1.1. GENERAL

In this project study of behavior of a three storied building frame modelsubjected to harmonic base motions was carried out. This project also enables the understanding of occurrence of resonance phenomenon in simple multi-degree of freedom (MDOF) systems.

The frame is rectangular in plan with stiffness and mass properties distributed uniformly in plan as well as in elevation. The frame is designed to facilitate the visualization of the first three mode shapes with bare eyes. Also, the frame is soconfigured such that a three degree of freedom model would serve as a reasonable model, at least to a first approximation.

The model shown in figure-7 can bethought of as a model for a building frame with three floors whichsuffers earthquake like base motions. The model however is an idealized demonstration of this phenomenon since the building may not only be subjected to harmonic base motions. The frequency of the base motion can be varied by changing the RPM of the electric motor. It is also possible to vary the amplitude of the base motion by changing the clamp. By changing themotor RPM it would be possible to set the frame into resonant motions, which would enable us to visualize the first three normal modes of the frame.

This frame is then modeled in SAP2000 to get the similar results. Then this model is changed by certain parameters such as dimension, self weight, modulus of elasticity etc. to read the trend of change in their seismic parameters. Then based on those variations some relationships have been derived between modification ratio and the seismic parameters.

A realistic structure is also designed to meet the requirement of earthquake. For safety against earthquake, there is needed to keep in mind many points. All those points have also been discussed, which are based on codal provisions and past experiences.

1.2 ABOUT EARTHQUAKE, DAMAGES AND PAST OCCURRENCES

An earthquake is perceived as a sudden transient motion of the ground. This motion originates from a limited region inside the earth and spreads from there in all direction. This motion occurs on account of sudden release of elastic strain energy stored along active geological features.

Earthquakes have been an integral component of the geologic evolution of planet earth. Since the dawn of civilization, mankind has been continuously suffered due to their disastrous effects. Earthquakes usually strike without warning and have several direct effects (ground shaking and permanent crustal movement) and induced effects (landslides, avalanches, ground subsidence, liquefaction, ground fissuring, tsunamis and fires).

Globally the majority of earthquakes occur at plate boundaries due to plate deformations. These deformations results on account of slow plate movements of plate boundaries. Based on the distribution of epicenters of earthquakes it is revealed that almost all earthquakes occur in of one of three major seismic belt zones. These belts are:

- 1) The Circum Pacific Belt,
- 2) The Alpine Himalayan Belt or Alpide Belt, and
- 3) The Mid-Oceanic Rigid Belt.

The moderate to large earthquakes have occurred in China, Japan, India, Turkey, South and West of USSR, Palestine, Italy, Spain, Yugoslavia, Morocco, Parts of USA (California, Missouri), Central America, Alaska and New Zealand.

In order to evaluate strong ground motion characteristics and basic seismic coefficients in different parts of the country for earthquake resistant design of ordinary structures the first Indian Standard Seismic Zoning Map was published in 1962 (IS: 1893-1962). This map was prepared based on available earthquake intensity data and locations of moderate, large and greater earthquakes.

The Indian subcontinent has a history of devastating earthquakes. The major reason for the high frequency and intensity of the earthquakes is that the Indian plate is driving into Asia at a rate of approximately 47 mm/year. The following is a list of major earthquakes in India.

Dates	Location	Deaths	Comments	Magnitude
March 5, 2012	New Delhi	5	Strong tremors in Delhi, CBSE Physics board exam disrupted	5.2
September 18, 2011	Gangtok, Sikkim	118	Strong earthquake in NE India, tremors felt in Delhi, Kolkata, Lucknow and Jaipur	6.9
August 10, 2009	Andaman Islands	26	Tsunami Warning issued	7.7
April 6, 2006	Gujarat	0	At least 36 injured in moderate-intensity tremor in Gujarat	5.5
October 8, 2005	Kashmir	130,000	Affected 894,000 population of Islamabad, Pakistan,Jammu and Kashmir (India)	7.6
December 26, 2004	off west coast northern Sumatra India Sri 283,10 LankaMaldives		Third deadliest earthquake in the history of the world, the tsunami generated killed 15,000 people in India	9.3
January 26, 2001	Bhuj, Gujarat	20,000	Indian Republic Day Gujarat earthquake, thousands killed	7.6/7.7
March 29, 1999	Chamoli district, Uttarakhand	103 Approx		6.8
September 30, 1993	Latur, Maharashtra	9,748		6.2
October 20, 1991	Uttarkashi, Uttarakhand	>2,000		7.0

January 19, 1975	Himachal Pradesh	47		6.8
August 15, 1950	Arunachal Pradesh	1,526	Largest earthquake recorded in mainland India since Independence.	8.5
June 26, 1941	Andaman Islands	7,000	Triggered a tsunami that affected eastern India and Sri Lanka	8.1
May 31, 1935	Quetta, Baluchistan	30,000 / 60,000	Deadliest earthquake recorded in modern-day Pakistan.	7.7
January 15, 1934	Nepal, Epicenter lies 10 km south of Mt. Everest	8,100	Largest ever earthquake recorded in mainland Indian subcontinent.	8.7
April 4, 1905	Himachal Pradesh	>20,000	It was a major earthquake that occurred in the Kangra Valley and the Kangra region	7.8
June 12, 1897	Shillong, India	1,500		8.1
December 31, 1881	Andaman Islands	150,000	Earliest earthquake for which rupture parameters have been estimated instrumentally (from tide gauges)	7.9
June 16, 1819	Gujarat	11,543	Formed the Allah Bund and Lake Sindri	8.2
September 18, 1737	Kolkata, West Bengal	100,000		7.6

1.3. AIMS AND BJECTIVES IN BRIEF

Detailed aims and objectives of this project work have been elaborated in chapter-3. A brief of those are as follows:

- 1.2.1. The objective of this project work is to analyze the seismic behavior of building frame model with the help of OROS NVGate software and shake table. And comparing their results with the values getting from:
 - 1) Manual calculations
 - 2) Excel programming
 - 3) SAP2000 modeling

Here the following parameters have been analyzed:

- 1) Natural frequencies of deferent modes.
- 2) Damping ratio (ξ)
- 3) Displacement
- 1.2.2. Changing the model using SAP2000 to get the relationship between various kind of modification and some seismic behaviors. So as to establish direct relationship for dimension analysis of the structure for seismic analysis.
- 1.2.3. Design of real structure for seismic condition.

2.1. MODAL ANALYSIS

Modal analysis of a structure can be done in following ways depending upon the degree of freedoms of the structure.

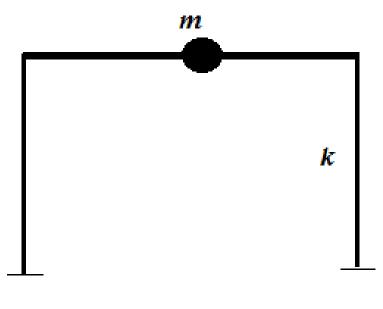


Figure- 1: SDOF System

 $ku + c\dot{u} + m\ddot{u} = -m\ddot{u}_g$

 $m = lumpedmass = m_{roof} + 2\left(\frac{1}{2}m_{col}\right)$

$$k = 2k_{col} = 2\frac{12EI_c}{h^3} = \frac{24EI_c}{h^3}$$

2.1.2. <u>3 Storied Frame (3 DOF System)</u>

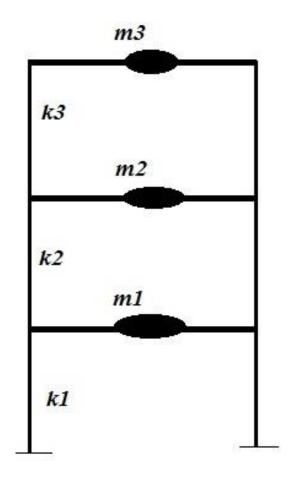


Figure- 2: 3 DOF System

The frame in figure-2 can be approximately modeled as a three degree of freedom shear beam as shown in figure-3. The free body diagram has also shown.

Say, if displacement imposed at the base of the structure = y

Expressing the floor displacements relative to the base motion:

$$x_{r1} = x_1 - y$$
$$x_{r2} = x_2 - y$$
$$x_{r3} = x_3 - y$$

----- (1)

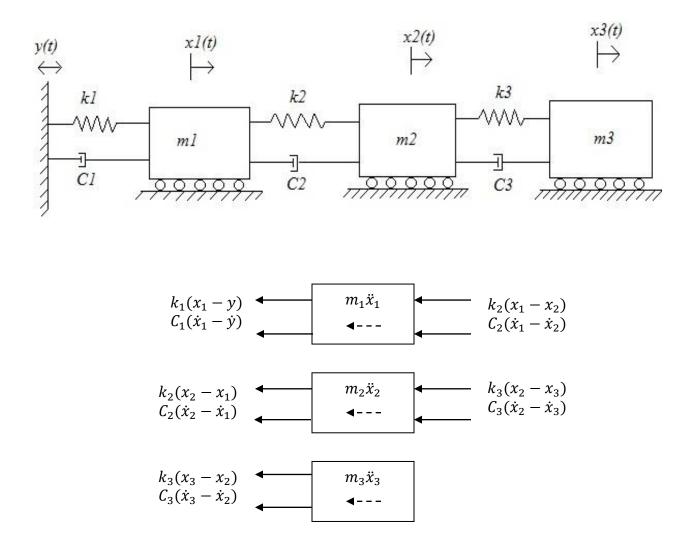


Figure- 3: Shear Beam Model and Free Body Diagram

Thus, the quation of motion for total displacement of three masses can be written as follows:

$$m_1 \ddot{x}_{r1} + c_1 \dot{x}_{r1} + c_2 (\dot{x}_{r1} - \dot{x}_{r2}) + k_1 x_{r1} + k_2 (x_{r1} - x_{r2}) = -m_1 \ddot{y}$$

$$m_2 \ddot{x}_{r2} + c_2 (\dot{x}_{r2} - \dot{x}_{r1}) + c_3 (\dot{x}_{r2} - \dot{x}_{r3}) + k_2 (x_{r2} - x_{r1}) + k_3 (x_{r2} - x_{r3}) = -m_2 \ddot{y}$$

$$m_3 \ddot{x}_{r3} + c_3 (\dot{x}_{r3} - \dot{x}_{r2}) + k_3 (x_{r3} - x_{r2}) = -m_3 \ddot{y}$$

Rewriting this in matrix form:

$$\begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{pmatrix} \ddot{x}_{r1} \\ \ddot{x}_{r2} \\ \ddot{x}_{r3} \end{pmatrix} + \begin{bmatrix} c_1 + c_2 & -c_2 & 0 \\ -c_2 & c_2 + c_3 & -c_3 \\ 0 & -c_3 & c_3 \end{bmatrix} \begin{pmatrix} \dot{x}_{r1} \\ \dot{x}_{r2} \\ \dot{x}_{r3} \end{pmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \begin{pmatrix} \dot{x}_{r1} \\ \dot{x}_{r2} \\ \dot{x}_{r3} \end{pmatrix}$$
$$= (-) \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \ddot{y}$$

Thus,
$$[m]{\ddot{x}_r} + [c]{\dot{x}_r} + [k]{x_r} = -[m]{\Gamma}\ddot{y}$$
 ------(2)

Initial condition:

$$x_r = 0 \ and \ \dot{x}_r = 0 \ at \ t = 0$$

Here, $\{\Gamma\}$ is 3×1 vector of ones.

2.2. <u>NATURAL FREQUENCY</u>

Each material in the universe hasits own natural frequencies depending upon their different properties. In structures this frequency is dependent on their mass distribution and stiffness parameters. This is also called as the fundamental natural frequency of the structure. When the frequency of ground motion matches with the natural frequency of the structure, the structure becomes in resonance condition and it gets excessive deformation, theoretically infinite.

