication and authorization are fundamental to access control.

Authentication is about verifying the identity of a user, while authorization is

concerned with verifying the authority of the user. Even if this seems to be

obvious these two terms are commonly confused. As stated by Ferraiolo, Kuhn,

and Chandramouli (2003), the confusion lies on the need of authentication in

order to properly manage authorization. Authorization restricts the access

permissions users have over the system resources, but if the user is not properly

authenticated then the confidentiality or integrity of the information could be

compromised.

Role Based Access Control with SELinux

5 | P a g e

Authentication is the process which determines whether a claimed identity is

legitimate. Authentication is essential for access control since access control is

based on the identity of the user which determines authorized access

permissions on the resources. The token used to perform authentication is called

an authenticator.

The most common form of authentication is the use of a password. Systems that

make use of passwords have the belief that the knowledge of the password

guarantees the authenticity of the user. The problem with passwords is that they

can be stolen, accidentally revealed or forgotten.

Authentication is the basis for authorization, while verifying the identity of the

user during the log in process. Once in the system, users have to be restricted to

authorized operations in order to preserve the three security principles.

Authorization is the process which determines the operations users are

permitted to perform while in the system. In computer systems, the user is not

the one who directly access to the resources, this is done through applications

that work on behalf of the user. Since applications cannot be trusted, accesses

have to be restricted to prevent damage occurring from compromised

applications. For doing this, authorization is the preferred solution to determine

access permissions that users have while in the system according to the security

policy implemented in the system.

2.2.2 Access Control Models

Access control models can be defined as "those that decide on the ways in

which the availability of resources in a system are managed and collective

decisions of the nature of the environment are expressed" (Tolone, Ahn, Pai,

and Hong, 2005). There are different models of access control which can be

Role Based Access Control with SELinux

6 | P a g e

implemented in a computer system. These can be categorized into two types

(Tolone et al., 2005):

 Passive Access Control Models. These access controls models are those

whose primary function is to maintain permission assignment without

regard to the context in which the permission is assigned. Examples of

these types of models are DAC, MAC and RBAC.

 Active Access Control Models. These access control models are those

which take into account the context in which access to the resources have

to be granted. Examples of these models are: Dynamic, Context-Aware

Access Control (Hu and Weaver, 2004) and Open Architecture for

Secure Interworking Service (OASIS) (Bacon, Moody, and Yao, 2003).

2.2.2.1 Discretionary Access Control

Currently DAC is the most commonly used access control model to enforce

access control over resources in computer systems (Liu et al., 2007a). DAC is

based on the principle that the access to the information is at the discretion of

the creator of the information. DAC is defined by the Trusted Computer System

Evaluation Criteria (TCSEC) (Department of Defense [DoD], 1985) as those

controls in which a subject with certain access permissions is capable of passing

those permissions to other users or applications acting on behalf of users. For

example, an authorized user, Bob, can create a resource (file) and pass access

permissions over that resource to other users, such as Alice, as a result Alice get

full access permissions over that resource.

It has been recognized that DAC mechanisms are inadequate due to the

discretion in which permissions are passed between users. In DAC systems, if

the application running on behalf of the users, and consequently granted with all

Role Based Access Control with SELinux

7 | P a g e

the permission of the user, is compromised, the attacker will be able to modify

resources far beyond the needs of the application and could compromise the

entire system.

2.2.2.2 Mandatory Access Control

MAC is a preferred access control model to provide a truly secure scheme in

which systems are guaranteed to remain secure (Ferraiolo et al., 2003). As

defined by Loscocco et al. (2001), MAC systems are those in which "the policy

logic and the security attributes are tightly controlled by a system security

policy administrator". In the TCSEC (DoD, 1985) it is stated that in MAC

access to the resources is not at the discretion of users, but restricted by the

system according to the security policy. MAC takes access decisions based

on the comparison of labels containing security relevant information which

are assigned to subjects and objects in the system. Access permissions are

not at the discretion of the owner of the information. Those who create

access and maintain information shall follow rules set by the policy and

administered by the organization.

The most common implementation of MAC is MLS which is based on

assigning hierarchical clearances and classification to subjects and objects

respectively and non hierarchical categories for both.MLS is based on a formal

model called the Bell-LaPadula model. MLS models are designed to protect the

confidentiality and integrity of the information in a very strict and inflexible

manner, which is appropriate for military environments but not for commercial

environments.

Role Based Access Control with SELinux

8 | P a g e

2.3 Access Control Lists

An Access Control List (ACL) is the most common access control mechanisms

implemented in OSs to determine allowed access permissions users have over

resources in the system (Daswani, Kern, and Kesavan, 2007). ACLs list the

users with right to access and object together with the type of permitted access

such as read, write, or execute. A common representation of the ACL is a set of

users and corresponding set of resources to which they are allowed to access.

This relationship can be seen as follows (Daswani et al., 2007):

User Resource Privilege

Alice /home/Alice/* read, write, execute

Bob /home/Bob/* read, write, execute

Table 1 - Access Control List.

An ACL can be seen as discretionary if the owner of the object can fully

control the privileges and users in the ACL. On the other hand, an ACL can be

seen as mandatory if the ACL is controlled by the system according to a

system-wide security policy.

In a more sophisticated way, ACLs can also enforce RBAC in order to

simplify the user-permission assignment in systems with a large number of

users. In these systems users are assigned to roles instead of privileges

enabling the users to access particular resources. The ACL in this type of

systems could be seen as follows:

Role Based Access Control with SELinux

9 | P a g e

User Role

Alice Doctor, Nurse

Bob Doctor

Table 2 - Roles in ACLs.

And the ACL assigning the permission could be seen as follows:

Role Resources Privileges

Doctor /healthcare/doctors/* read, write, execute

Nurse /healthcare/nurses/* read, write, execute

Table 3 - Role-Permission assignment in ACLs.

In this case the user Alice is assigned to the roles Doctor and Nurse allowing

Alice to read, write and execute the content in the /healthcare/doctors and

/healthcare/nurse directories. On the other hand, Bob is only authorized to

read, write and execute the contents of the directory /healthcare/doctor.

In OSs which makes use of ACLs to manage access rights, each objects ACL is

identified by its security attribute. This list contains an entry of access privileges

for each system user. When a subject performs and operation on an object, the

system first checks the ACL corresponding to the object for an applicable entry

in order to determine whether or not the operation proceeds. Within OSs which

make use of ACLs are: Windows NT family systems, Novell NetWare, and

Unix-based systems. Each of these systems has a different way of implementing

ACLs, but its function remains the same.

Role Based Access Control with SELinux

10 | P a g e

2.4 Reference Monitor

The reference monitor concept was introduced in a report published in 1972

by the Computer Security Technology Planning Study, conducted by James P.

Anderson. In this report, known as the "Anderson Report", the reference

monitor was introduced as a module which "validates all references to

programs or data according to the access authority of the user on whose behalf

the program is executing" (Anderson, 1972).

The reference monitor mediates every reference made by programs in

execution against the list of permissions authorized for the user (Anderson,

1972). In the reference monitor, the system resources are isolated in two main

groups based on the distinction between passive and active entities. Active

entities within the system such as running processes are grouped into subjects,

and passive entities such as files are grouped into objects.

The reference validation mechanisms, also known as the reference monitor

mechanisms, are responsible for the validation of accesses from subject to

objects in the system. When a subject makes an access requests over an object

in the system, the reference validation mechanisms authorize the request based

on the comparison between the security attributes of the subject with that of

the object, and the information contained in an access control database. The

access control database represents the access control policy in terms of

subjects and objects security attributes and access rights. Access decisions

made by the reference validation mechanisms are based on the security

attributes associated with each subject and object in the system.

Role Based Access Control with SELinux

11 | P a g e

2.5 Mandatory Access Control Models

The "Anderson Report" was the trigger which initiated an increasing research

on formal security models to formally describe security policies. That is,

formal security models are used to describe the entities to which the security

policy applies and the rules to control its behavior. One of the pioneer models

in computer security was the Bell and LaPadula model which focuses on the

confidentiality of classified information. In later years, formal security models

to protect the integrity of the information, such as Biba, were developed due to

the importance of integrity. However, the Biba and Bell- LaPadula models,

common examples of MLS, are very inflexible for commercial organizations.

For this reason models like Clark-Wilson and RBAC models were created.

In this section, formal models of access control are introduced in order to

provide a background on the protection of the security principles in computer

systems.

2.5.1 Bell-LaPadula Model

The Bell-LaPadula model is a formal state-transition model focusing on the

confidentiality of classified information (LaPadula, 1996). The model was

introduced in 1973 by David Elliot Bell and Len LaPadula as part of a

research to protect classified information in military environments.

 A secure state can be defined as the condition in which no unauthorized

access has occurred to confidential data according to the security policy. The

Bell-LaPadula security theorem states that if the initial state of the system is

secure and all the transitions in the system are secure, then all subsequent

states are going to be secure regardless of any input occurred (McLean,

1985).

Role Based Access Control with SELinux

12 | P a g e

The Bell-LaPadula model is based on the isolation of entities in the computer

system into subjects and objects. Objects are passive entities in the computer

system that contains or receive information.

That is, repositories of information such as files, datasets, etc. Subjects are

active entities in the computer systems which are responsible for changing the

state of the systems and make the information flow between objects, such as

processes.

Every subject and object in the system is labeled with a security attribute

which is constituted by a hierarchical and a non-hierarchical component.

Subjects are assigned with a security clearance and objects with a security

classification. Security clearances and classifications are ordered in

hierarchical levels, so that clearances and classifications higher in the

hierarchy dominate those in lower levels. The aim is to prevent subjects to

access objects which are higher in the hierarchy. Examples of sensitivity

levels could be Top Secret, Secret and Confidential. Subjects and objects in

the systems are also assigned with categories which are non-hierarchical

components. The main purpose of the categories is to enforce the need-to-

know principle by restricting subjects to access only those objects which are

within its domains. For example, a user with Top Secret clearance would be

able to access everything in the system even though the user belongs to the

financial department and the information is Confidential in the IT

department. Therefore, it would be desirable to give the user a Financial

category so that the user is only allowed to access information within the

financial department.

Accesses from subjects to objects in the systems are permitted by comparing

the security attributes of the subject against the security attributes of the

Role Based Access Control with SELinux

13 | P a g e

object. The Bell-LaPadula model states that a security attribute of a subject

dominates over the security attribute of an object if and only if:

 The classification of the object is lower or at the same level in the

hierarchy than the clearance of the subject; and

 The category set of the object is a subset of the category set of the

subject.

For example, assume that there is a subject with the clearance Secret and the

category set Finance, IT and an object with classification Confidential and

category set IT. In this case the subject security attributes dominate over the

object security attributes.

2.5.2 Biba Model

In order to solve the problem of unauthorized modification or deletion of the

information in the Bell-LaPadula model, the Biba model was designed to

protect the integrity of the information. The Biba model was introduced in

1977 as a complement of the Bell-LaPadula model. The Biba model is based

on the same characteristics as the Bell-LaPadula model in which every

subject and object in the system is labelled with a security level. However, in

the Biba model, subjects and objects are labelled with integrity levels instead

of confidentiality levels. This prevents subjects in higher security levels to

read object in lower security levels, preventing the subject to process data

that could compromise the data integrity in a higher level. The integrity

security level assigned to a subject indicates the level of trust set on the

subject to modify sensitive information and the integrity security level in

objects indicates the sensitivity of the information to be modified. Examples

of integrity levels could be Critical, Important, and Ordinary.