Similar to the SDOF, free vibration involves the system response in its natural frequencies. The corresponding Free Vibration Equation is (with no damping):

$$[m]{\ddot{x}_r} + [k]{x_r} = 0$$
 -----(3)

In free vibration, the system will oscillate in a steady-state harmonic fashion-

$$x = a \sin wt + b \cos wt$$
$$\ddot{x} = -w^2 (a \sin wt + b \cos wt)$$

Such that,
$$\ddot{x} = -w^2 x$$

On solving above equations we will get,

Thus,

$$(-mw^2 + k)x = 0$$

Trivial solution of above equation is x = 0, means the system is at rest. For non- trivial solution,

$$|-mw^2 + k| = 0$$

Where, m and k have their usual meaning, i.e., mass matrix and stiffness matrix respectively. Rewriting this in matrix form:

$$\left| - \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} w^2 + \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \right| = 0$$
 (4)

By solving above expression, the values of natural frequencies at different modes can be determined. In this case thenumbers of non-trivial solutions are three, because matrix size is of 3x3, as it is a 3 degree of freedom system. For n degree of freedom system, there willbe"n" number of non-trivial solutions.

2.3. DAMPING RATIO

Suppose a pendulum is given a free vibration of certain amount and is left for few times. After some time the amplitude of oscillation of pendulum will be decreased, and then after a very long time it will be stopped. But Newton'sfirst law states that, a body moving with a constant velocity will keep on moving with the same constant velocity unless or until there will be no any external force. Then how that pendulum is stopped or slowed down? Surely, there is any force acting in the system which is gradually slowing down the velocity of motion of pendulum, leading to stop it. This force may be combination of many kinds of agencies such as air friction, material resistance, resistance due to abject shape, etc. Out of which, the dominating resistance is due to shape and material.

Thus the damping is an inhered property of the structure which depends mainly upon material of construction and structural configuration. Damping ratio is termed by certain percentage of the critical damping.For design purpose, the exact determination of damping ratio of a large structure is not possible or not so easy. Hence some specific values of damping ratio have been recommended, based on the material of construction used. There are some methods have been developed for exact determination of damping ratio. Out of which the method of logarithmic decrement is most popular. According to that,

Damping Ratio $\xi = \frac{\delta}{2\pi} \times 100\%$

Where, $\delta = \text{logarithmic decrement}$

And, $\delta = ln\left(\frac{y_n}{y_{n+1}}\right)$

Where, y_n and y_{n+1} are two consecutive peak values of displacement vs. time graph of free vibration.

Using that expression, damping ratio of any structure can be determined by using time history graph of that structure.

2.4. <u>REGRESSION ANALYSIS</u>

Suppose if there are two or more kinds of data (say, X and Y) and if it is known that there is some correlation between them. Then their relationship can be determined by doing regression analysis. It can be done by manual calculations or by excel programming. A brief explanation is given here. Let's take an example,

X	1	2	3	4	5	6	7	8	9
Y	20	65	110	155	200	245	290	340	380

To get the relationship between X and Y, regression result on excel programming is as follows,

SUMMARY OUTPUT								
Regression St	atistics				1			
Multiple R	0.999924829							
R Square	0.999849663	>						
Adjusted R Square	0.999828186							
Standard Error	1.624465724							
Observations	9							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	122853.75	122853.75	46555.10526	1.21251E-14	>		
Residual	7	18.47222222	2.638888889					
Total	8	122872.2222						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-25.69444444	1.180146988	-21.77224083	1.08804E-07	-28.48504863	-22.90384026	-28.48504863	-22.90384026
x	45.25	0.209717623	215.766321	1.21251E-14	44.75409662	45.74590338	44.75409662	45.74590338
1	\sim			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		

Figure- 4: Regression Analysis on Excel

- a) "R Square" equals 0.99985, which is a very good fit. The closer to1 R Square value, the better the regression line.
- b) To check if results are reliable, look at "Significance F". If this value is less than 0.05, it is OK. If it is greater than 0.05 then check "P-value". If any value in P-value is more than 0.05 then, stop correlating the parameter corresponding to that value.
- c) The regression line is Y = 45.25 * X 25.694444

The Residuals and the predicted Y values based on regression line are also shown below. The lesser the residual value, the more closer the predicted value and actual value.

RESIDUAL OUTPUT		
Observation	Predicted Y	Residuals
1	19.55555556	0.444444444
2	64.80555556	0.194444444
3	110.0555556	-0.055555556
4	155.3055556	-0.305555556
5	200.5555556	-0.555555556
6	245.8055556	-0.805555556
7	291.0555556	-1.055555556
8	336.3055556	3.694444444
9	381.5555556	-1.555555556

Figure-	5:	Residual	Output

But the drawback of this regression analysis is that it gives only linear relationship. To get the equation of power some modified expression can be used as explained below.

Say, the expression is in the form of,
$$y = a \times x^n$$
 ------ (A)

Taking logarithm in both side, and rewriting,

$$log(y) = log(a) + n \times log(x)$$

Writing, log(y) = Y, log(x) = X and log(a) = A, the expression will come out to be,

$$Y = A + nX$$
 ------ (B)

The above expression is in the form of a line. Thus using regression analysis the equation of powers can also be determined. This will help on determining direct relationship between magnification factor and seismic parameter for dimension analysis.

2.5. <u>GENERAL CONSIDERATIONS FOR EARTHQUAKE RESISTANT</u> <u>DESIGN</u>

Earthquake is a natural phenomenon. It occurs without any warning and mankind suffers a lot on its occurrence. A structure cannot be build to withstand completely against the earthquake, because economy will decrease by doing so. Hence it is tried to minimize the loss by keeping in mind various points while designing and planning the structure. Some basic points based on past experiences and codal provisions have been mentioned here, which will help in designing a multi-storey building, to well stand for earthquake.

- a) The whole structure should be tied and connected properly, mainly at joints. So that the load can be distributed in structural frame properly, and structure can behave like a single unit.
- b) Seismic lateral force and strength ratio throughout the structure should be approximately constant.
- c) Strong column- weak beam is the most important aspect for ductility of structure. Because if there would be weak column- strong beam, then the structure will fail in brittle manner. i.e., sudden collapse.
- d) Reduce the earthquake force by using light weight construction.
- e) Try to avoid quasi- resonance condition. Tall buildings on soft soil are not suitable because will have lower frequencies of vibration and tall building is flexible in nature so its fundamental natural frequency will also be lower. In soft soil small and stiff building is advisable and tall building is suitable in rocky site.
- f) Earthquake force is dependent on mass and stiffness distribution of the structure unlike to wind, gravity force, etc. thus we can control the earthquake force at very early stage in the structure.

- g) Introducing base isolation or energy dissipating device or both in the structure to divert or absorb the earthquake energy.
- h) Pounding action in two adjacent building should be avoided by providing sufficient clearance. The separation should be more than the sum of dynamic deflection of the two buildings. Pounding is more sever when the floor level of two adjacent buildings are at different level.
- Sudden change in stiffness of frame element between storeys should be avoided. It becomes location of stress concentration. Sudden change in elevation should also be avoided.
- j) Avoid use of stiff walls between flexible frames.
- k) While damage of non-structural elements, a lot of energy gets absorbed.
- Providing sufficient reinforcement to introduce ductility of the structure at critical locations and junctions.
- m) Infill provides additional stiffness and causes brittle failure. So it should be connected to the structure such that its damage could be minimized at earthquake, as its repair is quite costly. Infill also causes bracing in the frame.Hence the beam-column joint should be well detailed per IS: 13920- 1993 and should be laid carefully, for adequate strength and ductility. Confinement and proper anchorage of reinforcement provides proper ductility.
- n) The design should be safe against reversible condition of earthquake force also.
- o) Overturning effect should be considered for tension and compression at extreme ends.
- p) Symmetric building plans should be provided. If there is any asymmetry, then use suitable separation in between to make it symmetric.
- q) Large overhang and balconies should be avoided, as these portions are subjected to higher forces.

- r) The parapet should be reinforced with a closed loop of bar at the coping level, so that it may not fall and could not cause injuries to the people.
- s) Water tank should be properly anchored against overturning and sliding at the top of the structure. Large storage or swimming pool should be avoided at the roof of building as these cause mass irregularity in the structure.
- t) When providing parking facility at the ground level of the building, we should increase the stiffness of that storey by using 2.5 times more strong columns than of above storey or by using shear walls, to avoid being ground floor as soft storey.
- u) Typically, in earthquake ground motions, the frequency in the dynamic excitation can range from 0.5 Hz to 25.0 Hz.
- v) Overhang and beams with floating column should be avoided.

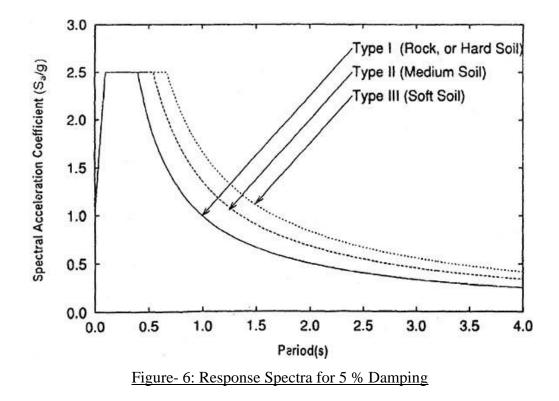
2.6. SOME SPECIFICATIONS FROM IS: 1893 (PART 1): 2002

1) <u>Load Combinations</u>

For plastic design of steel structures:

- A) 1.7 (DL + IL)
- B) $1.7 (DL \pm EL)$
- C) 1.3 ($DL + IL \pm EL$)

For limit state design of reinforced concrete and pre-stressed concrete structures:


A) 1.5 (DL + IL)
B) 1.2 (DL + IL ± EL)
C) 1.5 (DL ± EL)
D) 0.9 DL ± 1.5 EL

2) Design Horizontal Seismic Coefficient

$$A_h = \frac{Z I S_a}{2 R g} \times \eta$$

Where,

- A_h = Design Horizontal Seismic Coefficient
 - Z =Zone Factor
 - I = Importance Factor
 - R = Response Reduction Factor
 - S_a/g = Average Response acceleration Coefficient (Figure-6)
 - η = Factor to account for the damping of the structure

3) Dynamic analysis may be performed either by the Time History Method or by the Response Spectrum method. However, in either method, the design base shear V_B shall be compared with a base shear calculated using fundamental period T_a (as per clause 7.6 of IS: 1893- 2002). Then correction is to be applied for all the response quantities (for example member force, displacements, storey forces, storey shears and base reactions).

4) <u>Modes to be considered</u>

The number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least 90% of the total seismic mass and missing mass correction beyond 33%. Modal combination shall be carried out only for modes up to 33 Hz.

2.7. CONCLUSIONS BASED ON LITERATURE SURVEY

- A) The peak of response spectrum curve corresponds to time period of 0.1 to 0.4 sec in hard soil and 0.1 to 0.67 sec in soft soil. Hence soft soil more amplifies the earthquake of lower frequency (higher time period). And the structures, those have fundamental time periods lower or higher than this range attracts much smaller force.
- B) Damping results in reduction of effective earthquake force on structure. It depends on material of construction and level of strains developed in the material.
- C) Ductility depends on material of construction and structural configuration. Irregular buildings have low capacity to deform plastically without collapse.
- D) Response reduction factor (R) takes account for ductility, which is a factor based on type of structural configuration, ductile detailing and material of construction.
- E) EPGA (Effective Peak Ground Acceleration) or ZPA (Zero Period Acceleration) is peak acceleration of very rigid building, having time period almost zero.
- F) The floor slabs are quite rigid in their plane and are responsible for distribution of lateral load among the various frames.