Role Based Access Control with SELinux

14 | P a g e

The Biba model uses principles similar to those in the Bell-LaPadula model,

but with two main differences: the principles work with integrity levels; and

the dominance relations of the principles are reversed.

2.5.3 Role-Based Access Control Model

In 1992, Ferraiolo and Kuhn (1992) proposed the RBAC model which

simplifies the complexity and cost of security administration in large scale

systems. RBAC was introduced as a relatively simple model in which access

to computer system objects is based on a user's role in the organization. In

RBAC, permissions are assigned to roles rather than individual users. A role is

a collection of permissions that may be assigned to users based on the

corresponding organizational job function. All the operations performed by

users are accomplished through transactions, except for identification and

authentication operations. A transaction is defined as a transformation

procedure (change objects from one state to another) and all required access

permissions. The paper introduced by Ferraiolo and Kuhn specified three basic

requirements in RBAC (Ferraiolo et al., 2003):

 Role assignment. A subject can execute a transaction only if the

subject has selected or been selected a role.

 Role authorization. A subject's active role must be authorized for

the subject.

 Transaction authorization. A subject can complete a transaction

only if the transaction is authorized for the subject's active role.

In 1996, Sandhu, Cope, Feinstein, and Youman (1996) introduced a

framework of RBAC models known as RBAC96 which specifies four

different conceptual models of RBAC. RBACO is the base model including

Role Based Access Control with SELinux

15 | P a g e

the minimal requirements for a RBAC system. RBAC1 and RBAC2 include

RBACO, but additionally RBAC1 includes roles hierarchies and RBAC2

includes constraints such as SoD. The fourth component, RBAC3, includes

the characteristics of both RBAC1 and RBAC2. RBAC96 provided a modular

RBAC which can be used according to the different requirements of

organizations. A simplified implementation of RBAC in a commercial

organization could use RBACO while a more complex implementation could

make use of other features in advanced levels of RBAC96.

In 2000 the National Institute of Standard and Technology (NIST) initiated an

effort to create a standard for RBAC (Ferraiolo et al., 2003). This standard

was based on the RBAC96, but it adds features in regard of requirements from

the commercial vendor community.

RBACO (core RBAC) embodies the essential aspects of RBAC, that is, users

are assigned to roles, permissions are assigned to roles, and users acquire

permissions when assigned to roles. The RBAC standard allows the user-role

and role-permission relationships to be done many-to-many. That is, users can

be assigned to more than one role and a role can be assigned to many users. In

a similar manner, roles can be assigned to one or more permissions and

permission to many roles.

RBAC1 (hierarchical RBAC) adds the concept of role hierarchies. Hierarchies

are defined as partially ordered senior relationships between roles. RBAC2

(constrained RBAC) add SoD relations to the RBAC model. SoD is used to

enforce conflict of interest policies in order to ensure that fraud and errors

cannot occur without deliberate malicious agreement between multiple users.

The RBAC standard allows for both static and dynamic SoD. Static SoD

Role Based Access Control with SELinux

16 | P a g e

enforces constraints on the assignment of users to roles to prevent conflict of

interest in a role-based system.

2.5.4 Domain and Type Enforcement Model

The domain and type enforcement (DTE) model was introduced in 1995 as

an enhanced version of the traditional TE model, designed to address some

existing issues in the model (Badger, Sterne, Sherman, Walker, and

Haghighat, 1995). As with many other access control models, TE splits a

system into two sets of logical entities: subjects and objects. Access control

attributes are assigned to subjects and objects in the system. Domains are

associated with subjects and types are associated with objects. Access control

permissions are associated with both domains and types. Accesses are

allowed to be made between domains and from domains to types.

Permissions therefore, can be seen in two groups which consist of the

domain-domain group and the domain-type group.

The DTE model has been compared with the RBAC model because of the

way in which the model restricts the operations on objects based on domains.

RBAC restricts the operations users are allowed to commit over objects in the

system through the use of roles. In a similar way, DTE limits the operation

that subjects can do over objects through the use of domains. This similarity

allows DTE to implement policies that represent a RBAC model by

associating users with subjects and roles with domains (Ferraiolo et al., 2003).

2.6 Layers of Security

In order to create trusted systems, that is, systems which are reliable in regard

to the enforcement of a security policy, security mechanisms have to be

Role Based Access Control with SELinux

17 | P a g e

properly implemented in different layers in a computer system. These layers

are:

 Application Layer Security. Application software can provide

support and granularity in a complex security policy.

 Operating System Layer. The OS is responsible for the overall

management of the hardware resources in the system, consequently

is the one responsible for providing ways to control access to these

resources.

 Hardware Layer. Hardware can provide the means to protect the

integrity for the OS boot process, audit trails and/or logs.

 Network Layer. Network layer security has to be provided in order

to ensure that only valid data packets are received in web servers and

malicious traffic is not allowed to interact with applications and the

OS.

2.7 Operating Systems Mandatory Access Control

Security at the application layer has been improved, but there are still daily

reports about security breaches in computer systems due to compromised

applications.

Kernel-enforced access controls at the OS level can be used to mitigate the

risks from a compromised application. This idea is based on the fact that the

kernel access controls cannot be overridden or subverted by any application at

the user space level. The OS is able to limit the damage that a compromised

application can do to the system and other applications running on the system.

This is done through setting strict controls over the resources in the system

thus restricting the operations that the applications are allowed to do. Once an

Role Based Access Control with SELinux

18 | P a g e

application has been compromised, it can be used to compromise the entire

system.

In order to mitigate the risks to these exploits support from the OS has to be

implemented in the computer systems. MAC has to be provided by the OS so

that applications are contained to specific resources according to a security

policy. If DAC mechanisms are used by the OS to protect the resources of the

system, an attacker can bypass the mechanisms by acquiring the privileges of

the compromised application. Once the OS is configured to enforce a specific

security policy applications are restricted to spaces (sandboxes) in which they

have limited privileges to specific resources. If compromised, the application

cannot damage the system by affecting resources outside its space.

There are some OS that have implemented MAC to create what is called a

Trusted System. These systems are created so that they can enforce a specific

security policy through the use of access control mechanisms in the kernel

level. The following sections provide an overview of this type of OSs.

2.7.1 Security Enhanced Linux

SELinux was initially developed by the NSA based on the implementation of

MAC in microkernel systems. In 1999, as an outcome from this project the

Flux Advanced Security Kernel (Flask) architecture was created to provide

better support for dynamic security policies.

SELinux was released in December 2000 by the NSA and developed with

cooperation from highly recognized security institutions such as NAI Labs,

SCC, and MITRE. iN 2001, the Linux Security Module (LSM) project was

Role Based Access Control with SELinux

19 | P a g e

commenced in order to allow modular addition of different security

extensions into the Linux kernel. Once the LSM framework was completed,

the NSA began to adapt SELinux to use the LSM framework.

Currently, SELinux is shipped as part of Fedora Core, and is supported by

Red Hat as part of Red Hat Enterprise Linux. Due to the effort from the NSA

and Red Hat to integrate SELinux as part of the mainline Fedora Core Linux

distribution, Fedora Core was released with SELinux enabled by default since

Fedora Core 4.

SELinux is a Linux variant that makes use of the LSM to implement MAC in

the Linux kernel. SELinux implements a type of MAC called TE which is

based on the assignment of security attributes (labels) to every object and

subject in the system. SELinux also provides a form of RBAC built upon TE

in which roles are used to group domain types and relate these domains with

users, but decisions are based on TE rules instead of RBAC permission

assignments. SELinux manages orthogonal user's identifiers mapped to

traditional Linux UID. In this way, the mandatory accesses controls

introduced by SELinux are kept orthogonal to traditional DAC mechanisms

in Linux. This improves the level of accountability of the actions made by a

user. SELinux provides support for policy changes and is independent of

policy, policy languages, and labeling format.

The use of SELinux restricts activities of an attacker by distributing authority

to users and removing excessive privileges from processes. If an application is

limited to only necessary privileges, an attacker who takes control of the

application cannot damage the whole system. SELinux creates sandboxes

defined by domains assigned to each process in which activities of processes

are limited by the sandbox boundaries.

Role Based Access Control with SELinux

20 | P a g e

2.8 Summary

In order to protect the confidentiality, integrity and availability of resources

in the systems, access control mechanisms have to be properly implemented.

Access control models have been created over the years to provide ways to

control the access of resources.

RBAC is one of the most widespread adopted models in commercial

organizations, including healthcare organizations.

In order to create systems that can be trusted in regard to their enforcement of a

security policy, security mechanisms have to be implemented at different layers

of security. Systems have to be constructed with the support from mechanisms

at the OS layer. In the last decade Sun Microsystems and Red Hat made a

significant change in the arena of trusted OS by introducing Solaris Trusted

Extensions and SELinux for commercial organizations.

Role Based Access Control with SELinux

21 | P a g e

Chapter 3

Introduction to RBAC

3.1 Introduction

Traditional computer systems provide Discretionary Access Control (DAC) and

Mandatory Access Control (MAC) mechanisms to provide access control

mechanism for various objects in the system. In DAC, Access control is decided

by the owner of an object. Owner can delegate access rights to other users. In

MAC, Security labels are associated to subjects and objects. Access control is

decided by the system.

But as organizations are growing and changing so there is a need of access

control system which can be easily adaptable to changes in organization

structure. System should be adaptable to change in role of user, higher role

more privileges in the system.

Access control is decided on the role played by different users in the

organization. It is similar to concept of groups in linux. It categorizes the groups

of users and group of permissions as compared to user groups which define user

sets.

RBAC provides the capability to add relation between users-roles and between

roles- permissions.

Role Based Access Control with SELinux

22 | P a g e

3.2 RBAC Concept of Role and Permission

Permission is set of action which a user can have while accessing an object, an

object can be a file, directory or some executable. Permission can be defined as

a pair of object-access method in an object oriented environment. We can also

assign roles to users.

In RBAC method, we can define permission as an entity to access an object as

in Figure 1.Therefore RBAC is access control mechanism which help

administration in overcoming frequent organization changes in term of number

of users and also organization structural changes by defining complex control

policies.

Figure 1 - Traditional Access and RBAC(Ravi S. Sandhu “ Role-Based Access Control “).

Following relationships define RBAC access control policy:

 Role-Permission Relationships

 User-Role Relationships

 Role-Role Relationships

Role Based Access Control with SELinux

23 | P a g e

The above relationships define what kind of access user can have for an object

in system.

Following diagram, defines how relationships flow from users to roles and then

from roles to permissions to individual components in system.

Figure 2 - Relationship Flow (Ravi S. Sandhu “ Role-Based Access Control “)

3.3 Principles of RBAC

RBAC works on following three principles:

 Least Privilege

 Separation of duties

 Data Abstraction

Least Privilege means assigning limiting the privileges/permissions to the users

which are required to perform a particular role. It requires understanding users

roles and responsibilities and identifying minimum permissions which are

required to be assigned to a role.

Role Based Access Control with SELinux

24 | P a g e

Separation of duties means defining separate mutual exclusive roles. If a clerk is

required to check the account status and then issue a cheque, two different roles

should be created for a issuing clerk and account manager instead of single role

of a clerk. Since the activity requires two different operations.

Data Abstraction is realised by defining abstract permissions like debit and

credit for an account. The implementation details define extent to which data

abstraction is supported.

3.4 Applications

Following is the list of applications which uses some form RBAC.

 Microsoft Active Directory

 Microsoft SQL Server

 SELinux

 FreeBSD

 Solaris

 Oracle DBMS

 PostgreSQL 8.1

3.5 RBAC Standards

 RBAC cannot be treated as a single model. As a single model may either

include or exclude many things, and would represent only a part of technology

and choices.

NIST(National Institute of Standards and Technology) proposed RBAC

standardization , so thet issues of different definitions and scope of similar

concepts can be addresses.

The standard begins by defining basic RBAC elements: user, roles, permissions,

Role Based Access Control with SELinux

25 | P a g e

operations, and objects) and relations as types and functions that are included in

this standard. This helps in defining scope of RBAC features and meaning of

role hierarchies, static constraint relation and dynamic constraint relations.

The NIST RBAC model(Sandhu R., Ferraiolo D. and Kuhn R) is defined in

terms of four model components.

 Core RBAC

 Hierarchical RBAC

 Static Separation of Duty Relations

 Dynamic Separation of Duty Relations

Each of above components defines basic element sets and basic relationships

between these elements. And a set of mapping function to define mapping

between various element sets.

3.5.1 Core RBAC

It defines the basic concept of RBAC. The basic concept of RBAC is that users

are assigned roles and user acquires permissions by owning up a role.

It defines many to many relations between a user and roles, and also roles and

permissions; User can be assigned multiple roles simultaneously

Following diagram(,efines Core RBAC.

Figure 3 - Core RBAC(Sandhu R. et. al.)

Role Based Access Control with SELinux

26 | P a g e

A session is a mapping between user and current active set of roles for a user.

Privileges are domain/system dependent.

Core RBAC defines basic concepts of USERS, ROLES, PERMISSIONS and

SESSIONS.

User: A human being or intelligent autonomous agent

Role: Job functions within the context of organization and defines the authority

and responsibility

Permission: an operation that can be exercised on objects. Objects and

operations are domain dependent

Example: DBs

objects are tables, columns, and rows

operations are insert, delete, and update

Session

It is an instance of a connection of a user to the system. It defines the subset of

activated roles. Different sessions for the same user can be active at each time

For Example:

Given the following User-role assignment and Permission-role assignment

matrix:

Role Based Access Control with SELinux

27 | P a g e

User Role

Alice
Radiologist

Alice GP

Bob GP

Charlie Radiologist

David Nurse

Table 4 - User-role Matrix

Role Permission

Nurse (read, prescription)

GP (read, prescription)

GP (write, prescription)

GP (read, history)

Radiologist (read, history)

Radiologist (insert, image scan)

Table 5 - Permission-role Matrix

Role Based Access Control with SELinux

28 | P a g e

Seeing above user-role and role-permission tables, we can easily make out

access control table as following:

User Prescription History Image Scan

Alice Read

Write

Read Insert

Bob Read

Write

Read

Charlie Read Insert

David Read

Table 6 - Access Control Table

3.5.2 Hierarchical RBAC

It adds support of role Hierarchies. A hierarchy is an order of defining seniority

of roles between various roles, it includes concept of multiple inheritance to

roles and permissions assigned to the roles.

 General Hierarchical RBAC: It proiveds support of any arbitrary order

to define role hierarchy. So that the concept of multiple inheritances of

permissions and user membership among roles can be supported.

 Limited Hierarchical RBAC: Some systems may impose restrictions on

the role hierarchy. Most commonly, hierarchies are limited to simple

structures such as trees and inverted trees.

As shown in figure below, it adds support of role hierarchies while defining ad

Role Based Access Control with SELinux

29 | P a g e

deducing permissions for various roles.

Figure 4 - Hierarchical RBAC(Sandhu R. et. al.)

Following figure, shows roles hierarchy in a hospital:

Figure 5 - Hierarchy in a Hospital(Nicola Zinnanon)

Role Based Access Control with SELinux

30 | P a g e

So as the member ship grows over the hierarchy tree, the privileges and set of

permissions increases. And the node up in hierarchy contains rights of roles

which are below in hierarchy.

As shown in figure below, Director Role will have all permission of a project

leader 1 and project lead 2 roles. Similarly Project lead role will automatically

have permissions of both quality engineer and Production engineer role down in

hierarchy.

Figure 6 - Hierarchy in a Corporate(Nicola Zinnanon)

General Role Hierarchy, it supports multiple inheritances, so which mean ability

to inherit permission of two or more roles down the hierarchy.

Figure 7 - General Role Hierarchy(Sandhu R. et. al.)

Role Based Access Control with SELinux

31 | P a g e

Limited role hierarchy, it limits inheritance of role hierarchy to a immediate

descendant only, as shown in figure below:

Figure 8 - Limited Role Hierarchy(Sandhu R. et. Al)

3.5.3 Static Separation of Duty Relations

Separation of duty relations can enforce interest policies conflict. A user gaining

certain permissions with conflicting roles can result in conflicts of interest.

Static separation of duty (SSD) can prevent this conflict by enforcing

constraints on the defining the users-roles.

One example of static constraint is the by defining two roles to be mutually

exclusive; for example, if one role does some changes and another reviews

them, the same user would be prohibited from being assigned to both roles.

The SSD policy can be specified centrally and then imposed on overall system

roles. Due to likelihood for inconsistencies with respect to static separation of

duty relations and inheritance relations of a role hierarchy, we define SSD

requirements are defined in both cases in the presence or absence of role

hierarchies.

Role Based Access Control with SELinux

32 | P a g e

Figure 9 - Static Separation of Duty (Sandhu R. et. Al)

So SSD policies deter fraud by placing constrains on administrative actions and

there by restricting combinations of privileges that are available to users.

E.g., No user can be a member of both Cashier and AR Clerk roles in Accounts

Receivable Department

Static Separation of Duty SSD relations monitors and controls the user and role

relations.SD rules prevents one user tobe assigned a role if it is already assigned

some other role.

Static Separation of Duty in the Presence of a Hierarchy. It is similar to SSD

with addition that inherited roles are also considered while enforcing the

constraints.

3.5.4 Dynamic Separation of Duty Relations

Dynamic separation of duty (DSD) relations, like SSD relations, limits the

permissions that are available to a user. However the context in which

limitations are imposed makes DSD relations differ from SSD relations.

Role Based Access Control with SELinux

33 | P a g e

The constraints are placed on the roles that can be activated within or across a

user’s sessions, this limits the availability of permissions.

Figure 10 - Dynamic Separation of Duty Relations (Sandhu R. et. Al)

3.6 Methodology to create an RBAC Package

Figure 11 - Methodology to Create RBAC Package (Nicola Zinnanon)

The figure, above sums up the steps to create a RBAC package. From figure one

can see , we start with basic component of RBAC model and keep on upgrading

the package by applying tenets of other RBAC models.

Role Based Access Control with SELinux

34 | P a g e

Chapter 4

SELinux to Enforce Mandatory Access Control in

Health Information Systems

4.1 Introduction

SELinux provides a flexible policy configuration allowing a high level of

granularity when protecting system resources. Flexibility in the security

mechanisms is an important feature while supporting security policies in

healthcare organizations with different security requirements and resources. The

provided access control mechanisms need to be reliable in the enforcement of

security policies while allowing flexibility to support variations in the security

policies.

In Access control is a fundamental mechanism in multi-user systems such as

HIS. Access control has to be enforced at the OS layer reflecting the security

policy of the healthcare organization. OSs that implement MAC mechanisms

are a preferred solution in which access to the system resources do not rely on

the owner of the resources, but in the security policies implemented in the OS.

SELinux implements a flexible and fine-grained MAC in the Linux kernel. This

is done through the use of a flexible architecture called Flask and the LSM

framework. SELinux use a type of MAC called TE and a type of RBAC which

is built upon TE. In addition, SELinux provides security features and tools to

simplify the implementation and management of SELinux policies.

Role Based Access Control with SELinux

35 | P a g e

4.2 SELinux Architecture

In order to introduce a flexible implementation of MAC in the Linux Kernel,

SELinux was implemented using the LSM framework. The LSM framework

allows loading different access control models in the Linux Kernel as loadable

kernel modules

4.2.1 Linux Security Module Framework

It is a framework which uses hooks to call modules which enforce the security

policy in the system. These hooks mediate accesses to different kernel objects,

such as files, sockets, processes, and so on.

LSM hooks are responsible to call the modules which enforce the security

policy configured in the Linux system. The hooks only ask a simple question: is

this access allowed or not? In this way, the modules can enforce any different

access control module without the whole architecture needing to be modified.

However, a drawback of this model is that in case the request is rejected there is

no way to identify the main reason of the rejection. In case of a functional error

within the access control module, the system will reject the request without

knowing if it was due to policy enforcement or functional error.

 SELinux is implemented as a set of hooks that are located throughout the Linux

Kernel for policy enforcement and a LSM module which is called for access

control decision making.

4.2.2 Flask Architecture

SELinux was designed with the idea to create a MAC solution flexible enough

to support a wide variety of security policies in real-world environments.

Role Based Access Control with SELinux

36 | P a g e

In the Flask security architecture there is a clear distinction between mechanism

and policy to enable a variety of policies to be supported with less policy-

specific customization. The Flask security architecture provides three main

components for object management, which are (Spencer, 1999):

 The Security Server. Its main role is the policy decision making. The

security server provides interfaces for retrieving access, labeling and poly

instantiation decisions.

 The Access Vector Cache (AVC). The AVC allows the object manager

to cache decisions made by the security server to minimize the

performance overhead.

 The Object Managers. These are the responsible for defining a control

policy which enforces the decisions made by the security server over the

objects they manage. The Object Managers also have to provide the

mechanisms to label the objects they manage according to the

specifications of the security server.

According to the Flask security architecture every object controlled by the

security policy is labeled with a set of attributes known as the security context.

The Flask architecture provides two data types for object labeling which is

(Spencer, 1999):

 A Security Context. The security context can be considered to be an

opaque string which might consist of different attributes depending on

the security policy.

 The Security Identifier (SID). This data type is a 32-bit integer which is

only interpreted by the security server and is mapped to a security context.

The SID is interpreted by the AVC as an opaque that uniquely references a

security context.

Role Based Access Control with SELinux

37 | P a g e

When an object is created within the objects managed by the object manager, it

is assigned a SID and it defines the security context under which the object is

created. The security server is the one responsible for choosing a unique

identifier as the SID for the object which is computerized from the security

context. The security context assigned by the security server to the object

typically depends on the client requesting the object creation and the

environment in which the object is created (i.e. the object class and/or security

context of the directory).

The AVC is a common security decision library shared between object

managers. The AVC is able to coordinate the policy between the security server

and the object manager.

The use of the SID allows more flexibility with the content and the format of the

security context. The object manager assigns a SID to every objects and subject

that they manage without concern of the way in which the security policy works

with the security contexts. This allows a strong distinction between security

policy decision making and enforcement functions. Hence, the Flask security

architecture allows completely replacing the security server with a new access

control policy without changing the object managers.

As shown in Figure 12, the Flask architecture in SELinux is reflected in the

SELinux LSM module. In SELinux the security server and the AVC are

contained in the SELinux LSM module and the object managers are represented

by the LSM hooks.

Role Based Access Control with SELinux

38 | P a g e

Figure 12 - SELinux LSM Module and the Flask Architecture

The flask architecture organizes the operating system components and data into

subjects and objects. Subjects are processes: applications, drivers, system tasks

that are currently running. Objects are fixed components such as files,

directories, sockets, network interfaces, and devices. For each subject and

object, a security context is defined. A security context is a set of security

attributes that determines how a subject or object can be used.