CHAPTER-3: AIMS AND OBJECTIVES

Following are the aims and objectives of this project:

- 1) To setup the model in shake table.
- 2) To learn the programming of OROS NVGate for vibration measurement.
- 3) To study the occurrence of resonance condition in model.
- 4) To study the response behaviour of model.
- 5) To determine the damping ratio (ξ) of the model.
- 6) To perform theoretical calculation for natural frequency of the model.
- 7) To prepare a macro enabled excel programming for speedy calculation of natural frequencies, Eigen vector, mode shapes and modal mass participation ratios.
- 8) To model the experimental model in SAP2000 to match the results.
- To change the model in SAP2000 by individually changing the dimension, self weight of material and elasticity of material.
- 10) To learn the regression analysis to find out the expression between two or more correlated quantities.
- 11) To deduce the relationships between those modifications and seismic parameters such as base shear, base moment, modal periods and modal frequencies, joint displacements for modal load case, total weight and modal mass participation ratios.
- 12) To study the principles and concepts of designing a building for earthquake resistance.
- 13) To study the IS: 1893 (Part-1) 2002 for specifications of designing earthquake resistant structures.
- 14) To model a realistic multi-storey building for earthquake resistant design in SAP2000.
- 15) To deduce the conclusions.

CHAPTER-4: MODEL STUDY

The following text in this chapter describes the study undertaken on a building modal shown in figure-5, for which structural parameters ware as following:

1) <u>Size Parameters</u>

Plate length (x-direction) = 300 mm Plate width (y-direction) = 150 mm Plate thickness (z-direction) = 12.44 mm

2) <u>Material Parameter</u>

Modulus of Elasticity of aluminium, $E = 0.69 \times 10^5 N/mm^2$

3) <u>Weight Parameter</u>

Mass of each slab = 1.54 kgMass of column 1 of all three storey = 0.2338 kgMass of column 2 of all three storey = 0.2341 kgMass of column 3 of all three storey = 0.2335 kgMass of column 4 of all three storey = 0.2322 kg

4.1. EXPERIMENTAL SETUP

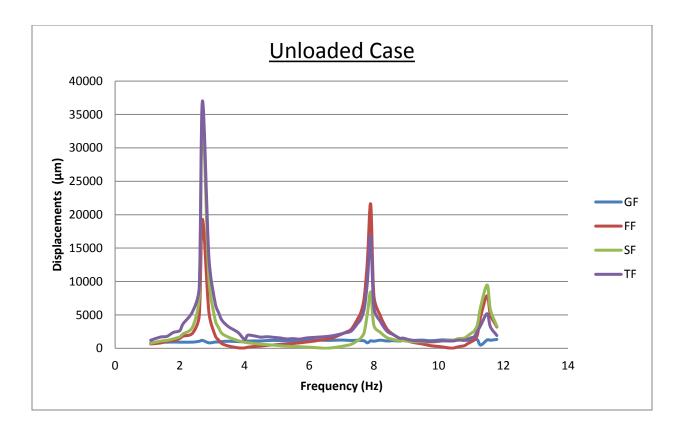
Figures-7 shows the model setup. This consists of four aluminum columnsand four aluminum slabs each attached to the four columns at an interval of 400 mm. Theentire structure assembly is placed on a shake table driven by an electric motor. The RPM of the motor can be varied to achieve harmonic base motions at different frequencies. In the set-up at laboratory, the amplitude of base motion can also be changed but this aspect is not crucial in the conduct of that work.

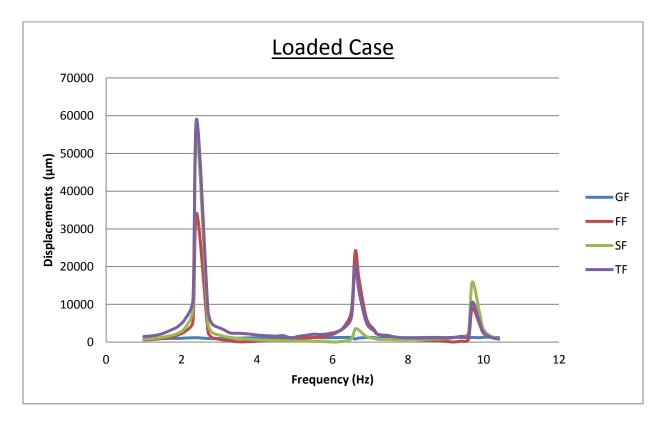
Figure-7: Experimental Setup

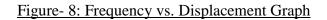
4.2. FLOOR DISPLACEMENTS BY EXPERIMENT

A) <u>Unloaded Case:</u>

Guiding	Ground Floor	First Floor	Second Floor	Third Floor
Frequency	Displacement	Displacement	Displacement	Displacement
(Hz)	(µm)	(μm)	(µm)	(μm)
1.1	804	654	762	1214
1.4	903	801	1070	1685
1.6	918	1047	1183	1784
1.8	942	1172	1409	2373
2	921	1486	1723	2652
2.1	921	1821	2160	3658
2.4	929	2296	3235	5560
2.6	1052	4879	7730	9120
2.7	1183	19320	34330	37020
2.9	824	5390	10390	13540
3.1	945	1843	4124	6620
3.2	945	1242	3094	5340
3.3	1009	708	2242	4217
3.5	1061	354	1679	3255
3.8	1006	76	1152	2377
4	998	61	914	1324
4.1	1074	167	837	1957
4.3	1106	267	721	1861
4.5	1106	337	621	1678
4.7	1162	440	550	1736
4.9	1182	513	479	1643
5.1	1153	579	392	1551
5.3	1099	622	314	1404
5.5	1152	725	279	1449
5.7	1196	817	245	1375
5.9	1210	932	188	1541


6.1	1221	1046	134	1622
6.3	1225	1201	71	1686
6.5	1194	1323	5	1754
6.7	1192	1534	79	1866
6.9	1231	1910	208	2067
7.1	1224	2347	378	2302
7.3	1166	2870	604	2597
7.5	1209	4435	1177	3751
7.6	1153	5420	1570	4414
7.7	1119	7590	2395	5930
7.8	823	13150	5230	10070
7.9	1125	21580	8420	16850
8	1068	7840	3422	6050
8.2	1213	4864	2381	4017
8.4	1098	2930	1613	2585
8.6	1146	2061	1323	2037
8.8	1079	1469	1088	1508
8.9	1231	1372	1147	1528
9.1	1190	1009	1023	1274
9.3	1192	802	984	1148
9.5	1231	650	998	1114
9.7	1138	440	927	1021
9.9	1175	320	983	1042
10.1	1267	219	1104	1115
10.2	1251	137	1145	1109
10.4	1223	21	1186	1094
10.5	1236	85	1264	1137
10.6	1296	221	1439	1224
10.8	1203	410	1541	1216
10.9	1216	706	1879	1365
11	1294	951	2231	1569
11.1	1288	1263	2601	1751
11.2	1276	2051	3574	2578


11.3	483	4785	6210	3420
11.5	1255	7880	9470	5180
11.6	1214	5060	5800	3225
11.8	1329	3185	3311	1917


B) Loaded Case:

Guiding	Ground Floor	First Floor	Second Floor	Third Floor
Frequency	Displacement	Displacement	Displacement	Displacement
(Hz)	(µm)	(µm)	(µm)	(μm)
1	875	589	755	1489
1.3	946	748	1005	1767
1.5	946	1013	1289	2282
1.7	1000	1282	1709	3110
1.9	991	1889	2318	4127
2.1	1081	2882	3884	6230
2.3	1145	5440	8600	11100
2.4	1167	34110	55100	59100
2.7	956	2758	4927	8340
2.8	934	1246	2619	4911
3.1	934	573	1604	3381
3.3	982	276	1224	2400
3.5	1029	87	981	2361
3.7	1099	89	809	2223
3.9	1129	211	700	2012
4.1	1077	289	571	1775
4.3	1075	428	470	1686
4.5	1084	511	418	1593
4.7	1154	633	387	1705
4.9	1185	753	380	1111
5.1	1187	887	316	1545
5.3	1139	1000	239	1797
5.5	1212	1229	211	2090

5.7	1155	1388	155	2016
5.9	1169	1757	86	2241
6.1	1213	2492	32	2695
6.3	1232	4034	256	3715
6.5	1239	8230	888	6600
6.6	830	24060	3463	20380
6.7	1089	16790	3160	13450
6.9	1189	6200	1459	5030
7.1	1207	3332	984	2953
7.2	1088	2111	743	2037
7.5	1174	1592	700	1724
7.6	1152	1250	648	1447
7.8	1104	939	600	1207
8.1	1156	721	629	1135
8.3	1191	605	667	1098
8.6	1244	451	759	1121
8.8	1235	332	825	1110
9	1192	198	906	1101
9.2	1236	39	1147	1245
9.4	1249	259	1581	1474
9.6	1154	752	2321	1891
9.7	1246	8960	15900	10590
9.9	1169	4561	7430	5030
10	1292	2361	3338	2477
10.2	1290	1326	1522	1242
10.4	1216	959	951	788

4.3. FREE DAMPED VIBRATION

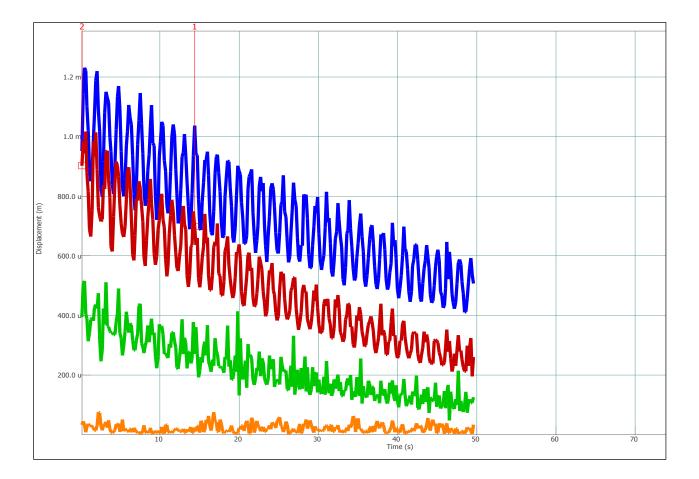


Figure- 9: Damped Free Vibration

RMS Displacement values of active trace (blue) have been recorded as:

Time	Displacement	Peak No.	Time	Displacement	Peak No.	Time	Displacement	Peak No.
(sec)	(meter)		(sec)	(meter)		(sec)	(meter)	
0.16	0.0009509		1.12	0.0008918		2.08	0.001219	2
0.32	0.001141		1.28	0.0008493		2.24	0.001087	
0.48	0.00123	1	1.44	0.0008841		2.4	0.001016	
0.64	0.001221		1.6	0.0009893		2.56	0.000826	
0.8	0.001101		1.76	0.001073		2.72	0.0007972	
0.96	0.001021		1.92	0.001188		2.88	0.0009166	

Time	Displacement	Peak No.	Time	Displacement	Peak No.	Time	Displacement	Peak No.
(sec)	(meter)		(sec)	(meter)		(sec)	(meter)	
3.04	0.001079		9.12	0.0009773		15.2	0.0006859	
3.2	0.00115	3	9.28	0.0009692		15.36	0.0007811	
3.36	0.00113		9.44	0.0007972		15.52	0.0008446	
3.52	0.001113		9.6	0.0007202		15.68	0.0009209	
3.68	0.0009976		9.76	0.0007574		15.84	0.0009205	
3.84	0.0009484		9.92	0.000933		16	0.000949	12
4	0.0008378		10.08	0.0009824		16.16	0.0008698	
4.16	0.0008065		10.24	0.001049	8	16.32	0.0007412	
4.32	0.0009007		10.4	0.001037		16.48	0.0006788	
4.48	0.001022		10.56	0.0009201		16.64	0.0006687	
4.64	0.001133	4	10.72	0.0008836		16.8	0.000749	
4.8	0.001169		10.88	0.0007698		16.96	0.0008743	
4.96	0.001094		11.04	0.0007421		17.12	0.0009319	
5.12	0.0009499		11.2	0.00077		17.28	0.000939	13
5.28	0.0008268	+	11.36	0.0008817		17.44	0.0008778	
5.44	0.0007984		11.52	0.0009992		17.6	0.0008162	
5.6	0.0008576		11.68	0.00104	9	17.76	0.0007148	
5.76	0.0009678		11.84	0.001008		17.92	0.0006597	
5.92	0.001017		12	0.0008895		18.08	0.0006674	
6.08	0.001106	5	12.16	0.0008086		18.24	0.000798	
6.24	0.001063		12.32	0.0007079		18.4	0.0008618	
6.4	0.001039		12.48	0.0007303		18.56	0.000919	14
6.56	0.0009347		12.64	0.0008211		18.72	0.0009153	
6.72	0.0008071		12.8	0.0009318		18.88	0.0008289	
6.88	0.0007522		12.96	0.000947		19.04	0.0007654	
7.04	0.0008304		13.12	0.001007	10	19.2	0.0006591	
7.2	0.0009733		13.28	0.000936		19.36	0.0006439	
7.36	0.001053		13.44	0.0008457		19.52	0.0006944	
7.52	0.001146	6	13.6	0.0007655		19.68	0.0008017	
7.68	0.001044		13.76	0.0006885		19.84	0.0009015	15
7.84	0.000942		13.92	0.0007208		20	0.0008843	
8	0.0008285		14.08	0.0008082		20.16	0.000871	
8.16	0.0007671		14.24	0.000937		20.32	0.0007795	
8.32	0.0007882		14.4	0.001036	11	20.48	0.0007249	
8.48	0.0008859		14.56	0.0009412		20.64	0.0006402	
8.64	0.0009383	<u> </u>	14.72	0.0009365		20.8	0.0006406	
8.8	0.001033	<u> </u>	14.88	0.0007889		20.96	0.0006675	<u> </u>
8.96	0.001105	7	15.04	0.0006906		21.12	0.0008234	

Time	Displacement	Peak No.	Time	Displacement	Peak No.	Time	Displacement	Peak No.
(sec)	(meter)		(sec)	(meter)		(sec)	(meter)	
21.28	0.0008648		27.36	0.0006604		33.44	0.0005611	
21.44	0.000875		27.52	0.0005942		33.6	0.0006749	
21.6	0.0008897	16	27.68	0.0005799		33.76	0.0006846	
21.76	0.0007434		27.84	0.000635		33.92	0.0007857	25
21.92	0.0006654		28	0.0006335		34.08	0.0006902	
22.08	0.0006096		28.16	0.000805	21	34.24	0.000629	
22.24	0.0006519		28.32	0.0007959		34.4	0.000557	
22.4	0.0007027		28.48	0.0008044		34.56	0.0005164	
22.56	0.0008336		28.64	0.0007238		34.72	0.000524	
22.72	0.0008639	17	28.8	0.0006049		34.88	0.0005936	
22.88	0.0008158		28.96	0.0005579		35.04	0.0006417	
23.04	0.0008436	<u> </u>	29.12	0.0005601		35.2	0.000703	<u> </u>
23.2	0.0007025		29.28	0.0006345		35.36	0.0007412	26
23.36	0.0006335		29.44	0.0006975		35.52	0.0006651	
23.52	0.0005785		29.6	0.0007664		35.68	0.0006128	
23.68	0.0006663		29.76	0.0007425		35.84	0.0005219	
23.84	0.0007324		29.92	0.0007968	22	36	0.0004959	
24	0.0008255		30.08	0.0006745		36.16	0.0005328	
24.16	0.0008427	18	30.24	0.0005894		36.32	0.0005913	
24.32	0.0008229		30.4	0.0005519		36.48	0.000655	
24.48	0.0007634		30.56	0.0005764		36.64	0.0006965	
24.64	0.0006766		30.72	0.0006012		36.8	0.0007019	27
24.8	0.0006173		30.88	0.0006936		36.96	0.0006417	
24.96	0.0006072		31.04	0.0008143	23	37.12	0.0005641	<u> </u>
25.12	0.0006766		31.2	0.0007121		37.28	0.0005044	
25.28	0.0007715		31.36	0.000726		37.44	0.0004879	
25.44	0.0007799		31.52	0.0006412		37.6	0.0005228	
25.6	0.0008691	19	31.68	0.0005491		37.76	0.0005866	
25.76	0.0007473		31.84	0.0005296		37.92	0.0006716	4
25.92	0.0007295		32	0.0005805		38.08	0.000662	
26.08	0.0006461		32.16	0.0006573		38.24	0.0006757	28
26.24	0.0005774		32.32	0.00068		38.4	0.0006199	
26.4	0.0005978		32.48	0.0007759	24	38.56	0.0005222	
26.56	0.0006757	 	32.64	0.0007197		38.72	0.0004861	
26.72	0.000753		32.8	0.0006656		38.88	0.000496	
26.88	0.0008446	20	32.96	0.000627		39.04	0.0005433	
27.04	0.0007878		33.12	0.000521		39.2	0.0005741	<u> </u>
27.2	0.0007668		33.28	0.0005003		39.36	0.0007102	29

Time	Displacement	Peak No.	Time	Displacement	Peak No.	Time	Displacement	Peak No.
(sec)	(meter)		(sec)	(meter)		(sec)	(meter)	
39.52	0.0006319		42.88	0.0004536		46.24	0.0006461	
39.68	0.0006517		43.04	0.0004457		46.4	0.0005214	
39.84	0.0005898		43.2	0.0005061		46.56	0.0006124	34
40	0.0004879		43.36	0.0005562		46.72	0.0005587	
40.16	0.0004575		43.52	0.0005845		46.88	0.000471	
40.32	0.0004915		43.68	0.0006355	32	47.04	0.0004435	
40.48	0.0005345		43.84	0.000594		47.2	0.000422	
40.64	0.0006013		44	0.0005585		47.36	0.0004432	
40.8	0.0006974	30	44.16	0.0004693		47.52	0.0005076	
40.96	0.0006229		44.32	0.0004416		47.68	0.000576	
41.12	0.000614		44.48	0.0004486		47.84	0.0005871	35
41.28	0.0005548		44.64	0.0004993		48	0.0005716	
41.44	0.0004783		44.8	0.0005629		48.16	0.0005127	
41.6	0.0004455		44.96	0.0005972		48.32	0.0004725	
41.76	0.0004795		45.12	0.0006203	33	48.48	0.00041	
41.92	0.0005654		45.28	0.0005829		48.64	0.0004122	
42.08	0.0005879		45.44	0.0004786		48.8	0.000456	
42.24	0.000637		45.6	0.0004664		48.96	0.0005115	
42.4	0.0006376	31	45.76	0.0004252		49.12	0.000557	
42.56	0.0005856		45.92	0.000432		49.28	0.0005916	36
42.72	0.0005139		46.08	0.0004889				

As we know that, Damping Ratio $\xi = \frac{\delta}{2\pi} \times 100\%$

 $\delta = ln\left(\frac{y_n}{y_{n+1}}\right)$

Where, $\delta = \text{logarithmic decrement}$

And,

Where, y_n and y_{n+1} are two consecutive peak values of displacement vs. time graph of free vibration.

Corresponding to 36 peak values, we will get 35 values of damping ratio. Averaging them by leaving first and last values, as they may have some error then we will get final value of damping ratio as,

$$\xi = 0.352 \%$$

5.1. MATHEMATICAL CALCULATIONS

Since all the columns at each storey have same dimensions, hence stiffness will be same for all floors. Hence assuming, $k_1 = k_2 = k_3 = k$

Then by solving equation (4), we will get

$$-m_1m_2m_3(w^2)^3 + k(m_1m_2 + 2m_2m_3 + 2m_3m_1)(w^2)^2 - k^2(m_1 + 2m_2 + 3m_3)w^2 + k^3$$

= 0

This is a cubic equation in the form of: $a x^3 + b x^2 + c x + d = 0$

Where, w^2 is the variable and,

$$a = -m_1 m_2 m_3$$

$$b = k(m_1 m_2 + 2m_2 m_3 + 2m_3 m_1)$$

$$c = -k^2(m_1 + 2m_2 + 3m_3)$$

$$d = k^3$$

Dimension Parameters:

Plate length (x-direction) = 300 mm Plate width (y-direction) = 150 mm Plate thickness (z-direction) = 12.44 mm

Column thickness (x-direction) = 2.92 mm Column width (y-direction) = 24.95 mm Column height of each storey (z-direction) = 400 mm ----- (5)

Moment of inertia of column area about y-axis, $I_{yy} = \frac{bd^3}{12}$ (Here, b = 24.95 mm and d = 2.92 mm)

Stiffness of each column, $k_c = \frac{12EI}{l^3}$ (Here, l = 400 mm)

Modulus of Elasticity of aluminium, $E = 0.69 \times 10^5 N/mm^2$

Thus, stiffness of each storey,

$$k = 4k_c = 4 \times \frac{12 \times (0.69 \times 10^5) \times \frac{24.95 \times 2.92^3}{12}}{400^3}$$

$$= 2.67885 N/mm$$
 (or, 2678.85 N/m)

Weight Parameters:

Mass of each slab = 1.54 kg Mass of column 1 of all three storey = 0.2338 kg Mass of column 2 of all three storey = 0.2341 kg Mass of column 3 of all three storey = 0.2335 kg Mass of column 4 of all three storey = 0.2322 kg Hence, mass of all columns at each storey level = $\frac{0.2338+0.2341+0.2335+0.2322}{3}$ = 0.3112 kg Case-1: without additional load on floor levels.

$$m_1 = 1.54 + 0.3112 = 1.8512 \ kg$$
$$m_2 = 1.54 + 0.3112 = 1.8512 \ kg$$
$$m_3 = 1.54 + \frac{0.3112}{2} = 1.6956 \ kg$$
And, $k = 2678.85 \ \text{N/m}$

On substituting these values in equation (5), we will get,

$$w_1^2 = 300.25 \ (rad/s)^2$$
 Hence, $f_1 = 2.7578 \ Hz$ $\left(As, \ f = \frac{w}{2\pi}\right)$
 $w_2^2 = 2321.39 \ (rad/s)^2$ $f_2 = 7.6683 \ Hz$
 $w_3^2 = 4746.58 \ (rad/s)^2$ $f_3 = 10.9651 \ Hz$

Case-2: with additional load on floor levels.