SELinux uses a combination of the Type Enforcement (TE), Role Based Access

Control (RBAC), and Multi-Level Security (MLS) security models. Type

Enforcement focuses on objects and processes like directories and applications,

whereas Role Based Access Enforcement controls user access. For the Type

Enforcement model, the security attributes assigned to an object are known as

either domains or types. Types are used for fixed objects such as files, and

domains are used for processes such as running applications.

Role Based Access Control with SELinux

39 | P a g e

For user access to processes and objects, SELinux makes use of the Role Based

Access Control model. When new processes or objects are created, transition

rules specify the type or domain they belong to in their security contexts. With

the RBAC model, users are assigned roles for which permissions are defined.

The roles restrict what objects and processes a user can access.

4.2.2.1 Terminology

SELinux uses several terms that have different meanings in other contexts. The

terminology can be confusing because some of the terms, such as domain, have

different meanings in other, related, areas. For example, a domain in SELinux is

a process as opposed to an object, whereas in networking the term refers to

network DNS addresses.

4.2.2.2 Identity

SELinux creates identities with which to control access. Identities are not the

same as traditional user IDs. At the same time, each user normally has an

SELinux identity, though the two are not linked. Affecting a user does not affect

the corresponding SELinux identity.

SELinux can set up a separate corresponding identity for each user.. A general

user identity is used for all normal users, restricting users to user-level access,

whereas administrators are given administrative identities.

Should a user change user IDs, that user’s security identity will not change. A

user will always have the same security identity. In traditional Linux systems, a

user can use commands like su to change his or her user ID, becoming a

different user. On SELinux, even though a user can still change his or her Linux

user ID, the user still retains the same original security ID.

Role Based Access Control with SELinux

40 | P a g e

The security identity can have limited access. So, even though a user may use

the Linux su command to become the root user, the user’s security identity

could prevent him or her from performing any root user administrative

commands.

Use id -Z to see what the security context for a security identity is, what roles

the identities have, and what kind of objects it can access. This will list the user

security context that starts with the security ID, followed by a colon, and then

the roles a user has and the objects the user can control.

The following example shows a standard user with the general security identity:

$ id -Z

user_u:user_r:user_t

In this example the user has a security identity called george:

$ id -Z

george:user_r:user_t

The new role command can be used to change the role a user is allowed.

Changing to a system administrative role, the user can then have equivalent root

access.

$ id -Z

george:sysadm_r:sysadm_t

Role Based Access Control with SELinux

41 | P a g e

4.2.2.3 Domains

Domains control processes, a process executed by different domains acquire

different domain. A process executed under a domain, is restricted by its own

set of permissions. A domain, on the other hand, can be tailored to access some

areas but not others. For example, the administrative domain is sysadm_t,

whereas the DNS server uses only named_t, and users have a user_t domain.

4.2.2.4 Types

Types control objects like files and directories. Files and directories are grouped

into types that can be used to control who can have access to them. The type

names have the same format as the domain names, ending with a _t suffix.

4.2.2.5 Roles

Users (security identities) with a given role can access types and domains

assigned to that role. For example, most users can access user_t type objects

but not sysadm_t objects. The types and domains a user can access are set by

the role entry in configuration files. The following example allows users to

access objects with the user password type:

role user_r types user_passwd_t

4.2.2.6 Security Context

Each object has a security context that set its security attributes. These include

identity, role, domain or type. A file will have a security context listing the kind

of identity that can access it, the role under which it can be accessed, and the

security type it belongs to. Each component adds its own refined level of

Role Based Access Control with SELinux

42 | P a g e

security. Passive objects are usually assigned a generic role, object_r, which has

no effect; as such objects cannot initiate actions.

A normal file created by users in their own directories will have the following

identity, role, and type. The identity is a user and the role is that of an object.

The type is the user’s home directory. This type is used for all subdirectories

and their files created within a user’s home directory.

user_u:object_r:user_home_t

A file or directory created by that same user in a different part of the file system

will have a different type. For example, the type for files created in the /tmp

directory will be tmp

user_u:object_r:tmp_t

4.2.2.7 Transition: Labeling

A transition, also known as labeling, assigns a security context to a process or

file. For a file, the security context is assigned when it is created, whereas for a

process the security context is determined when the process is run.

Making sure every file has an appropriate security context is called labeling.

Adding another file system requires that labels are added (add security contexts)

to the directories and files on it. Labeling varies, depending on the policy is

used.

Each policy may have different security contexts for objects and processes.

Relabeling is carried out using the fix files command in the policy source

directory.

$fixfiles relabel

Role Based Access Control with SELinux

43 | P a g e

4.2.2.8 Policies

A policy is a set of rules to determine the relationships between users, roles, and

types or domains. These rules state what types a role can access and what roles

a user can have.

4.2.2.9 SELinux Policy Rules

Policy rules can be made up of either type (Type Enforcement, or TE) or RBAC

(Role Based Access Control) statements. A type statement can be a type or

attribute declaration or a transition, change, or assertion rule. The RBAC

statements can be role declarations or dominance, or they can allow roles.

Policy configuration can be difficult, using extensive and complicated rules. For

this reason, many rules are implemented using M4 macros in fi files that will in

turn generate the appropriate rules.

4.2.2.10 Type and Role Declarations

A type declaration starts with the keyword type, followed by the type name

(identifier) and any optional attributes or aliases. The type name will have a _t

suffix. Standard type definitions are included for objects such as files. The

following is a default type for any file, with attributes file_type and sysadmfile:

type file_t, file_type, sysadmfile;

The root will have its own type declaration:

type root_t, file_type, sysadmfile;

Specialized directories such as the boot directory will also have their own type:

type boot_t, file_type, sysadmfile;

Role Based Access Control with SELinux

44 | P a g e

A role declaration determines the roles that can access objects of a certain type.

These rules begin with the keyword role followed by the role and the objects

associated with that role. In this example, the amanda objects (amanda_t) can be

accessed by a user or process with the system role (system_r): role system_r

types amanda_t;

Types are also set up for the files created in the user home directory:

type user_home_t, file_type, sysadmfile, home_type;

type user_home_dir_t, file_type, sysadmfile, home_dir_type;

4.2.2.11 File Contexts

File contexts associate specific files with security contexts. The file or files are

listed first, with multiple files represented with regular expressions. Then the

role, type, and security level are specified. The following creates a security

context for all files in the /etc directory (configuration files). These are

accessible from the system user (system_u) and are objects of the etc_t type

with a security level of 0, s0.

/etc(/.*)? system_u:object_r:etc_t:s0

Certain files can belong to other types; for instance, the resolve.conf

configuration file belongs to the net_conf type:

/etc/resolv\.conf.* -- system_u:object_r:net_conf_t:s0

Certain services will have their own security contexts for their configuration

files:

/etc/amanda(/.*)? system_u:object_r:amanda_config_t:s0

Role Based Access Control with SELinux

45 | P a g e

File contexts are located in the file_contexts file in the policy’s contexts

directory, such as /etc/selinux/targeted/contexts/files/file_contexts.

4.2.2.12 User Roles

User roles define what roles a user can take on. Such a role begins with the

keyword user followed by the username, then the keyword roles, and finally the

roles it can use. These rules can be found in the SELinux reference policy

source code files. The following example is a definition of the system_u user:

user system_u roles system_r;

If a user can have several roles, then they are listed in brackets. The following is

the definition of the standard user role in the targeted policy, which allows users

to take on system administrative roles:

user user_u roles { user_r sysadm_r system_r };

4.2.2.13 Access Vector Rules: allow

Access vector rules are used to define permissions for objects and processes.

The allow keyword is followed by the object or process type and then the types

it can access or be accessed by and the permissions used. The following allows

processes in the amanda_t domain to search the Amanda configuration

directories (any directories of type amanda_config_t):

allow amanda_t amanda_config_t:dir search;

The following example allows Amanda to read the files in a user home

directory:

allow amanda_t user_home_type:file { getattr read };

 The next example allows Amanda to read, search, and write files in the

Amanda data directories:

Role Based Access Control with SELinux

46 | P a g e

allow amanda_t amanda_data_t:dir { read search write };

4.2.2.14 Role Allow Rules

Roles can also have allowed rules. Though they can be used for domains and

objects, they are usually used to control role transitions, specifying whether a

role can transition to another role. These rules are listed in the RBAC

configuration file. The following entry allows the user to transition to a system

administrator role:

allow user_r sysadm_r;

4.2.2.15 Transition and Vector Rule Macros

The type transition rules set the type used for rules to create objects. Transition

rules also require corresponding access vector rules to enable permissions for

the objects or processes. Instead of creating separate rules, macros are used that

will generate the needed rules. The following example sets the transition and

access rules for user files in the home directory, using the file_type_auto_trans

macro:

file_type_auto_trans(privhome, user_home_dir_t, user_home_t)

The next example sets the Amanda process transition and acce ss rules for

creating processes:

domain_auto_trans(inetd_t, amanda_inetd_exec_t, amanda_t)

Role Based Access Control with SELinux

47 | P a g e

4.2.2.16 SELinux Policy Configuration Files

Configuration files are normally changed using .te and .fc files. These are

missing from the module headers in /usr/share/selinux. To add a a module .te

and .fc files are needed to be created for it.

4.2.2.17 Compiling SELinux Modules

Instead of compiling the entire source each time a change is required, a module

can be compiled for the changed area only. The modules directory holds the

different modules. Each module is built from a corresponding .te file. The check

module command is used to create a .mod module file from the .te file, and then

the semodule_package command is used to create the loadable .pp module file

as well as a .fc file context file.

For example if developer needs to change the configuration for syslogd, first

use the following to create a syslogd.mod file using syslogd.te. The -M option

specifies support for MLS security levels.

checkmodule -M -m syslogd.te -o syslogd.mod

Then use the semodule_package command to create a syslogd.pp file from the

syslogd.mod file. The -f option specifies the file context file.

semodule_package -m syslogd.mod -o syslogd.pp -f syslogd.fc

To add the module use semodule and the -i option. semodule -i syslogd.pp

4.2.2.18 Interface Files

File interface files allow management tools to generate policy modules. They

define interface macros for current policy. The refpolicy SELinux source file

Role Based Access Control with SELinux

48 | P a g e

will hold .if files for each module, along with .te and .fc files. Also, the .if files

in the /usr/share/selinux/devel directory can be used to generate modules.

4.2.2.19 Types Files

In the targeted policy, the modules directory that defines types holds a range of

files, including nfs.te and network.te configuration files. The .te files are no

longer included with standard SELinux installation. Instead, download and

install the sere policy source package. This is the original source and allows

user to completely reconfigure SELinux policy, instead of managing modules

with management tools like semanage. The modules directory will hold .te files

for each module, listing their TE rules.

4.2.2.20 Module Files

Module is located among several directories in the policy/modules directory.

There will be three corresponding files for each application or service. There

will be a .te file that contains the actual Type Enforcement rules, an .if, for

interface (a file that allows other applications to interact with the module), and

the .fc files that define the file contexts.

4.2.2.21 Security Context Files

Security contexts for different files are detailed in security context files. The

file_contexts file holds security context configurations for different groups,

directories, and files. Each configuration file has an .fc extension. The types.fc

file holds security contexts for various system files and directories, particularly

access to configuration files in the /etc directory. In the SELinux source, each

module will have its own .fc file, along with corresponding .te and .if files.

Role Based Access Control with SELinux

49 | P a g e

4.2.2.22 User Configuration: Roles

Global user configuration is defined in the policy directory’s users file. It

contains the user definitions and the roles they have for standard users (user_u)

and administrators (admin_u). To add new users, use the local.users file.

If a new user needs no special access, the generic SELinux user_u identity is

used. If, however user can take on roles that would otherwise be restricted, such

as a system administrator role in the strict policy, and configure the user

accordingly. To do this, add the user to the local.users file in the policy user’s

directory, as in /etc/selinux/targeted/policy/users/local.users. Note that this is

different from the local.users file in the src directory, which is compiled directly

into the policy. The user rules have the syntax:

user username roles { rolelist };

The following example adds the sysadm role to the george user:user george

roles { user_r sysadm_r }; Once the role is added, reload the policy.

make reload

Developer can also manage users with the semanage command with the user

option. To see what users are currently active, and list them with the semanage

user command and the -l option.

semanage user -l

system_u: system_r

user_u: user_r sysadm_r system_r

root: user_r sysadm_r system_r

Role Based Access Control with SELinux

50 | P a g e

The semanage user command has a, d, m, options for adding, removing, or

changing users, respectively. The a and m options let specify roles to add to a

user, whereas the d option will remove the user.

4.2.2.23 Policy Module Tools

To create a policy module and load it, several policy module tools are used.

First the check module command is used to create .mod file from a .te file. Then

the semodule_package tool takes the .mod file and any supporting .fc file, and

generates a module policy package file, .pp. Finally, the semodule tool can take

the policy package file and install it as part of SELinux policy.

4.2.2.24 Sample Files

Sample type file: cash_register.te

policy_module(cash_register,1.0.1)

Declarations

type cash_register_exec_t;

files_type(cash_register_exec_t);

cashier_role_domain(cashier)

cashier_role_domain(mgr)

Role Based Access Control with SELinux

51 | P a g e

type cashier_topdir_t;

files_type(cashier_topdir_t);

type final_file_t;

files_type(final_file_t);

type final_dir_t;

files_type(final_dir_t);

role cashier_r types { cashier_t cashier_register_t };

role mgr_r types { mgr_t mgr_register_t cashier_register_t };

allow system_r mgr_r;

allow system_r cashier_r;

allow mgr_r cashier_r;

allow mgr_register_t cashier_dir_t:dir search_dir_perms;

allow mgr_register_t cashier_file_t:file r_file_perms;

allow mgr_register_t final_dir_t:dir { add_entry_dir_perms create_dir_perms };

allow mgr_register_t final_file_t:file { append_file_perms create_file_perms };

type_transition mgr_register_t final_dir_t:file final_file_t;

Role Based Access Control with SELinux

52 | P a g e

Sample file context definition file : cash_register.fc

/data -d gen_context(system_u:object_r:cashier_topdir_t,s0)

/data/cashier_r -d gen_context(system_u:object_r:cashier_dir_t,s0)

/data/mgr_r -d gen_context(system_u:object_r:mgr_dir_t,s0)

/data/final -d gen_context(system_u:object_r:final_dir_t,s0)

/data/cashier_r/.* -d gen_context(system_u:object_r:cashier_dir_t,s0)

/data/mgr_r/.* -d gen_context(system_u:object_r:mgr_dir_t,s0)

/data/final/.* -d gen_context(system_u:object_r:final_dir_t,s0)

/data/cashier_r/.* -- gen_context(system_u:object_r:cashier_file_t,s0)

/data/mgr_r/.* -- gen_context(system_u:object_r:mgr_file_t,s0)

/data/final/.* -- gen_context(system_u:object_r:final_file_t,s0)

Sample interface file – cash_register.if

Role Based Access Control with SELinux

53 | P a g e

interface(`cashier_role_domain',`

 type $1_register_t; # cashier_t running /bin/register.py

 domain_type($1_register_t)

 userdom_unpriv_user_template($1);

 corecmd_shell_entry_type($1_t);

 corecmd_exec_shell($1_t);

 domain_entry_file($1_t, shell_exec_t)

 auth_domtrans_pam_console($1_t);

 domain_transition_pattern($1_t, cash_register_exec_t, $1_register_t);

 domain_entry_file($1_register_t, cash_register_exec_t);

 domain_auto_trans($1_t, cash_register_exec_t, $1_register_t);

 allow $1_register_t $1_t:process sigchld;

 allow $1_register_t $1_tty_device_t:chr_file { rw_term_perms append };

 allow $1_register_t $1_devpts_t:chr_file { rw_term_perms append };

 type $1_file_t;

 files_type($1_file_t);

 type $1_dir_t;

 files_type($1_dir_t);

Role Based Access Control with SELinux

54 | P a g e

4.3 Conclusion

This chapter introduced SELinux as a feasible approach to protect resources at

the OS layer in HIS. The flexibility of mechanisms in SELinux allows

implementing SELinux in different organisations with different security

requirements. SELinux implements a flexible and fine-grained MAC called TE

and a type of RBAC built upon TE. These two mechanisms satisfy

requirements such as domain separation and enforcement of the least privilege

principle. Also, the use of RBAC helps to simplify user management tasks.

Additional technologies such as loadable policy modules and conditional

policies are also desirable characteristics while managing SELinux Policies.

Conditional policies allow making changes to the policy on the spot and

loadable policy modules simplify the creation and implementation of SELinux

Policies. Therefore, SELinux is a recommended viable approach to aid in the

protection of resources in HIS.

Role Based Access Control with SELinux

55 | P a g e

Chapter 5

Hierarchal Role-Based Access Control and Type

Enforcement for Health Information Systems

5.1 Introduction

This chapter introduces a framework, based on SELinux Profiles, to implement

and manage SELinux in HIS. SELinux Profiles are introduced as the way in

which processes running on behalf of users are restricted to specific resources

in the system. In this way, damage from compromised applications can be

controlled. SELinux Profiles use TE and RBAC to restrict authorized access

permissions over the system resources. SELinux Profiles are created by

loadable policy modules, which help to simplify the creation and

implementation of SELinux Profiles. In addition, conditional policies allow the

simplification of the management of SELinux Profiles when changes to the

SELinux Policy have to be made on the spot.

In the following section, SELinux Profiles are introduced to demonstrate how

TE and RBAC can be used to protect the resources in the system. SELinux

profiles make use of TE and RBAC in order to restrict the operations that users

are allowed to perform while working in the Linux system.

Role Based Access Control with SELinux

56 | P a g e

5.2 SELinux Profiling

SELinux profile is defined as:

The authorized environment for subjects which determine the way authorized

users interact with subjects and objects in the system.

Figure 14, shows the process followed while assigning a SELinux profile to an

authorized user. Once the user is properly authenticated in the system

(authentication mechanisms are out of the scope of this research), the "log in"

process will assign the user with a Linux UID. The Linux UID is mapped to a

SELinux UID which remains orthogonal to the Linux UID.

The SELinux UID is the one used to determine the SELinux profile that

corresponds to the user according to the SELinux policy. The SELinux policy

determines the authorized roles, domains and types that are associated with the

SELinux UID. These roles, domains and types along with corresponding TE

rules constitute the SELinux Profiles. For example, a user named Alice can be

assigned to a SELinux profile which authorizes Alice to access domains

(applications) and types (files, executable files) authorized for physicians.

SELinux profiles also determine the way in which the domains authorized for a

user interact with subjects and objects in the system. That is, when Alice runs an

application, the application running on behalf of Alice is restricted to certain

access permissions over system resources.

Role Based Access Control with SELinux

57 | P a g e

Figure 13 - SELinux Profiles Assigning Process.

SELinux profiles are based on SELinux TE and RBAC along with SELinux

technologies such as the conditional policies and loadable policy modules.

Types, domains, TE rules, RBAC rules, booleans and conditional statements

constitute the SELinux Profiles. These components are coded in loadable policy

modules to create SELinux Profiles that can be implemented in different

systems. Basically, SELinux Profiles are created through the implementation of

one or more policy modules. These modules are loaded into the Linux kernel

using command line tools (i.e. semodule) existing in current Linux distributions

(that support SELinux) such as RHEL and Fedora Core. These modules can be

Role Based Access Control with SELinux

58 | P a g e

loaded into the kernel and interact with predefined base modules such as the

Targeted Policy which is provided by default since Fedora Core 5. If no

predefined based modules such as the Targeted or the strict policies are to be

used, the modules can be loaded as part of a new Reference Policy. In this

research, loadable policy modules were loaded into the kernel as non-based

modules, to interact with the base modules provided by the Targeted Policy.

Loadable policy modules are created in such a way that they can be loaded in

systems with similar characteristics. Meaning, systems with similar applications

and a similar directory tree structure. Once the policy modules are loaded into

the kernel, types are then assigned to objects which are similar in the systems.

This is important, as once types are assigned, the system is able to restrict the

access permissions that the subjects have over objects.

The use of loadable policy modules simplifies the management of SELinux

policies, helping to easily deploy, modify and update SELinux policies. The

SELinux policy administrator does not have to re-compile the entire policy

every time a change is required to the modules. With loadable policy modules, a

change would require the modification of only the related module. Only the

modified module would then be reloaded into the kernel, not the whole policy.

Furthermore, once the module is loaded, the system does not require to be

rebooted for the changes to take effect. Changes made to the module are

enforced in the system as soon as the module is successfully loaded. However,

because objects are labeled when the system starts, if changes to the module

require modification to the security contexts of any object, the objects need to

be relabeled. In order to do this, the SELinux policy administrator, after

successfully loading the modified module, has to restore the security contexts of

Role Based Access Control with SELinux

59 | P a g e

those objects affected by the module. Figure 15 shows the steps that a SELinux

policy administrator has to follow when managing loadable policy modules.

Figure 14 - Loadable Policy Modules Management Process

5.3 Healthcare Scenario

This section is going to describe the implementation and use of SELinux

Profiles through the description of a practical healthcare scenario. The scenario

demonstrates the circumstances in which SELinux Profiles can contain attacks

from malicious code. This scenario is one of the different scenarios used to test

the prototype that was developed as proof of concept for this research. Two HIS

applications , appointment and hospital_sys and related files and directories

were created as part of this scenario. The policy module for the appointment

and hospital_sys can be found in Appendix. This module contains the access

permissions part of the SELinux Profile assigned to users so that they can

interact with these applications..

Role Based Access Control with SELinux

60 | P a g e

When a new module is developed, this module has to be placed in one of this

layers (physically represented by directories) based on the function of the

module. For example, modules of the appointment and hospital_sys

applications are placed on the Apps layer since it has its own domain types.

That is, these are not directly related with the kernel or any other system

services.

Policy modules in the Reference Policy are constituted by three files which are:

 The type enforcement file. This file contains all the Type Enforcement

logic which is private to the policy. The file also contains the private types

and domains of the policy.

 The interfaces file. This file contains the interfaces and templates that

determine the way to access or create private types and domains in the

module.

 The file contexts file. This file contains the default security contexts to be

assigned to files and directories in the system.

5.3.1 The HIS Applications

The Appointment Application has the following requirements.

The appointment application allows creation of appointment for patients in the

HIS. The doctors are authorized to create, read and delete appointments for

patients, whereas nurses can only create appointments for patients. Patients can

check their appointments and similarly for pathologists can check appointments

in the system. Pharmacists wont have any access to appointment application.