Additional load on slab of F1= 1.0 kg Additional load on slab of F2= 0.6 kg Additional load on slab of F3= 0.2 kg Then,

$$m_1 = 1.54 + 0.3112 + 1.0 = 2.8512 \ kg$$
$$m_2 = 1.54 + 0.3112 + 0.6 = 2.4512 \ kg$$
$$m_3 = 1.54 + \frac{0.3112}{2} + 0.2 = 1.8956 \ kg$$
And, $k = 2678.85 \ \text{N/m}$

On substituting these values in equation (5), we will get,

$$w_1^2 = 241.14 \ (rad/s)^2$$
 Hence, $f_1 = 2.471 \ Hz$ $\left(As, \ f = \frac{w}{2\pi}\right)$
 $w_2^2 = 1702.64 \ (rad/s)^2$ $f_2 = 6.567 \ Hz$
 $w_3^2 = 3534.26 \ (rad/s)^2$ $f_3 = 9.462 \ Hz$

5.2. MODAL CALCULATION BY EXCEL PROGRAMMING

-	1- 1-	(a · a) -		Natu	ral Frequency.xlsm	- Microsoft Exce	1						- 0	×
	Home	Insert Page Layout Formulas D	ata Review View	Developer										σx
	N28												_	*
	А	B C D	E	F	G	Н	1	J	K	L	M	N	0	-
2		EXCEL PROGRAMMING	FOR MODAL	CALCULATI	ON									
3														
4		INSTRUCTIONS:												11
5														
6		1. Enter the Additional Load on	Each Floor Level ir	Input Section (green shells).									
7		2. The Values on Output are not	Correct. Click on	"RUN MACROS"	Button to Ge	t Correct								
8		Values.							1					
9		3. See the Output Section for Re					RUN M	ACROS						
10		4. Click on button "CommandBu	t" to get the corre	ect eigen value a	and mode shap	be.								
11														
12		INPUTS:				OUTPUT RE	SULTS:							
13														
14		Additional Load on F1 Slab =		kg			2.7577977							
15		Additional Load on F2 Slab =		kg			7.6682305							
16		Additional Load on F3 Slab =	0	kg		f3 =	10.965065	Hz						_
17														_
18														_
19														_
20		DETAILED PROGRAMMING												
21														
22		Material Specifications:												
23														
24		Column and Slab material =	Aluminium											
25		unit weight of aluminium =		kg/m3										
26		Elasticity (E) =	6.9E+10	N/m2										-
		it side 🖉 background calculations 📝 💱 🦯			ân - Al					dillo				> 1
Ready							_	_				115% 😑	Ū	(+)
A		🗒 🖸 🍋 🍓	o 🚺								- 🏴 🗎	al 🕩 😻	11:47 P 21-Jul-:	

Figure- 10(a)

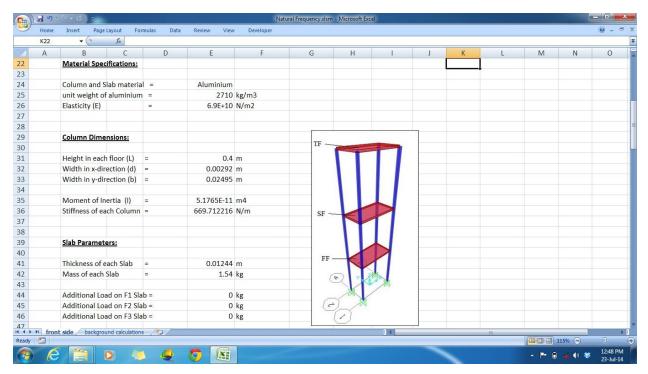


Figure- 10(b)

	19-	¢•ʊ)⇒				Na	atural Frequency.xls	m - Microsoft E	kcel						- 0 -
<u>ب</u>	Home	Insert Pag	e Layout 🛛 Fo	rmulas Data	Review View	Developer									@ - *
ł	K22	, (0	f_{x}												
	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0
9		Slab Parame	ters:												
0							F								
1		Thickness of		=	0.01244										
2		Mass of each	Slab	=	1.54	kg		RY	2 MA						
13								-V	××						
14		Additional Lo				kg									
5		Additional Lo	oad on F2 Sla	ab =	0	kg		2)							
16		Additional Lo	oad on F3 Sla	ab =	0	kg		(1)							
7															
8															
19		Column Mas	<u>s:</u>												
0															
1		mass of colu	mn 1 from G	GF to F3 =	0.2338	kg									
2		mass of colu	mn 2 from G	GF to F3 =	0.2341	kg									
3		mass of colu	mn 3 from G	GF to F3 =	0.2335	kg									
4		mass of colu	mn 4 from G	6F to F3 =	0.2322	kg									
5															
6		i.e., load due	to column i	n each storey=	0.3112	kg									
7															
8															
9		Calculation of	f Natural Fre	equency:											
50															
51			mass and	stiffness values	for analysis:										
52				m1 =	1.8512	kg									
3				m2 =	1.8512										
4		1		m3 =	1 6956										
a b bl		t side backgro	ound calculation	is 📝 🐑 🦯	A COMPOSITOR							111.		11.5%	
eady [-		_			-	-			113/2 (-)	
	e		0 4	V 🐣 I									× 🖻 🔒	ad 🕩 😻	12:49 PM 23-Jul-14

Figure- 10(c)

17	- E	(H · U) =				Natu	ral Frequency.xlsm	- Microsoft B	xcel						- O - S
9	Home	Insert Page	e Layout 🛛 Fo	rmulas Data	Review View	Developer									@ - =
	A95	• (0	f_{x}												
	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0
9		Calculation o	f Natural Fr	equency:											
D															
L			mass and	stiffness values	s for analysis:										
2				m1 =	1.8512	kg									
3				m2 =	1.8512	kg									
64				m3 =	1.6956	kg									
5															
56				k1=k2=k3=	2678.84887	N/m									
7															
8															
9			a*x^3+b*>	x^2+c*x+d =	5.722E-05	(Goal seek this v	alue to make i	it zero by i	nterpolating va	lue of w1^	2)				
0															
71			a =	-5.8107219											
2			b =	42814.7564											
73			c =	-76357971											
4			d =	1.9224E+10											
'5															
6			w1^2 =	300.250557	(rad/s)^2	w1 =	17.3277395	rad/s	f1 =	2.7578	Hz				
7			w2^2 =	2321.39645	(rad/s)^2	w2 =	48.1808722	rad/s	f2 =	7.66823	Hz				
8			w3^2 =	4746.5866	(rad/s)^2	w3 =	68.8954759	rad/s	f3 =	10.9651	Hz				
'9															
30															
31		MASS MATR	IX												
32															
33			1.8512	0	0										
84	N fur al	m= t side backgro	0	1,8512	0	G									*
ady	Tron	t side / backgro	ound calculation	ns 🤇 🙄								111.		15% 🕣	
	6				e (w-1					-					11:58 PM
79	e			2 😴	0	X							· P 🔒	- 🗰 🗣 😻	21-Jul-14

Figure- 10(d)

Home	Insert Par	ge Layout For	mulas Data	Review View	Developer	ural Frequency.xlsm	- Microsoft Exce							- 0 -
N81	- insert Pa	fx fx	inulas Data	Keview view	Developer									
A	В	C	D	E	F	G	Н	1	1	К	L	М	N	0
1	MASS MATE		0	-		0								
12													i	
33		1.8512	0	0										
34	m=	0	1.8512	0										
35		0	0	1.6956										
36														
37	STIFFNESS M	ATRIX												
38														
39		5357.698	-2678.8489	0										
90	k=	-2678.85	5357.69773	-2678.84887										
91		0	-2678.8489	2678.84887										
92										M	ode Shape			
93	Eigen Vecto						_			L				
94	click button	to calculate v	values Co	mmandBut		T			T					
95									1					
96		1	1.10152463	0.41963815			N N		1		-mode 1			
97	Phi=	1.792514	0.436	-0.53717707		1			1	_	-mode 2			
98		2.213106	-0.9289493	0.268					V	-	mode 3			
99														
00	for correct v		trix should be			+		•	+					
01		9.09E-13		3.4561E-11										
02	[0] =	0	0	0		/								
03		7.28E-12	6.753E-11	0		-	4		-					
04		1.1									-			
05				been scaled in a				Local Local and						
06 ∢ ► ► fro	nt side backg	ements are de round calculation	s lided on the l	pasis of experime	ntal results ar	id then other va	alues are calc	ulated acco	rdingily)		dillo			
leady 🎦	_											III II 11	.5% 🕞	
	5 1	N M			X									12:00 Al

Figure- 10(e)

	- (U - M) -					Natural Frequency.xls	m - Microsoft Ex	cel						
Home			rmulas Data	Review View	Developer									· · · ·
N81	- (°	fx								-				
A	В	С	D	E	F	G	Н	1	ļ	К	L	M	N	0
									N					
	for correct va		trix should be			1	-	•	+					
			-2.274E-13	3.4561E-11		/								
	[0] =	0	0	0		/								
		7.28E-12	6.753E-11	0										
							1							
						correct relative								
	(diagonal elei	ments are de	ecided on the l	basis of experin	nental results	and then other	values are ca	lculated ac	cordingly)					
		(8.41.)												
	Modal Mass													
	modal mass of	6	4.04202627											
	modal mass o													
	modal mass o													
	mouarmass	Ji mode 5 -	0.0371203											
	modal mass o	ontribution	in mode 1 =	91.571439	96									
	modal mass o			7.37038201										
	modal mass o			1.05817904										
	modulimuss	ontribution	in mode b	1.05017501										
)														
L														
2														
;														
L		1												
dy 🎦	ont side backgro	und calculation	s / 🖓 /								dille		115%	
.7									-	-				12:01 A
7) (0 4		9								· P 8		22-Jul-

Figure- 10(f)

Figure- 10: Excel Programming for Modal Calculation

5.3. **DIMENSIONAL ANALYSIS**

The experimental model was modelled in SAP2000 and the various observations getting from experiments were matched. Then the model was changed by some scale by changing some parameters. Then the variations in those results were observed to get the trend of variation by doing regression analysis. The following parameters were changed:

- 1) Size of elements in three dimensions.
- 2) Only unit weight of material.
- 3) Only elasticity of material.

5.3.1. Changing Size of Elements in Three Dimensions

Various parameters were noted down from SAP2000 results to analyse the trend of variations. They are as follows:

-33.15

25.78

-27.07

21.05

-23.44

18.23

-20.97

16.3

The second secon		<u> </u>				
Magnification Ratio	0.5	1	2	3	4	5
mode 1	-30.11	-21.29	-15.06	-12.29	-10.65	-9.52

-46.89

36.45

A) Base Shear in X- direction (N)

B) Base Moment in Y-direction (N-mm)

-66.31

51.55

Magnification Ratio	0.5	1	2	3	4	5	6	7
mode 1	-13328	-18849	-26656	-32647	-37697	-42147	-46169	-49869
mode 2	11094	15689	22188	27174	31378	35082	38430	41509
mode 3	6596	9327	13191	16156	18655	20857	22848	24678

C) Modal Period (sec)

mode 2

mode 3

Magnification Ratio	0.5	1	2	3	4	5	6	7
mode 1	0.1801	0.3602	0.7204	1.0806	1.4408	1.8010	2.1612	2.5213
mode 2	0.0647	0.1294	0.2589	0.3884	0.5178	0.6473	0.7767	0.9062
mode 3	0.0452	0.0904	0.1809	0.2713	0.3618	0.4522	0.5427	0.6331

6

-8.69

-19.14

14.88

7

-8.05

-17.72

13.78

D) Modal Frequency (Hz)

Magnification Ratio	0.5	1	2	3	4	5	6	7
mode 1	5.5525	2.7763	1.3881	0.92542	0.69407	0.55525	0.46271	0.39661
mode 2	15.449	7.7247	3.8624	2.5749	1.9312	1.5449	1.2875	1.1035
mode 3	22.113	11.057	5.5283	3.6855	2.7641	2.2113	1.8428	1.5795

E) Joint Displacements (mm)