Role Based Access Control with SELinux

61 | P a g e

The hospital_sys application works as application to connect between various

users in a HIS. The information related to treatment details, opd records,

prescribed tests, test results , allergies and personal information of patients are

stored in different directories in the system. Files stored under treatment

directory contains date-wise records of treatment given to users, similarly files

stored tests directory will contain tests prescribed to patient on different dates.

Each patient will have a unique id and files are stored with patient-id as names

under various directories.

Doctors are authorized to read patients personal record data, medication history,

allergy details, treatment history. The can also update patients medications,

allergy details, treatment details. All information will be stored under various

directories in separate files for different patients.

Nurses are authorized only to update and read opd parameters.

Patients are authorized to read their personal records, treatment history, allergy

details, medication history and test results.

Pathologists can read tests prescribed for patient and can update results.

Pharmacists can read personal records of patients to verify insurance detail and

can read medication prescribed to patients.

5.3.2 Working with Roles

The first step is to determine the roles that are going to be allowed to

interact with the domains that correspond to the appointment and

hospital_sys applications. The identified roles are described in Table 7.

Role Based Access Control with SELinux

62 | P a g e

Role SELinux Role Description

Administrator hosp_admin_r Can access and update all sections.

Doctor hosp_doc_r Read – patient personal info, past medications,

past surgery, past OPD visits, past allergies,

update OPD visit ,medications, tests.Create , read

and delete appointment for patient

Nurse hosp_nur_r Read – update basic health parameters for the

OPD session.Only create appointment for patient.

Patient hosp_pnt_r Read all sections. Read appointment detail.

Pathologist hosp_path_r
Read and Validate patient has valid insurance.

Read medications prescribed. Update section of

medicines prescribed. Read and check

appointment.

Pharmacist hosp_pharma_r
Read and Validate patient personal details, tests

and update test results. No access to appointment

details

Table 7- HIS Roles

These are the roles to be authorized to certain SELinux UIDs. Once the

user is authenticated and assigned to his/her corresponding SELinux UID

(mapped to the Linux UID), the user is authorized to access certain roles

Role Based Access Control with SELinux

63 | P a g e

according to the specifications in the SELinux Policy. The role to which the

user is authorized determines the domains that the user can access. That is, the

role determines the subjects (processes) that can be accessed by the user.

The following HIS security policy will see following hierarchy of roles:

Figure 15: Role Hierarchy in HIS

5.3.3 Role Based Access Control and Type Enforcement

Once the roles are defined, the next step is to determine the domains authorized

for each role and the access permissions that each domain has over specific

types. In this scenario the types for the objects used by the appointment and

hospital_sys Application are shown in Table 8.

Administrator

Doctor

Nurse Patient Pharmacist Pathologist

Role Based Access Control with SELinux

64 | P a g e

Object (Resource) Object

Class

Type

/hosp_sys/appointment
dir hosp_appntmnt_dir_t

/hosp_sys/personal
dir hosp_pers_dbdir_t

/hosp_sys/allergys
dir hosp_allergy_dbdir_t

/hosp_sys/medics
dir hosp_medic_dbdir_t

/hosp_sys/general
dir hosp_general_dbdir_t

/hosp_sys/tests
dir hosp_tests_dbdir_t

/hosp_sys/testresults
dir hosp_testresults_dbdir_t

/hosp_sys/opd
dir hosp_opd_dbdir_t

/hosp_sys/appointment/<patient_id>
file hosp_appntmnt_file_t

/hosp_sys/personal/<patient_id>
file hosp_pers_dbfile_t

/hosp_sys/allergys/<patient_id>
file hosp_allergy_dbfile_t

/hosp_sys/medics/<patient_id>
file hosp_medic_dbfile_t

/hosp_sys/general/<patient_id>
file hosp_general_dbfile_t

/hosp_sys/tests/<patient_id>
file hosp_tests_dbfile_t

/hosp_sys/testresults/<patient_id>
file hosp_testresults_dbfile_t

/hosp_sys/opd/<patient_id>
file hosp_opd_dbfile_t

/bin/appointment
file hosp_appntmnt_exec_t

/bin/hospital_sys
file hosp_main_sys_exec_t

Table 8 - HIS Application Types

Role Based Access Control with SELinux

65 | P a g e

The first eight types shown in Table 8 are the directories where different

information of patients are stored. The following eight files contain the data

corresponding to different types.The last two types are executable files for

appointment and hospital_system. Appendix has the code required to set these

types as part of the security contexts in the directories and files of the HIS.

This code is found in the hospital_sys.fc file as part of the policy module

created for this scenario.

In this scenario, there could be the possibility that one domain is authorized to

all roles. This domain could be the one that corresponds to the appointment and

hospital_sys process. However, this is not a recommended approach. If only

one domain is used, all the roles authorized to access this domain would have

the same privileges while using these applications. In this way the least

principle privilege is not enforced. If a nurse is able to compromise the code,

the nurse would be able to access objects that only doctors, patients and

pathologists can access.

In order to improve the granularity and restrict roles to have the least privileges

over objects, more than one domain needs to be assigned to the appointment

and hospital_sys process. Domains have to be created for each role. In this

way, the roles are restricted to only specific access permissions over the

resources. Even if the code is modified, a nurse would not be able to access

resources that are not authorized for that role while using the appointment and

hospital_sys Application. Table 9 shows the domains created for this scenario

along with the role-domain relationship and the access permissions over the

object types.

Role Based Access Control with SELinux

66 | P a g e

Role Domain Type Permissions

hosp_doc_r hosp_doc_main_t Permissions on files/directories as owned by

nurse, patient, pathologist and pharmacist role

and in addition to following permissions on

other files/directories

 hosp_medic_dbdir_t

hosp_allergy_dbdir_t

hosp_general_dbdir_t

hosp_tests_dbdir_t

create_dir_perms

add_entry_dir_perms

hosp_medic_dbfile_t

hosp_allergy_dbfile_t

hosp_general_dbfile_t

hosp_tests_dbfile_t

append_file_perms

create_file_perms

rw_file_perms

 hosp_nur r hc_nur_main_t hosp_opd_dbdir_t create_dir_perms

add_entry_dir_perms

hosp_opd_dbfile_t

append_file_perms

create_file_perms

rw_file_perms

Role Based Access Control with SELinux

67 | P a g e

hosp_pnt_r hosp_pnt_main_t hosp_pers_dbfile_t

hosp_allergy_dbfile_t

hosp_medic_dbfile_t

hosp_general_dbfile_t

hosp_tests_dbfile_t

hosp_testresults_dbfile_t

hosp_opd_dbfile_t

read_file_perms

hosp_path_r hosp_path_main_t hosp_tests_dbfile_t

hosp_pers_dbfile_t

read_file_perms

hosp_testresults_dbdir_t

create_dir_perms

add_entry_dir_perms

hosp_testresults_dbfile_t

append_file_perms

create_file_perms

rw_file_perms

hosp_pharma_r

hosp_pharma_main_t

hosp_pers_dbfile_t

hosp_medic_dbfile_t

read_file_perms

hosp_admin_r hosp_admin_main_t hosp_pers_dbfile_t

append_file_perms

create_file_perms

rw_file_perms

del_entry_dir_perms

search_dir_perms

Role Based Access Control with SELinux

68 | P a g e

hosp_pers_dbdir_t

create_dir_perms

add_entry_dir_perms

del_entry_dir_perms

search_dir_perms

 Permissions on files/directories as owned by

Doctor in addition to permission mentioned

above.

Appointment Application domain

hosp_doc_r

hosp_admin_r

 hosp_doc_appnt_t

 hosp_admin_appnt_t

hosp_appntmnt_dir_t del_entry_dir_perms

search_dir_perms

hosp_appntmnt_file_t delete_file_perms

Permissions to appointment files/directory as

owned by patients/nurse role below in

addition to permissions defined above

hosp_nur_r hosp_nur_appnt_t hosp_appntmnt_dir_t create_dir_perms

add_entry_dir_perms

hosp_appntmnt_file_t append_file_perms

create_file_perms

rw_file_perms

hosp_pnt_r

hosp_path_r

 hosp_pnt_appnt_t

hosp_path_appnt_t

hosp_appntmnt_file_t read_file_perms

Table 9 - HIS Application Roles, Domains and Types

Role Based Access Control with SELinux

69 | P a g e

A user that is authorized to access the role hosp_doc_r (doctor) is subsequently

authorized to access the domain hosp_doc_main_t which is assigned to the

hospital_sys process. Consequently, this user is authorized only to rights as

mentioned in table above. Information about access permissions can be found in

Appendix.

These domains and its authorized access permissions over the object types

comprise the sandboxes in which the appointment and hospital_sys runs on

behalf of the users. For example, the appointment application when run by

patients enters into the sandbox whose boundaries are defined by the

authorized permissions of the hosp_pnt_appnt_t domain. In this way, any

damage from the compromised application is restricted to those resources

authorized to the researchers, thus preventing any unauthorized disclosure of

the information.

Nevertheless, the first domain which the users' role has to be authorized is the

shell process domain. Once the user logs in, the user has to access the domain

of the shell process in order to do anything in the system. Table 10 shows the

shell process domains associated to the roles used in the appointments and

hospital_sys Application scenario.

Role Based Access Control with SELinux

70 | P a g e

Role Shell Domain

hosp_admin_r hosp_admin_t

hosp_doc_r hosp_doc_t

hosp_nur _r hosp_nur_t

hosp_pnt_r hosp_pnt_t

hosp_pharma_r hosp_pharma_t

hosp_path_r hosp_path_t

Table 10 - Linux Shell Types

These types have to be authorized to transit into the domains specified in Table

9. This has to be done in order to authorize the shell process running under the

user login, to enter the corresponding sandbox. That is, the domain hosp_ doc_ t

has to be authorized to transit into the domain hosp_doc_main_t, and the

domain hosp_pnt_t has to be authorized to transit into the domain

hosp_pnt_main_t and so on.

5.3.4 Creating and Implementing the Policy Module

Once the roles, domains and types along with their corresponding access

permissions are defined, the next step is to code them in the policy module.

This is done through the use of TE rules and RBAC rules. AVRs, transition

rules, and RBAC rules are used to authorize access permissions to the domains

and types as specified in Table 6 and Table 7. For example, the TE rules and

RBAC rules for the researchers are as follows:

 Transition Rule. The following transition rule defines the default

domain to transit when the shell process, running on behalf of a doctor

Role Based Access Control with SELinux

71 | P a g e

executes the hospital_sys executable file. That is, the domain

hosp_doc_t by default transits to the hosp_doc_main_t domain when

executing a file with type hosp_main_sys_exec_t

 type transition hosp_doc_t hosp_main_sys_exec_t:file hosp_doc_main_t

 AVRs. The following AVRs authorize the hospital_sys process

running on behalf of a pathologist to search_dir_perms in the tests

directory and to read files inside the directory. That is, the domain

hosp_path_main_t is authorized to search directories with the

hosp_tests_dbdir_t and read files with type hosp_tests_dbfile_t.

 allow hosp_path_main_t hosp_tests_dbdir_t:dir { search_dir_perms }

allow hosp_path_main_t hosp_tests_dbfile_t:file { read_file_perms };

 RBAC rules. The following role statement authorizes researchers to

access the shell process and the hospital_sys/appoitnment process. it is

required to specify the AVRs for domain transitions as follows:

allow hosp_doc_t hosp_main_sys_exec_t:file { getattr read execute };

allow hosp_doc_main_t hosp_main_sys_exec_t:file entrypoint;

allow hosp_doc_t hosp_doc_main_t :process transition;

These are the rules that allow the shell process domain to transit into the

hospital_sys domain.

Role Based Access Control with SELinux

72 | P a g e

When the policy module is completed, it has to be compiled using the Makefile

tool, part of the SELinux Policy Development Package, and loaded into the

kernel using the semodule tool. Once the policy module is loaded in the kernel,

the security context of files and directories affected by the policy module have

to be restored in case any change is required.

To compile the module, the Makefile tool, part of the selinux-policy-devel

package, is run in the directory in which the policy module is located, as

follows:

[user@<path to the policy module>]# make -f

/usr/share/selinux/ubuntu/include/Makefile

This statement will create the module package to be loaded in the kernel to

interact with the base module (provided by the Targeted Policy). The created

packet is loaded into the kernel using the semodule tool, as follows:

[root@<path to the policy module>]# semodule -i hospital_sys. pp

After the module is successfully loaded into the kernel, it will provide the roles,

types, domains, TE rules, and RBAC rules that form part of the SELinux

Profiles. For example, once the policy module is loaded into the kernel, it will

provide the SELinux Profiles for users of the hospital_sys and appointment

application.

However, before the SELinux Profiles can take effect over the resources used

by the hospital_sys and appointment, the security contexts of files and

directories have to be restored. For this reason, once the policy module is

successfully loaded into the kernel, it is important to restore the security

contexts using the restorecon tools. This command uses the security contexts in

Role Based Access Control with SELinux

73 | P a g e

the file context file of the policy module to define the default security contexts

of the files and directories in the system. This command is used as follows:

[root@home]# >fixfiles -f relabel /hosp_sys /bin/appointment /bin/hospital_sys

/home

5.3.5 Creating Users and Assigning Roles

Now that the SELinux Profiles for the users have been created, the only thing

missing is to create Linux UIDs and map them to SELinux UIDs and

corresponding roles. To do this, the system administrator has to first create the

SELinux UIDs and associate them to roles. Then system administrator can

create Linux UIDs which can be mapped to the SELinux UIDs by using the the

semanage tool. This is done with the semanage command as follows:

[root@host —]# semanage user -a -R hosp_admin_r -P hosp_admin

hosp_admin_u

[root@host —]# semanage login -a -s hosp_admin_u hosp_admin

 [root@host —]# semanage user -a -R hosp_doc_r -P hosp_doc hosp_doc_u

[root@host —]# semanage login -a -s hosp_doc_u hosp_doc

[root@host —]# semanage user -a -R hosp_nur_r -P hosp_nur hosp_nur_u

[root@host —]# semanage login -a -s hosp_nur_u hosp_nur

Role Based Access Control with SELinux

74 | P a g e

[root@host —]# semanage user -a -R hosp_pnt_r -P hosp_pnt hosp_pnt_u

[root@host —]# semanage login -a -s hosp_pnt_u hosp_pnt

[root@host —]# semanage user -a -R hosp_pharma_r -P hosp_pharma

hosp_pharma_u

[root@host —]# semanage login -a -s hosp_pharma_u hosp_pharma

[root@host —]# semanage user -a -R hosp_pharma_r -P hosp_pharma

hosp_pharma_u

[root@host —]# semanage login -a -s hosp_pharma_u hosp_pharma

This command creates a SELinux UIDs which is authorized to access the roles.

5.3.6 A closer look at SELinux Profiles

Let's assume that a pathologist called Alice is authorized to access the

hospital_sys. The physician Alice will have the following identifiers:

Linux UID: dralice

SELinux UID: hosp_path_u

Role Based Access Control with SELinux

75 | P a g e

Authorized access permissions are as stated in Table 9 and Table 10, and roles

are those stated in Table 7. In addition, the SELinux UID hosp_path_u is

authorized to access the role hosp_path_r

Following the process shown in Figure 14, once the user logs in, the user is

assigned to the Linux UID dralice, which is mapped to the SELinux UID

hosp_path_u. The SELinux UID is used to determine the SELinux Profile that

corresponds to Alice. In regards to the hospital_sys, the SELinux Profile of

Alice is constituted by the roles hosp_path_r, the domain hosp_path_main_t

and the types hosp_tests_dbdir_t and hosp_testresults_dbfile_ t. Also, the

SELinux profile is constituted by the access permissions that the domain

hosp_path_main_t has over each of the types. Similarly, In regards to the

appointment application, the SELinux Profile of Alice is constituted by the

roles hosp_path_r, the domain hosp_path_appnt_t and the types

hosp_appntmnt_file_t. Also, the SELinux profile is constituted by the access

permissions that the domain hosp_path_appnt_t has over each of the types.

The SELinux Profile of Alice authorizes the creation of test results through

the use of the hospital_sys Application. This is authorized because the role

hop_path_r can access the domain hosp_path_main_t. This domain has the

access permissions, create and write over files with type

hosp_testresults_dbfile_ t (this type corresponds to the files containing the

test results reports of the patient) and create permission over the directories

with type hosp_testresults_dbdir_ t (which corresponds to the test results

directory in HIS).

Role Based Access Control with SELinux

76 | P a g e

Figure 16 - SELinux Profiles hospital_sys and appointment applications for

Pathologsists

Role Based Access Control with SELinux

77 | P a g e

5.4 Healthcare Attack Scenario

The attack scenario explained in this section is based on the hospital_sys

introduced in this chapter. However, this time the code has been attached with a

backdoor allowing an attacker to access patients' sensitive healthcare

information. SELinux Profiles are going to be used to create sandboxes in order

to contain the damage caused by the compromised hospital_sys.

In the normal hospital_sys Application, only the doctors, nurses and patients are

authorized to access the files in the patients' directories. These files contain

diagnostic information that can be related to a specific patient. Doctors, nurses

and patients are authorized only to access files in the opd paramaters directory.

However, the backdoor created by the attacker allows a pathologist to have

access to opd parametersfiles in patients' directories, compromising information

of the patients. The hospital_sys Application was modified so that when the

attacker specifies the backdoor parameter, the pathologist is able to access opd

parameters , which is only allowed for doctors, nurses and patients only

The following section describes how how RBAC mechanisms at the OS layer

can contain this attack.

5.4.1 RBAC Context

In contrast with traditional Linux systems, SELinux access to the resources is

based on a pair of security attributes which are the subject's (source) security

context and object's (target) security context. In SELinux, access control

attributes for subjects and objects are the security context attributes constituted

by the SELinux user identifier, the role and the object's type. These security

attributes are assigned to subjects and objects based on the SELinux policy

enforced by the Linux kernel.

Role Based Access Control with SELinux

78 | P a g e

Let us see the following security attributes of executable hospital_sys.

Executable

File

Permission

bits

Owner

ID

Group ID Executable File

Security Context

/bin/hospital_sys
rwx rwx --- root Healthcare

(51001)

system u:object r:

hosp_main_sys_exec_t

Table 11 - Security Attributes for the HIS Application Executable File

Even if the hospital_sys executable file has the rwx permission bits activated

for the owner and group, access to this file depends on the specification in the

SELinux Policy. Users would need to be authorized to execute the file in the

SELinux Policy. Also, the appropriate transition rules would have to be

specified in order to authorize the user to access the domains of the

hospital_sys application. For example, the TE rules needed to authorize the

domain transition of the shell process domain hosp_doc_t to the hospital_sys

Application process domain hosp_doc_main_ t are as follows:

type transition hosp_doc_t hosp_main_sys_exec_t : file

hosp_doc_main_t

allow hosp_doc_t hosp_main_sys_exec_t: file { execute }

allow hosp_doc_main_t hosp_main_sys_exec_t: file entrypoint;

allow hosp_doc_t hosp_doc_main _t : process { transition };

These AVR will authorize the shell process running on behalf of the user drpaul

to transit into the hosp_doc_main_t corresponding to the hospital_sys

Application process running on behalf of a doctor. The domain type

hosp_doc_main_t could be considered to be the sandbox which is going to

Role Based Access Control with SELinux

79 | P a g e

restrict the operations of the hospital_sys application running in behalf of any

doctors.

In a similar way, the pathologists shell processes have to be authorized to

transit into the domain of the hospital_sys Application process running on

behalf of pathologists. In this case, instead of transiting into the domain

hosp_doc_main_t the pathologists are authorized by the SELinux Profile to

access the domain hosp_path_main_t. The hosp_path_main_t domain

represents the sandbox that restricts the operations of the hospital_sys

Application running on behalf of any pathologist.

The authorized types, domains and access permissions defined by the SELinux

Profiles (for doctor and pathologist only) are shown in Table 12. For example,

the domain hosp_doc_t belonging to a shell process running on behalf of a

doctor , is able to transit to the domain hosp_doc_main_t and read files with the

type hosp_opd_dbfile_t.

Role Domain Type Permissions

hosp_doc_r hosp_doc_main_t hosp_pers_dbfile_t

hosp_testresults_dbfile_t

hosp_opd_dbfile_t

read_file_perms

 hosp_medic_dbdir_t

hosp_allergy_dbdir_t

hosp_general_dbdir_t

hosp_tests_dbdir_t

create_dir_perms

add_entry_dir_perms

Role Based Access Control with SELinux

80 | P a g e

hosp_medic_dbfile_t

hosp_allergy_dbfile_t

hosp_general_dbfile_t

hosp_tests_dbfile_t

append_file_perms

create_file_perms

rw_file_perms

 hosp_path_r hosp_path_main_t hosp_tests_dbfile_t

read_file_perms

hosp_testresults_dbdir_t

create_dir_perms

add_entry_dir_perms

hosp_testresults_dbfile_t

append_file_perms

create_file_perms

rw_file_perms

 Table 12. SELinux Profiles for doctors and pathologists.

In Table 12 can be seen which sandbox is assigned to each user and how

these sandboxes restrict the access permissions over the objects. For example,

when the hospital_sys Application is executed by a pathologist, the shell

process with domain type hosp_path_t will transit into the domain

hosp_path_main_t. This domain is only authorized to read files with type

hosp_tests_dbfile_t, hosp_testresults_dbfile_t and access directories with type

hosp_testresults_dbdir_t. If the pathologist try to access a directory or file

with types not specified in this table, the access is denied.

Doctors are allowed to read files(allergies, treatments, medications, opd, tests,

testresults) in the directories containing information that can be related to a

specific patient. On the other hand, pathlogists can only access information

Role Based Access Control with SELinux

81 | P a g e

about prescribed tests in the “hosp_sys/tests” directory. In this example the

doctor hosp_doc check the medication records for patient with id “123456” .

Sceeenshot 1. Doctor checking patient medication records

If the pathologist tries to access the medical record of a particular patient or

trick the application masquerading as a doctor, the application displays the

message

Role Based Access Control with SELinux

82 | P a g e

Sceeenshot 2 . Nurse trying to access application with doctor role

Let us assume that the hospital_sys was modified and a backdoor was attached

to application in order to allow a pathologist to specify the parameter

“backdoor” and acess patients information.