	Magnification Ratio	0.5	1	2	3	4	5	6	7
GF	mode 1	0	0	0	0	0	0	0	0
FF	mode 1	22.351	7.902	2.794	1.521	0.988	0.706	0.537	0.426
SF	mode 1	40.138	14.191	5.017	2.731	1.774	1.269	0.965	0.766
TF	mode 1	49.584	17.530	6.198	3.373	2.191	1.567	1.192	0.946
GF	mode 2	0	0	0	0	0	0	0	0
FF	mode 2	49.080	17.352	6.135	3.339	2.169	1.552	1.180	0.937
SF	mode 2	19.458	6.879	2.432	1.324	0.860	0.615	0.468	0.371
TF	mode 2	-41.447	-14.653	-5.181	-2.820	-1.832	-1.310	-0.997	-0.791
GF	mode 3	0	0	0	0	0	0	0	0
FF	mode 3	-38.064	-13.457	-4.758	-2.59	-1.682	-1.203	-0.915	-0.726
SF	mode 3	48.658	17.203	6.082	3.311	2.150	1.538	1.170	0.928
TF	mode 3	-24.326	-8.600	-3.041	-1.655	-1.075	-0.769	-0.585	-0.464

F) Modal Participation Mass Ratio

Magnification Ratio	0.5	1	2	3	4	5	6	7
mode 1	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
mode 2	0.07405	0.07405	0.07405	0.07405	0.07405	0.07405	0.07405	0.07405
mode 3	0.01066	0.01066	0.01066	0.01066	0.01066	0.01066	0.01066	0.01066

G) Total Weight (N)

Magnification Ratio	0.5	1	2	3	4	5	6	7
Total Weight	6.75	53.98	431.82	1457.4	3454.58	6747.22	11659.19	18514.36

)		¶•(2)•(0)=						compare.	dsx - Microsof	t Excel									- 0	
/	Hor	me Insert P	age Layout	Formulas [Data Reviev	v View	Developer												0 -	- 1
	F16	5 -	$f_{\mathbf{x}}$																	
(Α	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	
		n an																		
5	e Shea	r: mode 1																		
		1.1		log(x) base e				alara sastation	11											
	X	y 20.11	Y		Y	check of y		since residua		ro										
	0.5	30.11 21.29	-30.11	-0.693147181 0	3.404857342 3.058237479			means equet	ion is,											
	2	15.06	-21.29	0.693147181	2.712042222			Y = 3.05832 -	0.5 • V	or,		-								
	3	12.29				12.2928016		1 = 5.05852 -	U.5 - X	or,										
	3	12.29	-12.29	1.098612289 1.386294361	2.508785924 2.365559892				05832))/(x^(0.5											
	5	9.52	-10.65	1.609437912	2.253394849			y = (EXP(5.)	128251)/(x.(0.2		1									
	5	9.52	-9.52	1.791759469	2.255594849			مارية فحرار مع		farmer da da ba			h							
	7	8.05	-8.09	1.945910149	2.085672091			check of y c	n the basis of	formula deter	mined, has	s shown in t	ne last con	umn						
	1	6.05	-6.05	1.945910149	2.065672091	6.04/32/094														
		SUMMARY OUTPUT																		
		SUMMART OUTPOT																		
	-	Regression Si																		
	-	Multiple R	0.999999834																	÷
		R Square	0.9999999668																	
		Adjusted R Square																		
		Standard Error	0.000288389																	
		Observations	0.000200303																	
	-	observations	0																	
		ANOVA											-							
	-	ANUVA		SS	MS	F	6	-												
	-	Deservation	df 1	2011 S.			Significance F 1.14549E-20													
		Regression Residual	6		8.31684E-08	18062207.42	1.145496-20													
		Total	7		0.01004E-U6															
	-	Total	1	1.30220803				-												
	-		Coefficients	Standard Error	t Stat	P-value 1.09268E-24	Lower 95%	Upper 95%	Lower 99.9%											
		Intercept X	3.058318915	0.00015382						3.059235503										
		X	-0.499977208	0.000117643	-4249.965578	1.14549E-20	-0.500265069	-0.499689347	-0.5006/8219	-0.499276197										
	H (RESIDUAL OUTPUT	1	it.					· · · · · · · · · · · · · · · · · · ·	17.	14		-		III.		_	_		h
		compare _ oneces													.40.1		85%	0		
	- Lund				-			_		_		_	_				0000			
ł				10		X										in the second	- 190	4. 00	1:53	A

Figure- 11: Regression Analysis and Check of First Set

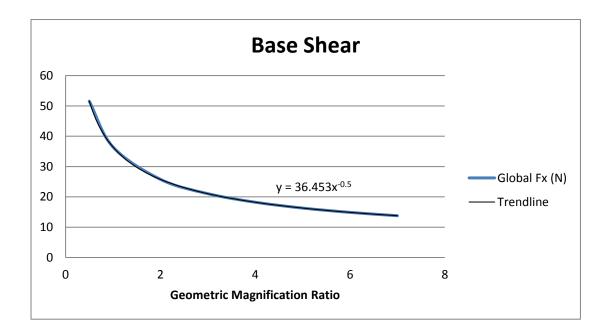


Figure- 12: Magnification Ratio vs. Base Shear Graph

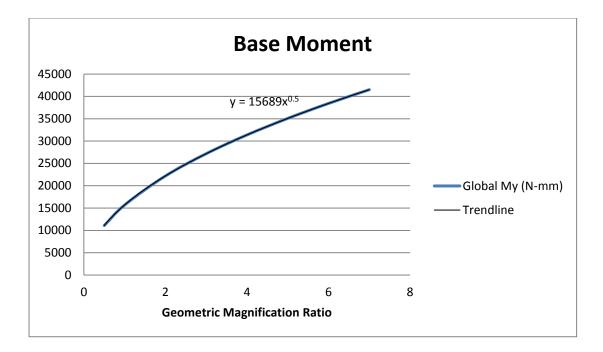


Figure- 13: Magnification Ratio vs. Base Moment Graph

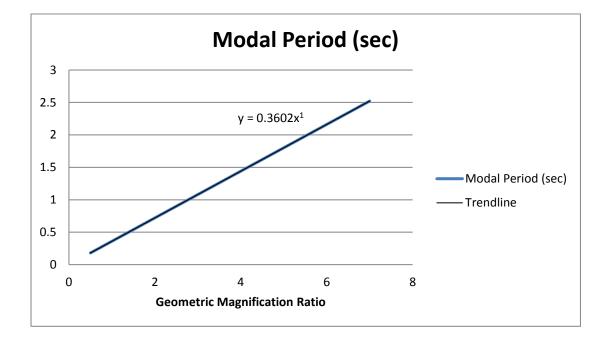


Figure- 14: Magnification Ratio vs. Modal Period Graph

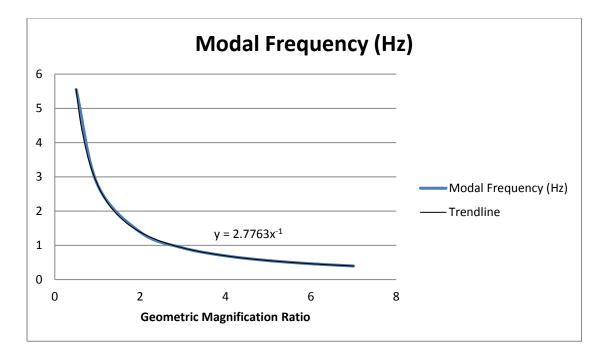


Figure- 15: Magnification Ratio vs. Modal Frequency Graph

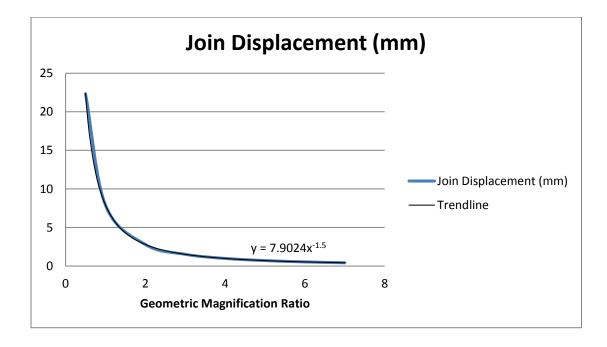


Figure- 16: Magnification Ratio vs. Joint Displacement Graph

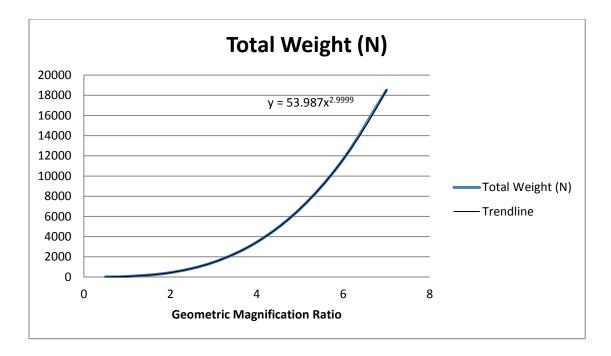


Figure- 17: Magnification Ratio vs. Total Weight Graph

By looking all these trend lines and regression analysis results, it can be concluded that if only dimension is varied and rest all parameters are kept same than by this effect following relationship will come out:

Say, if modification factor is being represented by "x" then ,

Base Shear
$$\propto \frac{1}{\sqrt{x}}$$

Base Moment $\propto \sqrt{x}$
Modal Period $\propto x$
Modal Frequency $\propto \frac{1}{x}$
Joint Displacement $\propto \frac{1}{x\sqrt{x}}$
Total Weight $\propto x^3$

Here mass of structure is also being changed by changing geometric dimensions, which is resulting in change in total weight of structure by cubically to the magnification factor. It means if the material is kept same or unit weight of material of structure is unchanged then the mass of various structural element is changing by cube of magnification factor. In this modelling no external force is applied. Only the self weight of structural element is the mass source for modal analysis. Hence if we want to get relationship for loaded structure also then all these relations will be valid, but we will have to change the external load, mass or weight by cube of change in magnification factor, having unit of force. If it is distributed load then the power will be changed accordingly. For linearly distributed load change it by square of magnification factor, and for areal distributed load change will be directly proportional to the magnification factor.

5.3.2. Changing Only Unit Weight of Material

It has been seen that by changing dimensions, weight is also changing. Thus, in previous case all the relationships derived have effect of both, change in size and mass also. Hence to understand both kinds of variations individually, we will now change the unit weight of the structural element only so that mass can be changed by keeping the dimension unchanged.

Base Shear (N)						
Magnification By	Mode - 1	Mode - 2	Mode - 3			
1	-21.29	-46.89	36.45			
3	-12.3	-27.08	21.05			
Base Moment (N-mm)		•				
Magnification By	Mode - 1	Mode - 2	Mode - 3			
1	-18848.6	15689.03	9327.56			
3	-10886.3	9061.45	5387.28			
Total Weight(N)		1	1			
Magnificati	on By 1	Magnification By 3				
53.98	3	16	1.92			

A) Base Shear, Base Moment and Total Weight

Modal Period (sec)								
Magnification By	Mode-1	Mode-2	Mode-3					
1	0.360196	0.129455	0.090444					
3	0.623644	0.224138	0.156596					
Modal Frequency (Hz)								
Magnification By	Mode-1	Mode-2	Mode-3					
1	2.7763	7.7247	11.057					
3	1.6035	4.4615	6.3859					
Modal Participation Mass	Ratio							
Magnification By	Mode-1	Mode-2	Mode-3					
1	0.92	0.07405	0.01066					
3	0.92	0.07405	0.01066					

B) Modal Period, Modal Frequency and Modal Participation Mass Ratio

C) Joint Displacements (mm)

Magnification	Mode	GF	FF	SF	TF
	1	0	7.90244	14.19093	17.53055
1	2	0	17.35249	6.879535	-14.6539
	3	0	-13.4578	17.20345	-8.60077
	1	0	4.56418	8.196195	10.12505
3	2	0	10.02221	3.973385	-8.46358
	3	0	-7.77275	9.936125	-4.96751

If magnification factor is being represented by "x" then following relations can be derived from observing above table:

Base Shear
$$\propto \frac{1}{\sqrt{x}}$$

Base Moment $\propto \frac{1}{\sqrt{x}}$
Total Weight $\propto x$
Modal Period $\propto \sqrt{x}$
Modal Frequency $\propto \frac{1}{\sqrt{x}}$
Joint Displacement $\propto \frac{1}{\sqrt{x}}$

5.3.3. Changing Only Elasticity (E) of Material

When real structure is to be modelled, then it is not necessary to provide the same material. Thus it is also needed to take care of that parameter so that we can use different material for model can be used as per convenience. Hence a trial is made by changing elasticity of material also.