The hospital_sys while executed by pathologist will run under boundaries of

domain “hosp_path_main_t”. The domain is authorized to access files of types

hosp_tests_dbfile_t, hosp_testresults_dbfile_t only.Consequently if pathologist

runs the application hospital_sys with back door as parameter and tries to

access opd parameters of patient.SELinux will deny the access and creates an

AVC message in the audit log as shown below:

Role Based Access Control with SELinux

83 | P a g e

Sceeenshot 3. AVC message logs showing denied access

5.5 Conclusion

This chapter described the proposed framework to implement and manage

SELinux in HIS based on the use of SELinux Profiles. Also, in this chapter TE

and RBAC mechanisms in SELinux were proposed as the preferred MAC

mechanisms to prevent unauthorized disclosure and modification of

information. To demonstrate the use of TE and RBAC mechanisms in SELinux,

the concept of SELinux Profiles was introduced. SELinux Profiles restrict the

authorized environment of subjects while accessing resources in the system.

SELinux Profiles are constituted by roles, types, domains, TE rules, RBAC

rules, conditional statements and Booleans. These components are coded into

loadable policy modules for the easy management of the SELinux Policies. To

demonstrate the functionality of SELinux Profiles, one of the scenarios used to

Role Based Access Control with SELinux

84 | P a g e

test the prototype developed for this research was illustrated. This scenario

demonstrated that TE and RBAC mechanisms can effectively prevent

intentional or unintentional attempts to access restricted resources.

In OSs that implements DAC mechanisms, the damage from compromised

applications cannot be contained. SELinux is a preferred solution in order to

minimize the effect of compromised applications using SELinux Profiles.

SELinux Profiles are used in order to create sandboxes. Applications run

inside the sandboxes, which restrict the access permissions to resources in the

system.

Role Based Access Control with SELinux

85 | P a g e

Chapter 6

Conclusions

6.1 Research Findings

There are four main conclusions that can be inferred from this thesis and that

were demonstrated by this research. These conclusions are listed as follows:

 DAC mechanisms at the OS layer are not enough to satisfy security

requirements in HIS.

Healthcare organizations have security and privacy requirements from laws,

regulations and ethical standards while storing, processing and transmitting

their customers' healthcare information. In order to simplify the complexity

while protecting the security and privacy of the information, appropriate

information security services and mechanisms have to be implemented. To

appropriately protect resources in a system from unauthorized accesses, access

control mechanisms have to be implemented at the OS layer. Currently, most

systems are constructed using OSs which implements DAC mechanisms. There

are several issues in this type of OSs such as: access permissions are at the

discretion of the users; the lack of domain separation; and the lack of

enforcement of the least privileges principle.

In a DAC system, those authorized to access the resources can grant access

permissions over these resources to others at their discretion. Access to

resources in the system should not be at the discretion of the user. DAC systems

manage only two levels of privileges which are the system administrator and

the normal user. The existence of the system administrator layer is a clear

example of how DAC systems do not enforce the least privilege principle.

Role Based Access Control with SELinux

86 | P a g e

Those who have access to the system administrator level, have full control over

all resources in the system. Users in HIS, have to be restricted to the least

privileges required to achieve their job functions. The lack of domain separation

in DAC systems, allows applications to run without boundaries. If the

application is compromised the damage cannot be contained. Therefore, in

order to provide support from the OS layer and satisfy security requirements in

HIS, it is necessary to use an OS which implements MAC mechanisms.

 SELinux is a viable approach to provide MAC at the OS layer and aid

to protect the security and privacy in HIS.

SELinux is a recommended viable approach to aid in the protection of resources

in HIS due to: its flexible and high granular MAC mechanisms; the increasing

use of Linux; the importance of Open Solutions in future HIS, and the

increasing number of tools and technologies to simplify the management of

SELinux policies.

SELinux provides a flexible architecture that allows the enforcement of

different security policies for different purposes at the OS layer. This is possible

through a clear separation of policy enforcement and policy decision making

which can be achieved with the use of the Flask architecture. TE and RBAC in

SELinux are also important access control features that provide great benefits to

the information system. The use of TE in SELinux provides fine-grained access

controls and the possibility to enforce domain separation. The type of RBAC

provided by SELinux can be used to simplify the user management task in large

scale systems. Another important feature in SELinux is that rules are not hard-

coded hence the system can be configured according to specific security

requirements of organizations.

Role Based Access Control with SELinux

87 | P a g e

SELinux also provides other features such as orthogonal user identifiers,

conditional policies and loadable policy modules. The use of orthogonal UIDs

helps to provide better accountability of actions. Conditional Policies and

loadable policy modules help to improve the implementation and management

of SELinux Policies.

SELinux is part of the Open Solutions specified by Goldstein et al. (2007),

which are needed to provide better HIS in the future. Linux is the main

representative OSS solution. Linux has certain characteristics that make it

desirable for organizations over proprietary software. Some of these

characteristics are: its free availability, mainstream applications, user-friendly

GUI, reliability of code and it is secure against most viruses and worms. Linux

is also becoming one of the first freely available OSs which enforces MAC

mechanisms due to the introduction of SELinux.

SELinux has already been proposed as a solution to provide MAC at the OS

layer in HIS. However, because of the speed in which SELinux is changing,

those researches are now out of date. Also, those researches did not provide a

modern way in which SELinux can be implemented and managed.

Consequently, this research proposes a modern framework to implement and

manage SELinux based on the use of SELinux Profiles.

 TE and RBAC in SELinux are a preferred solution to satisfy security

requirements in HIS.

In the past OSs that provides MAC at the OS layer were based on MLS. OSs

that implements MLS are based on the Bell-LaPadula model, which is mainly

dedicated to protect the confidentiality of classified information. These

systems are considered to be very inflexible and unsuitable for commercial

Role Based Access Control with SELinux

88 | P a g e

organizations and also for HIS. Therefore, TE and RBAC in SELinux are a

preferred solution over those systems that provide MLS.

TE in SELinux provides a high level of granularity which can aid in the

protection of resources in HIS. In TE no access is allowed by default thus every

access has to be explicitly authorized using TE rules. In this way, applications

can be restricted to resources in a very granular way. This characteristic allows

the implementation of domain separation and the creation of sandboxes. If

subjects operate outside of their normal behavior and try to access unauthorized

resources, SELinux denies the access since it is outside of the boundaries of the

sandbox, that is, out of the authorized permissions for the domain.

RBAC in SELinux has been recognized as able to simplify the user

management tasks. If the system administrator wants to revoke a domain which

a group of users can access, the system administrator would only have to revoke

access permissions to the role and not to individual users.

Enforcement of the least privilege principle is also achieved through the use of

RBAC and TE. Roles are restricted to a specific set of domains. These domains

are restricted to the least privileges required to achieve their tasks.

Consequently, users are restricted to those privileges of the domains authorized

to his/her role.

To demonstrate the use of TE and RBAC mechanisms in SELinux, the concept

of SELinux Profiles was introduced. SELinux Profiles restrict the authorized

environment of subjects while accessing resources in the system. SELinux

Profiles are constituted by roles, types, domains, TE rules, RBAC rules,

conditional statements and Booleans. These components are coded into

loadable policy modules for the easy management of the SELinux Policies.

Role Based Access Control with SELinux

89 | P a g e

To demonstrate the functionality of SELinux Profiles, one of the scenarios used

to test the prototype developed for this research was illustrated. The

hospital_sys scenario was described and its security requirements satisfied. This

scenario demonstrated that TE and RBAC mechanisms can effectively prevent

intentional or unintentional attempts to access restricted resources. Also, the use

of conditional policies was demonstrated to be a useful feature during

emergency situations.

 Application layer security alone is not enough to satisfy security

requirements in HIS.

Computer systems have to be constructed with the support from the underlying

OS. MAC mechanisms in the OS layer can help to prevent attacks or minimize

the damage from compromised applications. Viruses, Worms and Trojans are

attacks commonly used to compromise applications and to access restricted

resources in the system. In OSs that implements DAC mechanisms, the damage

from compromised applications cannot be contained. Therefore, MAC

mechanisms at the OS layer are a preferred solution in containing the adamage

from compromised applications.

SELinux is a preferred solution in order to minimize the effect of compromised

applications using SELinux Profiles. SELinux Profiles are used to create

sandboxes for applications running on behalf of specific users. Applications run

inside the sandboxes, which restrict the access permissions to resources in the

system. This behavior was demonstrated describing an attack scenario using the

hospital_sys Application. This attack scenario was part of the test to which the

prototype of this research was submitted. The scenario demonstrated that

SELinux can effectively contain the damage from compromised applications.

Role Based Access Control with SELinux

90 | P a g e

This was achieved through the creation of sandboxes for the hospital_sys

Application while running on behalf of specific users.

6.2 Future Work

The work done in this research was to explore use of SELinux to provide

Hierarichal Role based access control for a Healthcare system.

In future research, work needs to be done for delegation of duties between

roles based on some conditional Booleans in SELinux. The current research

focused on security of data stored locally on a filesystem. The future

research should extend to secure data lying on a distributed file system like

Hadoop file system.

Role Based Access Control with SELinux

91 | P a g e

References

1. Anderson, J. P. (1972). Computer Security Technology Planning Study,

Volume II. Retrieved 16 April, 2008, from

http://csrc.nist.gov/publications/history/ande72.pdf

2. Bacon, J., Moody, K., & Yao, W. (2003). Access Control and Trust in the

Use of Widely Distributed Services. Software: Practice and Experience, 33(4),

375394.

 3. Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M., and Haghighat, S.

A. (1995). Practical domain and type enforcement for UNIX. Proceedings of the

1995 IEEE Symposium on Security and Privacy. Oakland, CA, USA.

4. Daswani, N., Kern, C., and Kesavan, A. (2007). Foundations

Programmer Needs to Know. Berkeley, CA: Apress.

5.Ferraiolo, D.F., and Kuhn, R. (1992). Role-Based Access Control.

Proceedings of the 15th National Computer Security Conference. Gaithersburg,

Maryland, USA.

6.Ferraiolo, D. F., Kuhn, D. R., and Chandramouli, R. (2003). Role-Based

Access Control. Norwood: Artech House.

7. Hu, J., & Weaver, A. C. (2004). Dynamic Context-Aware Access Control for

Distributed Healthcare Applications. Proceedings of the First Workshop on

Pervasive Security, Privacy and Trust. Boston, MA, USA.

8. Liu, V., Caelli, W., May, L., Croll, P., and Henricksen, M. (2007a). Current

Approaches to Secure Health Information Systems are Not Sustainable: an

Analysis. Proceedings of MEDINFO 2007. Brisbane, QLD, Australia.

 9. Liu, V., May, L., Caelli, W., and Croll, P. (2007b). A sustainable approach to

security and privacy in Health Information Systems. Proceedings of the 18th

Role Based Access Control with SELinux

92 | P a g e

Australasian Conference on Information Systems. Toowoomba, QLD,

Australia.

 10. Loscocco, P. C., Smalley, S. D. (2001). Meeting Critical Security

Objectives with Security-Enhanced Linux. Proceedings of the Linux

Symposium 2001. Ottawa, Canada

11. Nicola Zinnonan tutorial.
https://svn.win.tue.nl/viewvc/security_public/teaching/dtm/Slides/07-RBAC.pdf

12. Ravi S. Sandhu “ Role-Based Access Control “

13. Sandhu R. “Issues in RBAC”, 1st Workshop on Role-based Access Control,

p. 21-24, 1995.

 14. Sandhu R. et. al. “Role-based Access Control Models”. IEEE Computer,

29(2):38-47 February 1996

15. Sandhu R., Ferraiolo D. and Kuhn R. “The NIST Model for Role-Based

Access Control.

16. Tolone, W., Ahn, G. J., Pai, T., and Hong, S. P. (2005). Access Control in

Collaborative Systems. ACM Computing Surveys, 37(1), 29-41.