Base Shear (N)			
Magnification By	Mode - 1	Mode - 2	Mode - 3
1	-21.29	-46.89	36.45
3	-63.88	-140.66	109.36
Base Moment (N-mm)		l	
Magnification By	Mode - 1	Mode - 2	Mode - 3
1	-18848.6	15689.03	9327.56
3	-56545.8	47067.09	27982.68

A) Base Reactions

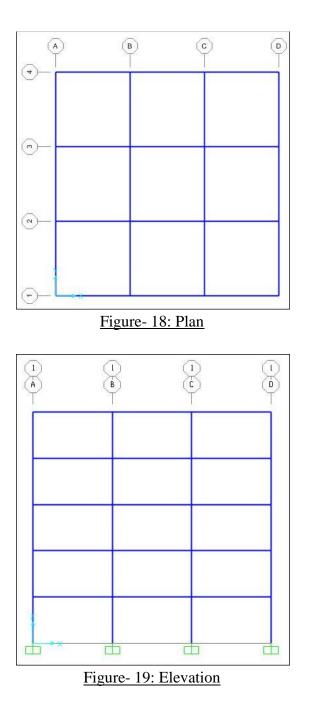
B) Modal Period, Modal Frequency and Modal Participation Mass Ratio

Modal Period (sec)			
Magnification By	Mode-1	Mode-2	Mode-3
1	0.360196	0.129455	0.090444
3	0.207959	0.074741	0.052218
Modal Frequency (Hz)			
Magnification By	Mode-1	Mode-2	Mode-3
1	2.7763	7.7247	11.057
3	4.8086	13.38	19.15
Modal Participation Mas	ss Ratio	L	I
Magnification By	Mode-1	Mode-2	Mode-3
1	0.92	0.07405	0.01066
3	0.92	0.07405	0.01066

C) Joint Displacements and Total Weight

Magnification	Mode	GF	FF	SF	TF		
	1	0	7.90244	14.19093	17.53055		
1 Times	2	0	17.35249	6.879535	-14.6539		
	3	0	-13.4578	17.20345	-8.60077		
	1	0	7.90244	14.19093	17.53055		
3 Times	2	0	17.35249	6.879535	-14.6539		
	3	0	-13.4578	17.20345	-8.60077		
Total Weight (N)	I			I	<u> </u>		
Ma	gnification By	1	Ν	Iagnification B	y 3		
	53.98		53.98				

If magnification factor is being represented by "x" then following relations can be derived from observing above table:


Base Shear
$$\propto x$$

Base Moment $\propto x$
Total Weight $\propto x$
Modal Period $\propto \frac{1}{\sqrt{x}}$
Modal Frequency $\propto \sqrt{x}$

Joint displacements, total weight, and modal participation mass ratio areremaining unchanged.

CHAPTER-6: DESIGN OF MULTI-STOREY BUILDING

Design of multi-storey building is carried out for seismic condition. The inputs, basic parameters and the output file from SAP2000are as follows.

6.1. BASIC PARAMETERS

- a) Building is regular and symmetric in plan and elevation.
- b) 3 bays of 6 meters, total 18 meters in plan.
- c) Storey height 3.5 meters having 5 numbers of stories in elevation.
- d) Grade of concrete used is M-30.
- e) Grade of steel used for rebar is Fe-415.
- f) Parapet height = 1.5 m
- g) Slab thickness = 150 mm
- h) Wall thickness = 150 mm
- i) Column size is 480 mm x 480 mm with 4 bars on each direction and 200 mm c/c confinement bar.
- j) Top storey beams are 200 mm x 300 mm and floor level beams are 300 mm x 450 mm.
- k) Live load on floor = 3 kN/m^2
- 1) Live load on roof = 1.5 kN/m^2
- m) Floor finishes = 1 kN/m^2
- n) Roof treatment = 1.5 kN/m^2
- o) Site location in seismic zone-v (Z = 0.36)
- p) Soil condition = medium
- q) Importance factor = 1
- r) Density of concrete = 25 kN/m^3
- s) Density of masonry wall = 20 kN/m^3

6.2. LOAD CASES

A) Dead Load

- 1) Dead=Self weight of the structural element
- 2) Dead Wall = 0.15x(3.5-0.45)x20 (up to 3rd floor) = 9.15 kN/m (UDL)

and, = 0.15x(3.5-0.3)x20 (at 4th floor) = 9.6 kN/m (UDL)

3) Dead Parapet =
$$0.15 \times 1.5 \times 20$$

= 4.5 kN/m (UDL)

- 4) Dead Slab + Floor Finish = 0.15x3x25 + 1x3= 14.25 kN/m (triangular)
- 5) Dead Slab + Roof Treatment = 0.15x3x25 + 1.5x3= 15.75 kN/m (triangular)

B) Live load

- 1) Live Floor = 3x3= 9 kN/m (triangular)
- 2) Live Roof = 1.5x3= 4.5 kN/m (triangular)

C) <u>Response Spectrum (Earthquake Load)</u>

Scale Factor $= \frac{Z}{2} \frac{I}{R} g$

$$=\frac{0.36}{2}\times\frac{1}{5}\times9.81$$

= 0.3532 (SI unit)

6.3. DESIGN LOAD COMBINATIONS

- 1) 1.5 (DL + IL)
- 2) 1.2 (DL + IL ± EL)
- 3) 1.5 (DL ± EL)
- 4) $0.9 \text{ DL} \pm 1.5 \text{ EL}$

6.4. <u>SAP2000 OUTPUT FILE</u>

6.4.1. Modal Periods and Frequencies

StepType	StepNum	Period	Frequency
Text	Unitless	Sec	Cyc/sec
Mode	1	0.507702	1.9697
Mode	2	0.507702	1.9697
Mode	3	0.472396	2.1169
Mode	4	0.165043	6.059
Mode	5	0.165043	6.059
Mode	6	0.154011	6.493
Mode	7	0.091707	10.904
Mode	8	0.091707	10.904
Mode	9	0.086486	11.563
Mode	10	0.058793	17.009
Mode	11	0.058793	17.009
Mode	12	0.055891	17.892
Mode	13	0.043914	22.772
Mode	14	0.043914	22.772
Mode	15	0.041901	23.866

6.4.2. Modal Participation Mass Ratio

StepType	StepNum	Period	UX	UY	SumUX	SumUY	RZ	SumRZ
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
Mode	1	0.507702	0.00053	0.80667	0.00053	0.80667	0	0
Mode	2	0.507702	0.80667	0.00053	0.8072	0.8072	0	0
Mode	3	0.472396	0	0	0.8072	0.8072	0.81098	0.81098
Mode	4	0.165043	0.05903	0.0489	0.86624	0.8561	0	0.81098
Mode	5	0.165043	0.0489	0.05903	0.91514	0.91514	0	0.81098
Mode	6	0.154011	0	0	0.91514	0.91514	0.10598	0.91696
Mode	7	0.091707	0.02425	0.02529	0.93939	0.94042	0	0.91696
Mode	8	0.091707	0.02529	0.02425	0.96467	0.96467	0	0.91696
Mode	9	0.086486	0	0	0.96467	0.96467	0.04837	0.96532
Mode	10	0.058793	0.02309	0.00339	0.98776	0.96806	0	0.96532
Mode	11	0.058793	0.00339	0.02309	0.99115	0.99115	0	0.96532
Mode	12	0.055891	0	0	0.99115	0.99115	0.02599	0.99132
Mode	13	0.043914	0.00543	0.00342	0.99658	0.99457	0	0.99132
Mode	14	0.043914	0.00342	0.00543	1	1	0	0.99132
Mode	15	0.041901	0	0	1	1	0.00868	1

6.4.3. Modal Load Participation Ratio

OutputCase	ItemType	Item	Static	Dynamic
Text	Text	Text	Percent	Percent
MODAL	Acceleration	UX	100	100
MODAL	Acceleration	UY	100	100
MODAL	Acceleration	UZ	0	0

6.4.4. Base Reaction for Various Load Cases

OutputCase	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1.2 (DL + LL + EQX)	Max	114.776	0	23662.8	212965.2005	-211614.8	1032.988
1.2 (DL + LL + EQX)	Min	-114.776	0	23662.8	212965.1995	-214315.5	-1032.988
1.2 (DL + LL - EQX)	Max	114.776	0	23662.8	212965.2005	-211614.8	1032.988
1.2 (DL + LL - EQX)	Min	-114.776	0	23662.8	212965.1995	-214315.5	-1032.988
1.2 (DL + LL - EQY)	Max	0	114.776	23662.8	214315.5563	-212965.2	1032.988
1.2 (DL + LL - EQY)	Min	0	-114.776	23662.8	211614.8437	-212965.2	-1032.988
1.2 (DL + LL + EQY)	Max	0	114.776	23662.8	214315.5563	-212965.2	1032.988
1.2 (DL + LL + EQY)	Min	0	-114.776	23662.8	211614.8437	-212965.2	-1032.988
1.5 (DL + EQY)	Max	0	143.471	22855.5	207387.4454	-205699.5	1291.235
1.5 (DL + EQY)	Min	0	-143.471	22855.5	204011.5546	-205699.5	-1291.235
1.5 (DL + EQX)	Max	143.471	0	22855.5	205699.5007	-204011.5	1291.235
1.5 (DL + EQX)	Min	-143.471	0	22855.5	205699.4993	-207387.4	-1291.235
1.5 (DL - EQX)	Max	143.471	0	22855.5	205699.5007	-204011.5	1291.235
1.5 (DL - EQX)	Min	-143.471	0	22855.5	205699.4993	-207387.4	-1291.235
1.5 (DL - EQY)	Max	0	143.471	22855.5	207387.4454	-205699.5	1291.235
1.5 (DL - EQY)	Min	0	-143.471	22855.5	204011.5546	-205699.5	-1291.235
0.9 DL + 1.5 EQX	Max	143.471	0	13713.3	123419.7007	-121731.7	1291.235
0.9 DL + 1.5 EQX	Min	-143.471	0	13713.3	123419.6993	-125107.6	-1291.235
0.9 DL - 1.5 EQX	Max	143.471	0	13713.3	123419.7007	-121731.7	1291.235
0.9 DL - 1.5 EQX	Min	-143.471	0	13713.3	123419.6993	-125107.6	-1291.235
0.9 DL - 1.5 EQY	Max	0	143.471	13713.3	125107.6454	-123419.7	1291.235
0.9 DL - 1.5 EQY	Min	0	-143.471	13713.3	121731.7546	-123419.7	-1291.235
0.9 DL + 1.5 EQY	Max	0	143.471	13713.3	125107.6454	-123419.7	1291.235
0.9 DL + 1.5 EQY	Min	0	-143.471	13713.3	121731.7546	-123419.7	-1291.235

7.1. MODAL RESULTS

Estimate of the natural frequencies of three-storey building frame has compared below along with the mode shape.

a) <u>For unloaded case</u>:

	Natural frequencies in Hz				
Mode	By Excel Programming	By Experiment			
1	2.75	2.7			
2	7.66	7.9			
3	10.96	11.5			

b) For loaded case:

	Natural frequencies in Hz	
Mode	By Excel Programming	By Experiment
1	2.47	2.4
2	6.56	6.6
3	9.46	9.7

Mode Shape:

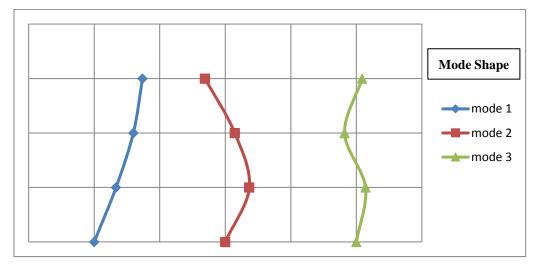


Figure- 20: Mode Shape

7.2. DAMPING RATIO

Damping Ratio of aluminum frame model is coming out to be 0.352% of the critical.

7.3. DIMENSIONAL ANALYSIS RESULTS

If "x" is the magnification factor, then following relations have been derived.

7.3.1. Changing Size of Elements in Three Dimensions

Base Shear $\propto \frac{1}{\sqrt{x}}$ Base Moment $\propto \sqrt{x}$ Modal Period $\propto x$ Modal Frequency $\propto \frac{1}{x}$ Joint Displacement $\propto \frac{1}{x\sqrt{x}}$ Total Weight $\propto x^3$

7.3.2. Changing Only Unit Weight of Material

Base Shear
$$\propto \frac{1}{\sqrt{x}}$$

Base Moment $\propto \frac{1}{\sqrt{x}}$
Total Weight $\propto x$
Modal Period $\propto \sqrt{x}$
Modal Frequency $\propto \frac{1}{\sqrt{x}}$
Joint Displacement $\propto \frac{1}{\sqrt{x}}$

7.3.3. Changing Only Elasticity of Material

Base Shear
$$\propto x$$

Base Moment $\propto x$
Total Weight $\propto x$
Modal Period $\propto \frac{1}{\sqrt{x}}$
Modal Frequency $\propto \sqrt{x}$

Joint displacements, total weight, and modal participation mass ratio are remaining unchanged.

7.4. **DESIGN RESULTS**

The reinforcement detailing in each memberof the frame has shown below. Since the structure is symmetric and regular, hence one outer frame and one inner frame are sufficient to understand the entire structure. The figures for reinforcement detailing are as follows:

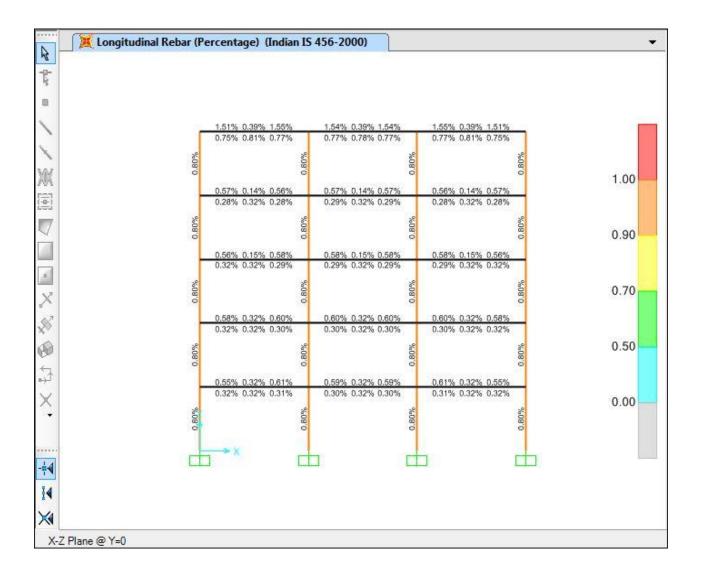


Figure- 21: Reinforcement Distribution in Outer Frame

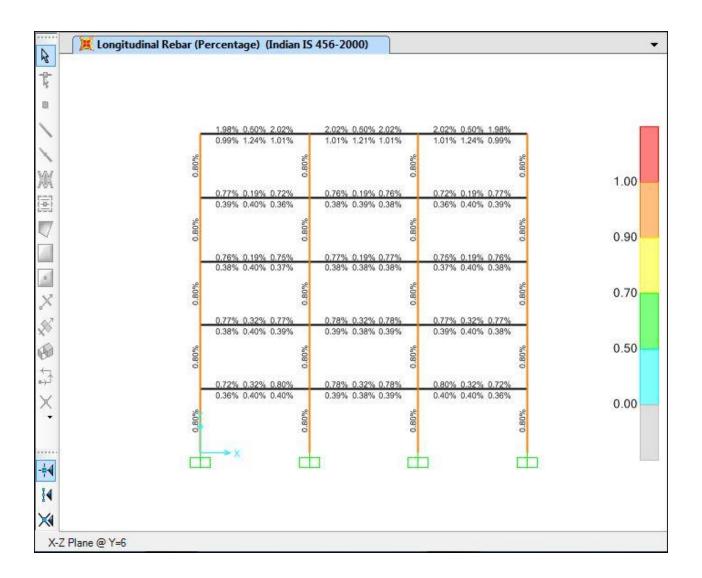
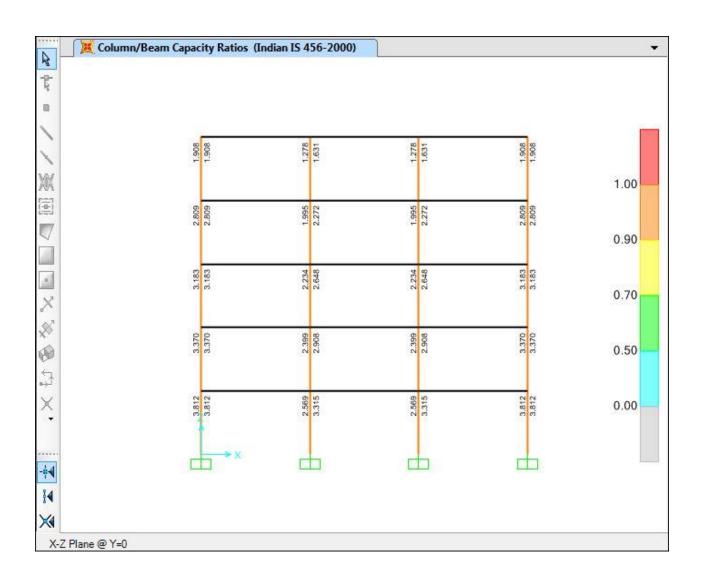



Figure- 22: Reinforcement Distribution in Inner Frame

For this design, the column/beam strength ratios have also been shown below with the figure.

Figure- 23: Column/Beam Strength Ratio for Outer Frame

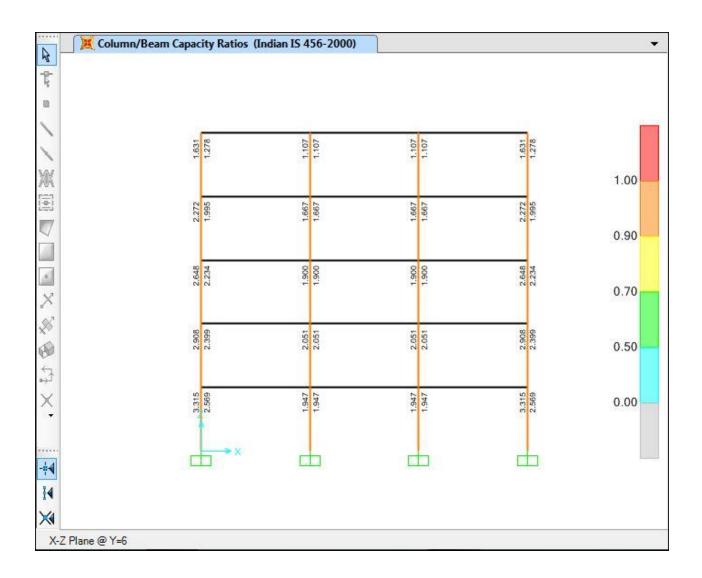


Figure- 24: Column/Beam Strength Ratio for Inner Frame

After performing all these trials and experiments, it can be concluded that the results getting from OROS NVGateare correct in all aspects. On seeing the graph of displacement vs. frequency, we can conclude that the displacement at the time of resonance state in the structure is very high. Hence, at that state the structure is most sever to collapse. Hence to counterpart that situationthere is needed to design the structure in ductile point of view to resist earthquake.

It has also beenobserved that the variation in natural frequencies in different results is very less in lower mode. The variation is increasing with the increasing mode. The value getting for damping ratio (ξ) of aluminum frame is also in range. This value is approximately 0.4 % for aluminum. On later stage damping ratio of an asbestos chimney model is also determined. It was coming around 35 %, which is a realistic result. However that part has not been included in this work.

The mode shapes that has been generated from the excel programming is realistic in nature. It looks like the same asobserved shapes in the experiment. The excel programming is too much handy in use as well. Hence it may become a good tool for further work.

The relationships derived for dimensional analysis may become helpful for analyzing real structures for dynamic condition, because it gives direct relations between the parameters. There will not be needed to have large calculations.

In design result, the reinforcement distribution is clearly shown by the figure. For instance, column/beam strength ratios have also been shown. At all the joints the columns are stronger than the beams, which is most important for ductile failure of structure at the time of earthquake.

By seeing the accuracy of results getting in this model, it can be said that the experiment can also be performed in different models. And also the experiment can be performed in same model by varying amplitude of shacking table. By doing so, maybe there will be any change in graph pattern. It can be further find out the damping ratio of any material, asit gives very accurate results.

As the future work on excel programming, further programming for calculation of base reactions or any other seismic parameter can be made. This sheet can be extended as beyond as possible.

The dimensional analysis can be made more helpful by analysing for more parameters. Thusit can further be related to a real building to create a model for analysis purpose. This will help in easy understanding of behaviour of the structure.

Some more kind of analysis can also be performed for the designed building, such as:

- 1) P- Δ analysis.
- 2) Modal time history analysis.
- 3) Non-linear analysis for staged construction.
- 4) Analysing by taking effect of infill.
- 5) Static pushover analysis, etc.

By doing so, a good knowledge of behaviour of that structure can be achieved.

References

[1] IS 1893 (Part-1): 2002, "Criteria for Earthquake Resistant Design of Structures".

[2] Book, Dynamics of Structures, by Mario Paz.

[3] Manual of National Program on Earthquake Engineering Education MHRD, Government of India, by IISc Bangalore.

[4] FEMA454, Chapter-4, "Earthquake Effects on Buildings", by Christopher Arnold.

[5] "Introduction to Theory of Vibration", by Manish Shrikhande, IIT Roorkee.

[6] Journal of theoretical and applied mechanics, "factors affecting internal damping in aluminum" by Mehmet Colakoglu.

[7] Multi degree of freedom (MDOF) systems and modal analysis, byAhmed Algamal.

[8] "Philosophy and Principals of Earthquake Resistant Design", by Professor D. K. Paul.

[9] "Architectural Considerations and Guidelines for Earthquake Resistant Design of Buildings", by Dr. Yogendra Singh, IIT Roorkee.

[10] MTS Tabletop Earthquake System Manual.

[11] Reference manual and user's manual provided by OROS NVGate software.

- [12] Microsoft Excel user help manual.
- [13] SAP2000 manual.